EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.
Energy Technology Data Exchange (ETDEWEB)
FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.
2002-06-03
The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.
Noninterceptive transverse beam diagnostics
International Nuclear Information System (INIS)
Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.
1981-01-01
The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project
Wilson, Edmund J N
2006-01-01
This contribution describes the transverse dynamics of particles in a synchrotron. It builds on other contributions to the General Accelerator School for definitions of transport matrices and lattice functions. After a discussion of the conservation laws which govern emittance, the effects of closed orbit distortion and other field errors are treated. A number of practical methods of measuring the transverse behaviour of particles are outlined.
Transverse mode coupling instability of colliding beams
Directory of Open Access Journals (Sweden)
S. White
2014-04-01
Full Text Available In high brightness circular colliders, coherent and incoherent beam dynamics are dominated by beam-beam interactions. It is generally assumed that the incoherent tune spread introduced by the beam-beam interactions is sufficiently large to cure any instabilities originating from impedance. However, as the two counterrotating beams interact they can give rise to coherent dipole modes and therefore modify the coherent beam dynamics and stability conditions. In this case, coherent beam-beam effects and impedance cannot be treated independently and their interplay should be taken into account in any realistic attempt to study the beam stability of colliding beams. Due to the complexity of these physics processes, numerical simulations become an important tool for the analysis of this system. Two approaches are proposed in this paper: a fully self-consistent multiparticle tracking including particle-in-cell Poisson solver for the beam-beam interactions and a linearized model taking into account finite bunch length effects. To ensure the validity of the results a detailed benchmarking of these models was performed. It will be shown that under certain conditions coherent beam-beam dipole modes can couple with higher order headtail modes and lead to strong instabilities with characteristics similar to the classical transverse mode coupling instability originating from impedance alone. Possible cures for this instability are explored both for single bunch and multibunch interactions. Simulation results and experimental evidences of the existence of this instability at the LHC will be presented for the specific case of offset collisions.
Noninterceptive transverse-beam measurements
International Nuclear Information System (INIS)
Chamberlin, D.D.; Minerbo, G.N.; Mottershead, C.T.
1981-01-01
Totally noninterceptive techniques for accurate measurement of transverse beam distributions are required for high-current continuous wave (cw) linacs, such as the Fusion Materials Irradiation Test (FMIT) accelerator. Sensors responding to visible radiation from beam interactions with residual gas and computer algorithms reconstructing spatial and phase space distributions have been implemented. This paper reports on early measurements of the beam from the injector of the prototype FMIT facility at Los Alamos. The first section indicates hardware setup and performance whereas the second section describes the data-processing software. The third section outlines the resultant measurements and further developments are discussed in the fourth section
Introduction to Transverse Beam Dynamics
Holzer, B.J.
2014-01-01
In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.
Transverse steering of two-component beams
International Nuclear Information System (INIS)
Murin, B.P.; Bondarev, B.U.; Durkin, A.P.; Lomize, L.G.; Soloviev, L.Yu.; Fedotov, A.P.
Coherent transverse oscillations are considered which occur during simultaneous acceleration of proton and H - beams due to arbitrary displacements in elements of the focusing channel. To suppress these oscillations, a beam adjustment station is proposed, in which each quadrupole lens of two doublets is provided with a special dipole component of the magnetic field. These steering elements, together with the beam transverse position monitors, permit steering the transverse position of beams of opposite signs in both transverse planes. The number of steering stations needed is chosen, and some algorithms for control are discussed. It is shown that some of the control algorithms will permit not only the suppression of coherent oscillations, but a decrease in the radius and emittance of the beam
Ito, Kiyokazu; Matsuba, Masanori; Okamoto, Hiromi
2018-02-01
A systematic experimental study is performed to clarify the parameter dependence of the noise-induced beam instability previously demonstrated by a Princeton group [M. Chung et al., Phys. Rev. Lett. 102, 145003 (2009)]. Because of the weakness of the driving force, the instability develops very slowly, which substantially limits the application of conventional experimental and numerical techniques. In the present study, a novel tabletop apparatus called "S-POD" (Simulator of Particle Orbit Dynamics) is employed to explore the long-term collective behavior of intense hadron beams. S-POD provides a many-body Coulomb system physically equivalent to a relativistic charged-particle beam and thus enables us to conduct various beam-dynamics experiments without the use of large-scale machines. It is reconfirmed that random noise on the linear beam-focusing potential can be a source of slow beam quality degradation. Experimental observations are explained well by a simple perturbation theory that predicts the existence of a series of dangerous noise frequency bands overlooked in the previous study. Those additional instability bands newly identified with S-POD are more important practically because the driving noise frequencies can be very low. The dependence of the instability on the noise level, operating tune, and beam intensity is examined and found consistent with theoretical predictions.
Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge
Energy Technology Data Exchange (ETDEWEB)
Paret, Stefan
2010-02-22
A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)
Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge
International Nuclear Information System (INIS)
Paret, Stefan
2010-01-01
A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)
Transverse equilibria in linear collider beam-beam collisions
International Nuclear Information System (INIS)
Rosenzweig, J.B.; Chen, Pisin
1991-01-01
It has been observed in simulations of the beam-beam interaction in linear colliders that a near equilibrium pinched state of the colliding beams develops when the disruption parameter is large (D much-gt 1). In this state the beam transverse density distributions are peaked at center, with long tails. The authors present here an analytical model of the equilibrium approached by the beams, that of a generalized Bennett pinch which develops through collisionless damping due to the strong nonlinearity of the beam-beam interaction. In order to calculate the equilibrium pinched beam size, an estimation of the rms emittance growth is made which takes into account the partial adiabaticity of the collision. This pinched beam size is used to derive the luminosity enhancement factors whose scaling is in agreement with the simulation results for both D and thermal factor A = σ z /β * large, and explains the previously noted cubic relationship between round and flat beam enhancement factors
Nonlinear theory of transverse beam echoes
Energy Technology Data Exchange (ETDEWEB)
Sen, Tanaji; Li, Yuan Shen
2017-10-04
Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough. The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
International Nuclear Information System (INIS)
Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin
2012-01-01
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
Directory of Open Access Journals (Sweden)
Shahid Ahmed
2012-02-01
Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.
Transverse electron beam diagnostics at REGAE
International Nuclear Information System (INIS)
Bayesteh, Shima
2014-12-01
The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A
Transverse instability of the antiproton beam in the Recycler Ring
Energy Technology Data Exchange (ETDEWEB)
Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab
2011-03-01
The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
Transverse Beam Profile Measurements Using Optical Methods
Peters, A; Weiss, A; Bank, A
2001-01-01
Two different systems are currently under development at GSI's heavy ion facility to measure transverse beam profiles using optical emitters. At the GSI-LINAC for energies up to 15 MeV/u residual gas fluorescence is investigated for pulsed high current beams. The fluorescence of N2 is monitored by an image intensified CCD camera. For all ion species with energies above 50 MeV/u slowly extracted from the synchrotron SIS a classical viewing screen system is used. Three different target materials have been investigated and their behavior concerning efficiency, saturation and timing performance is evaluated. Both systems (will) use CCD cameras with a digital read out using the IEEE 1394 standard.
International Nuclear Information System (INIS)
Balandin, V.; Decking, W.; Golubeva, N.
2014-09-01
We show that if in the particle beam there are linear correlations between energy of particles and their transverse positions and momenta (linear beam dispersions), then the transverse projected emittances always can be reduced by letting the beam to pass through magnetostatic system with specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice dispersions required for that are completely defined by the values of the beam dispersions and the beam rms energy spread and are independent from any other second-order central beam moments. Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear correlations between longitudinal positions of particles and their transverse coordinates (linear beam tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the transverse projected emittances is not guaranteed.
1983-01-01
nonlinear lansing landph), teac o s the tem-and small-scale sel-focusing 137]. He con- poral and spatial peak of the pulse is consider-and mal -scae slf...coherent tran- - simultaneously mal -scale and whole-beam sient effects are additionally present, self- . .. self-focusing, that he used to study trans... menor !y requirements. For instancs, the direct access to the SIMES and DATSIN files has increased the efficiency of the application prograas and made
Transverse beam profile reconstruction using synchrotron radiation interferometry
Directory of Open Access Journals (Sweden)
L. Torino
2016-12-01
Full Text Available Transverse beam size measurements in new generation of synchrotron light sources is a challenging task due to their characteristic small beam emittances and low couplings. Since the late 1990s, synchrotron radiation interferometry (SRI has been used in many accelerators to measure the beam size through the analysis of the spatial coherence of the synchrotron light. However, the standard SRI using a double-aperture system provides the beam size projection in a given direction. For this reason, the beam shape is not fully characterized because information about possible transverse beam tilts is not determined. In this report, we describe a technique to fully reconstruct the transverse beam profile based on a rotating double-pinhole mask, together with experimental results obtained at ALBA under different beam couplings. We also discuss how this method allows us to infer ultrasmall beam sizes in case of limitations of the standard SRI.
Digital transverse beam dampers from the Brookhaven AGS
International Nuclear Information System (INIS)
Smith, G.A.; Castillo, V.; Roser, T.; Van Asselt, W.; Witkover, R.; Wong, V.
1995-01-01
A wide band, digital damper system has been developed and is in use at the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of vertical and horizontal capacitive pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line beam kickers. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of heavy ions. This paper discusses the system design and operation, particularly with regard to stabilization of the high intensity proton beam. The analog and digital signal processing techniques used to achieve optimum results are discussed. Operational data showing the effect of the damping are presented
Transverse stability in multibunch mode for CLIC
International Nuclear Information System (INIS)
Guignard, G.
1993-01-01
In order to reach the desired luminosity with 250 GeV per beam, multibunch operation (limited to 4 bunches, say) might have to be considered in the CERN linear collider (CLIC). One limitation comes from the coupling of the bunch motion with the long-range transverse wake fields that may induce beam breakup. These wake fields have therefore to be controlled, and means of reducing their effects on the beam are discussed in a companion paper. One possibility consists in detuning the dipole modes in the cells to obtain decoherent contributions and hence reduce the field amplitude at the downstream bunch location. The important question is to know below which value this amplitude must be limited to prevent intolerable beam breakup. In a first attempt at estimating this threshold for CLIC two approaches are considered, i.e. the criterion developed at SLAC and based on the convergence of the multibunch-motion solution, and numerical simulations of two-bunch motion in a focusing lattice
Analysis of beam envelope by transverse space charge effect
Energy Technology Data Exchange (ETDEWEB)
Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1997-09-01
It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)
Operation of the PEP transverse beam feedback
International Nuclear Information System (INIS)
Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.
1981-02-01
The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results
Transverse particle dynamics in a Bessel beam
Czech Academy of Sciences Publication Activity Database
Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel
2007-01-01
Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007
Transverse beam shape measurements of intense proton beams using optical transition radiation
Energy Technology Data Exchange (ETDEWEB)
Scarpine, Victor E.; /Fermilab
2012-03-01
A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.
Beam excitation and damping with the transverse feedback system
International Nuclear Information System (INIS)
Pellegrin, J.L.; Rees, J.R.
1979-08-01
The questions often come up, ''What is the strength if the beam excitation system? How much damping can the transverse feedback provide?'' The design is now advanced enough to answer these questions; also, laboratory tests of some components have been conducted and we know what can be expected of the hardware. This paper discusses these questions
Transverse Periodic Beam Loading Effects in a Storage Ring
International Nuclear Information System (INIS)
Thompson, J.R.; Byrd, J.M.
2009-01-01
Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.
SPS transverse beam scraping and LHC injection losses
Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E
2012-01-01
Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.
Tomography of the electron beam transverse phase space at PITZ
International Nuclear Information System (INIS)
Asova, Galina
2013-09-01
The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence
Tomography of the electron beam transverse phase space at PITZ
Energy Technology Data Exchange (ETDEWEB)
Asova, Galina
2013-09-15
The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence
Adaptive robust control of longitudinal and transverse electron beam profiles
Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.
2016-05-01
Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.
Study on reinforced concrete beams with helical transverse reinforcement
Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.
2018-02-01
In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.
Transverse wakefield effects in the two-beam accelerator
International Nuclear Information System (INIS)
Selph, F.; Sessler, A.
1986-01-01
Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) are analyzed theoretically using three different models. The first is a very simple two-particle model, the second is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented. (orig./HSI)
Stability diagram of colliding beams
Buffat, X; Mounet, N; Pieloni, T
2014-01-01
The effect of the beam-beam interactions on the stability of impedance mode is discussed. The detuning is evaluated by the means of single particle tracking in arbitrarily complex collision configurations, including lattice non-linearities, and used to numerically evaluate the dispersion integral. This approach also allows the effect of non-Gaussian distributions to be considered. Distributions modified by the action of external noise are discussed.
Oscillatory Response of a Beam to a Transverse Kick
CERN PhotoLab
1974-01-01
When a circulating beam receives a transverse kick, it begins to perform coherent betatron oscillations. Their amplitude depends on strength, length and temporal shape of the kick, and on the Q-value (betatron tune) of the accelerator or storage ring. A calculation of a response function is shown in 3-dimensional presentation with the means of 1974: graph paper glued on cardboard stuck in a slotted base-plate.
Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Webb, Stephen D. [Tech-X, Boulder; Bruhwiler, David L. [Tech-X, Boulder; Abell, Dan T. [Tech-X, Boulder; Danilov, Viatcheslav [Oak Ridge; Nagaitsev, Sergei [Fermilab; Valishev, Alexander [Fermilab; Danilov, Kirill [Tech-X, Boulder; Cary, John R. [Tech-X, Boulder
2012-05-01
High intensity proton storage rings are central for the development of advanced neutron sources, drivers for the production of pions in neutrino factories or muon colliders, and transmutation of radioactive waste. Fractional proton loss from the beam must be very small to prevent radioac- tivation of nearby structures, but many sources of beam loss are driven by collective effects that increase with intensity. Recent theoretical work on the use of nonlinear magnetic fields to design storage rings with integrable transverse dynamics is extended here to include collective effects, with numerical results showing validity in the presence of very high beam current. Among these effects is the formation of beam halo, where particles are driven to large amplitude oscillations by coherent space charge forces. The strong variation of particle oscillation frequency with amplitude results in nonlinear decoherence that is observed to suppress transverse halo development in the case studied. We also present a necessary generalization of the Kapchinskij-Vladimirskij equilibrium distribution, which was introduced over 50 years ago for modeling linear dynamics in particle accelerators.
Particle-core model for transverse dynamics of beam halo
Directory of Open Access Journals (Sweden)
T. P. Wangler
1998-12-01
Full Text Available The transverse motion of beam halo particles is described by a particle-core model which uses the space-charge field of a continuous cylindrical oscillating beam core in a uniform linear focusing channel to provide the force that drives particles to large amplitudes. The model predicts a maximum amplitude for the resonantly-driven particles as a function of the initial mismatch. We have calculated these amplitude limits and have estimated the growth times for extended-halo formation as a function of both the space-charge tune-depression ratio and a mismatch parameter. We also present formulas for the scaling of the maximum amplitudes as a function of the beam parameters. The model results are compared with multiparticle simulations and we find very good agreement for a variety of initial particle distributions.
Beam structure and transverse emittance studies of high-energy ion beams
International Nuclear Information System (INIS)
Saadatmand, K.; Johnson, K.F.; Schneider, J.D.
1991-01-01
A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs
Beam structure and transverse emittance studies of high-energy ion beams
Saadatmand, K.; Johnson, K. F.; Schneider, J. D.
1991-05-01
A visual diagnostic technique was developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position).
Transverse centroid oscillations in solenoidially focused beam transport lattices
International Nuclear Information System (INIS)
Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.
2009-01-01
Transverse centroid oscillations are analyzed for a beam in a solenoid transport lattice. Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by both mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on the properties of the ideal lattice in the absence of errors and steering, and have associated expansion amplitudes set by the misalignments and steering fields, respectively. Applications of this formulation are presented for statistical analysis of centroid oscillations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.
Beam monitors and transverse feedback system of TRISTAN Main Ring
International Nuclear Information System (INIS)
Ieiri, T.; Ishii, H.; Kishiro, J.; Mizumachi, Y.; Mori, K.; Nakajima, K.; Ogata, A.; Shintake, T.; Tejima, M.
1987-01-01
The construction of 30 GeV TRISTAN Main Ring (MR) started in 1983 soon after the commissioning of 8 GeV Accumulation Ring (AR). The authors prepared 392 position monitors, 6 synchrotron radiation monitors, 9 screen monitors, 2 DCCT's, 3 scrapers, 12 bunch monitors, transverse feedback systems for two beams and DC separators. Since the required monitoring devices of AR and MR are almost the same, the experiences in AR were very useful in the design of MR monitors. However, machine parameters of two rings are very different and the authors had to review the performance of each item. From the monitor point of view the most important is the difference of revolution frequency; 794.6 kHz for AR and 99.33 kHz for MR. This means that average beam current of MR is 1/8 as small as AR current with the same bunch number and intensity. Therefore, the sensitivity of each monitor must be better in MR. The second difference is that MR should be used as a collider from the beginning. Therefore they must prepare for multi-beam and multi-bunch operation
The effect of laser beam size in a zig-zag collimator on transverse ...
Indian Academy of Sciences (India)
The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...
LHC beam stability and feedback control
Energy Technology Data Exchange (ETDEWEB)
Steinhagen, Ralph
2007-07-20
This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a
A cracked beam or plate transversely loaded by a stamp
Nied, H. F.; Erdogan, F.
1979-01-01
In this paper the problem of an infinite elastic beam or a plate containing a crack is considered. The medium is loaded transversely through a stamp which may be rigid or elastic. The problem is a coupled crack-contact problem which cannot be solved by treating the crack and contact problems separately and by using a superposition technique. First the Green's functions for the general case are obtained. Then the integral equations for a cracked infinite strip loaded by a frictionless stamp are obtained. With the question of fracture in mind, the primary interest in the paper has been in calculating the stress intensity factors. The results are given for a rigid flat stamp with sharp edges and for an elastic curved stamp. The effect of friction at the supports on the stress intensity factors is also studied and a numerical example is given.
Transverse beam diagnostics for the XUV seeding experiment at FLASH
Energy Technology Data Exchange (ETDEWEB)
Boedewadt, Joern
2011-12-15
High-gain free-electron lasers (FEL) offer intense, transversely coherent, and ultra short radiation pulses in the extreme ultraviolet, the soft- and the hard-X-ray spectral range. Undulator radiation from spontaneous emission is amplified. Due to the stochastic emission process, the radiation exhibits a low temporal coherence, and the structure of the amplified radiation in the temporal and in the spectral domain shows large shot-to-shot fluctuations. In order to improve the temporal coherence, an external radiation pulse is used to induce (or seed) the FEL process. With this, only a defined wavelength range within the FEL bandwidth is amplified provided that the irradiance of the external radiation exceeds the noise level of the FEL amplifier. In addition to the improved longitudinal coherence, a seeded FEL provides the possibility to perform pump-probe experiments with an expected temporal resolution of the order of the pulse durations. In order to experimentally proof this statement, a test experiment for direct HHG-seeding at wavelength below 40 nm was installed at the free-electron laser facility FLASH at DESY. Crucial for the seeded operation of an FEL is the six-dimensional laser-electron overlap of the seed laser pulses with the electron bunches. Hence, dedicated diagnostics to measure and mechanisms to control the overlap are essential. Within this thesis, a transport beamline for the seed laser beam and the transverse diagnostics for seed laser- and the electron-beam were developed and commissioned. Results of the performance of the seed injection beamline are presented, and first measurements of the seeded operation of the FEL are analyzed and evaluated. (orig.)
Dynamic Stability of Rotating Blades with Transverse Cracks
Directory of Open Access Journals (Sweden)
T.Y. Ng
2003-01-01
Full Text Available In this paper, the main objective is to examine the effects of transverse cracks on the dynamic instability regions of an axially loaded rotating blade. The blade is modeled as an Euler-Bernoulli beam. To reduce the governing equations to a set of ordinary differential equations in matrix form, Hamilton's principle is used in conjunction with the assumed-mode method. The crack is accounted for by considering the energy release rate and the parametric instability regions are obtained using Bolotin's first approximation. Benchmark results are presented for cracked rotating blades at different rotating speeds, crack lengths and crack positions.
Report on single beam stability - coherent effects
International Nuclear Information System (INIS)
Brouzet, E.; Gareyte, J.; Hofmann, A.; Laclare, J.C.; Leleux, G.; Miles, J.; Schindl, K.H.
1980-01-01
Group 1A was concerned with single beam stability, coherent effects. Theory is available. Most of the material for this work was drawn from F.J. Sacherer theory which has been left in reasonably good shape in the sense that given any coupling impedance, its effect on the beam can be estimated. The EBI computer program was extensively used in this respect. We still lack thorough knowledge of the SPS coupling impedance. Accordingly our results rest on a model. This model should be too unrealistic since it originates from various data of the SPS and other machines. Nevertheless any complementary information about the SPS impedance would be welcome. Broad-band impedance and parasitic effects on transverse and longitudinal motions will be reviewed. We shall mainly focus on the 270 GeV case with six equidistant bunches and 10 11 particles per bunch. For other schemes results can be obtained in a similar fashion. Some relevant figures will be given for the situation at injection. (orig.)
The effect of laser beam size in a zig-zag collimator on transverse ...
Indian Academy of Sciences (India)
to achieve high number densities of trapped cold atoms [17,18]. In zig-zag method, the transverse component of velocity of a moving atom in atomic beam is reduced by a laser beam propagating at an angle with respect to the axis of the atomic beam. In this method, a zig-zag path for the cooling laser beam is generated.
Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique
Energy Technology Data Exchange (ETDEWEB)
Halavanau, A. [Northern Illinois U.; Qiang, G. [Tsinghua U., Beijing, Dept. Eng. Phys.; Ha, G. [POSTECH; Wisniewski, E. [Argonne (main); Piot, P. [NIU, DeKalb; Power, J. G. [Argonne (main); Gai, W. [Argonne (main)
2017-07-24
A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.
Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets
Energy Technology Data Exchange (ETDEWEB)
Antipov, Sergey [Univ. of Chicago, IL (United States)
2017-03-01
Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.
Beam tuning and stabilization using beam phase measurements at GANIL
International Nuclear Information System (INIS)
Chabert, A.; Loyer, F.; Sauret, J.
1984-06-01
Owing to the great sensitivity of the beam phase to the various parameters, on line beam phase measurements proved to be a very efficient way of tuning and stabilizing the beam of the multi-accelerator complex. We recall the system which allows to obtain the different kinds of accurate measurements we need and describe the main applications: - tuning process (buncher and SSC's RF phase determination, setting of the required radial beam phase law in the SSC's); - stabilization of the beam by loops, the basic principle of which being to keep constant the beam central phase all along the machine by adjusting RF voltages or magnetic fields. Feedback loops are described and comparative results with and without feedback are given
Energy Technology Data Exchange (ETDEWEB)
Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.
2015-02-26
The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.
International Nuclear Information System (INIS)
He, Xi; Wu, Fengtie; Chen, Ziyang; Pu, Jixiong; Chavez-Cerda, Sabino
2016-01-01
The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams. (paper)
Directory of Open Access Journals (Sweden)
Shaoheng Wang
2008-05-01
Full Text Available Derbenev proposed producing a high quality flat beam of high-transverse-emittance ratio (HTER with a linear accelerator. Kim also discussed the round-to-flat transformation of angular-momentum-dominated beam. Fermilab/NICADD Photoinjector Laboratory has performed many experiments on HTER beam production. Experiments and simulations, collectively, showed an S-shaped transverse distribution in the flat beam. In this paper, the source of this emittance deterioration in the transformation is identified as the nonlinear rf cavity focusing force; and a solution is proposed.
Transverse vibration of a simply supported beam with symmetric overhang of arbitrary length
J. F. Murphy
1997-01-01
The numerical solution to the frequency equation for the transverse vibration of a simple beam with symmetric overhang is found. The numerical results converge to the analytical solutions for the two limiting cases of a beam with no overhang and a beam with no span and agree with the case in which the supports are at the nodal points of a freely vibrating beam. An...
International Nuclear Information System (INIS)
Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.
1995-01-01
The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations
Transverse Behaviour of the LHC Proton Beam in the SPS an Update
Arduini, Gianluigi; Höfle, Wolfgang; Rumolo, Giovanni; Zimmermann, Frank
2001-01-01
During the 1999 SPS run, strong transverse instabilities were observed with the LHC beam [1]. Both the instability characteristics and the identical threshold current as for beam-induced electron multipacting led to consider the interaction of the beam with the electron cloud as a likely source. In 2000, we have measured the dependence of beam motion, beam loss, and emittance growth on bunch intensity, number of bunches, octupole strength, chromaticity, and gaps in the bunch train. We report on these recent studies and compare the beam observations with simulations of electron cloud build up and electron-induced single-bunch instabilities.
Stability of Periodically Focused Intense Particle Beams
International Nuclear Information System (INIS)
Pakter, R.; Rizzato, F. B.
2001-01-01
A stability analysis of periodically focused intense particle beams based on the beam envelope equation is performed. We show that (i) the scenario, as the focusing field increases, is not the existence of a single threshold above which stable matched (equilibrium) solutions are absent, as generally believed, but the existence of successive regions of stability interrupted by gaps of instability; (ii) the beam can be focused to tighter radii using new stable matched solutions found for focusing field strengths greater than the previous threshold. Self-consistent simulations validate the findings
Transverse wakefield of waveguide damped structures and beam dynamics
International Nuclear Information System (INIS)
Lin, X.
1995-08-01
In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield
Transverse wakefield of waveguide damped structures and beam dynamics
Energy Technology Data Exchange (ETDEWEB)
Lin, Xintian [Univ. of California, San Diego, CA (United States)
1995-08-01
In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q_{ext} of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q_{ext} of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t^{-3/2} rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield.
Optical method for mapping the transverse phase space of a charged particle beam
International Nuclear Information System (INIS)
Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.
2002-01-01
We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously
Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements
Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt
2016-01-01
Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.
Analysis of ABCD-like law for charged-particle beam transport with transversal divergence
International Nuclear Information System (INIS)
Chen Baoxin; Zhang Aiju; Sun Biehe
2004-01-01
It is shown that the propagation of charged-particle beam can be made in complete analogy with the transmission of ellipse-Gaussian light beam in paraxial approximation. Based on this similarity, the ABCD-like law for charged-particle beam transport with transversal divergence is developed by means of the complex curvature radius of charged-particle beam in which its real part shows the beam characteristics of convergent and divergent and its imaginary part shows the beam radius. From this, charged-particle beam as a whole is thought of as a single ellipse Gaussian light-like beam whose emittance plays the role of wave-length. In particular, this analogy gives an insight that it is hopeful to attain possible coherent charged-particle beam in favorable accelerator environment. (authors)
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
Study of the many-dimensional transverse phase-space distributions of intense ion beams
International Nuclear Information System (INIS)
Riehl, G.
1993-12-01
Aim of this thesis was the study of the transverse phase-space distributions of intense ion beams and especially the determination of the emittance growth and the filaments of the distributions. Developed was a facility, which determines under application of each two perpendicularly arranged slit apertures and profile grids and a multichannel current-amplifier plug-in both beam profile and beam emittance of the two transverse motion planes. After the determination of the 1- and 2-dimensional phase-space distributions was successfully realized, the facility was further developed for the measurement of the 3-dimensional phase-space distributions. The observed growth of the emittance and RMS growth on magnetic solenoids could be quantitatively determined and their different causes determined. The growth factors of an optically only slightly filamented beam emittance between 1.5 and 3.2 show that the beam quality is strongly interfered by such influences. The measurements showed beyond the causes and the connection between the filamentation of the emittance as well as the origin of the hollow beams and beam halos observed in many experiments. It could be shown that not only magnetic fields and space-charge fields but pricipally each radial-symmetric, nonlinear field couples the two transverse motion planes and by this causes in nearly all cases a growth of the beam emittance
Modify beam transversal test to evaluate hemiparkinsonian rats
International Nuclear Information System (INIS)
Blanco Lezcano, Lissette; Lorigados Pedre, Lourdes del C; Fernandez Verdecia, Caridad I; Serrano Sanchez, Teresa; Pavon Fuentes, Nancy; Turner, Liliana Francis
2010-01-01
The nigrostriatal degeneration underlying Parkinson's disease (PD) is commonly studied in experimental animals by injection of the neurotoxin 6-hydroxydopamine. the present study describes a modified version of a beam traversal test which allows the quantification of the motor deficit through the time spent to arrive to the platform once all four paws of the animals are in contact with the beam (escape latency, el), the time spent before falling (tumbled down latency, TDL) and the number of errors (NE) committed for the animals in each beam. The shape and the diameter of the cross section of the beams were modified from rectangular and circular cross section with 2.5 cm of diameter to the same shape with 1 cm of diameter, which induced a high difficulty to the execution of the test. Three groups of Wistar rats were examined: untreated (n=15), lesioned with 6-hydroxydopamine (n=14), and sham-operated (n=14). All variables studied showed significant differences between control and hemiparkinsonian rats. The EL and the NE were increased and the TDL was decreased in hemiparkinsonian rats for all beams in comparison with control rats. In TDL the significant differences between groups were more evident (p<0.001) for the beams with high cross section irrespective of the shape of the cross section. BTT is a convenient sensorimotor test that does not need to be trained extensively, and require adverse motivation or food deprivation and appears to be very useful in evaluating the motor deficits in established unilateral model of PD and also other experimental models.
Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps
Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M
2012-01-01
A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.
Steinhagen, R J; Boland, M J; Lucas, T G; Rassool, R P
2013-01-01
The performance reach of modern accelerators is often governed by the ability to reliably measure and control the beam stability. In high-brightness lepton and high-energy hadron accelerators, the use of optical diagnostic techniques is becoming more widespread as the required bandwidth, resolution and high RF beam power level involved limit the use of traditional electro-magnetic RF pick-up based methods. This contribution discusses the use of fibre-coupled ultra-fast Metal-Semiconductor-Metal Photodetectors (MSM-PD) as an alternative, dependablemeans to measure signals derived from electro-optical and synchrotron-light based diagnostics systems. It describes the beam studies performed at CERN’s CLIC Test Facility (CTF3) and the Australian Synchrotron to assess the feasibility of this technology as a robust, wide-band and sensitive technique for measuring transverse intra-bunch and bunch-by-bunch beam oscillations, longitudinal beam profiles, un-bunched beam population and beam-halo profiles. The amplifica...
Electron-beam generation, transport, and transverse oscillation experiments using the REX injector
International Nuclear Information System (INIS)
Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.
1991-01-01
The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual Axis Radiographic Hydrotest facility. The pulsed-power source drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B-dot technique to be about ±100 μ at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap
Generation and focusing of electron beams with initial transverse-longitudinal correlation
Energy Technology Data Exchange (ETDEWEB)
Harris, J. R. [Colorado State Univ., Fort Collins, CO (United States) Dept. of Electrical and Computer Engineering.; Lewellen, J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poole, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-10-07
In charged particle beams, one of the roles played by space charge is to couple the transverse and longitudinal dynamics of the beam. This can lead to very complex phenomena which are generally studied using computer simulations. However, in some cases models based on phenomenological or analytic approximations can provide valuable insight into the system behavior. In this paper, we employ such approximations to investigate the conditions under which all the slices of a space charge dominated electron beam with slowly varying current could be focused to a waist with the same radius and at the same location, independent of slice current, and show that this can be accomplished approximately if the initial transverse-longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate for the transverse-longitudinal correlation introduced onto the beam in the drift section. The validity of our approximations is assessed by use of progressively more realistic calculations. We also consider several design elements of electron guns that affect the initial correlations in the beams they generate.
The Nature of Transverse Beam Instabilities at Injection in the Fermilab Main Ring
Energy Technology Data Exchange (ETDEWEB)
Chou, Ping Jung [Northwestern Univ., Evanston, IL (United States)
1996-12-01
Transverse beam instabilities have been observed in the Fermilab Main Ring since 1972. It was well controlled by two active feedback systems until the last fix target run in 1991. The current upgrade of accelerator facilities, where the replacement of the Main Ring by the Main Injector will allow acceleration of higher proton intensities, makes the importance of this issue surface again. Experimental studies were conducted to understand the nature and the cause of these transverse beam instabilities. The interplay between accelerator parameters and the growth rate of transverse beam oscillations is investigated. Some previously puzzling behavior of the Main Ring is now understood because of the knowledge gained from these studies. Experimental techniques were implemented to measure some important parameters of the Main Ring, such as the vertical impedance, bunch form factor, and the wake f~nction. Empirical theory is devised to understand the coupled bunch instability with many distributed gaps, and a satisfactory agreement is obtained between the analysis and the measured data. The cause of the transverse beam instabilities is identified to be the resistive wall impedance. Anomalous behavior in the frequency dependence of the impedance below the MHz range suggests that impedance sources other than the resistive wall also exist in the Main Ring. The performance of two active feedback systems is found to be inadequate to meet the goal of the Main Injector accelerator upgrade. Suggestions for hardware improvements and the choice of accelerator parameters are given.
Differential equation of transverse vibrations of a beam with local stroke change of stiffness
Directory of Open Access Journals (Sweden)
Stanisław Kasprzyk
2007-01-01
Full Text Available The aim of this paper is to derive a differential equation of transverse vibrations of a beam with a local, stroke change of stiffness, and to solve it. The presented method is based on the theory of distributions.
The effect of laser beam size in a zig-zag collimator on transverse ...
Indian Academy of Sciences (India)
De; 42.55.Px. The advancement in the technique of laser cooling of atoms to manipulate atomic motion has opened many new and exciting areas of research and technology including high ... the first time by Hansch and Schawlow [5]. Transverse laser cooling of atomic beams has been demonstrated by applying various ...
General description of transverse mode Bessel beams and construction of basis Bessel fields
Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Jiao, Yong Chang
2017-07-01
Based on an analysis of polarized Bessel beams using the Hertz vector potentials and the angular spectrum representation (ASR), a general description of transverse mode Bessel beams is proposed. As opposed to the cases of linearly and circularly polarized Bessel beams, the magnetic and electric fields of a Bessel beam in a transverse mode are orthogonal to each other. Both sets of fields together form a complete set of basis Bessel fields, in terms of which an arbitrary Bessel beam can be regarded as a linear combination. The completeness of the basis Bessel fields is analyzed from the perspectives of waveguide theory and vector wave functions. Decompositions of linearly polarized, circularly polarized, and circularly symmetric n-order Bessel beams in terms of basis Bessel fields are given. The results presented in this paper provide a fresh perspective on the description of Bessel beams, which are useful in casting insights into the experimental generation of Bessel beams and the interpretation of light scattering-related problems in practice.
Transverse energy circulation and the edge diffraction of an optical vortex beam.
Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A
2014-04-01
Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.
Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons
Energy Technology Data Exchange (ETDEWEB)
Alhumaidi, Mouhammad
2015-03-04
Transversal coherent beam oscillations can occur in synchrotrons directly after injection due to errors in position and angle, which stem from inaccurate injection kicker reactions. Furthermore, the demand for higher beam intensities is always increasing in particle accelerators. The wake fields generated by the traveling particles will be increased by increasing the beam intensity. This leads to a stronger interaction between the beam and the different accelerator components, which increases the potential of coherent instabilities. Thus, undesired beam oscillations will occur when the natural damping is not enough to attenuate the oscillations generated by the coherent beam-accelerator interactions. The instabilities and oscillations can be either in transversal or longitudinal direction. In this work we are concerned with transversal beam oscillations only. In normal operation, transversal beam oscillations are undesired since they lead to beam quality deterioration and emittance blow up caused by the decoherence of the oscillating beam. This decoherence is caused by the tune spread of the beam particles. The emittance blow up reduces the luminosity of the beam, and thus the collision quality. Therefore, beam oscillations must be suppressed in order to maintain high beam quality during acceleration. A powerful way to mitigate coherent instabilities is to employ a feedback system. A Transversal Feedback System (TFS) senses instabilities of the beam by means of Pickups (PUs), and acts back on the beam through actuators, called kickers. In this thesis, a novel concept to use multiple PUs for estimating the beam displacement at the position with 90 phase advance before the kicker is proposed. The estimated values should be the driving feedback signal. The signals from the different PUs are delayed such that they correspond to the same bunch. Subsequently, a weighted sum of the delayed signals is suggested as an estimator of the feedback correction signal. The
Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams
Directory of Open Access Journals (Sweden)
D. R. Welch
2008-06-01
Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.
CSR Effects in a Bunch Compressor influence of the Beam Frame Transverse Force
Bassi, G
2005-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding) with a Vlasov approach. [1] The fields excited by the bunch are computed in the lab frame using a formula simpler than that based on retarded potentials. The Vlasov equation is solved in the beam frame interaction picture. In recent numerical investigations we solved the Vlasov equation for a bunch compressor using the Liouville-Maxwell approximation (LMA), where the bunch density is evolved under the fields produced by the unperturbed density (subject to external fields only), neglecting the beam frame transverse force. [2] Here we report on the influence of the beam frame transverse force on the equations of motion.
Directory of Open Access Journals (Sweden)
A. M. Al-Khateeb
2007-06-01
Full Text Available Using field matching techniques, closed form analytic expressions for the transverse impedance and for the shielding effectiveness of a smooth cylindrical beam pipe of arbitrary thickness are presented. In the limit of thick and thin beam pipes the well-known expressions are reproduced. The transverse transmission coefficient is compared with the longitudinal one that has been obtained in our previous work [A. M. Al-Khateeb, O. Boine-Frankenheim, R. W. Hasse, and I. Hofmann, Phys. Rev. E 71, 026501 (2005.PLEEE81063-651X10.1103/PhysRevE.71.026501]. The results are applied to the heavy ion synchrotron SIS 18 and to the planned SIS 100 at GSI. In both machines the stainless steel beam pipe in the dipole sections is much thinner than the skin depths at the revolution frequency and, therefore, the impedance value and the transmission are of concern.
Transverse phase space mapping of relativistic electron beams using optical transition radiation
Directory of Open Access Journals (Sweden)
G. P. Le Sage
1999-12-01
Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.
Transverse Laser Beam Shaping in High Brightness Electron Gun at ATF
Roychowdhury, S
2005-01-01
The brightness of electron beams from a photo injector is influenced by the transverse and longitudinal distribution of the laser beam illuminating the cathode. Previous studies at Brookhaven Accelerator Test Facility have shown that formation of an ideal e-beam with lowest transverse emittance requires uniform circular distribution of the emitted electrons. The use of the uniformly distributed power of the laser beam may not lead to that of the emitted electrons because of the non-uniform quantum efficiency. A proper shaping of the laser beam can compensate for this non-uniformity. In this paper we describe the use of digital light processing (DLP) technique based on digital mirror device (DMD) for spatial modulation of the laser beam, for measurements of the quantum efficiency map, and for creating the desirable e-beam density profiles. A DMD is aμelectronic mechanical system (MEMS) comprising of millions of highly reflectiveμmirrors controlled by underlying electronics. We present exper...
Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam
Energy Technology Data Exchange (ETDEWEB)
Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab
2012-05-01
Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.
Directory of Open Access Journals (Sweden)
Dazhang Huang
2016-10-01
Full Text Available The microbunching instability developed during the beam compression process in the linear accelerator (LINAC of a free-electron laser (FEL facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.
Multi-pinhole camera for beam position and vertical angle stabilization
Meshkov, O. I.; Zhuravlev, A. N.; Smaluk, V. V.
2010-03-01
The VEPP-4M electron-positron collider is now operating with the KEDR detector for the high-energy physics experiments in the energy range from 1100 to 4000 MeV. For these experiments, monitoring of beam transverse position and angles at the interaction point is important for energy stabilization. BPM system of VEPP-4M doesn't provide the reliable information about beam orbit when the machine operates in colliding mode. The beam diagnostic instrument, described in this paper, is a good supplement for the BPM system. The vertical coordinate and angle of the beam can be measured and stabilized at two points, which are symmetrical with respect to the beam interaction point. The precision of the measurements and the collider energy range accessible for the diagnostics are discussed.
Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms
Energy Technology Data Exchange (ETDEWEB)
Khaji, N. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mehrjoo, M. [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-03-15
In this paper, a crack detection approach is presented for detecting depth and location of cracks in beam-like structures. For this purpose, a new beam element with an arbitrary number of embedded transverse edge cracks, in arbitrary positions of beam element with any depth, is derived. The components of the stiffness matrix for the cracked element are computed using the conjugate beam concept and Betti's theorem, and finally represented in closed-form expressions. The proposed beam element is efficiently employed for solving forward problem (i.e., to gain precise natural frequencies and mode shapes of the beam knowing the cracks' characteristics). To validate the proposed element, results obtained by new element are compared with two-dimensional (2D) finite element results and available experimental measurements. Moreover, by knowing the natural frequencies and mode shapes, an inverse problem is established in which the location and depth of cracks are determined. In the inverse approach, an optimization problem based on the new finite element and genetic algorithms (GAs) is solved to search the solution. It is shown that the present algorithm is able to identify various crack configurations in a cracked beam. The proposed approach is verified through a cracked beam containing various cracks with different depths.
Transverse modes of a bunched beam at space charge dominating impedance
Energy Technology Data Exchange (ETDEWEB)
Balbekov, V.; /Fermilab
2009-06-01
Coherent transverse oscillations of a bunched beam are considered at space charge dominated impedance and synchrotron motion taken into account. General equation for the bunch eigenmodes is derived, its exact analytical solution is found for a boxcar bunch at linear synchrotron oscillations, and numerical solutions are presented for other distributions. Both low and high synchrotron frequency approaches are considered and compared, fields of their application are established, and some estimations are proposed for the intermediate region.
Beam stability ampersand nonlinear dynamics. Formal report
International Nuclear Information System (INIS)
Parsa, Z.
1996-01-01
This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report
Beam stability & nonlinear dynamics. Formal report
Energy Technology Data Exchange (ETDEWEB)
Parsa, Z. [ed.
1996-12-31
his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.
Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method
Directory of Open Access Journals (Sweden)
Seval Pinarbasi
2012-01-01
Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.
Transversal parametric oscillation and its external stability in photorefractive sillenite crystals
DEFF Research Database (Denmark)
Podivilov, E.V.; Pedersen, H.C.; Johansen, P.M.
1998-01-01
, an analytical solution for the stationary state of the parametric waves is obtained. We analyze the stationary states' stability both against small perturbations in amplitude and phase (internal stability) and against excitation of new secondary waves (external stability). It is shown that the stationary state...... of transversal parametric oscillation is stable within certain regions of external and internal parameters. This is opposed to the degenerate case (K/2 subharmonic generation), which is unstable....
Energy Technology Data Exchange (ETDEWEB)
El Moussati, Said
2014-11-03
A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the
Vibrations And Stability Of Bernoulli-Euler And Timoshenko Beams On Two-Parameter Elastic Foundation
Directory of Open Access Journals (Sweden)
Obara P.
2014-12-01
Full Text Available The vibration and stability analysis of uniform beams supported on two-parameter elastic foundation are performed. The second foundation parameter is a function of the total rotation of the beam. The effects of axial force, foundation stiffness parameters, transverse shear deformation and rotatory inertia are incorporated into the accurate vibration analysis. The work shows very important question of relationships between the parameters describing the beam vibration, the compressive force and the foundation parameters. For the free supported beam, the exact formulas for the natural vibration frequencies, the critical forces and the formula defining the relationship between the vibration frequency and the compressive forces are derived. For other conditions of the beam support conditional equations were received. These equations determine the dependence of the frequency of vibration of the compressive force for the assumed parameters of elastic foundation and the slenderness of the beam.
Turn-by-Turn Imaging of the Transverse Beam Profile in PEP-II
Energy Technology Data Exchange (ETDEWEB)
Fisher, Alan A.; Petree, Mark; /SLAC
2006-12-18
During injection or instability, the transverse profile of an individual bunch in a storage ring can change significantly in a few turns. However, most synchrotron-light imaging techniques are not designed for this time scale. We have developed a novel diagnostic that enhances the utility of a fast gated camera by adding, inexpensively, some features of a dual-axis streak camera, in order to watch the turn-by-turn evolution of the transverse profile, in both x and y. The beam's elliptical profile is reshaped using cylindrical lenses to form a tall and narrow ellipse--essentially the projection of the full ellipse onto one transverse axis. We do this projection twice, by splitting the beam into two paths at different heights, and rotating the ellipse by 90{sup o} on one path. A rapidly rotating mirror scans these vertical ''pencils'' of light horizontally across the photocathode of the camera, which is gated for 3 ns on every Nth ring turn. A single readout of the camera captures 100 images, looking like a stroboscopic photograph of a moving object. We have observed the capture of injected charge into a bunch and the rapid change of beam size at the onset of a fast instability.
Structure and stabilization of hydrogen-rich transverse.
Energy Technology Data Exchange (ETDEWEB)
Lyra, Sgouria [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilde, B [Georgia Inst. of Technology, Atlanta, GA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seitzman, J. [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, T. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2014-07-01
This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H_{2}/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after
Effects of Transverse Deformation on Free Vibration of 2D Curved Beams with General Restraints
Directory of Open Access Journals (Sweden)
Xueren Wang
2017-01-01
Full Text Available An efficient modified Fourier series-based sampling surface approach is proposed for the analytical evaluation of the vibration characteristics of thick curved beams subjected to general restraints. The theoretical models of the beams are formulated by the theory of elasticity in two dimensions, which allows arbitrary thickness configurations to be tackled. As an innovation of this work, the approach is based upon the sampling surface method combined with the use of modified Fourier series approximation. In particular, the transverse beam domain is discretized by a set of sampling surfaces with unequal spaces, and the displacement components in beam domain coinciding with these surfaces are mathematically described as a set of modified Fourier series in which certain supplementary functions are included to remove all the relevant discontinuities with the displacements and their derivatives at the boundaries to form a mathematically complete set and guarantee the results convergent to the exact solutions. The final results are numerically solved using a modified variational principle by means of Lagrange multipliers and penalty method for the sake of arbitrary boundary conditions. The influences of transverse normal and shear deformation on the vibration characteristics with respect to the geometrical dimension and boundary conditions are systematically evaluated.
International Nuclear Information System (INIS)
Mehrling, Timon Johannes
2014-11-01
This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma
A setup for measurement of beam stability and position using position sensitive detector for Indus-1
International Nuclear Information System (INIS)
Nathwani, R.K.; Joshi, D.K.; Tyagi, Y.; Soni, R.S.; Puntambekar, T.A.; Pithawa, C.K.
2009-01-01
The 450 MeV electron synchrotron radiation source Indus-1 is operational at RRCAT. A set-up has been developed to measure the relative transverse positional stability of the electron beam and its position with microns resolution using position sensitive photodiodes. The set-up has been installed at the diagnostics beam line of Indus-1. Synchrotron light from photo physics beamline was reflected out by inserting a Ni coated mirror and was focused onto a duo-lateral position sensitive photodiode by using two mirrors of 1.25 meter focal length to obtain unity magnification. The set-up consists of a duo-lateral position sensitive detector (PSD), precision processing electronics and a PC based data acquisition system. A computer program captures the processed signals on to a PC using GPIB interface and displays vertical position of the beam in real time. The paper describes the salient features of the setup developed for measurement of beam stability. (author)
Directory of Open Access Journals (Sweden)
F. Zhou
2006-11-01
Full Text Available Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV.
Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity
International Nuclear Information System (INIS)
Hellert, Thorsten; Dohlus, Martin; Decking, Winfried
2017-10-01
FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intrabunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.
Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity
Hellert, Thorsten; Dohlus, Martin; Decking, Winfried
2017-10-01
FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.
Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams
Directory of Open Access Journals (Sweden)
Ahmad Shahba
2011-01-01
Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.
Effect of tune modulation on the transverse stability of storage ring
International Nuclear Information System (INIS)
Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun; Liu Yong; Zhou Xuemei; Mao Lijun
2004-01-01
The transverse stability is a critical issue in circular accelerator. In this paper, authors analysed the effect of tune modulation on a FODO lattice with sextupole nonlinear through estimating the dynamic aperture including the influence of the distortion along the phase. It turned out that the tune modulation decreases the stability of particle in storage ring, the extent of this decrease depends largely on the amplitude and tune of modulation. (author)
Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong
2017-08-01
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.
Stability of beam-induced tensor pressure tokamaks
International Nuclear Information System (INIS)
Cooper, W.A.; Nelson, D.B.; Bateman, G.; Kammash, T.
1979-10-01
Necessary and sufficient criteria are obtained for the high toroidal mode number stability of a guiding center plasma in low aspect ratio, D-shaped, beam-induced tensor pressure tokamaks. The difference between the two criteria is significant for interchange stability, while the difference is small for ballooning stability. The critical β value imposed by stability to ballooning modes is higher for perpendicular than for parallel beam injection
Efficient sub-Doppler transverse laser cooling of an indium atomic beam
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae-Ihn
2009-07-23
Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two
Efficient sub-Doppler transverse laser cooling of an indium atomic beam
International Nuclear Information System (INIS)
Kim, Jae-Ihn
2009-01-01
Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment
Directory of Open Access Journals (Sweden)
Hasan Alfaisal
2011-01-01
Full Text Available Abstract The electrogravitational instability of a dielectric oscillating streaming fluid cylinder surrounded by tenuous medium of negligible motion pervaded by transverse varying electric field has been investigated for all the perturbation modes. The model is governed by Mathieu second-order integro-differential equation. Some limiting cases are recovering from the present general one. The self-gravitating force is destabilizing only in the axisymmetric perturbation for long wavelengths, while, the axial electric field interior, the fluid has strong destabilizing effect for all short and long wavelengths. The transverse field is strongly stabilizing. In the case of non-axisymmetric perturbation, the self-gravitating force is stabilizing for short and long waves, while the electric field has stabilizing effect on short waves.
Directory of Open Access Journals (Sweden)
Vegera Pavlo
2017-12-01
Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.
International Nuclear Information System (INIS)
Nubissie, A.; Kingne Talla, E.; Woafo, P.
2012-01-01
Highlights: ► A wooden beam submitted to fire and axial and transversal loads is considered. ► The failure time is found to increase with the intensity of the loads. ► Implication for safety consideration is indicated. -- Abstract: This paper presents the variations of the failure time of a wooden beam (Baillonella toxisperma also called Moabi) in fire subjected to the combined effect of axial and transversal loads. Using the recommendation of the structural Eurocodes that the failure can occur when the deflection attains 1/300 of the length of the beam or when the bending moment attains the resistant moment, the partial differential equation describing the beam dynamics is solved numerically and the failure time calculated. It is found that the failure time decreases when either the axial or transversal loads increases.
Controllable rotation of microsphere chain in dual-beam fiber-optic trap with transverse offset
Chen, Xinlin; Xiao, Guangzong; Han, Xiang; Xiong, Wei; Luo, Hui; Yang, Kaiyong
2017-08-01
Controllable rotation of the trapped microscopic objects has traditionally been thought of one of the most valuable optical manipulation techniques. The controllable rotation of a microsphere chain was achieved by the dual-beam fiber-optic trap with transverse offset. The experimental device was made up of a PDMS chip housing two counter-propagating fibers across a microfluidic flow channel. Each fiber was coupled with different laser diode source to avoid the generation of coherent interference, both operating at a wavelength of 980 nm. Each fiber was attached to a translation stage to adjust the transverse offset distance. The polystyrene microspheres with diameter of 10 μm were chosen as the trapped particles. The microfluidic flow channel of the device was flushed with the polystyrene microspheres solution by the mechanical fluid pump. At the beginning, the two fibers were strictly aligned to each other. Five microspheres were captured as a chain parallel to the axis of the fibers. When introducing a transverse offset to the counter-propagating fibers by adjusting the translation stages, the microsphere chain was observed to rotating in the trap center. When the offset distance was set as 9 μm, the rotation period is approximately 1.2s. A comprehensive analysis has been presented of the characteristics of the rotation. The functionality of rotated chain could be extended to applications requiring microfluidic mixing or to improving the reaction speed in a localized environment, and is generally applicable to biological and medical research.
Stability and vibrations control of a stepped beam using piezoelectric actuation
Directory of Open Access Journals (Sweden)
Kuliński Krzysztof
2018-01-01
Full Text Available The objects of this studies are the stability and transversal vibrations of the system composed of three segments, where in the centre part of the system two piezoelectric patches are perfectly bonded to the top and bottom surface of the host beam. The system is kinematically loaded as a result of prescribed displacement of one or both end supports. For the analysis purposes three different beam end supports have been taken into consideration, which prevent longitudinal displacements i.e. clamped-clamped, clamped-pinned and pinned-pinned. This type of beam loading not only affect its natural vibration frequencies but also the system’s stability. By introducing the electric field to the piezo patches, depending on its vector direction, in-plane stretching or compressive residual force may be induced. Presented results show that piezo actuation can significantly modify both the critical buckling force and the vibration frequency.
Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators
Energy Technology Data Exchange (ETDEWEB)
Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-02
In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.
Transverse linear and orbital angular momenta of beam waves and propagation in random media
Charnotskii, Mikhail
2018-01-01
For paraxial propagation of scalar waves, the classic electromagnetic theory definition of transverse linear (TLM) and orbital angular (OAM) momenta of the beam wave are represented in terms of the coherence function. We show in examples that neither is the presence of optical vortices necessary for the intrinsic OAM, nor does the presence of optical vortices warrant the non-zero intrinsic OAM. The OAM is analyzed for homogeneously coherent and twisted partially coherent beam waves. A twisted Gaussian beam has an intrinsic OAM with a per-unit power value that can be continuously changed by varying the twist parameters. Using the parabolic propagation equation for the coherence function, we show that both the total TLM and OAM are conserved for the free-space propagation, but not for propagation in an inhomogeneous medium. In the presence of the random inhomogeneous medium, the total TLM and OAM are conserved in average, but the OAM fluctuations grow with the propagation path. This growth is slower for beams with rotation-symmetric irradiance.
Santos, Thiago Ribeiro Teles; Andrade, Juliana Alves de; Silva, Bárbara Lopes da; Garcia, Alysson Francisco Alves; Persichini Filho, José Gaspar Wild; Ocarino, Juliana de Melo; Silva, Paula Lanna
2014-08-01
To describe the capability of soccer players to stabilize pelvic position actively in the transverse plane; and, to evaluate the influence of lower limb dominance, length of exposure to soccer practice, and field position on pelvic stabilization capability. Cross-sectional. Sixty-eight soccer players from under-15 (U-15) and professional categories. Magnitude and asymmetry of pelvic tilt in the transverse plane, evaluated using the bridge test with unilateral knee extension. The magnitude of pelvic tilt did not differ between dominant and non-dominant sides, suggesting absence of relative asymmetry. However, there was difference between the sides of greater and lesser magnitude of pelvic tilt, indicating presence of absolute asymmetry. Players with shorter length of exposure to soccer practice (U-15 group) had greater pelvic tilt than players with longer length of exposure (professional group). There was no association of field position with the magnitude and asymmetry of pelvic tilt. Soccer players showed asymmetry in pelvic stabilization capability that was unrelated to lower limb dominance or field position. Athletes with longer length of exposure to soccer practice present better capability to stabilize the pelvis in the transverse plane than those with shorter length of exposure to soccer practice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Alfaisal A. Hasan
2012-01-01
Full Text Available The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying transverse magnetic field has been discussed. The problem is formulated, the basic equations are solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed analytically, and the results are verified numerically. The capillary force is destabilizing in a small axisymmetric domain 0<<1 and stabilizing otherwise. The streaming has a strong destabilizing effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing effect on the model. The effect of all acting forces altogether could be identified via the numerical analysis of the stability theory of the present model.
Localization of Transversal Cracks in Sandwich Beams and Evaluation of Their Severity
Directory of Open Access Journals (Sweden)
G. R. Gillich
2014-01-01
Full Text Available An algorithm to assess transversal cracks in composite structures based on natural frequency changes due to damage is proposed. The damage assessment is performed in two steps; first the crack location is found, and afterwards an evaluation of its severity is performed. The technique is based on a mathematical relation that provides the exact solution for the frequency changes of bending vibration modes, considering two terms. The first term is related to the strain energy stored in the beam, while the second term considers the increase of flexibility due to damage. Thus, it is possible to separate the problems of localization and severity assessment, which makes the localization process independent of the beams cross-section shape and boundary conditions. In fact, the process consists of comparing vectors representing the measured frequency shifts with patterns constructed using the mode shape curvatures of the undamaged beam. Once the damage is localized, the evaluation of its severity is made taking into account the global rigidity reduction. The damage identification algorithm was validated by experiments performed on numerous sandwich panel specimens.
Measurement of the transverse target and beam-target asymmetries in η meson photoproduction at MAMI.
Akondi, C S; Annand, J R M; Arends, H J; Beck, R; Bernstein, A; Borisov, N; Braghieri, A; Briscoe, W J; Cherepnya, S; Collicott, C; Costanza, S; Downie, E J; Dieterle, M; Fix, A; Fil'kov, L V; Garni, S; Glazier, D I; Gradl, W; Gurevich, G; Hall Barrientos, P; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lazarev, A; Lisin, V; Livingston, K; MacGregor, I J D; Mancel, J; Manley, D M; Martel, P; McNicoll, E F; Meyer, W; Middleton, D; Miskimen, R; Mushkarenkov, A; Nefkens, B M K; Neganov, A; Nikolaev, A; Oberle, M; Ostrick, M; Ortega, H; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Polyanski, V V; Prakhov, S; Reicherz, G; Rostomyan, T; Sarty, A; Schumann, S; Steffen, O; Strakovsky, I I; Strub, Th; Supek, I; Tiator, L; Thomas, A; Unverzagt, M; Usov, Yu A; Watts, D P; Werthmüller, D; Witthauer, L; Wolfes, M
2014-09-05
We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γ[over →]p[over →]→ηp reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.
Experimental characterization of X-ray transverse coherence in the presence of beam transport optics
DEFF Research Database (Denmark)
Chubar, O.; Fluerasu, A.; Chu, Y.S.
2013-01-01
A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... propagation based simulations show, in particular, that new generation 1D Beryllium Compound Refractive Lenses [3, 4] do not reduce the X-ray transverse coherence in any significant manner....
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps
2007-08-01
We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.
Mode trap for absorbing transverse modes of an accelerated electron beam
Chojnacki, Eric P.
1994-01-01
A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.
Energy Technology Data Exchange (ETDEWEB)
Abrahamyan, S; Afanasev, A; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Arrington, J; Averett, T; Babineau, B; Bailey, S L; Barber, J; Barbieri, A; Beck, A; Bellini, V; Beminiwattha, R; Benaoum, H; Benesch, J; Benmokhtar, F; Bertin, P; Bielarski, T; Boeglin, W; Bosted, P; Butaru, F; Burtin, E; Cahoon, J; Camsonne, A; Canan, M; Carter, P; Chang, C C; Cates, G D; Chao, Y -C; Chen, C; Chen, J -P; Choi, Seonho; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deepa, D; Deng, X; Dutta, D; Etile, A; Ferdi, C; Feuerbach, J; Finn, J M; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Fuchs, S A; Fuoti, K; Garibaldi, F; Gasser, E; Gilman, R; Guisa, A; Glamazdin, A; Glesener, L E; Gomez, J; Gorchtein, M; Grames, J; Grimm, K; Gu, C; Hansen, O; Hansknecht, J; Hen, O; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Humensky, T B; Hyde, C E; Ibrahim, H; Itard, F; Jen, C -M; Jensen, E; Jiang, X; Jin, G; Johnston, S; Katich, J; Kaufman, L J; Kelleher, A; Kliakhandler, K; King, P M; Kolarkar, A; Kowalski, S; Kuchina, E; Kumar, K S; Lagamba, L; Lambert, D; LaViolette, P; Leacock, J; Leckey IV, J; Lee, J H; LeRose, J J; Lhuillier, D; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; Mazouz, M; McCormick, K; McCreary, A; McNulty, D; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R W; Mihovilovic, M; Moffit, B; Monaghan, P; Muangma, N; Munoz-Camacho, C; Nanda, S; Nelyubin, V; Neyret, D; Nuruzzaman,; Oh, Y; Otis, K; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, M; Pomatsalyuk, R; Posik, M; Potokar, M; Prok, K; Puckett, A.J.R.; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Reitz, B; Riordan, S; Roche, J; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Singh, J; Sirca, S; Slifer, K; Snyder, R; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Stutzman, M L; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Ulmer, P; Vacheret, A; Voutier, A; Waidyawansa, B; Wang, D; Wang, K; Wexler, J; Whitbeck, A; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Ziskin, V; Zhu, P
2012-11-05
Here we have measured the beam-normal single-spin asymmetry A{sub n} in the elastic scattering of 1-3 GeV transversely polarized electrons from ^{1}H and for the first time from ^{4}He, ^{12}C, and ^{208}Pb. For ^{1}H, ^{4}He and ^{12}C, the measurements are in agreement with calculations that relate A_{n} to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the ^{208}Pb result is significantly smaller than the corresponding prediction using the same formalism. Our results suggest that a systematic set of new A^{n} measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.
Rapid pointwise stabilization of vibrating strings and beams
Directory of Open Access Journals (Sweden)
Alia BARHOUMI
2009-11-01
Full Text Available Applying a general construction and using former results on the observability we prove, under rather general assumptions, a rapid pointwise stabilization of vibrating strings and beams.
Nicklaus, Dennis J; Kashikhin, Vladimir
2005-01-01
An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for "Resistive Wall" transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly mis-injected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam.
Longitudinal stability of the LHC beam in the SPS
Shaposhnikova, Elena
2001-01-01
Longitudinal beam stability is analysed for the LHC Beam in the SPS. The most critical area is shown to be the top energy. Analysis explains some results of measurements with the beam done d uring the MDs last year. The possibility of using this cycle for CNGS is considered as well. There, without special requirements on bunch parameters at extraction, the impedance limitations move to the lowest energy. An option with low transition energy is presented also.
Energy and momentum transfer to 3He, 4He and nitrogen clusters subject to transverse molecular beams
International Nuclear Information System (INIS)
Vollmar, H.
1977-01-01
Detailed account of a method to determine the linear momentum and energy transfer to He clusters subject to transverse molecular Te or CO 2 beams using deflection and mass loss values and comparing the results with those obtained for N 2 clusters. For this purpose, 3 He cluster beams have been generated for the first time and have been taken into account in the investigation. (orig.) [de
Monte Carlo characterization of clinical electron beams in transverse magnetic fields
International Nuclear Information System (INIS)
Lee, Michael C.; Ma, Chang-Ming
2000-01-01
Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)
Energy Technology Data Exchange (ETDEWEB)
Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)
2015-11-11
The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.
Kihara Rurimo, G.; Schardt, M.; Quabis, S.; Malzer, S.; Dotzler, C.; Winkler, A.; Leuchs, G.; Döhler, G.H.; Driscoll, D.; Hanson, M.; Gossard, A.C.; Pereira, S.F.
2006-01-01
We report a method to measure the electric energy density of longitudinal and transverse electric field components of strongly focused polarized laser beams. We used a quantum well photodetector and exploited the polarization dependent optical transitions of light holes and heavy holes to probe the
Stability of a Light Sail Riding on a Laser Beam
Energy Technology Data Exchange (ETDEWEB)
Manchester, Zachary [John A. Paulson School of Engineering and Applied Science, Harvard University, 60 Oxford St., Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: zmanchester@seas.harvard.edu [Astronomy Department, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)
2017-03-10
The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.
A Nonlinear Observer for Estimating Transverse Stability Parameters of Marine Surface Vessels
DEFF Research Database (Denmark)
Galeazzi, Roberto; Perez, Tristan
2011-01-01
This paper presents a nonlinear observer for estimating parameters associated with the restoring term of a roll motion model of a marine vessel in longitudinal waves. Changes in restoring, also referred to as transverse stability, can be the result of changes in the vessel’s centre of gravity due...... to, for example, water on deck and also in changes in the buoyancy triggered by variations in the water-plane area produced by longitudinal waves – propagating along the fore-aft direction along the hull. These variations in the restoring can change dramatically the dynamics of the roll motion...
Koschik, A; Höfle, Wolfgang; Kotzian, G; Kramer, Daniel; Kramer, T
2008-01-01
The critical and delicate process of dumping the beams of the LHC requires very low particle densities within the $3 \\mu$s of the dump kicker rising edge. High beam population in this so-called 'abort gap' might cause magnet quenches or even damage. Constant refilling due to diffusion processes is expected which will be counter-acted by an active abort gap cleaning system employing the transverse feedback kickers. In order to assess the feasibility and performance of such an abort gap cleaning system, simulations and measurements with beam in the SPS have been performed. Here we report on the results of these studies.
Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B
2013-01-01
The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...
International Nuclear Information System (INIS)
Shokair, I.R.
1991-01-01
Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs
Space charge and beam stability issues of the Fermilab proton driver in Phase I
Energy Technology Data Exchange (ETDEWEB)
K. Y. Ng
2001-08-24
Issues concerning beam stability of the proposed Fermilab Proton Driver are studied in its Phase I. Although the betatron tune shifts are dominated by space charge, these shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric modes of the beam envelope into instability. The longitudinal space charge force is large and inductive inserts may be needed to compensate for the distortion of the rf potential. Although the longitudinal impedance is space charge dominated, it will not drive any microwave instability, unless the real part of the impedance coming from the inductive inserts and wall resistivity of the beam tube are large enough. The design of the beam tube is therefore very important in order to limit the flow of eddy current and keep wall resistivity low. The transverse impedance is also space charge dominated. With the Proton Driver operated at an imaginary transition gamma, however, Landau damping will never be canceled and beam stability can be maintained with negative chromaticities.
International Nuclear Information System (INIS)
Fu, Chuanqing; Jin, Nanguo; Ye, Hailong; Jin, Xianyu; Dai, Wei
2017-01-01
Highlights: • A comprehensive study of corrosion characteristics of a naturally corroded RC beam. • New insights on the role of cracks in corrosion propagation of steel in concrete. • EMPA and 3D laser scanning provide quantitative analysis of corroded rebar. - Abstract: This work studies the corrosion characteristics of reinforcement in a 4-year naturally corroded concrete beam after accelerated chloride penetration. The results show that the presence of transverse cracks in the tension surface of reinforced concrete beam can globally exacerbate the loss of cross-sectional area of rebar. However, there is no strong correlation between the width of transverse cracks, with the width of longitudinal cracks and loss of cross-sectional area of corroded rebar at a specific location. The self-healing of cracks and sacrificing roles of stirrups at crack tips seem to reduce the impacts of cracks on the corrosion propagation.
Andrieu, Vincent; Jayawardhana, Bayu; Praly, Laurent
2013-01-01
We study the relation between the exponential stability of an invariant manifold and the existence of a Riemannian metric for which the flow is “transversally” contracting. More precisely, we investigate how the following properties are related to each other: i). A manifold is “transversally”
The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN
Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M
2010-01-01
A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...
Directory of Open Access Journals (Sweden)
Hifdi Ahmed
2012-07-01
Full Text Available The linear stability of plan Poiseuille flow of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field is investigated numerically. The fourth-order Sommerfeld equation governing the stability analysis is solved by spectral method with expansions in lagrange’s polynomials, based on collocation points of Gauss-Lobatto. The critical values of Reynolds number, wave number and wave speed are computed. The results are shown through the neutral curve. The main purpose of this work is to check the combined effect of magnetic field and fluid’s elasticity on the stability of the plane Poiseuille flow. Based on the results obtained in this work, the magnetic field is predicted to have a stabilizing effect on the Poiseuille flow of viscoelastic fluids. Hence, it will be shown that for second-order fluids (K 0 is that the critical Reynolds numbers Rec increase when the Hartman number M increases for certain value of elasticity number K and decrease for others. The latter result is in contrast to previous studies.
Response of a swirl-stabilized flame to transverse acoustic excitation
O'Connor, Jacqueline
This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of
Directory of Open Access Journals (Sweden)
Sátor Ladislav
2014-03-01
Full Text Available A numerical analysis based on the meshless local Petrov- Galerkin (MLPG method is proposed for a functionally graded material FGM (FGMfunctionally graded material beam. The planar bending of the beam is considered with a transversal gradation of Young's modulus and a variable depth of the beam. The collocation formulation is constructed from the equilibrium equations for the mechanical fields. Dirac's delta function is employed as a test function in the derivation of a strong formulation. The Moving Least Squares (MLS approximation technique is applied for an approximation of the spatial variations of all the physical quantities. An investigation of the accuracy, the convergence of the accuracy, the computational efficiency and the effect of the level of the gradation of Young's modulus on the behaviour of coupled mechanical fields is presented in various boundary value problems for a rectangular beam with a functionally graded Young's modulus.
Shi, Jack J.; Rush, Wade D.
2018-03-01
To study channeling radiation produced by an ultra-relativistic electron beam channeling through a single crystal, a lattice potential of the crystal is required for solving the transverse motion of beam electrons under the influence of the crystal lattice. In this paper, we present a general formalism for this two-dimensional lattice potential of a crystal with a Lorentz contraction in the beam channeling direction. With this formalism, the lattice potential can be calculated from any given model of electron-ion interaction for an ultra-relativistic beam channeling in any crystal direction. This calculation of the lattice potential does not involve any additional approximation other than those originally in the electron-ion interaction model. The formalism presented should be the standard recipe of the lattice potential for studying the channeling radiation.
Maximilien Brice
2002-01-01
Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.
Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.
2018-03-01
A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.
Beam Stability: Raytracing Requirements and Implementations
International Nuclear Information System (INIS)
Green, Michael A.; Bissen, Mark J.; Pedley, Robert T.; Severson, Mary C.; Stott, John P.; Hallin, Emil L.
2004-01-01
Stability to-the-user fundamentally starts with present needs and future goals from the user community conveyed to facility staff in terms of user observables into the sample chamber. These are then projected onto the requirements for both the beamlines and the sources. In turn, specifications unfold for performance of subsystems, individual components, and facility services. Altogether, this process involves users, and facility staff from beamlines, operations, engineering, controls, and machine physics.This paper focuses on the transformation of user-to-source requirements, which is a small, but critical, part of the general subject. This translation has been expedited by semi-automated use, via scripting, of the SHADOW raytracing software. The dependence of each user observable on each source parameter is functionally determined, and inverted, for variable values of the user observables. In this way, source stability requirements can be readily determined for the needs of a given experiment on a given beamline in a particular mode. A description of the algorithms, with a working example on a new, slitless undulator beamline at SRC are presented
Impedances and beam stability issues of the Fermilab recycler ring
Energy Technology Data Exchange (ETDEWEB)
Ng, King-Yuen
1996-04-01
The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).
International Nuclear Information System (INIS)
Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji
2014-01-01
A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented
EFFECT OF SPACE CHARGE ON STABILITY OF BEAM DISTRIBUTION IN THE SNS RING
International Nuclear Information System (INIS)
FEDOTOV, A.V.; WEI, J.; GLUCKSTERN, R.L.
2001-01-01
In the Spallation Neutron Source (SNS) ring, multi-turn injection is employed to obtain a large transverse beam size which significantly reduces the space-charge tune shift of the accumulated beam. Careful choice of the painting scheme and bump function is required to obtain the desired beam profile together with low beam loss. In this paper we examine, both analytically and numerically, the effect of the space charge on the beam profile during multi-turn injection painting
Moens, V; Redaelli, S; Salvachua, B; Valentino, G
2013-01-01
The LHC collimator settings are qualified regularly via beam loss maps. In this procedure, the beam is artificially excited to create abnormal loss rates. The transverse damper blow up (ADT) and tune resonance crossing methods (QT) are used to increase the betatron amplitude of particles and verify the efficiency of the collimation cleaning hierarchy in IR7. This paper presents a quantitative comparison of the methods, for the qualification of the collimator settings at different operating points in the LHC machine cycle. The analysis is done using Beam Loss Monitor (BLM) with integration times of 1.3 s and 80 ms, the latter being available as from the 2012 run onwards. We present here the use of the faster BLM data (80 ms) to study the time evolution of the losses in IR3 and IR7 during offmomentum loss maps.
Directory of Open Access Journals (Sweden)
Ayla TEKİN
2004-03-01
Full Text Available In this study, elasto-plastic stress analysis is carried out in a polymer matrix composite cantilever beam of arbitrary fiber orientation subjected to a single transverse force applied to the free end by using the anisotropic elasticity theory. The residual stress component of ?x and yield points are determined for 0°, 30°, 45°, 60° and 90° fiber orientation angles. The yielding begins for 0° and 90° fiber orientation angles at the upper and lower surfaces of the beam at the same distances from the free end. It is seen that the yielding begins for 30°, 45° and 60° fiber orientation angles at the upper surface of the beam. The intensity of the residual stress component of ?x is maximum at the upper and lower surfaces of the beam. In this study, the residual stress component of ?x obtained for the polymer matrix composite thermoplastic cantilever beam reinforced by reinforced unidirectional fibers is compared with that of the thermoplastic cantilever beam reinforced by woven Cr-Ni steel fibers.
Dynamic Stability of Euler Beams under Axial Unsteady Wind Force
Directory of Open Access Journals (Sweden)
You-Qin Huang
2014-01-01
Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.
Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity
Directory of Open Access Journals (Sweden)
Thorsten Hellert
2017-10-01
Full Text Available FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.
International Nuclear Information System (INIS)
Barrette, J.
1993-01-01
One of the main goals of the present heavy-ion reaction studies at the AGS and CERN is the understanding of the space-time evolution of the particle and energy density produced in such collisions. These are necessary ingredients if one wants to understand quantitatively the properties of matter at high temperature and density. In that respect, the study of inclusive global variables such as the transverse energy distribution gives valuable information on the reaction dynamics and, albeit indirectly, on the energy and baryon density reached in nucleus-nucleus collisions. In the spring of 1992, the AGS produced the first beam of very heavy ions, more specifically a beam of 11.4 GeV/c per nucleon 197 Au. This is an important step for the field since it gives a first glimpse as to how the reaction dynamics evolves as the mass and volume of colliding systems reach the largest value that will be available in the future. The authors have used part of the E814 experimental set-up to study the transverse energy distribution produced in Au induced collisions. These data can be compared to similar data obtained with lighter beams and thus provide for the first time information on how the E T distribution evolves with the mass of the system as one reaches very large systems
Confinement and stability of crystalline beams in storage rings
International Nuclear Information System (INIS)
Haffmans, A.F.
1995-01-01
We present a fully analytical approach to the study of the confinement and stability of open-quote open-quote Crystalline Beams close-quote close-quote in storage rings, in terms of such fundamental accelerator concepts as tune shift and stopband. We consider a open-quote open-quote Crystalline Beam close-quote close-quote consisting of substrings, arranged symmetrically around the reference trajectory, and we examine the motion of a slightly perturbed test particle on one of them. Our approach quite naturally leads to the conclusion, that (a) storage rings need to be operated below the transition energy, and (b) the open-quote open-quote Crystalline Beam close-quote close-quote has the same periodicity as the storage ring. Each open-quote open-quote Crystalline Beam close-quote close-quote has an upper and lower limit of the spacing between the ions. The upper limit is determined by condition (b), and the lower limit is set by the stability of the test particle motion around the equilibrium. copyright 1995 American Institute of Physics
Won, Hong-In; Chung, Jintai
2018-04-01
This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.
Miyamoto, Atsushi; Hinode, Fujio; Kawai, Masayuki; Shinto, Katsuhiro; Tanaka, Takumi
2005-01-01
An electron pulse-stretcher ring (STB ring) has a function which converts a pulse beam generated by RF linac into a quasi-continuous beam. Circulating beam in the ring is extracted by the third order resonance. Since there is no accelerating field in the ring, the beam approaches a transverse resonance condition due to synchrotron radiation loss with finite chromaticity. The extracted beam from the ring has some spread in time and space corresponding to injected beam from linac even if the injected beam is perfectly matched to the ring optics. However, the extracted beam emittance can be reduced by applying a phase space manipulation using an RF shaker. Under the influence of perturbation using an RF shaker driven by a mono-frequency, the betatron amplitude of circulating beam can be controlled in order to reduce the extracted beam emittance. The experimental results will be reported in this conference.
The influence of density distribution on the stability of beams
International Nuclear Information System (INIS)
Guy, F.W.; Lapostolle, P.M.; Wangler, T.P.
1987-01-01
We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth? Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams? We consider these and related questions
International Nuclear Information System (INIS)
Faure, J.; Gouttefangeas, M.; Levy-Mandel, R.; Vienet, R.; Lago, B.; Loeb, J.
1963-01-01
This is a study of the repulsive electrostatic forces existing inside a proton beam focused by the magnetic field of a circular accelerator. The general equation that rules the variation of beam density versus time can be rewritten by a fairly simple reasoning, A numerical method to solve this equation is then developed. The next step is then to find an optimum beam, a gaussian distribution of density being proposed allowing to find an analytical solution to the problem. (authors) [fr
Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez
1999-01-01
Modern ultrasound scanners estimate the blood velocity by tracking the movement of the blood scatterers along the ultrasound beam. This is done by emitting pulsed ultrasound fields and finding the shift in position from pulse to pulse by correlating the received signals. Only the velocity component...... in a correlation estimator to find the velocity across the beam. This approach is extended in this paper by making beamforming along the direction of the flow. A fairly broad beam is emitted and the received signal is then focused along a selected direction. This direction can be along the ultrasound beam...
Non-conservative stability of spinning pretwisted cantilever beams
Karimi-Nobandegani, A.; Fazelzadeh, S. A.; Ghavanloo, E.
2018-01-01
The stability of a pretwisted cantilever beam spinning about its longitudinal axis and subjected to non-conservative force is investigated. In this study, it is assumed that the cantilever is embedded in viscoelastic medium, which is modeled by the Kelvin-Voigt foundation. Two different types of the non-conservative force are considered. The governing equations of motion and boundary conditions are derived by using Hamilton's principle. The finite element method is utilized to transform the coupled equations of motion to a general eigenvalue problem. The proposed model is justified by an excellent agreement between the present results and those reported in the literature. The effects of several design parameters including the pretwist angle, the cross section ratio, the viscoelastic parameters and load span length on the stability of the spinning pretwisted cantilevers are also examined. Moreover, the critical load and spinning speed and stability regions of the spinning cantilevers are identified. The results show that the design parameters significantly change the stability of the spinning pretwisted cantilever beams.
On the Transverse motions under heavy loads of thin beams with ...
African Journals Online (AJOL)
In this paper, the effect of variable axial force on the dynamic response of elastic beam resting on elastic foundation and subjected to concentrated moving loads is investigated. The fourth order partial differential equation with variable and singular coefficients governing the motion of the elastic thin beam is solved using the ...
Stability of longitudinal modes in a bunched beam with mode coupling
International Nuclear Information System (INIS)
Satoh, K.
1981-06-01
In this paper we study a longitudinal coherent bunch instability in which the growth time is comparable to or less than the period of synchrotron oscillations. Both longitudinal and transverse bunch instabilities have been studied. In most treatments, however, the coherent force is assumed to be small and is treated as a perturbation compared with the synchrotron force. This makes the problem simpler because an individual synchrotron mode is decoupled. As bunch current increases, the coherent force is no longer small and the mode frequency shift becomes significant compared with the synchrotron frequency. Therefore in this case it is necessary to include coupling of the synchrotron modes. Recently a fast blow-up instability which comes from mode coupling was studied. Their method is to derive a dispersion relation for a bunched beam using the Vlasov equation and to analyze it as in a coasting beam. They showed that if mode coupling is included the Vlasov equation predicts a fast microwave instability with a stability condition similar to that for a coasting beam. In this paper we will partly follow their method and present a formalism which includes coupling between higher-order radial modes as well as coupling between synchrotron modes. The formalism is considered to be generalization of the Sacherer formalism without mode coupling. This theory predicts that instability is induced not only by coupling between different synchrotron modes, but also by coupling between positive and negative modes, since negative synchrotron modes are included in the theory in a natural manner. This formalism is to be used for a Gaussian bunch and a parabolic bunch, and is also useful for transverse problems
Tai, Benjamin; Goonewardene, Mithran Suresh; Murray, Kevin; Koong, Bernard; Islam, Syed Mohammed Shamsul
2014-11-01
This study primarily aimed to assess the accuracy of classically-advocated reference points for the measurement of transverse jaw-base and dental relationships using conventional Postero-Anterior Cephalometry (PAC) and Cone-Beam Computed Tomography (CBCT). PAC and CBCT images were collected from 31 randomly selected orthodontic patients (12 males, 19 females), all of whom had a full permanent dentition. The transverse widths of the maxilla, mandible and the dentition were measured using reference points on both image modalities. Confidence intervals, intra-class coefficients and Bland Altman plots were used to assess the measurement differences derived from the two acquirement methods. Measurements on PAC and CBCT images demonstrated statistically significant differences in the majority of the assessed variables. The interjugal (J-J) width was one of only two variables which did not demonstrate a statistically significant difference on image comparison. The mean differences of the antegonial width (Ag-Ag) (-4.44mm, 95% CI -5.38 to -3.51) represented the greatest difference between the imaging techniques. The application of these points to a transverse skeletal analysis (J-J/Ag-Ag ratio) revealed that five of the 31 subjects (16%) recorded 'false positive' readings according to the derived data. It is recommended that clinicians are cautious when interpreting and making decisions related to transverse dimensions derived from a PAC. The PAC has a higher tendency to falsely identify individuals who require maxillary expansion procedures based on conventional clinical criteria. The errors primarily associated with identifying structures which represent the width of the mandible are significant in both PAC and CBCT techniques and require further investigation. It is postulated that the confounding effects of overlying soft tissues have a sianificant impact on a clinician's ability to identify relevant landmarks.
Stabilization of electron beam spot size by self bias potential
International Nuclear Information System (INIS)
Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.
1998-01-01
In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment
2016-05-01
testing, digital filtering of flight test data , nonlinear optimisation, and spectral analysis. His recent work has been in the areas of structural shape...formula [2]: = 4 8 (26) 3.3 Nonlinear FEA solution for tension force T ≥ 0 case The Abaqus 6.14-2 finite element analysis code...accurately determine the peak deflection and its location along the span of the beam. The Abaqus beam element type B23 was used, which corresponds to a 2
Redaelli, S
2003-01-01
The Compact LInear Collider (CLIC) study at the European Organization for Nuclear Research (CERN) is developing the design of a 3 TeV e+ e- linear collider. The discovery reach of this machine depends on obtaining a luminosity of 1035 cm_2s_1, which will be done by colliding beams with transverse spot sizes in the nanometre range ≈ 60 × 0:7 nm2). Tolerances on fast mechanical stability of the focusing quadrupoles reach the 0.2 nm level. The serious concern of magnet stabilization for future linear colliders has been addressed by building a CERN test stand on magnet stability, bringing together state-of-the-art stabilization technology, latest equipment for vibration measurements and realistic magnet prototypes. For the first time an accelerator magnet was successfully stabilized to the sub-nanometre level, reducing its vibrations level by one order of magnitude with respect to the supporting ground. The best measurements indicate transverse RMS vibration amplitudes (above 4 Hz) of (0.79+0.08) nm ho...
Chun, Eun-Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi
2015-05-01
In order to quantitatively evaluate the solidification cracking susceptibility in laser welds of type 310S stainless steel, a transverse-Varestraint testing system using a laser beam welding apparatus was newly constructed. The timing-synchronization between the laser oscillator, welding robot and hydraulic pressure devices was established by employing high-speed camera observations together with electrical signal control among the three components. Moreover, the yoke-drop time measured by the camera was used to prevent underestimation of the crack length. The laser beam melt-run welding used a variable welding speed from 10.0 to 40.0 mm/s, while the gas tungsten arc welding varied the welding speed from 1.67 to 5.00 mm/s. As the welding speed increased from 1.67 to 40.0mm/s, the solidification brittle temperature range of type 310S stainless steel welds was reduced from 146 to 120 K. It follows that employing the laser beam welding process mitigates the solidification cracking susceptibility for type 310S stainless steel welds.
A New Approach for Severity Estimation of Transversal Cracks in Multi-layered Beams
Directory of Open Access Journals (Sweden)
Gilbert-Rainer Gillich
Full Text Available Abstract Nowadays, the damage severity evaluation in mechanical structures is mostly performed by analyzing the natural frequency shift. The non-isotropic materials, as the multi-layered ones, are wide-spread in industrial applications, due to their interesting physic-mechanical properties. Thus, a deeper approach of multi-layered beams becomes an important request in the research domain. This paper introduces a damage severity estimator by expressing the crack evolution as a function of stored energy. It is well known that the energy stored in a beam without damage is greater than the energy of that damaged beam. As a consequence, the beam deflection can be related to the stored energy. In this regard, the possibility to split the damage localization and the damage severity assessment has been proven, and also the graphical evolution of the natural frequency shift has been achieved as a function of the crack depth. The results achieved by the finite element method (FEM and experimental tests are given in tables and graphics. For the first five vibration modes, a comparison was made between frequencies accomplished by analytical, numerical and experimental analyses, in order to give more credibility to the accuracy of the research data presented in this paper.
Transverse vibrations of shear-deformable beams using a general higher order theory
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
Cheung, Gordon; Goonewardene, Mithran Suresh; Islam, Syed Mohammed Shamsul; Murray, Kevin; Koong, Bernard
2013-05-01
To assess the validity of using jugale (J) and Antegonion (Ag) on Posterior-Anterior cephalograms (PAC) as landmarks for transverse intermaxillary analysis when compared with Cone Beam Computed Tomography (CBCT). Conventional PAC and CBCT images were taken of 28 dry skulls. Craniometric measurements between the bilateral landmarks, Antegonion and Jugale, were obtained from the skulls using a microscribe and recorded as the base standard. The corresponding andmarks were identified and measured on CBCT and PAC and compared with the base standard measurements. The accuracy and reliability of the measurements were statistically evaluated and the validity was assessed by comparing the ability of the two image modalities to accurately diagnose an arbitrarily selected J-J/Ag-Ag ratio. All measurements were repeated at least 7 weeks apart. Intra-class correlations (ICC) and Bland-Altman plots were used to analyse the data. All three methods were shown to be reliable as all had a mean error of less than 0.5 mm between repeated measurements. When compared with the base standard, CBCT measurements were shown to have higher agreement (ICC: 0.861-0.964) compared with measurements taken from PAC (ICC: 0.794-0.796). When the arbitrary J-J/Ag-Ag ratio was assessed, 18 per cent of cases were incorrectly diagnosed with a transverse discrepancy on the PAC compared with the CBCT which incorrectly diagnosed 8.7 per cent. CBCT was shown to be more reliable in assessing intermaxillary transverse discrepancy compared with PAC when using J-J/Ag-Ag ratios.
Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method
Directory of Open Access Journals (Sweden)
P. Frankovský
2014-10-01
Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.
Roncarolo, F; Kroyer, T; Métral, E; Salvant, B
2008-01-01
The prediction of the resistive wall transverse beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instability. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to crosscheck the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of i) sample graphite plates, ii) stand-alone LHC collimator jaws and iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.
International Nuclear Information System (INIS)
Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail
2009-01-01
When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δx perpendicular ∼ (delta) pe , where (delta) pe = c/ω pe is the collisionless skin depth, and ω pe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2005-01-01
as the distribution of motion displacements in each wave type. This is used for calculating the spatial variation of the forced harmonic responses of a semi-infinite periodic structure to point excitations by a longitudinal force and by a moment. Numerical simulations reveal the complicated wave coupling phenomena......In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide with structural side branches attached at regular intervals. The analysis is based on periodic structure theory, and considers wave transmission in a fully tricoupled and semidefinite periodic...... assembly of beam-type elements or plane-wave transmission for normal incidence in a similar plate assembly. Receptances of a composite periodic element with offset resonant beams are derived and used for computing the frequency-dependent propagation constants of three coupled wave types as well...
MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY
Energy Technology Data Exchange (ETDEWEB)
Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab
2016-09-26
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.
Transverse Beam Jitter Propagation in Multi-Bunch Operation at ATF2
Resta-Lopez, J; Burrows, P N; Christian, G B; Constance, B
2011-01-01
Pulse-to-pulse orbit jitter, if not controlled, can drastically degrade the luminosity in future linear colliders. The second goal of the ATF2 project at the KEK accelerator test facility is to stabilise the vertical beam position down to approximately 5% of the nominal rms vertical beam size at the virtual Interaction Point (IP). This will require control of the orbit to better than 1 micrometre at the entrance of the ATF2 nal focus system. In this paper, by means of computer simulations, we study the vertical jitter propagation along the ATF2 from the start of the extraction line to the IP. For this study pulse-to-pulse vertical jitter measurements using three stripline beam position monitors are used as initial inputs. This study is performed for the case of a bunch-train with three bunches, but could easily be extended for a larger number of bunches. The cases with and without intra-train orbit feedback correction in the extraction line of ATF2 are compared.
Performance and LHC beam stability issue related to Q/Q' diagnostics and feedback systems
Steinhagen, Ralph J
2010-01-01
The baseline tune (Q) and chromaticity (Q’) diagnostics and associated feedback systems played a crucial role during the LHC commissioning, in establishing circulating beam, the first ramps and their fill-to-fill feed-forward correction. Early on, they also allowed to identify issues such as the residual tune stability, beam spectrum interferences and beam-beam effects – all of which may impact beam lifetimes and thus need to be addressed in view of nominal LHC operation.
Polynomials of Gaussians and vortex-Gaussian beams as complete, transversely confined bases.
Gutiérrez-Cuevas, Rodrigo; Alonso, Miguel A
2017-06-01
A novel type of discrete basis for paraxial beams is proposed, consisting of monomial vortices times polynomials of Gaussians in the radial variable. These bases have the distinctive property that the effective size of their elements is roughly independent of element order, meaning that the optimal scaling for expanding a localized field does not depend significantly on truncation order. This behavior contrasts with that of bases composed of polynomials times Gaussians, such as Hermite-Gauss and Laguerre-Gauss modes, where the scaling changes roughly as the inverse square root of the truncation order.
Simulation of Transverse Multi-Bunch Instabilities of Proton Beams in LHC
Koschik, Alexander; Zotter, Bruno
The CERN Large Hadron Collider (LHC) is designed for highest luminosity and therefore requires operation with a large number of bunches and high intensities. Its performance could be limited by the electromagnetic interaction between the charged particle beam and its surroundings which cause collective instabilities. This thesis describes methods of simulating and analyzing multi-bunch instabilities in circular accelerators and storage rings. The simulation models as well as analyzing tools presented here, also facilitate the interpretation of measurements in multi-bunch machines. The 3-dimensional, multi-bunch tracking program MultiTRISIM was developed, based on its single-bunch predecessor TRISIM3D. It allows the exploration of longrange effects in round or flat vacuum chambers for equidistant or uneven filling schemes. Previous computer simulations of collective effects concentrated mainly on instabilities of single or few bunches in electron storage rings. There, the strong radiation damping reduces the r...
Directory of Open Access Journals (Sweden)
B. E. Carlsten
2005-06-01
Full Text Available A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005ITPSBD0093-381310.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM magnetic field configurations, with natural (or single-plane focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line, consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with
Chromaticity of the lattice and beam stability in energy-recovery linacs
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, V.N.
2011-12-23
Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.
International Nuclear Information System (INIS)
Barr, D.S.
1992-01-01
It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems
International Nuclear Information System (INIS)
Barr, D.S.
1993-01-01
It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems
Zinchik, Alexander A.; Muzychenko, Yana B.
2015-06-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.
Stabilization of the arrival time of a relativistic electron beam to the 50 fs level
Roberts, J.; Skowronski, P.; Burrows, P. N.; Christian, G. B.; Corsini, R.; Ghigo, A.; Marcellini, F.; Perry, C.
2018-01-01
We report the results of a low-latency beam phase feed-forward system built to stabilize the arrival time of a relativistic electron beam. The system was operated at the Compact Linear Collider (CLIC) Test Facility (CTF3) at CERN where the beam arrival time was stabilized to approximately 50 fs. The system latency was 350 ns and the correction bandwidth >23 MHz . The system meets the requirements for CLIC.
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)
2012-06-15
An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.
Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam
Directory of Open Access Journals (Sweden)
Abbas Moallemi-Oreh
2013-01-01
Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.
Zhang, P; Jones, R M
2012-01-01
An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo-Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam posit...
Barrière, J C; Bourdinaud, M; Cloué, O; Molinie, F; Schune, P
1999-01-01
A new type of highly transparent (95%) two dimensional position sensor has been developed which allows the accurate positioning (below 10 mu m r.m.s.) of successive elements to which each sensor is attached, transversely to a laser beam used as a reference straight line. The present useful area of the sensor is about 15*15 mm/sup 2/, and can be further increased. (3 refs).
Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility
Dubrovskiy, A; Bathe, BN; Srivastava, S
2013-01-01
A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.
The energy stabilization for the SLC scavenger beam
International Nuclear Information System (INIS)
Hsu, Ian; Browne, M.; Himel, T.; Humphrey, R.; Jobe, K.; Ross, M.; Pellegrin, J.L.; Seeman, J.
1990-08-01
The energy of the SLC scavenger beam which is used to produce positrons must be carefully maintained so that the beam can be transported through the collimators in the dispersive region of the extraction line which leads from the Linac to the positron target. A feedforward control loop has been developed to compensate the energy fluctuations due to the beam intensity fluctuations. The loop detects the beam intensities in the damping rings and then calculates how much energy needs to be compensated due to beam loading effects. The energy is corrected by adjusting the acceleration phases of two sets of klystrons right before the extraction. Because there is feedback loop using the same controls, their interaction needs to be carefully treated. This paper presents an overview of the feedforward algorithms. 3 figs
Directory of Open Access Journals (Sweden)
T.C. Prada
Full Text Available ABSTRACT Pelvic fractures correspond to 20 to 30 % of the fractures observed in dogs. Complete fractures, especially with bone axis deviation should be surgically treated. The mechanical study of surgical techniques is of utmost importance to assess the best way of treating these injuries. This study compared, biomechanically, the use of a dynamic compression plate (DCP and screws (group 1 or screws and polymethylmethacrylate (PMMA (group 2 to stabilize an iliac fracture using a static test. Sixteen canine synthetic hemi-pelvises (test specimens with a transverse iliac osteotomy were used. After fixation with implants, a load was applied to the acetabulum until failure. Group 1 maximal compressive load was 133.9±18.60 N, displacement at yield 21.10±3.59mm and stiffness 125.22±12.25N/mm. Group 2 maximal compressive load was 183.50±27.38N, displacement at yield 16.66±5.42mm and stiffness 215.68±33.34N/mm. The stabilization with polymethylmethacrylate was stronger than dynamic compression plate since it resisted a greater load in all test specimens.
Stabilizing effect of gas conductivity evolution on the resistive sausage mode of a propagating beam
International Nuclear Information System (INIS)
Lampe, M.; Joyce, G.
1983-01-01
Previous theoretical work has shown that a highly current-neutralized charged particle beam propagating in a preionized plasma channel of fixed conductivity is subject to a resistive sausage instability. It is shown that the instability is stabilized, for the case of beam propagation into an initially un-ionized gas, when the effect of beam-collisional ionization on the gas conductivity is modeled fully self-consistently
Stability Matrices for Lateral Buckling Analysis of Beams | Jiki ...
African Journals Online (AJOL)
-symmetric sections has been proposed. The formulation employs a coupled lateral buckling functional to investigate the lateral buckling behaviour of a class of beams comprising bi-symmetric sections. While retaining the coupled modes of ...
High harmonic ion cyclotron heating in DIII-D: Beam ion absorption and sawtooth stabilization
International Nuclear Information System (INIS)
Heidbrink, W.W.; Fredrickson, E.D.; Mau, T.K.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Rice, B.W.
1999-01-01
Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic produce an energetic deuterium beam ion tail in the DIII-D tokamak. When the concentration of thermal hydrogen exceeds ∼ 5%, the beam ion absorption is suppressed in favour of second harmonic hydrogen absorption. As theoretically expected, the beam absorption increases with beam ion gyro-radius; also, central absorption at the fifth harmonic is weaker than central absorption at the fourth harmonic. For central heating at the fourth harmonic, an energetic, perpendicular, beam population forms inside the q = 1 surface. The beam ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity induced Alfven eigenmodes (TAEs). Saturation of the central heating correlates with the onset of the TAEs. Continued expansion of the q = 1 radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. (author)
2012-04-13
ANB = 0-4 degrees) with bilateral Class I molars and canines 4. No crossbites or transverse dental compensations 5. Have fully erupted canines (no...Schneid, D.M.D., M.S. Dean, Air Force Post-Graduate Dental School ii iii This thesis is dedicated to my family. Countless hours of work have...Instead, clinicians typically rely on clinical exam and maxillomandibular dental relationships to determine transverse discrepancies. Lateral
Assessing the effects of slippery steel beam coatings to ironworkers' gait stability.
Kim, Hyunsoo; Ahn, Changbum R; Stentz, Terry L; Jebelli, Houtan
2018-04-01
Since ironworkers walk and perform their tasks on steel beams, identifying the effects of slippery steel beam surfaces on ironworkers' gait stability-which can be related to safety risk-is critical. However, there is no accepted or validated standard for measuring the slipperiness of coated steel beams, which makes evaluating and controlling for slipperiness a challenge. In this context, this study investigated the effect of the slipperiness of steel beam coatings on ironworkers' gait stability. Accordingly, to identify the relationships between coefficient of friction, perceived slipperiness, and gait stability-represented as the Maximum Lyaponuv exponent (Max LE)-an experiment was conducted with eight different surfaces and sixteen subjects with varying experience as ironworkers. The experiment's results indicate that the slipperiness of the various surfaces greatly affect ironworkers' gait stability while they walk on coated steel beam surfaces. In detail, the Max LE of two subject groups-experienced and inexperienced ironworkers-highly correlated with both the dynamic coefficient of friction values measured by following ANSI B101.3 and with the subjective rating scores of the inexperienced subject group. Unlike subjective rating scores-which were particularly incongruent among experienced workers-the Max LE of inexperienced and experienced subjects has a consistent pattern. This study result highlights an opportunity for using gait stability measurements to quantify and differentiate the safety risks caused by slippery coated steel beams in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weak-strong Beam-beam Simulations for HL-LHC
Energy Technology Data Exchange (ETDEWEB)
Banfi, Danilo [Ecole Polytechnique, Lausanne; Barranco, Javier [Ecole Polytechnique, Lausanne; Pieloni, Tatiana [CERN; Valishev, Alexander [Fermilab
2014-07-01
In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.
Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho
2016-01-01
An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719
Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho
2016-06-01
An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization.
Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance
Directory of Open Access Journals (Sweden)
Pengcheng HAN
2017-12-01
Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.
Comparison of Stabilization of Piezoelectric Euler-Bernoulli Beam Models
de Jong, Matthias; Scherpen, Jacquelien M.A.; Morris, Kirsten
2016-01-01
Piezoelectric materials are used in many control and sensing applications via a strip of piezoelectric material also known as a piezoelectric beam. Applications can be vibration control in (complex) mechanical structures and on-line measurement or compensation in high-precision technology for shape
You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun
2014-12-01
In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.
Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beam irradiation
International Nuclear Information System (INIS)
Jeun, Joon Pyo; Kim, Du Young; Shin, Hye Kyoung; Kang, Phil Hyun; Park, Jung Ki
2012-01-01
In recent years, the carbon fiber industry has been growing rapidly to meet the demand from efferent industries such as aerospace, military, turbine blades, light weight cylinders and pressure vessels. Generally, carbon fibers are manufactured by a controlled pyrolysis of stabilized precursor fiber such as polyacrylonitrile (PAN). In the stabilization step, the linear PAN molecules are first converted to cyclic structure. However, cyclization is a very complicated process and there are still differences of opinion on the reaction mechanisms. Photo-induced crosslinking and stabilization of PAN via ion beam, X-ray, gamma ray and UV irradiation has been reported in the literature. However, the process required a long stabilization time. In this work, a new and highly effective method of pretreatment PAN precursor fiber was described. The effect of the e-beam on the stabilization process of the fibers was investigated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD) measurement
Electron beam spot size stabilization for radiographic application
International Nuclear Information System (INIS)
Kwan, T.J.T.; Snell, C.M.
1998-01-01
The authors have demonstrated through computer simulations that self-biasing the target can effectively control the ion column which causes radial pinching of the electron beam, resulting in the growth of spot size on target. This method has the unique features in simplicity and non-intrusiveness in its implementation into radiographic systems. The concept is being actively explored experimentally at the Integrated Test Stand (ITS)
On the stabilization of viscoelastic laminated beams with interfacial slip
Mustafa, Muhammad I.
2018-04-01
In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.
Lansberg, J.P.; Arnaldi, R.; Brodsky, S.J.; Chambert, V.; Da Silva, C.; Didelez, J.P.; Echevarria, M. G; Ferreiro, E.G.; Fleuret, F.; Gao, Y.; Genolini, B.; Hadjidakis, C.; Hřivnáčová, I.; Kikola, D.; Klein, A.; Kurepin, A.; Kusina, A.; Lorcé, C.; Lyonnet, F.; Massacrier, L.; Nass, A.; Pisano, C.; Robbe, P.; Schienbein, I.; Schlegel, M.; Scomparin, E.; Seixas, J.; Shao, H.S.; Signori, A.; Steffens, E.; Topilskaya, N.; Trzeciak, B.; Uggerhøj, U.I.; Uras, A.; Ulrich, R.; Yang, Z.
2016-01-01
We discuss the potential of AFTER@LHC to measure single-transverse-spin asymmetries in open-charm and bottomonium production. With a HERMES-like hydrogen polarised target, such measurements over a year can reach precisions close to the per cent level. This is particularly remarkable since these analyses can probably not be carried out anywhere else
System control for the CLIC main beam quadrupole stabilization and nano-positioning
Janssens, S; Collette, E; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Pfingstner, J; Schulte, D; Snuverink, J
2011-01-01
The conceptual design of the active stabilization and nano-positioning of the CLIC main beam quadrupoles was validated in models and experimentally demonstrated on test benches. Although the mechanical vibrations were reduced to within the specification of 1.5 nm at 1 Hz, additional input for the stabilization system control was received fromintegrated luminosity simulations that included the measured stabilization transfer functions. Studies are ongoing to obtain a transfer function which is more compatible with beam based orbit feedback; it concerns the controller layout, new sensors and their combination. In addition, the gain margin must be increased in order to reach the requirements froma higher vibration background. For this purpose, the mechanical support is adapted to raise the frequency of some resonances in the system and the implementation of force sensors is considered. Furthermore, this will increase the speed of repositioning the magnets between beam pulses. This paper describes the improvement...
Höfle, W
2012-01-01
Plans for the operation of the transverse damper in 2012 at bunch spacings of 50 ns and 25 ns and at increased collision energy will be reviewed. The increased energy and the experience that will be gained at 25 ns are very important to define any upgrades that may be necessary for the high luminosity operation at 7 TeV after LS1. This means that the available parameter space must be probed in 2012 which in particular includes a higher feedback gain in the ramp and with colliding beams. Limits for the feedback gain for the current system will be outlined. The potential benefits of running with higher feedback gain for a better emittance preservation will be stressed and weighed against the operational difficulties and the potential impact of noise in the damper system. A plan for re-commissiong at 50 ns and 25 ns for operation at 4 TeV will be outlined.
Hosseinifar, Mohammad; Akbari, Mohammad; Behtash, Hamid; Amiri, Mohsen; Sarrafzadeh, Javad
2013-12-01
[Purpose] This study compared the effectiveness of stabilization and McKenzie exercises on pain, disability, and thickness of the transverse abdominis and multifidus muscles in patients with nonspecific chronic low back pain. [Subjects] Thirty patients were randomly assigned into two groups: the McKenzie and stabilization exercise groups. [Methods] Before and after intervention, pain, disability, and thickness of the transverse abdominis and multifidus muscles were evaluated by visual analogue scale, functional rating index, and sonography, respectively. The training program was 18 scheduled sessions of individual training for both groups. [Results] After interventions, the pain score decreased in both groups. The disability score decreased only in the stabilization group. The thickness of the left multifidus was significantly increased during resting and contracting states in the stabilization group. The thickness of the right transverse abdominis during the abdominal draw-in maneuver, and thickness of the left transverse abdominis during the active straight leg raising maneuver were significantly increased in the stabilization group. The intensity of pain, disability score, thickness of the right transverse abdominis during the abdominal draw-in manouver, and thickness of the left transverse abdominis during active straight leg raising in the stabilization group were greater than those on the Mackenzie. [Conclusion] Stabilization exercises are more effective than McKenzie exercises in improving the intensity of pain and function score and in increasing the thickness of the transverse abdominis muscle.
Analysis method of beam pointing stability based on optical transmission matrix
Wang, Chuanchuan; Huang, PingXian; Li, Xiaotong; Cen, Zhaofen
2016-10-01
Quite a lot of factors will make effects on beam pointing stability of an optical system, Among them, the element tolerance is one of the most important and common factors. In some large laser systems, it will make final micro beams spot on the image plane deviate obviously. So it is essential for us to achieve effective and accurate analysis theoretically on element tolerance. In order to make the analysis of beam pointing stability convenient and theoretical, we consider transmission of a single chief ray rather than beams approximately to stand for the whole spot deviation. According to optical matrix, we also simplify this complex process of light transmission to multiplication of many matrices. So that we can set up element tolerance model, namely having mathematical expression to illustrate spot deviation in an optical system with element tolerance. In this way, we can realize quantitative analysis of beam pointing stability theoretically. In second half of the paper, we design an experiment to get the spot deviation in a multipass optical system caused by element tolerance, then we adjust the tolerance step by step and compare the results with the datum got from tolerance model, finally prove the correction of tolerance model successfully.
Directory of Open Access Journals (Sweden)
Eduard Prat
2015-10-01
Full Text Available X-ray free electron lasers (XFELs are innovative research tools able to produce high-power and short radiation pulses for multiple scientific applications. We present a new method to produce XFEL radiation with much higher power and shorter pulse lengths than the ones obtained at standard XFEL facilities. This will enable new kinds of experiments in scientific fields such as nonlinear optics and bioimaging. The scheme is based on introducing a transverse tilt to the electron beam, thus limiting the fraction of the bunch able to produce XFEL radiation. In the first part of the undulator beam line only the tail of the electron bunch lases. Then, by properly delaying and correcting the trajectory of the electron beam between some undulator modules, all the electrons can contribute to the amplification of a very short XFEL pulse. Apart from being efficient, our method is flexible since by tuning the tilt amplitude one can obtain shorter or more energetic XFEL pulses. The scheme can readily be applied since, besides the standard components of an XFEL facility, it only needs small chicanes between certain undulator modules. We have confirmed the validity of our proposal with numerical simulations done for the SwissFEL case.
Caspers, Friedhelm; Iriso-Ariz, U
2003-01-01
The classical 2 wire method is not suitable for high precision transverse impedance measurements on a homogeneous copper beampipe with non-circular cross-section due to measurement noise limitations in case of narrow wire spacing. Thus we tackled the problem by simulating the 2D electrostatic field and image charge distribution of that setup and subsequently calculating the corresponding surface current for a TEM wave excitation. In this computer simulation the 2 wires can be assumed lossless, which is not possible in a practical bench setup. The theoretical justification for the method and certain limitations are discussed. The results obtained compare very well to several independent numerical and analytical results.
Present status of beam position stabilization at photon factory storage ring
International Nuclear Information System (INIS)
Nakamura, Norio
1990-01-01
Stabilization of photon beam position became a major issue in the operation of the storage rings dedicated as synchrotron radiation source. At the Photon Factory storage ring (PF ring), the orbit movement appeared remarkably when the low-emittance operation started. This orbit movement became a serious problem to synchrotron radiation users because the photon beam to drift with a large amplitude. The horizontal and vertical orbit feedback systems were constructed and developed in order to suppress the orbit movement globally. As a result, the horizontal and vertical orbit movements were reduced by a factor of five and ten, respectively. In addition, another type of feedback system using a local bump was constructed. In the test operation, this system could remove the fast photon beam motion as well as the slow photon beam drift for a beamline. (author)
Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem
2011-02-14
A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.
Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator
Schulte, Daniel
2000-01-01
A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.
Czech Academy of Sciences Publication Activity Database
Hrdý, Jaromír; Franc, František; Artemiev, Nikolai; Hrdá, Jaromíra; Ziegler, E.; Bigault, Th.; Freud, A. K.
2001-01-01
Roč. 8, - (2001), s. 1203-1206 ISSN 0909-0495 R&D Projects: GA AV ČR IAA1010104; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray beam Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001
Directory of Open Access Journals (Sweden)
Mohammadamin Azimi
2014-01-01
Full Text Available The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as “twisted opposing rectangular spiral” was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04 for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02. Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.
Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard
International Nuclear Information System (INIS)
Wang Qing; Duan Jun; Qi Xiang-Hui; Zhang Yin; Chen Xu-Zong
2015-01-01
A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber-coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 × 10 −11 at 1 s and reaches 1.5 × 10 −12 at 2000 s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock. (paper)
International Nuclear Information System (INIS)
Barr, D.S.
1994-01-01
It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two processes tested were the least mean squares (LMS) and Kalman inter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth
AUTHOR|(CDS)2082016; Borburgh, Jan; Damjanovic, Sanja; Gilardoni, Simone; Giovannozzi, Massimo; Hourican, Michael; Kahle, Karsten; Michels, Olivier; Sterbini, Guido; Hernalsteens, Cedric; Le Godec, Gilles
2016-01-01
Following a successful commissioning period, the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving Continuous Transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of non-linear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and non-linear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. The results of the related experimental and simulation studies, a summary ...
Edge-emitting lasers based on coupled large optical cavity with high beam stability
Serin, A.; Gordeev, N.; Payusov, A.; Shernyakov, Y.; Kalyuzhnyy, y.; Mintairov, S.; Maximov, M.
2017-11-01
In this paper we present a study on temperature and current stability of far-field patterns of lasers based on the coupled large optical cavity (CLOC) concept. Previously it has been shown that the CLOC structures allows effective suppressing of high-order mode lasing in broadened waveguides. For the first time we report on transverse single-mode emission from the CLOC lasers with 4.8 μm thick waveguide. Using broadened waveguide allowed us to reduce the divergence of the far-field patterns down to 14° in continuous-wave (CW) regime. Far-field patterns proved to be insensitive to current and temperature changes.
Luminosity control and beam orbit stability with beta star leveling at LHC and HL-LHC
Gorzawski, Arkadiusz Andrzej; Wenninger, Jorg
This thesis describes the wide subject of the luminosity leveling and its requirements for the LHC and the HL-LHC. We discuss the advantages and disadvantages of different leveling methods focusing the thesis on the beta star leveling technique. We review the beams offset build--up due to the environmental (i.e. natural ground motion) and mechanical (i.e. moving quadrupole) sources. We quantify the instrumentation requirements for the reliable and reproducible operation with small offsets at the interaction points. Last but not least, we propose a novel method for the beam offset stabilization at the collision point based on the feedback from the luminosity.
International Nuclear Information System (INIS)
Casten, R.F.
1995-01-01
In the last few years, our understanding of nuclei at extremes of stability has undergone substantial development and change. It is now thought that there is every likelihood for truly new manifestations of structure at extreme N/Z ratios, unlike anything observed to date. Changes in shell structure, residual interactions, symmetries, collective modes, and the evolution of structure are envisioned. These developing ideas expand the opportunities for nuclear structure studies with radioactive beams and focus attention on the need to develop efficient experimental techniques and improved signatures of structure. These developments are discussed along with an overview of current and future radioactive beam projects in North America
Improved two-loop beam energy stabilizer for an FN tandem accelerator
International Nuclear Information System (INIS)
Trainor, T.A.
1981-01-01
A detailed analysis of the properties of various elements in a two-loop voltage regulator for a tandem accelerator enabled design of an optimum system which reduces effective accelerating voltage noise below 100 V. Essential features of the new system are high-quality slit preamplifiers, careful attention to removal of extraneous noise sources, and proper shaping of frequency responses to maximize stable gains and ensure compatibility of the two control loops. The resultant beam energy stabilizer system is easy to operate, has well defined indicators for proper adjustment of operating parameters, and recovers reliably from beam interruptions
International Nuclear Information System (INIS)
Ryu, Bong Jo; Shin, Kwang Bok; Yim, Kyung Bin; Yoon, Young Sik
2006-01-01
This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented
Picosecond stability of injection of parallel high-current pulsed electron beams
Yalandin, M. I.; Reutova, A. G.; Ul'Maskulov, M. R.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Klimov, A. I.; Rostov, V. V.; Mesyats, G. A.
2009-09-01
The stability of operation of parallel explosive-emission cathodes driven by a split high-voltage pulse with a subnanosecond leading front has been studied. It is established that, upon the training of graphite cathodes in vacuum with up to ˜104 pulses, the current pulse fronts of injected high-current electron beams exhibit a mutual temporal dispersion not exceeding ten picoseconds. The dynamics of this parameter during the training stage, the variation of the absolute spread, and the growth of a relative delay of the moments of beam injection have been investigated.
Tsai, Ko-Fan; Chu, Shu-Chun
2018-03-01
This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.
Park, Minho; Na, Yong-Su; Seo, Jaemin; Kim, M.; Kim, Kyungjin
2018-01-01
We report the effect of the electron cyclotron (EC) beam width on the full suppression time of neoclassical tearing mode (NTM) using the finite difference method (FDM) based minimum seeking controller in ITER. An integrated numerical system is setup for time-dependent simulations of the NTM evolution in ITER by solving the modified Rutherford equation together with the plasma equilibrium, transport, and EC heating and current drive. The calculated magnetic island width and growth rate is converted to the Mirnov diagnostic signal as an input to the controller to mimic the real experiment. In addition, 10% of the noise is enforced to this diagnostic signal to evaluate the robustness of the controller. To test the dependency of the NTM stabilization time on the EC beam width, the EC beam width scan is performed for a perfectly aligned case first, then for cases with the feedback control using the minimum seeking controller. When the EC beam is perfectly aligned, the narrower the EC beam width, the smaller the NTM stabilization time is observed. As the beam width increases, the required EC power increases exponentially. On the other hand, when the minimum seeking controller is applied, NTM stabilization sometimes fails as the EC beam width decreases. This is consistently observed in the simulation with various representations of the noise as well as without the noise in the Mirnov signal. The higher relative misalignment, misalignment divided by the beam width, is found to be the reason for the failure with the narrower beam widths. The EC stabilization effect can be lower for the narrower beam widths than the broader ones even at the same misalignment due to the smaller ECCD at the island O-point. On the other hand, if the EC beam is too wide, the NTM stabilization time takes too long. Accordingly, the optimal EC beam width range is revealed to exist in the feedback stabilization of NTM.
Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis
Szekrényes, András
2014-09-01
A novel analytical model is developed to solve the problem of free vibration of delaminated composite beams. The beam with a single delamination was modelled by six equivalent single layers by establishing the kinematic continuity in the undelaminated portion of the system. In the delaminated region the layers were captured by the traditional theories. First, Timoshenko beam theory is applied to solve the problem, then by reducing the model, the corresponding Euler-Bernoulli solution is presented. Both the free and constrained models were considered. The most important aspect of the present analysis is that the beams of the delaminated region are subjected to normal forces, as well. That is the essential reason for leading to a coupled flexural-longitudinal vibration problem. It is also concluded that delamination buckling can take place if the normal force is compressive in one of the half-periods of the vibration and reaches a critical value. The problem was also investigated experimentally by modal hammer and sweep excitation tests on beams made of E-glass/polyester in order to measure the natural frequencies and mode shapes. The comparison of the analytical and experimental results indicates the importance of the independent rotations provided by Timoshenko beams over the simple beam theory. The delamination buckling of the beams was captured based on the static stability analysis in the first step. Further results show that the problem is more complex than it was thought before, e.g., some nonlinearity, time-dependent stiffness as well as parametric excitation aspects were discovered during the present analysis.
Field stability by the electron beam in a warm magnetized plasma-filled waveguide
International Nuclear Information System (INIS)
Khalil, Sh.M.; Sayed, Y.A.; EI-Shorbagy, Kh.H.; EI-Gendy, A.T.
2002-11-01
We study the effect of the electron beam on the field stability and minimizing the energy losses in waveguide filled with plasma. Analytical calculations are performed to find the plasma dielectric tensor. By applying the boundary conditions at the plasma-conductor interface, we derive the dispersion equations, which describe the propagated E- and H- waves and their damping rate. The necessary condition for the field stability in the waveguide and the amplification coefficient for the E- wave are obtained. Realistic plasma conditions (i.e. its warmness and inhomogeneity under the effect of an external static magnetic field) are taken into consideration. The electron beam is found to play a crucial role in controlling the field attenuation in waveguide. (author)
Stability results of a free air ionization chamber in standard mammography beams
International Nuclear Information System (INIS)
Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E.
2015-01-01
Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)
A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles
Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C
2010-01-01
In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...
Carver, Lee Robert; Biancacci, Nicolo; Buffat, Xavier; Iadarola, Giovanni; Lasocha, Kacper; Li, Kevin Shing Bruce; Levens, Tom; Metral, Elias; Salvant, Benoit; Tambasco, Claudia; CERN. Geneva. ATS Department
2017-01-01
Instabilities were being routinely observed in B1V during ADJUST. The timing of the instabilities has been localised to shortly after the TOTEM bump has been implemented. The result is emittance blowup which can negatively effect the luminosity output of the fill. This MD aimed to rule out possible sources of the instability (i.e. beam-beam effects or electron cloud) by only taking one single beam to 6.5TeV and going through the full machine cycle. After the implementation of the TOTEM bump, a reduction of the octupole current was performed in order to determine if there was a discrepancy in the threshold between simulations and measurement. As a precursor, the results of the End of Fill MD: Validation of Single Bunch Stability Threshold will also be described.
A measurement of long-term energy stability of proton beam produced by Pelletron accelerator
International Nuclear Information System (INIS)
Takeda, Naoto; Hasegawa, Masataka; Kudo, Katsuhisa; Shimada, Makoto
1997-01-01
A 4 MV single-ended Van de Graaff ion accelerator (4UH-HC Pelletron from National Electrostatics Corp., USA) installed in 1982 has been used for various research fields of monoenergetic neutron fluence standards, creation and modification of new materials and material structure diagnostics by using ion beams. The accelerator was equipped with tank liner voltages stabilizer in 1993 in order to improve the terminal voltage stability to 0.01% for the ripple at 3 MV terminal voltage. Recently the power supply for an analyzing magnet located between the accelerator and a neutron producing target was replaced to obtain the better energy stability of 10 -6 . In this study, a long-term stability of proton energy, which is mainly affected by the drift of terminal voltage and the change of proton beam track from the ion source to the target, has been evaluated by measuring the change of neutron yield on the steeply changing lower energy portion of the resonance peak at 2.961 MeV from the Sc(p,n)Ti reaction. The result shows the energy spread (FWHM) to be less than 1.7 keV over 3 hour operation. (author)
Avrutin, Eugene A.; Ryvkin, Boris S.; Payusov, Alexey S.; Serin, Artem A.; Gordeev, Nikita Yu
2015-11-01
It is shown that in high-power, large optical cavity laser diodes at high injection currents, the optical losses due to nonuniform carrier accumulation in the optical confinement layer can ensure the laser operation in the fundamental transverse mode. An experimental demonstration of switching from second order mode to fundamental mode in large optical cavity lasers with current and/or temperature increase is reported and explained, with the calculated values for the switching current and temperature in good agreement with the measurements. The results experimentally prove the nonuniform nature of carrier accumulation in the confinement layer and may aid laser design for optimizing the output.
Progress In Transverse Feedbacks and Related Diagnostics for Hadron Machines
Hofle, W
2013-01-01
Today Hadron Accelerators with high intensity and high brightness beams increasingly rely on transverse feedback systems for the control of instabilities and the preservation of the transverse emittance. With particular emphasis, but not limited to, the CERN Hadron Accelerator Chain, the progress made in recent years, and the performances achieved are reviewed. Hadron colliders such as the LHC represent a particular challenge as they ask for low noise electronic systems in these feedbacks for acceptable emittance growth. Achievements of the LHC transverse feedback system used for damping injection oscillations and to provide stability throughout the cycle are summarized. This includes its use for abort gap and injection cleaning as well as transverse blow-up for diagnostics purposes. Beyond systems already in operation, advances in technology and modern digital signal processing with increasingly higher digitization rates have made systems conceivable to cure intra-bunch motion. With its capabilities to both ...
On some properties of longitudinal and transverse coupled-bunch instabilities
International Nuclear Information System (INIS)
Kamiya, Yukihide.
1983-02-01
Some properties of longitudinal and transverse coupled-bunch instabilities have been investigated theoretically and computationally, mainly based on a rigid-bunch model. In this report, we will study Robinson's stability, sum rules of the instabilities and the cure of instabilities by producing the oscillation frequencies different from bunch to bunch, and also give the numerical examples for KEK-PF storage ring. KEYWORD: storage ring, accelerator, bunched beam, longitudinal instability, transverse instability, coupled-bunch instability. (author)
Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments
Al-Alwan, Asem Ibrahim Alwan
2017-10-24
This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.
Park, Je Uk; Kook, Yoon-Ah; Kim, Yoonji
2012-09-01
To characterize symmetrical features of patients with facial asymmetry and thus to find the most reliable horizontal reference lines easily used in three-dimensional images. The hypothesis was that there is a difference in the location of bilateral landmarks of the upper skull between the normal occlusion sample and skeletal Class III patients with asymmetry. Group 1 (normal occlusion sample) was composed of 20 Korean adults with normal occlusion and no noticeable asymmetry. Groups 2 through 4 were selected from patients who were diagnosed as skeletal Class III malocclusion and grouped according to the extent of asymmetry (group 2: symmetric mandible, no maxillary cant; group 3: asymmetric mandible, no maxillary cant; group 4: asymmetric mandible, more than 4 mm maxillary cant measured at maxillary first molars). Three-dimensional cone beam computed tomography images were taken before treatment, and bilateral landmarks of the skull were located and their vertical and horizontal differences compared. No statistically significant difference was noted in the position of bilateral landmarks between groups, except for AG (P vertical dimension (P dimension (P < .0001) between groups. The mean of the difference was clearly greatest at FM. The hypothesis is rejected. All groups had a similar pattern of asymmetry in the upper third of the face. Therefore, the transverse reference line of the bilateral Z or orbitale may be used even in patients with severe asymmetry of the maxilla with reference to the clinical photos.
Transverse impedance measurement in RHIC and the AGS
Energy Technology Data Exchange (ETDEWEB)
Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-05-12
The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.
Fast Orbit Feedback and Beam Stability at the Swiss Light Source
Schlott, V.; Böge, M.; Keil, B.; Pollet, P.; Schilcher, T.
2004-11-01
A global, fast orbit feedback (FOFB) based on the digital beam position monitor (DBPM) system has been in user operation at the Swiss Light Source (SLS) since November 2003. The SVD-based correction scheme acts at a sampling rate of 4 kHz using position information from all 72 DBPM stations and applying corrections with all 72 horizontal and 72 vertical corrector magnets. As a result, the FOFB successfully damps orbit distortions, which are mainly caused by ground and girder vibrations as well as the 3-Hz booster crosstalk. It also allows fast and independent ID gap changes, which are completely transparent to all SLS users. With top-up as a regular operation mode at SLS, global beam stability on a μm-level has been achieved from days to milliseconds.
Temperature control of a cyclotron magnet for stabilization of the JAERI AVF cyclotron beam
International Nuclear Information System (INIS)
Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Tamura, H.; Matsumura, A.; Sano, M.; Tachikawa, T.
2001-01-01
Frequent corrections of the magnetic field of the JAERI AVF cyclotron were required for keeping a beam current constant during long time operation. We observed correlation between the magnetic field and the temperature of the cyclotron magnet yoke by measuring the magnetic field with an NMR probe and the temperature with platinum resistance thermometers. As a result, this instability of a cyclotron beam was induced by temperature-change of the magnet yoke caused mainly by thermal conduction from the main coil. To restrain the thermal conduction to the yoke, we have inserted temperature-controlled copper plates between the yoke and the main coil. In addition, a temperature control system for the cooling water of the trim coils has been installed, which is independent of the total cooling system for controlling the pole tip temperature. An optimum condition of the temperature control systems for stabilizing the magnetic field has been investigated
MD 1856 - Landau Damping: Beam Transfer Functions and diffusion mechanisms
Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department
2017-01-01
In the 2012, 2015 and 2016 several instabilities were developing during the betatron squeeze where beam-beam interactions become stronger modifying the tune spread provided by the octupoles magnets. Studies of the stability area computed by evaluating the dispersion integral for different tune spread couldn’t explain the 2012 observed instabilities during the squeeze. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution due to for instance a diffusion from excited resonances can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) measurements are direct measurement of the Stability Diagrams (SD). They are sensitive to the particle distribution and contain information about the transverse tune spread in the beams. In this MD we wanted to verify the findings of MD 1407 and try to explain observed inst...
In situ optoacoustic measurement of the pointing stability of femtosecond laser beams
Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.
2018-02-01
A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.
Stabilization of a cold cathode electron beam glow discharge for surface treatment
Energy Technology Data Exchange (ETDEWEB)
Mingolo, N.; Gonzalez, C.R. [Lab. de Haces Dirigidos, Depto. de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Martinez, O.E. [Lab. de Electronica Cuantica, Depto. de Fisica, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Rocca, J.J. [Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)
1997-10-01
We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 {mu}A was found to limit the shot to shot current variation to within 1.5{percent}. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. {copyright} {ital 1997 American Institute of Physics.}
On the analysis of the beam energy stabilization in the Van de Graaff accelerator 'Lech'
International Nuclear Information System (INIS)
Bienkowski, A.; Jaskola, M.; Zemlo, L.
1977-01-01
In the Van de Graaff accelerator LECH the deviation of the beam energy from the desired value is detected by the standard analysing system consisting of the 90 0 bending magnet followed by a pair of slits. The amplified error signal from that slits is used to correct the high voltage at the terminal. Corrections of the fast component of the voltage instability are made via the corona-triode and for the slow component via adjustment of the belt charging current. In order to determine the maximum gain factors providing the stable operating conditions a definite transfer function has been adopted for the aforementioned two loop stabilizer. Next this function has been applied to the analysis of the stability of the feedback system. Although the calculation was made for parameters of the accelerator LECH, the same method is easily applicable to other Van de Graaff accelerators
International Nuclear Information System (INIS)
Lin, S.; Chu, H.-S.
1999-01-01
The effect of two-dimensional diatomic-island nucleation on the linear stability of the step morphology during molecular beam epitaxy is investigated numerically via shooting methods. It is found that the effect of diatomic islands on the step morphological stability is significant. The greater the effects of diatomic islands, the more stable the step morphology. Increasing capture efficiency can decrease the critical surface capillary length and shift the critical wave number toward short-wavelength regimes. The unstable region is shrunk with increasing capture efficiency. Further, increasing flux coverage and/or surface coverage can decrease the critical surface capillary length and shift the critical wave number toward short-wavelength regimes. (orig.)
Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik
2011-07-01
Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.
Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian
2017-09-01
This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities
Stabilization and Fine Positioning to the Nanometre Level of the CLIC Main Beam Quadrupoles
Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Lackner, F; Leuxe, R; Slaathaug, A
2010-01-01
The CLIC main beam quadrupoles need to be stabilized to 1.5 nm integrated R.M.S. displacement at 1 Hz. The choice was made to apply active stabilization with piezoelectric actuators in a rigid support with flexural guides. The advantages of this choice are the robustness against external forces and the possibility to make fast incremental nanometre positioning of the magnet with the same actuators. The study and feasibility demonstration is made in several steps from a single degree of freedom system (s.d.o.f.) with a small mass, a s.d.o.f. with a large mass, leading to the demonstration including the smallest (type 1) and largest (type 4) CLIC main beam quadrupoles. The paper discusses the choices of the position and orientation of the actuators and the tailored rigidities of the flexural hinges in the multi degree of freedom system, and the corresponding MIMO control system. The compatibility with the magnet support and micrometre alignment system is essential. The status of the study and performed tests wi...
International Nuclear Information System (INIS)
Vo, Khoa Dang Nguyen; Kowandy, Christelle; Dupont, Laurent; Coqueret, Xavier; Hien, Nguyen Quoc
2014-01-01
Gold nanoparticles were synthesized via radiolytic reduction of Au(III) salts induced by e − beam or γ-irradiation, using chitosan as a stabilizer. The effect of irradiation dose, chitosan concentration and the conditioning of HAuCl 4 –chitosan solutions were studied. UV–visible absorption measurements reveal that the size of Au clusters formed immediately after irradiation is correlated with the extent of chitosan scission chain of chitosan and fall with the increase of dose absorbed. This effect is more pronounced with solution conditioned under Argon (Ar). Au clusters coalesce to form stable nanoparticles after two weeks. - Highlights: • This paper underlines the potential of ionizing radiations in the synthesis of AuNps. • The size of the nanoparticles, and their stability are controlled by the ratio [GLA]/[Au(III)] • This paper compares results obtained with e − beam and γ irradiation for the AuNps synthesis. • This paper points the influence of dose rate on the size of preformed Au clusters
Lizotte, Todd E.; Dickey, Fred M.
2013-09-01
This paper documents the investigation of a diffuser based fiber injection system and its successful implementation and experimental testing in a robotic industrial process. This is a new concept based on the idea that a diffuser that has the angular radiation pattern matching the NA of the fiber can be used to approximate the field pattern at the face of a mode filled fiber. The research considered two approaches to this problem. The two related approaches to the problem were developed conceptually and analytically for two predominant wavelengths of interest, 1030 nm and 532 nm. The first is an implementation that would consist of illuminating the diffuser with a uniform spot having the same shape as the fiber core and imaging the illuminated spot onto the fiber face. The other approach is the use of a far-field (Fourier transform) diffractive element with a transform lens. This paper will provide an overview of the analytics and testing of the later concept (Fourier transform) and the experimental implementation of the design to a laser fiber coupling system to launch a 532 nm pulsed laser beam into a square core fiber optical beam delivery system. Further detail will be shared with the experimental performance of the design when integrated within a multi-axis robotic arm, which has six degrees of freedom. These results will include how the fiber injection system improved laser beam stability during process operations, in comparison to traditional simple lens injection methods.
Electron beam position stabilization with a piezo-electric optical correction system
Averett, T; McKeown, R D; Pitt, M
1999-01-01
A piezo-electrically controlled optical correction system was successfully used to reduce the helicity-correlated pulse-to-pulse position differences of a laser spot to better than +-100 nm at a pulse rate of 600 Hz. Using a simple feedback algorithm, average position differences of DELTA x-bar=-3.5+-4.2 nm and DELTA y-bar=2.6+-6.6 nm were obtained over a 6 h period. This optical correction system was successfully used in the polarized electron source at the Bates Linear Accelerator Center to stabilize the position of the electron beam during the recent SAMPLE experiment. Because this experiment measures a parity violating signal at the 10 sup - sup 6 level, it is sensitive to systematic effects which are correlated with the helicity of the incident electrons. One potentially large systematic effect is the helicity-correlated motion of the incident electron beam. By using this optical correction system, electron beam position differences at the location of the experiment were routinely kept well below +-100 n...
Buyuk, Suleyman Kutalmiş; Celikoglu, Mevlut; Benkli, Yasin Atakan; Sekerci, Ahmet Ercan
2016-10-01
The aim of the study was to evaluate the transverse craniofacial morphology of the adolescent patients affected by unilateral cleft lip and palate (UCLP) and to compare the findings with age- and sex-matched control group without any cleft using their cone-beam computed tomography (CBCT) images. The study sample (n = 56 patients; mean age: 14.35 ± 3.06 years) consisted of 26 UCLP (n = 26 patients; 10 women and 16 men; mean age: 13.70 ± 2.94 years) and 30 control (n = 30 patients; 19 women and 11 men; mean age: 14.90 ± 3.10 years) subjects. Twenty-five conventional skeletal and dental tissue landmarks were identified. Twenty widely used frontal cephalometric variables (14 linear distances, 3 angles, and 3 ratios) were measured. The data were analyzed using the independent t-test between the groups. Patients affected by UCLP had statistically significantly smaller interorbital width (89.83 ± 4.16 mm), maxillary width (58.02 ± 5.77 mm), maxillary intermolar width (52.83 ± 4.83 mm), and upper face height (57.64 ± 4.57 mm) (P cleft width had significant effect on Cr-ANS (r = 0.446, P = 0.022) and the ANS-isf (r = 0.459, P = 0.018) measurements. The UCLP group showed statistically significantly smaller values for interorbital width, maxillary width, maxillary intermolar width, and upper face height than the noncleft controls.
BEAM TRANSPORT LINES FOR THE BSNS.
Energy Technology Data Exchange (ETDEWEB)
WEI, J.
2006-06-26
This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.
Barone, Vincenzo; Ratcliffe, Philip G.
Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I
International Nuclear Information System (INIS)
Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju
2010-01-01
Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.
FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS
Energy Technology Data Exchange (ETDEWEB)
Lindberg, R. R.
2017-06-25
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.
Lizotte, Todd E.
2011-03-01
Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.
Landau Damping of Beam Instabilities by Electron Lenses
Energy Technology Data Exchange (ETDEWEB)
Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab
2017-06-26
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.
White, S.
2014-07-17
As two counter-rotating beams interact they can give rise to coherent dipole modes. Under the influence of impedance these coherent beam-beam modes can couple to higher order head-tail modes and lead to strong instabilities. A fully self-consistent approach including beam-beam and impedance was used to characterize this new coupled mode instability and study possible cures such as a transverse damper and high chromaticity.
Mendoza Mendoza, A; Solano Reina, E
1990-04-01
In this worn we introduce the alterations of the occlusion in the horizontal level or transversal problems, in which lateral crossed bites appear, either with or without a deviation of the medium line, underlying its differential diagnostic and guide lines treatment through several different clinic cases.
E-beam column monitoring for improved CD SEM stability and tool matching
Hayes, Timothy S.; Henninger, Randall S.
2000-06-01
Tool matching is an important metric for in-line semiconductor metrology systems. The ability to obtain the same measurement results on two or more systems allows a semiconductor fabrication facility (fab) to deploy product in an efficient manner improving overall equipment efficiency (OEE). Many parameters on the critical dimension scanning electron microscopes (CDSEMs) can affect the long-term precision component to the tool-matching metric. One such class of parameters is related to the electron beam column stability. The alignment and condition of the gun and apertures, as well as astigmatism correction, have all been found to affect the overall measurements of the CDSEM. These effects are now becoming dominant factors in sub-3nm tool-matching criteria. This paper discusses the methodologies of column parameter monitoring and actions and controls for improving overall stability. Results have shown that column instabilities caused by contamination, gun fluctuations, component failures, detector efficiency, and external issues can be identified through parameter monitoring. The Applied Materials (AMAT) 7830 Series CDSEMs evaluated at IBM's Burlington, Vermont manufacturing facility have demonstrated 5 nm tool matching across 11 systems, which has resulted in non-dedicated product deployment and has significantly reduced cost of ownership.
Transverse correlation: An efficient transverse flow estimator - initial results
DEFF Research Database (Denmark)
Holfort, Iben Kraglund; Henze, Lasse; Kortbek, Jacob
2008-01-01
Color flow mapping has become an important clinical tool, for diagnosing a wide range of vascular diseases. Only the velocity component along the ultrasonic beam is estimated, so to find the actual blood velocity, the beam to flow angle has to be known. Because of the unpredictable nature...... for estimating the transverse velocity component. The method measures the transverse velocity component by estimating the transit time of the blood between two parallel lines beamformed in receive. The method has been investigated using simulations performed with Field II. Using 15 emissions per estimate...
Herr, Werner
2003-01-01
We have calculated the tune distribution functions in the presence of beam-beam eﬀects in order to evaluate the efect of Landau damping of instabilities driven by the impedance. The corresponding stability diagrams have been computed and the limits on the transverse impedance have be derived.
DEFF Research Database (Denmark)
Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.
2012-01-01
This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria‐stabilized zirconia (YSZ) and Nb‐doped strontium titanate (STN) to optimize data quality and acquisition time for 3D‐EBSD experiments by FIB...
Rapp, Marion; Gros, Nina; Zachert, Gregor; Schulze-Hessing, Maaike; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin Michael
2015-06-25
Elastic stable intramedullary nailing (ESIN) is accepted widely for treatment of diaphyseal femur fractures in children. However, complication rates of 10 to 50 % are described due to shortening or axial deviation, especially in older or heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with end caps or a third nail could significantly improve the stability in comparison to classical elastic stable intramedullary nailing in a transverse femur fracture model. We performed biomechanical testing in 24 synthetic adolescent femoral bone models (Sawbones®) with a transverse midshaft (diaphyseal) fracture. First, in all models, two nails were inserted in a C-shaped manner (2 × 3.5 mm steel nails, prebent), then eight osteosyntheses were modified by using end caps and another eight by adding a third nail from the antero-lateral (2.5-mm steel, not prebent). Testing was performed in four-point bending, torsion, and shifting under physiological 9° compression. The third nail from the lateral showed a significant positive influence on the stiffness in all four-point bendings as well as in internal rotation comparing to the classical 2C configuration: mean values were significantly higher anterior-posterior (1.04 vs. 0.52 Nm/mm, p < 0.001), posterior-anterior (0.85 vs. 0.43 Nm/mm, p < 0.001), lateral-medial (1.26 vs. 0.70 Nm/mm, p < 0.001), and medial-lateral (1.16 vs. 0.76 Nm/mm, p < 0.001) and during internal rotation (0.16 vs. 0.11 Nm/°, p < 0.001). The modification with end caps did not improve the stiffness in any direction. The configuration with a third nail provided a significantly higher stiffness than the classical 2C configuration as well as the modification with end caps in this biomechanical model. This supports the ongoing transfer of the additional third nail into clinical practice to reduce the axial deviation occurring in clinical practice.
Energy Technology Data Exchange (ETDEWEB)
Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)
2017-05-15
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.
International Nuclear Information System (INIS)
Black, M.J.; Motaghedi, B.; Robitaille, Y.
1980-01-01
Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented
Transverse exponential stability and applications
Andrieu, Vincent; Jayawardhana, Bayu; Praly, Laurent
2016-01-01
We investigate how the following properties are related to each other: i) A manifold is “transversally” exponentially stable; ii) The “transverse” linearization along any solution in the manifold is exponentially stable; iii) There exists a field of positive definite quadratic forms whose
Energy Technology Data Exchange (ETDEWEB)
Artru, X. [Institut de Physique Nucleaire de Lyon, IN2P3-CNRS, Universite Claude Bernard, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)
2002-07-01
The aim of this introduction, which is far from exhaustive, was to give an overview on the richness of transverse spin quantity and its differences in comparison with helicity. From the experimental point of view, the physics of quark transversity in deep inelastic reaction is still practically unexplored. This situation will certainly change rapidly, with planned experiments at DESY (HERMES), Brookhaven (RHIC) and CERN (COMPAS), but there is a long way before knowing the transversity distribution, {delta}q(x), as precisely as the helicity distribution, {delta}q(x), now. Unless polarized anti-proton beams become feasible, experiments probing quark transversity will rely mainly on 'quark polarimeters', like {lambda}'s or the Collins effect. These polarimeters will have to be calibrated at e{sup +}e{sup -} colliders. The Collins polarimeter will by the way allow the flavor decomposition of {delta}q(x), using mesons of various charging and strangeness. Quark polarimetry is by itself an interesting topic of non-perturbative QCD, and may teach us something about the breaking of chiral symmetry. Let us recall that, if chiral symmetry were unbroken, transversity would be undefined. The transversity physics program is not at all a 'remake' of the helicity one. Helicity and transversity probe rather different aspects of the hadron structure. Differences between {delta}q(x) and {delta}q(x) will reveal non-relativistic effects in the baryon wave function. Also {delta}q(x) does not couples to gluon distributions, thus it is free from anomaly. In that respect it is a more clean probe than {delta}q(x). In fact, the combination of helicity and transversity measurements will perhaps be the most interesting. Polarized parton densities taking only the helicity degree of freedom are almost 'classical'. Quantum aspects of spin correlations, like violation of Bell's inequality, can be found only when varying the spin quantification axis
Directory of Open Access Journals (Sweden)
Mohammad Amin Mosleh-Shirazi
2016-04-01
Full Text Available Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for estimation of the required tolerance values for the beam quality factor (BQF of the PTW QUICKCHECK weblineTM (QCW daily checking device. Materials and Methods Over a 13 week period of routine clinical service, 52 daily readings of BQF were taken and then analyzed for a 10×10 cm2 field. Results No decreasing or increasing trend in BQF was observed over the study period. The mean BQF value was estimated at 5.4483 with a standard deviation (SD of 0.0459 (0.8%. The mean value was only 0.1% different from the baseline value. Conclusion The results of this medium-term stability study of the Elekta Compact linear accelerator energy showed that 96.2% of the observed BQF values were within ±1.3% of the baseline value. This can be considered to be within the recommended tolerance for linear accelerator photon beam energy. If an approach of applying ±3 SD is taken, the tolerance level for BQF may be suggested to be set at ±2.5%. However, further research is required to establish a relationship between BQF value and the actual changes in beam energy and penetrative quality.
Suppression of two-stream hose instabilities at wavelengths shorter than the beam’s transverse size
Directory of Open Access Journals (Sweden)
R. A. Bosch
2003-07-01
Full Text Available Transverse hose instability may disrupt the propagation of a charged-particle beam in a channel of oppositely charged particles. A theoretical model predicts stabilization of this two-stream instability when the instability wavelength becomes smaller than the beam’s transverse size in a frame of reference where the instability’s phase velocity is nonrelativistic. Suppression of short-wavelength instability is also predicted when a proton beam propagates through a channel consisting of electrons and positive ions, consistent with previous experimental results.
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-05-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.
Equilibrium and stability of off-axis periodically focused particle beams
International Nuclear Information System (INIS)
Moraes, J.S.; Pakter, R.; Rizzato, F.B.
2004-01-01
A general equation for the centroid motion of free, continuous, intense beams propagating off axis in solenoidal periodic focusing fields is derived. The centroid equation is found to be independent of the specific beam distribution and may exhibit unstable solutions. A new Vlasov equilibrium for off-axis beam propagation is also obtained. The properties of the equilibrium and the relevance of centroid motion to beam confinement are discussed
Zhang, P; Jones, R M
2014-01-01
Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.
Stability Analysis of Thin-Walled Non-Symmetric Steel Beams
DEFF Research Database (Denmark)
Mathiesen, F.
The beam has for many years been an important part of civil engineering structures. Successful design of structures involving beam elements requires a well-developed description of the beam behaviour. This has been recognized by researchers and during the last century great emphasis has been given...
MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms
Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department
2017-01-01
In the 2012, 2015 and 2016 run several instabilities were developing at flat-top, during and at the end of the betatron squeeze where beam-beam interactions are present. The tune spread in the beams is therefore modified by the beam-beam long-range interactions and by other sources of spread. Studies of the stability area computed by evaluating the dispersion integral for different tune spreads couldn’t explain the observed instabilities during the squeeze and stable beams. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) are direct measurements of the Stability Diagrams (SD). They are sensitive to particle distributions and contain information about the transverse tune spread in the beams. In this note are summarized the results of the BTF...
Shokuhi Rad, A.; Ebrahimi, D.
2017-07-01
The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.
Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Neumann, Axel
2008-07-21
In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10{sup -4} in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)
Longitudinal and transverse wake potentials in SLAC
International Nuclear Information System (INIS)
Bane, K.; Wilson, P.
1980-01-01
In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)
Cornelis, K; Sladen, Jonathan P H; CERN. Geneva. SPS and LEP Division
1997-01-01
The aim of these MD's was to set up the transverse feedback for damping in both planes, and to test the charge normalization and gain compensation. The latter is intended to reduce the gain of the feedback for small oscillations in order to improve compatibility with the Q loop. All work was done with 2 x 4 bunches, family A. In the first two MD's the feedback was set up for damping in both planes with charge normalization. In the third, gain compensation was commissioned in the vertical plane with Qv' set to -2. It was found either to increase the level of the m = 0 mode or to leave it unchanged. Under these conditions 6mA total current was accumulated.
Upgrade of the ISIR L-band linac at Osaka University and stabilization of the electron beam
International Nuclear Information System (INIS)
Kato, R.; Kashiwagi, S.; Yamamoto, T.; Suemine, S.; Isoyama, G.
2004-01-01
The L-band electron linac at the Institute of Scientific and Industrial Research, Osaka University has been extensively remodeled to realize high operational stability and reproducibility for advanced studies in beam science and technology. Almost all the peripheral components are replaced with new ones. The modification of the linac has been completed and commissioning is now in progress. In this paper, we will report performance and characteristics of the linac after modification. (author)
Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator
Directory of Open Access Journals (Sweden)
M. A. Fraser
2011-02-01
Full Text Available The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wave resonator and the asymmetry of the rf defocusing forces in the solenoid focusing channel. A racetrack shaped beam port aperture was shown to improve the symmetry of the fields in the high-β quarter-wave resonator and reduce the loss of acceptance under the offset used to compensate the steering force. The methods used to compensate the beam steering are described and an optimization routine written to minimize the steering effect when all cavities of a given family are offset by the same amount, taking into account the different velocity profiles across the range of mass-to-charge states accepted. The assumptions made in the routine were shown to be adequate and the results well correlated with the beam quality simulated in multiparticle beam dynamics simulations. The specification of the design tolerances is outlined based on studies of the sensitivity of the beam to misalignment and errors, with particular
Dynamic axial stabilization of counterpropagating beam-traps with feedback control
DEFF Research Database (Denmark)
Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin
2010-01-01
Optical trapping in a counter-propagating (CP) beam-geometry provides unique advantages in terms of working distance, aberration requirements and intensity hotspots. However, its axial performance is governed by the wave propagation of the opposing beams, which can limit the practical geometries...
Shi, L; Jones., R M
2014-01-01
erating cavities at FLASH linac, DESY, are equipped with electronics for beam position monitoring, which are based on HOM signals from special couplers. These monitors provide the beam position without additional vacuum components and at low cost. Moreover, they can be used to align the beam in the cavities to reduce the HOM effects on the beam. However, the HOMBPM (Higher Order Mode based Beam Position Monitor) shows an instability problem over time. In this paper, we will present the status of studies on this issue. Several methods are utilized to calibrate the HOMBPMs. These methods include DLR (Direct Linear Regression), and SVD (Singular Value Decomposition). We found that SVD generally is more suitable for HOMBPM calibration. We focus on the HOMBPMs at 1.3 GHz cavities. Techniques developed here are applicable to 3.9 ...
International Nuclear Information System (INIS)
Hassanpour, S.; Khoylou, F.
2002-01-01
Now a days electron beam radiation has a wide variety of application in wires, pipes, cable coating and modification of the polymers. Blending is a well-known method of modifying the properties of polymers. As it is reported, mechanical properties of irradiated polyethylene improved with addition of ethylene- vinylacetate copolymer. In previous work the thermal oxidation of electron beam irradiated LD/EVA blend mixed without any additives in hot water was investigated. In this work LD/EVA blends with additives was exposed to electron beam radiation. The effects of a hindered amin antioxidant, Chimmasorb 944 and two trifunctional monomers, triallyoxy-1, 3,5-triazine and 2-ethyl 2-(hydroxymethyl) 1,3 propandiol trimethacrylate on its properties after irradiation and thermal aging in hot water were investigated. After irradiation the gel fraction increased up to 70%. In addition irradiated samples showed noticeable changes in mechanical properties and elongation at break. From the results of the thermal aging procedure, Chimmasorb 944 showed a convenient influence on the increasing of the polymer blend thermal stability due to having a quite slow migration to the surface of the specimens. Furthermore, it appeared that two trifunctional monomers have different thermal stability after long time immersion in hot water. (Author)
Stability Properties of Azimuthally Symmetric Perturbations in an Intense Electron Beam
1981-02-03
Y ^B/man2^ 1/2 Wcb = 0bc and pb Te nb/ Ybm ) are the beam electron cyclotron and plasma frequencies, respectively, f and f are the fractional chargee...the effective potential (r ) is defined by 1 + -2 E0(r) 2 Ybm ( b b b -b)r (5) In Eq. (5), 2 2 1/2 cb cb + W pb 2 2 f (1-f (6)b-2 4 2 Lbl -m ) -1-fe...6 where i cb = eBO/Ybmc is the beam electron cyclotron frequency and A 2 2 wpb = 4Te n/ ybm is the beam electron plasma frequency-squared. For
Buckling analysis of laminated sandwich beam with soft core
Directory of Open Access Journals (Sweden)
Anupam Chakrabarti
Full Text Available Stability analysis of laminated soft core sandwich beam has been studied by a C0 FE model developed by the authors based on higher order zigzag theory (HOZT. The in-plane displacement variation is considered to be cubic for the face sheets and the core, while transverse displacement is quadratic within the core and constant in the faces beyond the core. The proposed model satisfies the condition of stress continuity at the layer interfaces and the zero stress condition at the top and bottom of the beam for transverse shear. Numerical examples are presented to illustrate the accuracy of the present model.
International Nuclear Information System (INIS)
Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei
2012-01-01
The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production. - Highlights: ► The effect of E-beam irradiated natural casings on sausage quality was evaluated. ► The use of irradiated casings improved shelf stability of sausage. ► Natural casings irradiated below 3 kGy are suitable for sausage production.
International Nuclear Information System (INIS)
Wu, K.; Wang, S.S.; Meng, J.; Han, Z.
2004-01-01
For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process
Castillo, Jason T; Welch, Greg W; Sarver, Christian M
2012-03-01
Compared with resident fathers, nonresident fathers are more likely to be unemployed or underemployed and less likely, when they are employed, to have access to flexible work arrangements. Although lack of employment stability is associated with lower levels of father involvement, some research shows that increased stability at work without increased flexibility is negatively related to involvement. Using data from the Fragile Families and Child Wellbeing Study (N = 895), the authors examined the relationship between nonresident fathers' employment stability, workplace flexibility, and father involvement. Results indicate that workplace flexibility, but not employment stability, is associated with higher levels of involvement. Policy and practice implications are discussed.
International Nuclear Information System (INIS)
Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.
2011-01-01
This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.
Archbold, H A P; Mockford, B; Molloy, D; McConway, J; Ogonda, L; Beverland, D
2006-07-01
Ensuring the accuracy of the intra-operative orientation of the acetabular component during a total hip replacement can be difficult. In this paper we introduce a reproducible technique using the transverse acetabular ligament to determine the anteversion of the acetabular component. We have found that this ligament can be identified in virtually every hip undergoing primary surgery. We describe an intra-operative grading system for the appearance of the ligament. This technique has been used in 1000 consecutive cases. During a minimum follow-up of eight months the dislocation rate was 0.6%. This confirms our hypothesis that the transverse acetabular ligament can be used to determine the position of the acetabular component. The method has been used in both conventional and minimally-invasive approaches.
BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.
Energy Technology Data Exchange (ETDEWEB)
MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.
2005-05-16
Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.
BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS
International Nuclear Information System (INIS)
MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.
2005-01-01
Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of loW--frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters
Beam-Beam Simulations for Double-Gaussian Beams
Montag, Christoph; Litvinenko, Vladimir N; Malitsky, Nikolay
2005-01-01
Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two Gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-Gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-Gaussian beams and compare the effects to those in beam-beam interactions with regular Gaussian beams and identical tuneshift parameters.
Directory of Open Access Journals (Sweden)
Jing Zhou
2006-03-01
Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.
Measurement of the transverse emittance for the NSC Pelletron
International Nuclear Information System (INIS)
Rodriques, G.; Mandal, A.; Chopra, S.; Joshi, R.; Datta, S.K.; Roy, A.
1998-01-01
The knowledge of the emittance (transverse and longitudinal) of the NSC pelletron is essential for matching the acceptance of the LINAC which is to be installed to augment the pelletron beam energies. The transverse emittance of NSC pelletron has been measured by employing a focussing element and a down-stream beam profile monitor
Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei
2012-05-01
The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.
High-power, high-frequency, annular-beam free-electron maser
International Nuclear Information System (INIS)
Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.
1998-01-01
The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 micros, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM 02 mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability
load-displacement and stability characteristics of tidn-walled beams
African Journals Online (AJOL)
the mast common of these are the I-shapes, Z-shapes, and the channels. While the I-shaped cross-section beams had received extensive coverage m experimental ... centroid C along the x-axis, while v, and w, represent the displacements of the shear center S in the y- and z- directions, respectively. Also, represents the.
Status of the studies on collective eﬀects involving beam-beam interactions at the HL-LHC
Buffat, Xavier; Metral, Elias; Ribes Metidieri, Ariadna; Barranco Garcia, Javier; Goncalves Jorge, Patrik; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department
2018-01-01
This note summarised the status of the studies on the coherent beam-beam eﬀects in the HL-LHC project. It is shown that the obit, tune, chromaticity and dynamic β eﬀects due to head-on and long-range beam-beam interactions are tolerable without dedicated mitigations in the baseline scenario. The stability of coherent beam-beam modes under the inﬂuence of the beam coupling impedance is evaluated, as well as the impact of the beam-beam induced tune spread on the Landau damping of single beam head-tail modes of oscillation. Since the beam stability is marginal at the end of the squeeze for the ultimate scenario, it is suggested to use the ATS optics to increase the eﬀect of the octupoles at constant current, thus providing suﬃcient margins. Measurements suggesting that the transverse damper noise has to be signiﬁcantly reduced to allow for operation with large beam-beam parameter are shown.
Long-term stability of beam quality and output of conventional X-ray units
Fukuda, Atsushi; Matsubara, Kosuke; Miyati, Toshiaki
2015-01-01
Conventional diagnostic X-ray units are used for radiographic imaging in many countries. For obtaining entrance surface doses, a numerical dose determination method has been applied in Japan. Although this technique is effective, it has to account for errors, particularly fluctuations, due to the beam quality and output of X-ray tubes. As a part of our quality control procedures, we recorded the entrance surface air kerma, tube voltage, and half-value layer measurements made for four diagnost...
Khlopin, Dmitry
2011-01-01
An infinite-horizon optimal control problem with a free right endpoint is considered. In this paper we proved that Lyapunov stability of the adjoint variable implying the vanishing of the adjoint variable at infinity along optimal solution.
Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics
Papaphilippou, Y; Argyropoulos, T; Bartmann, W; Bartosik, H; Bohl, T; Bracco, C; Cettour-Cave, S; Cornelis, K; Drosdal, L; Esteban Muller, J; Goddard, B; Guerrero, A; H¨ofle, W; Kain, V; Rumolo, G; Salvant, B; Shaposhnikova, E; Timko, H; Valuch, D; Vanbavinckhove, G; Wenninger, J; Gianfelice-Wendt, E
2013-01-01
An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.
Testing long range beam-beam compensation for the LHC luminosity upgrade
Rijoff, Tatiana; Caracciolo, Sergio
The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator should be installed in the LHC by 2014/15. The originally reserved position for the wire compensator (named BBC) seems not available in this first step, we need so to test other possibilities. The performed tests consider various longitudinal and transverse locations, different wire shapes, different optics configuration and trying several crossing angles between the beam. Simulation are done with the weak-strong code BBtrack developed by U. Dorda. New postprocessing tools were used to analyse tune footprints and particle stability In particular for particle stability was implemented a new method for the Lyapunov coefficient calculation.
Transverse confinement in stochastic cooling of trapped atoms
International Nuclear Information System (INIS)
Ivanov, D; Wallentowitz, S
2004-01-01
Stochastic cooling of trapped atoms is considered for a laser-beam configuration with beam waists equal to or smaller than the extent of the atomic cloud. It is shown that various effects appear due to this transverse confinement, among them heating of transverse kinetic energy. Analytical results of the cooling in dependence on size and location of the laser beam are presented for the case of a non-degenerate vapour
Transverse spin dependent azimuthal asymmetries at COMPASS
Parsamyan, Bakur
2011-01-01
In semi-inclusive deep inelastic scattering of polarized leptons on a transversely polarized target eight target transverse spin-dependent azimuthal modulations are allowed. In the QCD parton model half of these asymmetries can be interpreted within the leading order approach and the other four are twist-three contributions. The first two leading twist asymmetries extracted by HERMES and COMPASS experiments are related: one to the transversity distribution and the Collins effect, the other to the Sivers distribution function. These results triggered a lot of interest in the past few years and allowed the first extractions of the transversity and the Sivers distribution functions of nucleon. The remaining six asymmetries were obtained by the COMPASS experiment using a 160 GeV/c longitudinally polarized muon beam and transversely polarized deuteron and proton targets. Here we review preliminary results from COMPASS proton data of 2007.
Longitudinal dynamics and stability in beams for heavy-ion fusion
International Nuclear Information System (INIS)
Sharp, W.M.; Callahan, D.A.; Grote, D.P.
1996-01-01
Successful transport of induction-driven beams for heavy-ion fusion requires careful control of the longitudinal space charge. The usual control technique is the periodic application of time-varying longitudinal electric fields, called 'ears', that on the average, balance the space-charge field. this technique is illustrated using a fluid/envelope code CIRCE, and the sensitivity of the method to errors in these ear fields is illustrated. The possibility that periodic ear fields also excite the longitudinal instability is examined
Beam based feedback for the Linac coherent light source
International Nuclear Information System (INIS)
Fairley, D.; Kim, K.; Luchini, K; Natampalli, P.; Piccoli, L.; Rogind, D.; Straumann, T.
2012-01-01
Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6*6 longitudinal feedback loop, and a loop to maintain the electron bunch charge have been commissioned on the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 120 Hz. This paper will discuss the design, configuration and commissioning of the beam-based Fast Feedback System for LCLS. Topics include algorithms for 120 Hz feedback, multi-cast network performance, actuator and sensor performance for single-pulse control and sensor read back, and feedback configuration and run-time control. (authors)
Directional Transverse Oscillation Vector Flow Estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2017-01-01
A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...
Effect of the Various Impedances on Longitudinal Beam Stability in the CERN SPS
Lasheen, Alexandre; Repond, Joël; Shaposhnikova, Elena
2016-01-01
The High Luminosity (HL)-LHC project at CERN aims at a luminosity increase by a factor ten and one of the necessary ingredients is doubling the bunch intensity to 2.4x10¹¹ ppb for beams with 25 ns bunch spacing. Many improvements are already foreseen in the frame of the LHC Injector Upgrade (LIU) project, but probably this intensity would still not be reachable in the SPS due to longitudinal instabilities. Recently a lot of effort went into finding the impedance sources of the instabilities. Particle simulations based on the latest SPS impedance model are now able to reproduce the measured instability thresholds and were used to determine the most critical impedance sources by removing them one by one from the model. It was found that impedance of vacuum flanges and of the already damped 630 MHz HOM of the main RF system gave for 72 bunches the comparable intensity thresholds. Possible intensity gains are defined for realistic impedance modifications and for various beam configurations (number of bunches, l...
Gruenwald, J.; Kocoń, D.; Khikhlukha, D.
2018-03-01
In order to introduce spatially resolved measurements of the plasma density in a plasma accelerated by a laser, a novel concept is proposed in this work. We suggest the usage of an array of miniaturized Rogowski coils to measure the current contributions parallel to the laser beam with a spatial resolution in the sub-mm range. The principle of the experimental setup will be shown in 3-D CAD models. The coils are coaxial to the plasma channel (e.g. a hydrogen filled capillary, which is frequently used in laser-plasma acceleration experiments). This plasma diagnostics method is simple, robust and it is a passive measurement technique, which does not disturb the plasma itself. As such coils rely on a Biot-Savart inductivity, they allow to separate the contributions of the parallel from perpendicular currents (with respect to the laser beam). Rogowski coils do not have a ferromagnetic core. Hence, non-linear effects resulting from such a core are to be neglected, which increases the reliability of the obtained data. They also allow the diagnosis of transient signals that carry high currents (up to several hundred kA) on very short timescales. Within this paper some predictions about the time resolution of such coils will be presented along with simple theoretical considerations.
Inclusive eta production at large transverse momenta
International Nuclear Information System (INIS)
Donaldson, G.J.; Gordon, H.A.; Lai, K.; Stumer, I.; Barnes, A.V.; Mellema, D.J.; Tollestrup, A.V.; Walker, R.L.; Dahl, O.; Johnson, R.; Ogawa, A.; Pripstein, M.; Shannon, S.
1978-01-01
We have measured the ratio of inclusive production of eta to π 0 at transverse momenta above 1.5 GeV/c. Results are presented for various meson and proton beams with momenta of 100, 200, and 300 GeV/c incident upon a hydrogen target. The eta/π 0 production ratio is found to be independent of incident beam momentum and of the transverse and longitudinal momenta of production. The ratio for pion- and proton-induced reactions is 0.44 +- 0.05; for kaons, it is 0.74 +- 0.12
Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry
International Nuclear Information System (INIS)
Grayson, K; De Silva, C M; Hutchins, N; Marusic, I
2017-01-01
The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)
International Nuclear Information System (INIS)
Strehl, P.
1994-04-01
This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)
Cichalewski, w
2010-01-01
The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.
A&T Sector Note on the PS transverse feedback
Coly, Marcel; Blas, Alfred; Sterbini, Guido; CERN. Geneva. ATS Department
2017-01-01
In a particle accelerator, several contributions can degrade the beam quality and particularly the beam transverse emittance. In this document we will describe a system used in the CERN Proton Synchrotron (PS) to cope with the injection steering errors and the transverse instabilities: the PS transverse feedback (PS TFB). As time progresses, this system is also being used for other purpose, to increase in a controlled way the beam transverse emittance and to excite the beam for the Multi-Turn-Extraction (MTE). In 2016, it has been successfully used on some operational beams to damp injection oscillations. This allowed to test the reliability of the system for its operational deployment. A piquet service is available in case of problem.
Cold atoms gyroscope: limits on the stability and the accuracy due to the atomic beam splitters
International Nuclear Information System (INIS)
Gauguet, A.
2008-06-01
This thesis present the study of a cold atoms gyroscope based on atom interferometry. The interferometer used cold cesium atoms which are manipulated with stimulated Raman transitions. The improvement of the experimental setup have allowed to reach a sensitivity similar to the best optical fiber gyroscope. Especially, we characterized the performances bring about a new Raman laser design and the atom detection system. In addition, we have studied spurious phase shifts induced by the Raman interactions and have shown they are the main limitation for the long term stability and the accuracy. (author)
MEASUREMENT OF TRANSVERSE ECHOES IN RHIC
International Nuclear Information System (INIS)
FISCHER, W.; SATOGATA, T.; TOMAS, R.
2005-01-01
Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering
Liang, Lihua; Sun, Mingxiao; Shi, Hongyu; Luan, Tiantian
2017-01-01
Fin-angle feedback control is usually used in conventional fin stabilizers, and its actual anti-rolling effect is difficult to reach theoretical design requirements. Primarily, lift of control torque is a theoretical value calculated by static hydrodynamic characteristics of fin. However, hydrodynamic characteristics of fin are dynamic while fin is moving in waves. As a result, there is a large deviation between actual value and theoretical value of lift. Firstly, the reasons of deviation are analyzed theoretically, which could avoid a variety of interference factors and complex theoretical derivations. Secondly, a new device is designed for direct measurement of actual lift, which is composed of fin-shaft combined mechanism and sensors. This new device can make fin-shaft not only be the basic function of rotating fin, but also detect actual lift. Through analysis using stiffness matrix of Euler-Bernoulli beam, displacement of shaft-core end is measured instead of lift which is difficult to measure. Then quantitative relationship between lift and displacement is defined. Three main factors are analyzed with quantitative relationship. What is more, two installation modes of sensors and a removable shaft-end cover are proposed according to hydrodynamic characteristics of fin. Thus the new device contributes to maintenance and measurement. Lastly, the effectiveness and accuracy of device are verified by contrasting calculation and simulation on the basis of actual design parameters. And the new measuring lift method can be proved to be effective through experiments. The new device is achieved from conventional fin stabilizers. Accordingly, the reliability of original equipment is inherited. The alteration of fin stabilizers is minor, which is suitable for engineering application. In addition, the flexural properties of fin-shaft are digitized with analysis of stiffness matrix. This method provides theoretical support for engineering application by carrying out finite
Long-term stability of beam quality and output of conventional X-ray units.
Fukuda, Atsushi; Matsubara, Kosuke; Miyati, Tosiaki
2015-01-01
Conventional diagnostic X-ray units are used for radiographic imaging in many countries. For obtaining entrance surface doses, a numerical dose determination method has been applied in Japan. Although this technique is effective, it has to account for errors, particularly fluctuations, due to the beam quality and output of X-ray tubes. As a part of our quality control procedures, we recorded the entrance surface air kerma, tube voltage, and half-value layer measurements made for four diagnostic X-ray tubes over a 103-week period. The entrance surface air kerma for one of the four X-ray tubes had increased significantly by 11.4 % over 1 year from its initial setting, whereas the tube voltages and half-value layers did not deviate significantly from their initial values. Medical physicists and radiological technologists should be aware of this fluctuation for diagnostic X-ray tubes and take it into consideration when calculating the entrance surface air kerma.
Experimental investigation of transverse flow estimation using transverse oscillation
DEFF Research Database (Denmark)
Udesen, Jesper; Jensen, Jørgen Arendt
2003-01-01
Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....
Startsev, Edward; Lee, Wei-li
2005-01-01
In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.
Evaluation of the photocathode laser transverse distribution
Energy Technology Data Exchange (ETDEWEB)
Saisa-ard, Chaipattana [DESY, Zeuthen (Germany); Chiang Mai Univ., Chiang Mai (Thailand); Krasilnikov, Mikhail; Vashchenko, Grygorii [DESY, Zeuthen (Germany)
2016-07-01
Many years experience of electron source developments at the photo injector test facility at DESY in Zeuthen (PITZ) show that the photocathode laser is the one of major tools to produce high brightness electron beams. The transverse distribution of the laser on the photocathode plays a significant role in the high brightness photo injector optimization. However, the imperfections in the laser beam profile according to the deviation from a radially homogeneous profile directly result in transversely distorted charged particle distributions. This includes inhomogeneous core as well as transverse halo which is due to not sharp edges around the core. The laser transverse distribution is measured at PITZ using a virtual cathode:this is a CCD camera located at the position which is optically equivalent to the photocathode position (so called virtual cathode). An algorithm is developed for the evaluation of the experimentally obtained transverse profiles. It fits a flat-top or an inhomogeneous rotational symmetric core with exponentially decaying tails to an experimental distribution. The MATLAB script with implemented algorithm is applied to a set of measured transverse laser distributions. Results of the analysis will be presented.
Structural stability of PAN fiber under high electron beam radiation doses
International Nuclear Information System (INIS)
Pino, Eddy S.; Machado, Luci D.B.; Arruda, Clarissa P. Zelinschi de; Carvalho, Alvaro A. Silva de; Giovedi, Claudia
2009-01-01
Fiber-reinforced composite are an important class of engineering material. A relevant task of composite technology in order to produce materials for structures of high mechanical performance is to obtain the best carbon fiber. One of the main ways to produce carbon fibers of high Young's modulus and tensile strength is to use as starting material polyacrylonitrile (PAN) fibers which after a rigorous and carefully thermal process become carbon fibers. Since some chemical modifications produced in the thermal treatment can be induced by ionizing radiation, the aim of this paper is to evaluate the effect of high electron beam (EB) doses on a commercial PAN fiber in order to evaluate the use of this technology as an alternative treatment to improve the properties and characteristics of the produced carbon fiber. The doses applied were: 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 MGy. The irradiation effects induced on the PAN fiber were evaluated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TG). FTIR obtained data have shown that the main functional groups remain practically unchanged in the non-irradiated and irradiated samples. The single DSC exothermic peak obtained for non-irradiated sample, becomes a double peak after the irradiation, presenting lower initial and higher final temperatures for exothermic DSC curves. The enthalpy involved in the chemical reaction decreases for irradiated samples as compared with the non-irradiated PAN fiber. TG data have shown that irradiated samples start a decomposition process at lower temperatures compared to the non-irradiated sample. (author)
International Nuclear Information System (INIS)
Hassanpour, S.; Khoylou, F.
2003-01-01
Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined
IMPACT simulation and the SNS linac beam
International Nuclear Information System (INIS)
Zhang, Y.; Qiang, J.
2008-01-01
Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results
Transverse and longitudinal angular momenta of light
Energy Technology Data Exchange (ETDEWEB)
Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2015-08-26
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.
Constituent models and large transverse momentum reactions
International Nuclear Information System (INIS)
Brodsky, S.J.
1975-01-01
The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions
AlDahlawi, Ismail; Prasad, Dheerendra; Podgorsak, Matthew B
2017-05-01
The Gamma Knife Icon comes with an integrated cone-beam CT (CBCT) for image-guided stereotactic treatment deliveries. The CBCT can be used for defining the Leksell stereotactic space using imaging without the need for the traditional invasive frame system, and this allows also for frameless thermoplastic mask stereotactic treatments (single or fractionated) with the Gamma Knife unit. In this study, we used an in-house built marker tool to evaluate the stability of the CBCT-based stereotactic space and its agreement with the standard frame-based stereotactic space. We imaged the tool with a CT indicator box using our CT-simulator at the beginning, middle, and end of the study period (6 weeks) for determining the frame-based stereotactic space. The tool was also scanned with the Icon's CBCT on a daily basis throughout the study period, and the CBCT images were used for determining the CBCT-based stereotactic space. The coordinates of each marker were determined in each CT and CBCT scan using the Leksell GammaPlan treatment planning software. The magnitudes of vector difference between the means of each marker in frame-based and CBCT-based stereotactic space ranged from 0.21 to 0.33 mm, indicating good agreement of CBCT-based and frame-based stereotactic space definition. Scanning 4-month later showed good prolonged stability of the CBCT-based stereotactic space definition. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement
DEFF Research Database (Denmark)
Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael
2002-01-01
We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...
On initial conditions for a boundary stabilized hybrid Euler–Bernoulli ...
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
mass movable hub attached to one of its ends. The beam is assumed to be initially set in vibration by a displacement y0 and velocity y1 in the transverse direction and stabilization is sought by applying viscous damping force to the moving lumped mass. The system equations for simplicity can be written in dimensionless ...
Dufresne, Eric M.; Arms, Dohn A.; Landahl, Eric C.; Walko, Donald A.
2007-01-01
The first crystal mount of the double-crystal Si (111) cryogenically cooled monochromator of the 7ID beamline at the Advanced Photon Source (APS) is slightly sensitive to pressure variations in the cryogenic lines. Pressure variations during a liquid nitrogen cryocooler fill every 4 hours move the beam by tens of microns. Pressure variations due to the cryocooler closed-loop pressure control with a heater element (around 0.3 psi) move the beam by 5 microns every 15 seconds. We have recently stabilized the coolant pressure with a simple pressure regulator that is in use at many beamlines of the APS. This paper shows the improvements in beam position stability made using this simple yet effective pressure-regulation circuit. We also recently added beam-position feedback to the second-crystal Bragg angle of the monochromator. The Experimental Physics and Industrial Control System (EPICS) Enhanced Proportional-Integral-Differential (EPID) feedback record implementation resulted in an additional improvement of the standard deviation of the beam position to 0.5 μm.
Beam Dynamics and Beam Losses - Circular Machines
Kain, V
2016-01-01
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
Transport of ion beams by magnetic fields on the beam edges
International Nuclear Information System (INIS)
Hooper, E.B.
1975-01-01
The transport of low energy ion beams (less than 10 keV) by magnetic fields on the edge of the beam is analyzed. Calculations indicate that beams with low transverse temperature can be transported. (U.S.)
Spectral Velocity Estimation in the Transverse Direction
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2013-01-01
A method for estimating the velocity spectrum for a fully transverse flow at a beam-to-flow angle of 90is described. The approach is based on the transverse oscillation (TO) method, where an oscillation across the ultrasound beam is made during receive processing. A fourth-order estimator based...... on the correlation of the received signal is derived. A Fourier transform of the correlation signal yields the velocity spectrum. Performing the estimation for short data segments gives the velocity spectrum as a function of time as for ordinary spectrograms, and it also works for a beam-to-flow angle of 90...... estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...
Testing Long-Range Beam-Beam Compensation for the LHC Luminosity Upgrade
Rijoff, T L
2012-01-01
The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by the effect of long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator could be installed in the LHC by 2014/15. Since the originally reserved position for such a wire compensator is not available for this first step, we explore other possible options. Our investigations consider various longitudinal and transverse locations, different wire shapes, different optics configurations and several crossing angles between the two colliding beams. Simulations are carried out with the weak-strong code BBtrack. New postprocessing tools are introduced to analyse tune footprints and particle stability. In particular, a new method for the Lyapunov coefficient calculation is implemented. Submitted as "Tesi di laurea" at the University of Milano, 2012.
Generating catalogs of transverse matching solutions
International Nuclear Information System (INIS)
Swain, G.; Busch, P.; Burns, M.
1989-01-01
Programs such as TRANSPORT or TRACE can find transverse beam matching solutions one at a time when given appropriate starting conditions. In the present work, an algorithm is described which rapidly finds a catalog of approximate transverse beam matching solutions. For a given initial beam, the algorithm finds the gradients of four quadrupole magnets such as to get four Twiss parameters (alpha and beta for horizontal and vertical planes) which are close to a set of desired values at the exit of a constant-energy beam line with no horizontal-vertical cross coupling and no space charge. The beam line may contain bending elements with edge corrections and other elements for which the r matrixes are known. The algorithm transforms the entrance and exit beam specifications to waist specifications, and uses the properties of waist-to-waist transport to reduce the problem from a four dimensional search to a two dimensional search. At the Los Alamos Meson Physics Facility (LAMPF) accelerator, transverse matching is important in the low-energy transport lines (0.75 MeV), where beams from the H + , H/sup /minus//, and polarized H/sup /minus// sources must be tailored for injection into the drift-tube linac; and in the transition region (100 MeV), where the beam from the drift-tube linac is injected into the side-coupled linac. Space charge has significant effects in the low-energy transport, but it is still valuable to get no-space-charge matching solutions as a starting point for solutions with space charge. 2 refs
Czech Academy of Sciences Publication Activity Database
Baranets, N.; Ruzhin, Y.; Dokukin, V.; Ciobanu, M.; Rothkaehl, H.; Kiraga, A.; Vojta, Jaroslav; Šmilauer, Jan; Kudela, K.
2017-01-01
Roč. 59, č. 12 (2017), s. 2951-2968 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : beam-plasma interaction * space charge beam waves * pump wave * weak-coupling prediction Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117717302181
Czech Academy of Sciences Publication Activity Database
Baranets, N.; Ruzhin, Yu.; Dokukin, V.; Ciobanu, M.; Rothkaehl, H.; Kiraga, A.; Vojta, Jaroslav; Šmilauer, Jan; Kudela, K.
2017-01-01
Roč. 59, č. 12 (2017), s. 2951-2968 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : energy waves * instability * system * beam-plasma interaction * space charge beam waves * pump wave * weak-coupling prediction Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117717302181
MD 382: Beam Transfer Function and diffusion mechanisms
Tambasco, Claudia; Buffat, Xavier; Crouch, Matthew; Pieloni, Tatiana; Boccardi, Andrea; Fuchsberger, Kajetan; Gasior, Marek; Kotzian, Gerd; Lefevre, Thibaut; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Giachino, Rossano; CERN. Geneva. ATS Department
2016-01-01
The Beam Transfer Function (BTF) measurements have been previously tested in the LHC during MD block 1 and 2. Different machine configurations (i.e. energy, beam intensity, emittance etc...) have been tested to determine a safe set-up (excitation amplitude) of the system to be completely transparent to the beam (no emittance blow-up neither losses). The aim of this experiment in MD block 3 was to characterize the Stability Diagram (SD) in the presence of diffusion mechanisms induced by excited resonances due to beam-beam long range and Landau octupole interplay. During the experiment, BTF measurements have been acquired at flat top for different settings of Landau octupole current, different chromaticity values and transverse feedback gains. In this note the description of the experiment is presented together with some preliminary results.
A bulk superconducting MgB2 cylinder for holding transversely polarized targets
Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.
2018-02-01
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.
Directory of Open Access Journals (Sweden)
Muhammad H. Al-Malack
2016-07-01
Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.
A Study of Large Transverse Momentum Phenomena
2002-01-01
This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...
Beam geometry selection using sequential beam addition.
Popple, Richard A; Brezovich, Ivan A; Fiveash, John B
2014-05-01
The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular
Beam geometry selection using sequential beam addition
Energy Technology Data Exchange (ETDEWEB)
Popple, Richard A., E-mail: rpopple@uabmc.edu; Brezovich, Ivan A.; Fiveash, John B. [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)
2014-05-15
Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify
Electron dynamics and energy conversion in O-type linear-beam devices.
Detweiler, H. K.; Rowe, J. E.
1971-01-01
A general nonlinear interaction theory is used to investigate the effects of transverse fields (i.e., radial circuit fields and radial space-charge fields) in traveling-wave amplifiers for a variety of beam-focusing conditions. Magnetic focusing fields which are periodic or tapered (increased) with distance along the device are considered in addition to uniform magnetic fields. Results are presented for Brillouin flow and near-Brillouin flow, and the minimum magnetic field strength required to effectively constrain the electron beam is determined as a function of the operating parameters for the various focusing systems. Confined flow is also examined for the uniform-field case in order to have a basis of comparison from which the effects of radial motion of the beam electrons can be determined. The results indicate the importance of transverse effects and further yield information on the stability of strongly modulated cylindrical electron beams.-
Normal planar undulators doubling as transverse gradient undulators
Directory of Open Access Journals (Sweden)
Qika Jia
2017-02-01
Full Text Available The transverse gradient undulator (TGU has important application in the short-wavelength high-gain free electron lasers (FELs driven by laser-plasma accelerators. However, the usual transversely tapered TGUs need special design and manufacture, and the transverse gradient cannot be tuned arbitrarily. In this paper we explore a new and simple method of using the natural transverse gradient of a normal planar undulator to compensate the beam energy spread effect. In this method, a vertical dispersion on the electron beam is introduced, then the dispersed beam passes through a normal undulator with a vertical off-axis orbit where the vertical field gradient is selected properly related to the dispersion strength and the beam energy spread. Theoretical analysis and numerical simulations for self-amplified spontaneous emission FELs based on laser plasma accelerators are presented, and indicate that this method can greatly reduce the effect of the beam energy spread, leading to a similar enhancement on FEL performance as the usual transversely tapered TGU, but with the advantages of economy, tunable transverse gradient and no demand of extra field for correcting the orbit deflection induced by the field gradient.
Energy Technology Data Exchange (ETDEWEB)
Fuersch, Jonathan
2014-10-16
In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.
Transversely Compressed Bonded Joints
DEFF Research Database (Denmark)
Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik
2012-01-01
The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....
International Nuclear Information System (INIS)
Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.
2000-01-01
Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it
Lembessis, Vasileios E.
2017-01-01
We study the generation of atom vortex beams in the case where an atomic wave-packet, moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.
Lembessis, Vasileios E.
2017-07-01
We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.
CERN PhotoLab
1973-01-01
Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.
Transverse field focused system
Anderson, O.A.
1983-06-01
It is an object of the invention to provide a transport apparatus for a high current negative-ion beam which will bend the beam around corners through a baffled path in a differential pump or a neutron trap. It is another object of the invention to provide a transport apparatus for a high current negative-ion beam which will allow gas molecules in the beam to exit outwardly from the transport apparatus. A further object of the invention is to provide a multi-stage accelerator for a high current negative-ion beam which will enable acceleration of the beam to very high energy levels with a minimum loss of current carrying capacity. A still further object of the invention is to provide an apparatus for transport or accelertion of a sheet beam of negative ions which is shaped to confine the beam against divergence or expansion.
Transverse Instability of a Rectangular Bunch
Balbekov, Valeri
2005-01-01
Some results of theoretical investigations of transverse dipole instability of a rectangular bunch are reported in this paper. Such a form is characteristic of the bunch in a rectangular potential wall which is created by a barrier-shaped acceleration field. Similar regime is a major one for accumulating and cooling of antiproton beams in the Fermilab Recycler Ring. In this case, the known theory of transverse instability of a bunched beam is inapplicable directly both because of "unusual" form of phase trajectories and strong dependence of synchrotron frequency on energy. A series of equations, adequately describing the instability is derived in the paper. Exact analytical solution is obtained for space charge dominated impedance, and some approximate methods are proposed for arbitrary impedance. The theory is applied to the Fermilab Recycler Ring including a numerical simulation.
Transverse Instabilities in the Fermilab Recycler
Energy Technology Data Exchange (ETDEWEB)
Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.
Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Louro Alves, Diogo Miguel; Metral, Elias; Persson, Tobias Hakan Bjorn; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department
2018-01-01
Beam Transfer Function (BTF) measurements are direct measurement of the stability diagrams that deﬁne the stability threshold of coherent beam instabilities driven by the impedance. At the LHC, some coherent instabilities at ﬂat top energy are still not fully understood and the BTF measurements provide a method to experimentally probe the Landau damping of the proton beams. The BTF response is sensitive to the particle distribution changes and contain information about the transverse tune spread in the beams. The BTF system has been installed in the LHC in the 2015 in order to investigate the Landau damping at different stages of the operational cycle, machine conﬁgurations (different octupole currents, crossing angles, tunes etc...) and in presence of beam-beam excited resonances that may provoke diffusion mechanisms with a consequence change of Landau damping. Past MDs showed some difﬁculties for the reconstruction of the stability diagram from BTF measurements and several improvements on the BTF sy...
Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC
AUTHOR|(CDS)2132320; Prof. BANTEL, Michael
The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...
Directory of Open Access Journals (Sweden)
G. Rumolo
2001-01-01
Full Text Available Photoemission and secondary emission are known to give rise to a quasistationary electron cloud inside the beam pipe through a beam-induced multipacting process. We investigate the electron-cloud build up and related effects via computer simulation. In our model, macroparticles representing photoelectrons are emitted synchronously with the passing proton or positron bunch and are subsequently accelerated in the field of the beam. As they hit the beam pipe, new macroelectrons are generated, whose charges are determined by the energy of the incoming particles and by the secondary emission yield of the beam pipe. A quasistationary state of the electron cloud is eventually reached due to space charge. The equilibrium density is used as an input parameter for a second program that analyzes the electron-cloud driven single-bunch instability. The electron cloud simulation also allows the evaluation of the heat load on the cold Large Hadron Collider beam screen, which must stay within the available cooling capacity, and the electron charge deposited on or emitted from the electrodes of the beam-position monitors.
Directory of Open Access Journals (Sweden)
Wen-Fu Zhang
2017-01-01
Full Text Available Even for the doubly symmetric I-beams under linear distributed moment, the design formulas given by codes of different countries are quite different. This paper will derive a dimensionless analytical solution via linear stability theory and propose a new design formula of the critical moment of the lateral-torsional buckling (LTB of the simply supported I-beams under linear distributed moment. Firstly, the assumptions of linear stability theory are reviewed, the dispute concerning the LTB energy equation is introduced, and then the thinking of Plate-Beam Theory, which can be used to fully resolve the challenge presented by Ojalvo, is presented briefly; secondly, by introducing the new dimensionless coefficient of lateral deflection, the new dimensionless critical moment and Wagner’s coefficient are derived naturally from the total potential energy. With these independent parameters, the new dimensionless analytical buckling equation is obtained; thirdly, the convergence performance of the dimensionless analytical solution is discussed by numerical solutions and its correctness is verified by the numerical results given by ANSYS; finally, a new trilinear mathematical model is proposed as the benchmark of formulating the design formula and, with the help of 1stOpt software, the four coefficients used in the proposed dimensionless design formula are determined.
International Nuclear Information System (INIS)
Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.
1995-01-01
The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates
Alternative modes for optical trapping and manipulation using counter-propagating shaped beams
DEFF Research Database (Denmark)
Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.
2011-01-01
Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter-propagating...... shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show...... that deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping...
Directory of Open Access Journals (Sweden)
H. Hotchi
2016-01-01
Full Text Available In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.
Cumulative beam break-up study of the spallation neutron source superconducting linac
Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M
2002-01-01
Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...
Ruggiero, F; Zimmermann, Frank
2001-01-01
Photoemission and secondary emission are known to give rise to a quasi-stationary electron cloud inside the LHC beam pipe through a beam-induced multipacting process. We investigate the phenomena of electron-cloud build up and related effects via computer simulation. In our model, macroparticles representing photoelectrons are emitted synchronously with the passing proton bunch, and are subsequently accelerated in the field of the beam. As they hit the beam pipe, new macroelectrons are generated, whose charges are determined by the energy of the incoming particles and by the secondary emission yield of the beam pipe. A quasi-stationary state of the electron cloud is eventually reached due to space charge. The equilibrium distribution of the electron cloud is used as an input parameter for a program that analyses the electron-cloud driven single-bunch instability. The electron cloud simulation also allows the evaluation of the heat load on the cold beam screen, which must stay within the available cooling capa...
Beam Diagnostics for the BNL Energy Recovery Linac Test Facility
International Nuclear Information System (INIS)
Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly
2004-01-01
An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system
Beam Techniques - Beam Control and Manipulation
Energy Technology Data Exchange (ETDEWEB)
Minty, Michiko G
2003-04-24
We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.
Improvement of Digital Filter for the FNAL Booster Transverse Dampers
Energy Technology Data Exchange (ETDEWEB)
Zolkin, Timofey [Fermilab; Eddy, N. [Fermilab; Lebedev, V. [Fermilab
2013-09-26
Fermilab Booster has two transverse dampers which independently suppress beam instabilities in the horizontal and vertical planes. A suppression of the common mode signal is achieved by digital notch filter which is based on subtracting beam positions for two consecutive turns. Such system operates well if the orbit position changes sufficiently slow. Unfortunately it is not the case for FNAL Booster where the entire accelerating cycle consists of about 20000 turns, and successful transition crossing requires the orbit drifts up to about 10 μm/turn, resulting in excessive power, power amplifier saturation and loss of stability. To suppress this effect we suggest an improvement of the digital filter which can take into account fast orbit changes by using bunch positions of a few previous turns. To take into account the orbit change up toN-th order polynomial in time the system requires (N + 3) turns of “prehistory”. In the case of sufficiently small gain the damping rate and the optimal digital filter coefficients are obtained analytically. Numerical simulations verify analytical theory for the small gain and predict a system performance with gain increase.
Fontaine, B.; Forestier, B.; Gross, P.; Koudriavtsev, E.
1980-01-01
High power long pulse infrared laser emission has been achieved on CO2 molecule with the high density and very low temperature supersonic flow-electron beam-stabilized discharge excitation device developped at I.M.F.M. ([MATH] [MATH] 2 amagats, T [MATH] 70 - 150 K). Laser emission at [MATH] = 10.6 µ has been achieved for a resonant cavity set at the discharge location and also 3 cm downstream of the discharge location. With Ar/CO2, Ar/CO2/H2, He/CO2, and He/CO2/N2 mixtures, lasing energy and ...
Effect of Transverse Coupling on Asymmetric Cooling in Compton Rings
Bulyak, E; Zimmermann, F
2013-01-01
Fast cooling of bunches circulating in a Compton ring is achieved by placing the collision point between electron bunches and laser pulses in a dispersive section and by, in addition, introducing a transverse offset between the laser pulse and the electron-beam closed orbit. Growth of the emittance in the dispersive transversal direction due to the additional excitation of betatron oscillations limits this type of cooling. Here we present the results of further studies on the fast cooling process, looking at the effect of the coupling of the transverse (betatron) oscillations. We first show theoretically that the transverse betatron coupling shortens the cooling time and hence reduces the steady-state energy spread of the electron beam, as well as the quantum losses. The theoretical estimates are then validated by simulations. Finally, a proof-of-principle experiment at the KEK ATF Damping Ring is proposed.
Beam-based Feedback for the Linac Coherent Light Source
Energy Technology Data Exchange (ETDEWEB)
Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC
2010-02-11
Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.
Transverse emittance measurement at REGAE via a solenoid scan
Energy Technology Data Exchange (ETDEWEB)
Hachmann, Max
2012-12-15
The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.
Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review
Directory of Open Access Journals (Sweden)
Arash Mafi
2014-07-01
Full Text Available Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.
The transverse damper system for RHIC
International Nuclear Information System (INIS)
Xu, J.; Claus, J.; Raka, E.; Ruggiero, A.G.; Shea, T.J.
1991-01-01
If the beam is injected with errors x c , x' c (or y c , y' c ) with respect to the closed orbit or disturbed by transverse instabilities, it will execute coherent oscillations and will be diluted in betatron phase space within a time interval of about 1/Δν turns, even if it is properly matched to the focusing characteristics of the lattice, unless there is an effective damper system to prevent this. Here Δν is the tune spread in the beam. Such a damper will not prevent dilution due to mismatches. Without such a damper the emittance of the beam will ultimately develop to a properly centered matched ellipse with an area ε in phase space that is larger than that of the injected one ε 0 which is also matched but off-centered by x c and x' c
Stability of the face layer of sandwich beams with sub-interface damage in the foam core
Koysin, V.; Skvortsov, Vitaly; Shipsha, Andrey
2007-01-01
This paper addresses the effect of local indentation/impact damage on the bearing capacity of foam core sandwich beams subjected to edgewise compression. The considered damage is in a form of through-width zone of crushed core accompanied by a residual dent in the face sheet. It is shown that such
Study of a microwave power source for a two-beam accelerator
International Nuclear Information System (INIS)
Houck, T.L.
1994-01-01
A theoretical and experimental study of a microwave power source suitable for driving a linear e + e - collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam
Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi
2018-03-01
Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.
Study of the Transverse Vibration for The Carbon Nanotubes
Directory of Open Access Journals (Sweden)
Hamza Madjid Berrabah
2016-08-01
Full Text Available This study concerns the dynamic behavior of composite beams gradually evaluated through the thickness materials. Our work is devoted to the analysis of natural frequencies of composite beams FGM used in building structures in civil engineering often subjected to vibration loads due to earthquakes. The vibration characteristics of specific beams such as free and orthotropic fixed beams are studied without including deformation due to shear and rotational inertia. We introduce the effects of transverse deformation due to shear and rotational inertia for the accurate prediction of normal frequencies. An application to carbon nanotubes was investigated.
Large-Area Plasmas Formed by Magnetically Confined Electron Beams
Fernsler, Richard; Meger, Robert; Lampe, Martin; Manheimer, Wallace; Murphy, Donald; Pechacek, Robert
1998-10-01
Magnetically confined electron beams can create plasmas in gas with less heating and greater control and uniformity than sources that produce ionization by heating the plasma electrons. Control is greater because the beam is generated separate from the plasma and steered using an external magnetic field. Uniformity is high because the beam current is constant along the propagation direction and confined magnetically in the transverse direction. And last, heating is reduced because energetic beam electrons ionize efficiently. That is, beam electrons typically require 30 eV of discharge energy per plasma electron formed, whereas conventional plasma sources require 100 eV and often much more. Based on these concepts, a Large Area Plasma Processing System (LAPPS) reactor has recently been built at the Naval Research Laboratory.(R. A. Meger et al., this conference) This reactor utilizes a long hollow-cathode glow discharge to generate a sheet electron beam of several keV in energy, and this beam produces planar plasmas up to 60 cm on a side by 2 cm thick with densities as high as 5x10^12 cm-3 in 30 mtorr of oxygen. Various aspects of beam-produced plasmas will be discussed including confinement and stability, efficiency of ionization and dissociation, cathode operation, and the effects of a low and adjustable plasma electron temperature.
Multiple-charge beam dynamics in an ion linac
Directory of Open Access Journals (Sweden)
P. N . Ostroumov
2000-03-01
Full Text Available An advanced facility for the production of nuclei far from stability could be based on a high-power driver accelerator providing ion beams over the full mass range from protons to uranium. A beam power of several hundred kilowatts is highly desirable for this application. At present, however, the beam power available for the heavier ions would be limited by ion source capabilities. A simple and cost-effective method to enhance the available beam current would be to accelerate multiple charge states through a superconducting ion linac. This paper presents results of numerical simulation of multiple charge state beams through a 1.3 GeV ion linac, the design of which is based on current state-of-the-art superconducting elements. The dynamics of multiple charge state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The results indicate that operation with multiple charge state beams is not only feasible but straightforward and can increase the beam current by a factor of 3 or more.
Large transverse momentum phenomena
International Nuclear Information System (INIS)
Brodsky, S.J.
1977-09-01
It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references
Directory of Open Access Journals (Sweden)
Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song
2005-01-01
Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.
Neutral particle beam intensity controller
Dagenhart, W.K.
1984-05-29
The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.
Transverse tomography and radiotherapy
International Nuclear Information System (INIS)
Leer, J.W.H.
1982-01-01
This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)
Asymmetrical transverse structures in nonlinear interferometers
Romanov, O G
2003-01-01
The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.
High Transverse Energy Proton - Nuclear Interactions
Energy Technology Data Exchange (ETDEWEB)
Rice, James Allen [Rice Univ., Houston, TX (United States)
1983-06-01
A study of high transverse energy events resulting from 400 GeV protons scattering from targets of hydrogen, carbon, aluminum, copper, tin, and lead has been performed with the E609 apparatus at Fermilab. Wire chambers and a highly segmented calorimeter detect secondary particles. The use of efficient jet collecting triggers and of a beam jet calorimeter have been originally applied to nuclear target studies in this thesis. $A^{\\alpha}$ scaling with hydrogen deviations is observed for $E_T$ and planarity. The data provide evidence that $A^{\\alpha}$ scaling results from multiple scattering.Evidence for hadron jets is seen with a large solid angle calorimeter for all the targets when triggers requiring two high $E_T$ single particles are employed. Jet cross-sections for nuclei are approximately determined herein. Jet event angular distributions possibly indicate that low and high transverse energy particles in jets from nuclei may result, in part, from different types of interactions.
Transverse Emittance Measurement and Preservation at the LHC
AUTHOR|(CDS)2082907
The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation will be discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constra...
International Nuclear Information System (INIS)
Delage, M-E; Lecavalier, M-E; Lariviere, D; Allen, C; Beaulieu, L
2014-01-01
Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signal is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux
Pelletron-based MeV-range electron beam recirculation
Crawford, A C; Sharapa, A N; Shemyakin, A
1999-01-01
In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)
DEFF Research Database (Denmark)
Gammeltoft, Tine
2008-01-01
In this article, I explore how prenatal screening is imbricated within state agendas, aspirations, and imaginings in contemporary Vietnam. In an effort to develop new ethnographic tropes for understanding the formation called "the state," I argue for a phenomenological take that emphasizes its...... affective and embodied aspects. Seeing the anomalous fetus as a "figure of transversality," as a critical focus for powerful imaginings and desires, I show how state–society relations in Vietnam are suffused by visceral affectivity and moral engagement. In the realm of reproduction, intense sentiments...... of anxiety, dread, desire, ambition, and hope tie together the state and its citizens, animating individual aspirations as well as national population policies....
Radiation Stability of Metal Fe0.56Ni0.44 Nanowires Exposed to Powerful Pulsed Ion Beams
Bedin, S. A.; Ovchinnikov, V. V.; Remnev, G. E.; Makhin'ko, F. F.; Pavlov, S. K.; Gushchina, N. V.; Zagorskiy, D. L.
2018-01-01
The resistance of Fe0.56Ni0.44 alloy nanowires (fabricated by template synthesis using polymer track membranes) 60 and 100 nm in diameter to radiation with powerful pulsed 85% C+ + 15% H+ ions ( E = 20 keV, j = 100 A/cm2, τ = 90 ns) has been investigated. The conclusion that nanosized regions of explosive energy release, so-called thermal spikes, which are thermalized regions of dense cascades of atomic displacements heated to several thousand degrees (in which the thermal pressure can reach several tens of GPa), play an important role in the nanowire structure change is drawn. These are observed as melted nanosized regions on the nanowire surface. Calculations have shown that energy supplied by an ion beam during the action of a single pulse in the used mode (provided that thermal radiation and thermal conductivity serve as energy sinks) can be both sufficient and insufficient to completely melt nanowires depending on their orientation with respect to the ion beam. The bending and failure of nonmelted nanowires is explained by the generation and propagation of post-cascade shock waves.
Impedance simulations and measurements on the LHC collimators with embedded beam position monitors
Directory of Open Access Journals (Sweden)
N. Biancacci
2017-01-01
Full Text Available The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator’s jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator prototype including estimations for beam stability for the LHC.
Vibrating wire for beam profile scanning
Directory of Open Access Journals (Sweden)
S. G. Arutunian
1999-12-01
Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.
Directory of Open Access Journals (Sweden)
M. Avello de Lama
2017-12-01
In this paper, the durability and chemical stability of Wf/W composite specimens under cyclic heat-flux loads up to 20 MW/m² (surface temperature: 1260 °C was investigated using hydrogen neutral beam. The bulk material was fabricated by means of spark-plasma-sintering (SPS method using fine tungsten powder and a stack of tungsten wire meshes as reinforcement where the surface of the wire was coated with zirconia thin film to produce an engineered interface. The impact of plasma beam irradiation on microstructure was examined for two kinds of specimens produced at different sintering temperatures, 1400 °C and 1700 °C. Results of microscopic (SEM and chemical (EDX analysis are presented comparing the microstructure and element distribution maps obtained before and after heat flux loading. Effects of different sintering temperatures on damage behaviour are discussed. The present composite materials are shown to be applicable as plasma-facing material for high-heat-flux components.
Energy Technology Data Exchange (ETDEWEB)
Faure, J.; Gouttefangeas, M.; Levy-Mandel, R.; Vienet, R.; Lago, B.; Loeb, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
This is a study of the repulsive electrostatic forces existing inside a proton beam focused by the magnetic field of a circular accelerator. The general equation that rules the variation of beam density versus time can be rewritten by a fairly simple reasoning, A numerical method to solve this equation is then developed. The next step is then to find an optimum beam, a gaussian distribution of density being proposed allowing to find an analytical solution to the problem. (authors) [French] On etudie l'action des forces electrostatiques de repulsion qui existent dans un faisceau de protons focalise par le champ magnetique d'un accelerateur circulaire. L'equation generale qui regit la variation de densite du faisceau au cours du temps est retrouvee par un raisonnement simple. On developpe une methode numerique de resolution de cette equation. On pose le probleme de la recherche d'un faisceau optimal et on propose une loi de repartition gaussienne de densite qui permet de trouver une solution analytique au probleme. (auteurs)
Frequency resolved transverse mode instability in rod fiber amplifiers
DEFF Research Database (Denmark)
Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.
2013-01-01
Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...
Transverse Matching Techniques for the SNS Linac
Jeon Dong Oh; Danilov, Viatcheslav V
2005-01-01
It is crucial to minimize beam loss and machine activation by obtaining optimal transverse matching for a high-intensity linear accelerator such as the Spallation Neutron Source linac. For matching the Drift Tube Linac (DTL) to Coupled Cavity Linac (CCL), there are four wire-scanners installed in series in CCL module 1 as proposed by the author.* A series of measurements was conducted to minimize envelope breathing and the results are presented here. As an independent approach, Chu et al is developing an application based on another technique by estimating rms emittance using the wire scanner profile data.** For matching the Medium Energy Beam Transport Line to the DTL, a technique of minimizing rms emittance was used and emittance data show that tail is minimized as well.
Single Bunch Stability in LER of PEP II
Energy Technology Data Exchange (ETDEWEB)
Heifets, S.; /SLAC; Sabbi, G.; /Fermilab
2011-10-11
The note describes results of studies of the single bunch stability in the low energy ring (LER) of the PEP-II B-factory. Simulations describe the potential well distortion (PWD) obtained by numerical solution of the Haiisinski equation and results on the beam stability obtained with the code TRISIM. Both longitudinal and transverse wake fields are taken into account. Preliminary estimates indicate that single bunch in the LER of the PEP-II B-factory has to be stable, both longitudinally and transversely, at the maximum design bunch current 1.8 mA (beam current 3A). However, realistic wakes of the machine has been constructed only recently using results of the extensive numerical simulations of the vacuum components of the ring. Additional to that, the code TRISIM, a simulation program for single-bunch collective effects written by one of the authors (G. S.), became recently available. This allows us to study beam stability in a more reliable way than it is possible analytically.
Noncoaxial Bessel-Gauss beams.
Huang, Chaohong; Zheng, Yishu; Li, Hanqing
2016-04-01
We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation.
Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering
Energy Technology Data Exchange (ETDEWEB)
Cassidy, Cathal, E-mail: c.cassidy@oist.jp; Singh, Vidyadhar; Grammatikopoulos, Panagiotis [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Kioseoglou, Joseph [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lal, Chhagan [Department of Physics, University of Rajasthan, Jaipur, Rajasthan 302005 (India); Sowwan, Mukhles, E-mail: mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, East Jerusalem, P.O. Box 51000, Palestine (Country Unknown)
2014-04-21
We report on the formation of embedded B2-FeSi nanodots in [100]-oriented Si substrates, and investigate the crystallographic mechanism underlying the stabilization of this uncommon, bulk-unstable, phase. The nanodots were approximately 10 nm in size, and were formed by iron thin film deposition and subsequent annealing. Cross-sectional transmission electron microscopy, energy loss spectroscopy mapping, and quantitative image simulation and analysis were utilized to identify the phase, strain, and orientational relationship of the nanodots to the host silicon lattice. X-ray photoelectron spectroscopy was utilized to analyze the surface composition and local bonding. Elasticity calculations yielded a nanodot residual strain value of −18%. Geometrical phase analysis graphically pinpointed the positions of misfit dislocations, and clearly showed the presence of pinned (11{sup ¯}1{sup ¯}){sub Si}//(100){sub FeSi}, and unpinned (2{sup ¯}42){sub Si}//(010){sub FeSi}, interfaces. This partial endotaxy in the host silicon lattice was the mechanism that stabilized the B2-FeSi phase.
Transverse section scanning mechanism
International Nuclear Information System (INIS)
Doherty, E.J.
1978-01-01
Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)
Electron Beam Generation in Tevatron Electron Lenses
International Nuclear Information System (INIS)
Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.
2006-01-01
New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices
Electron beam generation in Tevatron electron lenses
International Nuclear Information System (INIS)
Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.
2006-01-01
New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices
Carlier, E; Vossenberg, Eugène B; CERN. Geneva. SPS and LEP Division
1996-01-01
In order to minimise the event pile-up and therefore optimise the detection efficiency, Chorus and Nomad experiments ask for a long and rectangular spill profile. At present the fast-slow extractio n is generated by driving the beam into a quadrupolar-octopolar resonance by exciting a quadrupole magnet with a semi-trapezoidal current [1]. The trapezoidal pulse shape is obtained by dischargin g a capacitor into the magnet coils. After a few milliseconds of undamped discharge a fixed resistor is switched into the circuit. The attenuation is then higher and the sine wave continues with a lower gradient. The two gradients can be adjusted by varying the initial capacitor voltage and the time at which the resistor is switched into the circuit. A further degree of freedom in determini ng the spill shape has been added by allowing the possibility of changing the second slope value independently of the initial conditions. This task is achieved by means of a variable current sour ce added in parallel to the fixed resis...
The LHC Transverse Coupled-Bunch Instability
Mounet, Nicolas; Métral, Elias
In this thesis, the problem of the transverse coupled-bunch instabilities created by the Large Hadron Collider (LHC) beam-coupling impedance, that can possibly limit the machine operation, is addressed thanks to several new theories and tools. A rather complete vision of the problem is proposed here, going from the calculation of the impedances and wake functions of individual machine elements, to the beam dynamics study. Firstly, new results are obtained in the theory of the beam-coupling impedance for an axisymmetric two-dimensional structure, generalizing Zotter's theories, and a new general theory is derived for the impedance of an infinite flat two-dimensional structure. Then, a new approach has been found to compute the wake functions from such analytically obtained beam-coupling impedances, over-coming limitations that could be met with standard discrete Fourier transform procedures. Those results are then used to obtain an impedance and wake function model of the LHC, based on the (resistive-) wall im...
Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator
Fraser, M A; Jones, R M
2011-01-01
The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...
Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.
2018-02-01
The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.
Forced Vibrations of a Cantilever Beam
Repetto, C. E.; Roatta, A.; Welti, R. J.
2012-01-01
The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…
Steel fiber replacement of mild steel in prestressed concrete beams
2010-10-01
In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...
Steel fiber replacement of mild steel in prestressed concrete beams.
2011-01-01
In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and transverse mild : steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams exhibit early-...
International Nuclear Information System (INIS)
Schnell, W.
1977-01-01
The author discusses diagnosis and cure of proton beam instabilities in accelerators and storage rings. Coasting beams and bunched beams are treated separately and both transverse and longitudinal instabilities are considered. (B.D.)
On nonlinear development of beam instability
International Nuclear Information System (INIS)
Popel', S.I.; Tsytovich, V.N.
1990-01-01
Radiation-resonance interactions are taken into account in the problem of dynamics of an electron beam inb plasma. The beam characteristics to be taken into account are determined. Stabilization conditions for beam instability are established
Dynamics of heavy ion beams during longitudinal compression
International Nuclear Information System (INIS)
Ho, D.D.M.; Bangerter, R.O.; Lee, E.P.; Brandon, S.; Mark, J.W.K.
1987-01-01
Heavy ion beams with initially uniform line charge density can be compressed longitudinally by an order of magnitude in such a way that the compressed beam has uniform line charge density and velocity-tilt profiles. There are no envelope mismatch oscillations during compression. Although the transverse temperature varies along the beam and also varies with time, no substantial longitudinal and transverse emittance growth has been observed. Scaling laws for beam radius and transport system parameters are given
Studies on Transverse Painting for H- Injection into the PSB
Bracco, C; Fowler, T; Goddard, B; Grawer, G; Lallement, J B; Martini, M; Weterings, W
2011-01-01
Linac4 will inject 160 MeV H- ions into the CERN PS Booster (PSB). This will allow to reduce space charge effects and increase beam intensity but will require a substantial upgrade of the injection region. The PSB has to provide beam to several users with different requirements in terms of beam intensity and emittance. Four kicker magnets (KSW) will be used to accomplish painting in the horizontal phase space to match the injected beams to the required emittances. Multiple linear functions, with varying slopes for each user, have been defined for the KSW generators waveforms according to detailed beam dynamic studies for all target intensities and emittances. Preliminary studies have been carried out to evaluate how to obtain the required vertical emittance and the option of a transverse painting, also in the vertical plane, is explored.
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru
2013-09-01
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.
High quality electron beams from a laser wakefield accelerator
Energy Technology Data Exchange (ETDEWEB)
Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)
2010-12-15
High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.
Analysis of the transverse energy distribution of hopping electrons through a glass funnel
International Nuclear Information System (INIS)
Zhang Xiaobing; Lei Wei; Liu Min; Zhang Laibin; Engelsen, Daniel den; Zhou Xuedong; Wang Qilong
2005-01-01
The transverse energy distribution of electrons leaving the exit hole of a glass funnel in a hopping field emission display (HopFED) has been analyzed. These electrons are accelerated in a uniform field onto the anode screen. The luminance distribution of the spot on the screen is largely determined by the transverse energy distribution of the electron beam. The analysis of the luminance distribution shows that the transverse energy is rather low and that a HopFED will have good beam directionality
Transverse Spectral Velocity Estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2014-01-01
array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...
Performance of the transverse coupled-bunch feedback system in the SRRC
International Nuclear Information System (INIS)
Hsu, K.T.; Kuo, C.C.; Kuo, C.H.; Lin, K.K.; Ueng, T.S.; Weng, W.T.
1996-01-01
A transverse feedback system has been implemented and commissioned in the SRRC storage ring to suppress transverse coupled-bunch oscillations of the electron beam. The system includes transverse oscillation detectors, notch filter, baseband quadrature processing circuitry, power amplifiers, and kickers. To control a large number of transverse coupled-bunch modes, the system is broad-band, bunch-by- bunch in nature. Because the system is capable of bunch-by-bunch correction, it can also be useful for suppressing instabilities introduced by ions. The sextupole strength was then reduced to improve dynamic aperture and hence lifetime of the storage ring
Solitary waves in particle beams
International Nuclear Information System (INIS)
Bisognano, J.J.
1996-01-01
Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally
Neuenschwander, J; Horváth, I L; Luthi, T; Marti, H
2002-01-01
The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The coils for CNIS are wound of aluminum-stabilized Rutherford type superconductors reinforced with high-strength aluminum alloy. For optimum performance of the conductor a void-free metallic bonding between the high-purity aluminum and the Rutherford type cable as well as between the electron beam welded reinforcement and the high-purity aluminum must be guaranteed. It is the main task of this development work to assess continuously the bond quality over the whole width and the total length of the conductors during manufacture. To achieve this goal we use the ultrasonic phased-array technology. The application of multi- element transducers allows an electronic scanning perpendicular to the direction of production. Such a testing is sufficiently fast in order to allow a continuous a...
Experimentally minimized beam emittance from an L-band photoinjector
Directory of Open Access Journals (Sweden)
M. Krasilnikov
2012-10-01
Full Text Available High brightness electron sources for linac based free-electron lasers (FELs are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ. Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008–2009 for a bunch charge of 1, 0.5, 0.25, and 0.1 nC resulted in measured emittance values which are beyond the requirements of the European XFEL [S. Rimjaem et al., Nucl. Instrum. Methods Phys. Res., Sect. A 671, 62 (2012NIMAER0168-900210.1016/j.nima.2011.12.101]. Several essential modifications were commissioned in 2010–2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2 nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.
Transverse emittance measurement and preservation at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kuhn, Maria
2016-06-20
The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation are discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constraints of various systems such as tune measurement precision and powering limitations of the LHC superconducting circuits into account. With sinusoidal k-modulation record low beta function measurement uncertainties in the LHC have been reached. 2015 LHC beta function and β*, which is the beta function at the collision point, measurements with k-modulation will be presented. Wire scanners and synchrotron light monitors are presently used in the LHC to measure the transverse beam size. Accuracy and limitations of the LHC transverse profile monitors are discussed. During the 2012 LHC proton run it was found that wire scanner photomultiplier saturation added significant uncertainty on all measurements. A large discrepancy between emittances from wire scanners and luminosity was discovered but not solved. During Long Shutdown 1 the wire scanner system was upgraded with new photomultipliers. A thorough study of LHC wire scanner measurement precision in 2015 is presented
'Pipetron' beam dynamics with noise
International Nuclear Information System (INIS)
Shiltsev, V.D.
1996-10-01
Extra-large hadron collider, ''Pipetron'', at 100 TeV energy is currently under consideration. In this article we study the Pipetron transverse and longitudinal beam dynamics under influence of external noises. The major effects are growths of transverse and longitudinal emittances of the beam caused by noisy forces which vary over the revolution period or synchrotron oscillation period, respectively; and closed orbit distortions induced by slow drift of magnet positions. Based on analytical consideration of these phenomena, we estimate tolerable levels of these noises and compare them with available experimental data. Although it is concluded that transverse and, probably, longitudinal feedback systems are necessary for the emittance's preservation, and sophisticated beam-based orbit correction methods should be used at the Pipetron, we observe no unreasonable requirements which present and impenetrable barrier to the project
International Nuclear Information System (INIS)
1991-03-01
This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration
Energy Technology Data Exchange (ETDEWEB)
Cenanovic, Samir
2012-12-03
The influence of rhenium and ruthenium on the multi component system nickel-base superalloy is manifold and complex. An experimental nickel-base superalloy containing rhenium and ruthenium within defined contents, named Astra, was used to investigate the influences of these two elements on the alloy system. The last stage solidification of nickel-base superalloys after Bridgman casting and the high temperature phase stability of these alloys, could be explored with the aid of focused ion beam nanotomography. FIB-nt therefore was introduced and realized at the chair of General Materials Properties of the University Erlangen-Nuremberg. Cast Astra alloys are like other nickel-base superalloys morphologically very inhomogeneous and affected by segregation. In the interdendritic region different structures with huge γ' precipitates are formed. These inhomogeneities and remaining eutectics degrade the mechanical properties, witch makes an understanding of the subsiding processes at solidification of residual melt important for the casting process and the heat treatment. This is why the last stage solidification in the interdendritic region was analyzed. With the help of focused ion beam nanotomography, three different structures identified from 2-D sections could be assigned to one original 3-D structure. It was pointed out, that only the orientation of the plane of the 2-D cut influences the appearance in the 2-D section. The tomography information was used to explain the development during solidification and to create a model of last stage solidification. The interdendritic region is solidifying under the development of eutectic islands. The structure nucleates eutectically epitaxially at primary dendrite arms, with formation of fine γ/γ' precipitates. During solidification the γ' precipitates coarsen in a rod-like structure, and end up in large γ' precipitates. Simulations and other investigations could approve this model. First three
Coherent Beam-Beam Oscillations at the LHC
Zorzano-Mier, M P
1999-01-01
The transverse coherent motion of the two colliding LHC beams is studied by multi-particle tracking, where the beam-beam force is calculated assuming a Gaussian beam distribution with variable barycentres and rms beam sizes. The simulation yields the coherent and incoherent oscillation frequencies, the emittance growth of either beam, and evidence for the existence or lack of Landau damping. The transverse beam sizes change with the fractional part of the tune as expected from the dynamic beta effect. For head-on collisions, we find that the pi-mode frequency lies outside of the continuum frequency spread if the ratio of the beam-beam parameters exceeds 0.6, in accordance with predictions [1]. For smaller ratios, the pi-mode is Landau damped. When long range interactions are also included, undamped coherent modes do still exist outside the continuum, both with and without alternating crossing planes at two interaction points. However, the simulation shows that separating the tunes of the two beams can restore...
THREE-BEAM INSTABILITY IN THE LHC*
Burov, A
2013-01-01
In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions. The instability results from a combined action of the cloud nonlinear focusing and impedance.
Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider
International Nuclear Information System (INIS)
V. Lebedev; J. Bisognano; R. Li; B. Yunn
2001-01-01
A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained
Transverse correlations in multiphoton entanglement
International Nuclear Information System (INIS)
Wen Jianming; Rubin, Morton H.; Shih Yanhua
2007-01-01
We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case
Transverse Kick Analysis of SSR1 Due to Possible Geometrical Variations in Fabrication
International Nuclear Information System (INIS)
Yakovlev, V.P.; Awida, M.H.; Berrutti, P.; Gonin, I.V.; Khabiboulline, T.N.
2012-01-01
Due to fabrication tolerance, it is expected that some geometrical variations could happen to the SSR1 cavities of Project X, like small shifts in the transverse direction of the beam pipe or the spoke. It is necessary to evaluate the resultant transverse kick due to these geometrical variations, in order to make sure that they are within the limits of the correctors in the solenoids. In this paper, we report the transverse kick values for various fabrications errors and the sensitivity of the beam to these errors. Transverse kick that could happen in SSR1 cavities due to geometrical variations of the fabricated cavities from the designed geometry has been analysed and evaluated. From fabrication experience, three kinds of variations were under investigation concerning the alignment of both the beam pipe and spoke with respect to the beam axis. Simulation study has been carried out implementing these variations in the simulation model. CMM measurements of five fabricated SSR1 cavities were carried out to investigate the amount of physical misalignments of the beam pipe and spoke. Bead-pull measurements were also conducted to evaluate the transverse kick values in the fabricated cavities. Simulation and measurements are relatively in good agreement. Maximum kick in the fabricated cavities is within 154 keV that would induce about 1.12 mrad beam deviation, which could be definitely corrected with the 10 mrad specified correctors of Project X.
Advanced Electron Beam Diagnostics for the FERMI FEL
Ferianis, M; D'Auria, G; Di Mitri, S
2005-01-01
Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...
Transverse feedback: high intensity operation, AGC, IGC, lessons for 2012
Höfle, W
2012-01-01
The transverse damper system (ADT) plays an important role in the preservation of the beam transverse emittance and for damping of oscillations driven by the coupled bunch instability. An overview of the ADT system will be presented with an emphasis on the important feedback loop parameters as they change from injection through the ramp into collision. The dedicated setting - up procedure required for the different bunch intensities and bunch spacings will be explained. During the 2011 run the injection and abort gap cleaning became operational at injection energy. Preparations for cleaning at 3.5 TeV as well as batch selective transverse blow - up were completed and preliminarily tested. Plans for 2012 include study and potential improvement of the system impulse response to improve the 'selectivity' of the cleaning and blow - up facility. The ADT also provides bunch - by - bunch observation, which was extensively used during the run and MDs, and will be further upgraded during the next year.
Numerical investigation of the transverse instability on the radiation-pressure-driven foil.
Wang, W Q; Yin, Y; Yu, T P; Xu, H; Zou, D B; Shao, F Q
2015-12-01
The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.
International Nuclear Information System (INIS)
Feng Chenxia; Zhou Weimin; Leng Yongbin
2010-01-01
Beam abort signal is a timing signal of the SSRF (Shanghai Synchrotron Radiation Facility) storage ring. It is used to synchronize BPM processor Libera logging beam position data to identify beam abort source and improve the stability of accelerator. The concept design and engineering design of beam abort trigger module are introduced in this paper, and lab test results of this module using RF signal source also presented. Online beam test results show that this module has achieved design goal, could be used to log beam position data before beam abort. (authors)
International Nuclear Information System (INIS)
Bongardt, K.; Karlsruhe Univ.; Sanitz, D.
1982-01-01
The funneling of heavy ion beams can be achieved by first bending the beams by septum magnets towards the common axis, and then deflecting them onto the axis by rf-deflector elements with time varying electric field strength. The main properties of these deflection elements are discussed, especially the increase of the transverse emittance. As an example beam envelopes are shown for funneling two 100 mA, 1.7 MEV/N Bisup(+2) beams into one 108 MHz Alvarez accelerator. (orig.)
Transverse coherence measurement using a folded Michelson interferometer.
Dean, Jesse; Bercx, Martin; Nantel, Marc; Marjoribanks, Robin
2007-06-01
The transverse coherence of a 1 ps pulsed laser beam was measured using a technique involving a modified Michelson interferometer and separate reference images. Using this technique, the transverse coherence of a selected plane in the laser beam was determined, in this case at the exit of a channel in a metal foil self-drilled by the laser. Images of each arm were used as references. Through this technique, it is possible to use the interference patterns produced with uneven intensity distributions and for pulsed lasers on a single-shot basis. The results of these measurements were then shown to be in agreement with those obtained using a Young's double-slit setup.
Transverse Phase Space Painting for SNS Accumulator Ring Injection
International Nuclear Information System (INIS)
Beebe-Wang, J.; Lee, Y. Y.; Raparia, D.; Wei, J.
1999-01-01
The result of investigation and comparison of a series of transverse phase space painting schemes for the injection of SNS accumulator ring is reported. In this computer simulation study, the focus is on the creation of closed orbit bumps that give desired distributions at the target. Space charge effects such as tune shift, emittance growth and beam losses are considered. The results of pseudo end-to-end simulations from the injection to the target through the accumulator ring and Ring to Target Beam Transfer (RTBT) system are presented and discussed
Developments in non-destructive beam diagnostics
International Nuclear Information System (INIS)
Fraser, J.S.
1981-01-01
With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique
Ion beam generation and focusing
International Nuclear Information System (INIS)
Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.
1975-01-01
Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied
Investigation of the flat-beam model of the beam-beam interaction
Directory of Open Access Journals (Sweden)
Bjoern S. Schmekel
2003-10-01
Full Text Available At the interaction point of a storage ring collider each beam is subject to perturbations due to the electromagnetic field of the counterrotating beam. For flat beams, a well-known approximation models the beam by a current sheet which is uniform in the horizontal plane, restricting the particle motion to the vertical direction. In this classical model a water-bag beam distribution has been used to find working points and beam-beam tune shift parameters which lead to a stable beam distribution. We investigate the stability of a more realistic Gaussian equilibrium distribution. A linearized Vlasov equation written in action-angle variables is used to compute the radial and angular modes of a perturbation in two-dimensional phase space to first order in the displacement from the design trajectory. We find that the radial modes, which are often neglected, can have a stabilizing effect on the beam motion.
Performance requirements of the MedAustron beam delivery system
AUTHOR|(CDS)2073034
The Austrian hadron therapy center MedAustron is currently under construction with patient treatment planned to commence in 2015. Tumors will be irradiated using proton and carbon ions, for which the steeply rising Bragg curve and ﬁnite range offer a better conformity of the dose to the geometrical shape of the tumor compared to conventional photon irradiation. The current trend is to move from passive scattering toward active scanning using a narrow pencil beam in order to reach an even better dose conformation and limit the need of patient speciﬁc hardware. The quality of the deposited dose will ultimately depend on the performance of the beam delivery chain: beam proﬁle and extraction stability of the extracted beam, accuracy and ramp rate of the scanning magnet power supplies, and precision of the beam monitors used for verifying the delivered dose. With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This is of particular importance in situations where the lesion is adjace...
International Nuclear Information System (INIS)
Rudjak, Yu.V.; Vladyko, V.B.
1993-01-01
The electron beam transport in ion channel has been investigated. The influence of the external longitudinal magnetic field and self beam magnetic field on the charge neutralization process was defined. Beam head erosion under channel is curved or the availability of transverse external magnetic field was numerically simulated. The numerical investigation of the ion-hose instability was performed. The conditions, when as a result of ion-hose instability development may be coming out of the channel by beam tail, were founded. It was shown, that supplementary creation of plasma by electron beam and ions did not lead to the reduction of ion-hose instability. Sufficient slowing down of ion-hose instability development could be achieved if betatron length increased to impulse tail. In the case of a weak initial nonsymmetrical perturbation, sausage instability was investigated. Numerical simulation showed that this instability could lead to beam radius increasing in order. The electron beam guiding by low conductive plasma channel was considered. The attractive force of beam to this channel under nonsymmetrical injection was defined analytically
Stability analysis of piezoelectric beams
Voß, T.; Scherpen, J.M.A.
2011-01-01
Piezoelectric materials are used in many engineering application. When modeling piezoelectric materials the standard assumption is that the electromagnetic field which is used to actuate the piezoelectric material is quasi static. In this paper we show that although the assumption of a quasi static
Beam-energy and laser beam-profile monitor at the BNL LINAC
Energy Technology Data Exchange (ETDEWEB)
Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.
2010-05-02
We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.
Detection of coherent beam-beam modes with digitized beam position monitor signals
Stancari, G.; White, S.M.
2014-01-01
A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.
Beam tomography or ART in accelerator physics
International Nuclear Information System (INIS)
Fraser, J.S.
1978-11-01
Projections of charged particle beam current density have been used for many years as a measure of beam position and size. The conventional practice of obtaining only two projections, usually in the horizontal and vertical planes, puts a severe limit on the detail that can be recovered from the projections. A third projection provides sufficient improvement to justify the addition of a wire to the conventional wire scanner in certain cases. A group of programs using algebraic reconstruction techniques was written to reconstruct beam current density from beam projections obtained at three or more specific or arbitrary angles around the beam. A generalized program, which makes use of arbitrary 2 x 2 transfer matrices between projections, can be used to reconstruct transverse or longitudinal emittance from appropriate projections. Reconstruction examples of beam current density and transverse and longitudinal emittance using experimental data from the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator beam are given
Beam based measurement of beam position monitor electrode gains
D. L. Rubin; M. Billing; R. Meller; M. Palmer; M. Rendina; N. Rider; D. Sagan; J. Shanks; C. Strohman
2010-01-01
Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple ...
Operational Performance of LCLS Beam Instrumentation
International Nuclear Information System (INIS)
Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.
2010-01-01
The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.
Operational Performance of LCLS Beam Instrumentation
Energy Technology Data Exchange (ETDEWEB)
Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.; /SLAC /LLNL, Livermore
2010-06-15
The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.
Investigation of Transverse Oscillation Method
DEFF Research Database (Denmark)
Udesen, Jesper; Jensen, Jørgen Arendt
2006-01-01
Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse oscillat......Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...
A Symplectic Beam-Beam Interaction with Energy Change
Energy Technology Data Exchange (ETDEWEB)
Moshammer, Herbert
2003-07-14
The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the
Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up
International Nuclear Information System (INIS)
Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.
1994-03-01
It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities
Single transverse mode protein laser
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Plasma Wakefield Acceleration of an Intense Positron Beam
Energy Technology Data Exchange (ETDEWEB)
Blue, B
2004-04-21
The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions
Transverse emittance studies of an induction accelerator of heavy ions
International Nuclear Information System (INIS)
Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.
1991-01-01
Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL the authors have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs + induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to ∼ 1 MEV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. The authors will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration
AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Furuseth, Sondre Vik
2017-01-01
The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.
6D beam-beam interaction step-by-step
Iadarola, Giovanni; Papaphilippou, Yannis; CERN. Geneva. ATS Department
2017-01-01
This document describes in detail the numerical method used in different simulation codes for the simulation of beam-beam interactions using the “Synchro Beam Mapping” approach, in order to correctly model the coupling introduced by beam-beam between the longitudinal and the transverse plane. The goal is to provide in a compact, complete and self-consistent manner the set of equations needed for the implementation in a numerical code. The effect of a “crossing angle” in an arbitrary “crossing plane” with respect to the assigned reference frame is taken into account with a suitable coordinate transformation. The employed description of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling at the interaction point.
LHC Beam Instrumentation: Beam Profile Measurements (2/3)
CERN. Geneva
2014-01-01
The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.
Image transport through a disordered optical fibre mediated by transverse Anderson localization.
Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-25
Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.
Image transport through a disordered optical fibre mediated by transverse Anderson localization
Karbasi, Salman; Frazier, Ryan J.; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-01
Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.
Beam instabilities in race track microtrons
International Nuclear Information System (INIS)
Euteneuer, H.; Herminghaus, H.; Klein, R.
1982-01-01
Several limitations of the benefits of the race track microtron (RTM) as an economic cw electron accelerator are discussed. For beam blowup some final results of our investigations for the Mainz Microtron are given. The other two effects presented more generally are beam diffusion by imperfections of the optical elements of a RTM and the deterioration of transverse phase space by synchrotron radiation
Distributed ion pump related transverse instability in CESR
Energy Technology Data Exchange (ETDEWEB)
Rogers, J.T.; Holmquist, T. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies
1996-08-01
An anomalous damping or growth of transverse coupled bunch modes is observed in the Cornell Electron Storage Ring (CESR). The growth rates and tune shifts of these modes are a highly nonlinear function of current. Unlike an instability produced by the coupling impedance of the vacuum chamber, the magnitude of the growth rate first increases, then declines, as the beam current is increased. The effect is known to be related to the operation of the distributed ion pumps, as it disappears when the pumps are not powered. We review the observations of this effect, and show that it can be explained by the presence of electrons trapped in the CESR chamber by the field of the dipole magnets and the electrostatic leakage field of the distributed ion pumps. Photoelectrons are introduced into the chamber by synchrotron radiation and can be captured in or ejected from the chamber by the passage of the beam. The transverse position of the beam thus modulates the trapped photoelectron charge density, which in turn deflects the beam, creating growth or damping and a tune shift for each coupled bunch mode. Predictions of the dependence of growth rate and tune shift on bunch current and bunch pattern by a numerical model of this process are in approximate agreement with observations. (author)
Transverse permeability of woven fabrics
Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.
2008-01-01
The transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver
International Nuclear Information System (INIS)
Lock, James A.
2013-01-01
The vector wave equation for electromagnetic waves, when subject to a number of constraints corresponding to propagation of a monochromatic beam, reduces to a pair of inhomogeneous differential equations describing the transverse electric and transverse magnetic polarized beam components. These differential equations are solved analytically to obtain the most general focused Gaussian beam to order s 4 , where s is the beam confinement parameter, and various properties of the most general Gaussian beam are then discussed. The radial fields of the most general Gaussian beam are integrated to obtain the on-axis beam shape coefficients of the generalized Lorenz–Mie theory formalism of light scattering. The beam shape coefficients are then compared with those of the localized Gaussian beam model and the Davis–Barton fifth-order symmetrized beam. -- Highlights: ► Derive the differential equation for the most general Gaussian beam. ► Solve the differential equation for the most general Gaussian beam. ► Determine the properties of the most general Gaussian beam. ► Determine the beam shape coefficients of the most general Gaussian beam
International Nuclear Information System (INIS)
Kapin, V.; Inoue, M.; Iwashita, Y.; Noda, A.
1996-01-01
The RFQ-like funneling concept by Stokes and Minerbo which can be used at low beam energies are studied. It is proposed to modify it to improve the longitudinal stability of the funneling beams. The results of numerical simulations of the funneling concepts are presented. Due to our modification the phase-width of output beams is reduced from 80 degree to 35 degree. The growth of the transverse size is decreased from 6 mm to 2.5 mm, while the content of output beam within radius 0.5 mm is increased from 50% to almost 70%. The electrode shapes of the modified system are presented. copyright 1996 American Institute of Physics
Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator
Fraser, MA; Pasini, M
2011-01-01
The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...
Response of a Shape Memory Alloy Beam Model under Narrow Band Noise Excitation
Directory of Open Access Journals (Sweden)
Gen Ge
2014-01-01
Full Text Available To describe the hysteretic nonlinear characteristic of the strain-stress relation of shape memory alloy (SMA, a Van-der-Pol hysteretic cycle is applied to simulate the hysteretic loops. Then, the model of a simply supported SMA beam subject to transverse narrow band noise excitation with nonlinear damping was proposed. The deterministic and the stochastic responses are studied, respectively, applying the multiple scale method. The stability of the steady state responses is analyzed by Floquet theory and the moment method. The numerical simulation results quite agree with the theoretical analysis.
Three axis rotational maneuver and vibration stabilization of elastic spacecraft
Singh, Sahjendra N.
1987-01-01
A control law for three-axis rotational maneuvers of a spacecraft beam-tip body configuration based on non-linear inversion and modal velocity feedback is presented. A decoupling attitude control law is presented such that in the closed-loop system the attitude angles of the spacecraft are independently controlled, using the control moments acting on the space vehicle. This controller asymptotically decouples the flexible dynamics from the rigid one and also allows the decomposition of the elastic dynamics into two subsystems representing the transverse deflections of the beam in two orthogonal planes. These low-order subsystems are used for the derivation of a modal velocity feedback stabilizer using the force and moment actuators at the end body. Simulation results are presented to show the capability of the controller.
Filamentation of a converging heavy ion beam
International Nuclear Information System (INIS)
Lee, E.P.; Buchanan, H.L.; Rosenbluth, M.N.
1980-01-01
A major concern in the use of heavy ion beams as igniters in pellet fusion systems is the vulnerability of the beam to the transverse flamentation instability. The undesirable consequence of this mode is the transverse heating of the beam to the extent that convergence on the pellet becomes impossible. This work considers the case of a beam injected into a gas filled reactor vessel, where finite pulse length and propagation distance play an important role in limiting growth. Two geometries are analyzed: a nonconverging case where the radius at injection is nearly equal to the desired radius at the pellet, and a converging case in which the injection radius is large and the beam is pre-focused to converge at the target. It is found that a cold beam will be severely disrupted if the product of the magnetic plasma frequency and the propagation distance is much larger than unity
Damping beam displacements through phase mixing: an illustrative model
International Nuclear Information System (INIS)
Barletta, W.A.; Briggs, R.J.
1983-01-01
We develop a simple model of a beam transported in a hard wall channel (an idealized very-high-order magnetic-multipole channel). The extremely anharmonic nature of the potential leads to damping of coherent transverse displacements of the beam via phase mixing. For the case of small uniform displacements of the beam we can write down by inspection the analytical form of the motion of the beam centroid. The same technique allows us to evaluate the effects of focussing and scattering elements in the transport channel upon the damping of the transverse motion of the beam
KTeV beam systems design report
Energy Technology Data Exchange (ETDEWEB)
Bocean, V.; Childress, S.; Coleman, R. [and others
1997-09-01
The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.
Directory of Open Access Journals (Sweden)
C. A. Valerio-Lizarraga
2018-03-01
Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.
Valerio-Lizarraga, C. A.
2018-03-01
The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC) generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.
Spectrum analysis in beam diagnostics
Energy Technology Data Exchange (ETDEWEB)
Zhang, S.Y.; Weng, W.T.
1993-04-23
In this article, we discuss fundamentals of the spectrum analysis in beam diagnostics, where several important particle motions in a circular accelerator are considered. The properties of the Fourier transform are presented. Then the coasting and the bunched beam motion in both longitudinal and transverse are studied. The discussions are separated for the signal particle, multiple particle, and the Schottky noise cases. To demonstrate the interesting properties of the beam motion spectrum, time domain functions are generated, and then the associated spectra are calculated and plotted. In order to show the whole picture in a single plot, some data have been scaled, therefore they may not be realistic in an accelerator.
Generation of arbitrary vector beams
Perez-Garcia, Benjamin; López-Mariscal, Carlos; Hernandez-Aranda, Raul I.; Gutiérrez-Vega, Julio C.
2017-08-01
Optical vector beams arise from point to point spatial variations of the electric component of an electromagnetic field over the transverse plane. In this work, we present a novel experimental technique to generate arbitrary vec- tor beams, and provide sufficient evidence to validate their state of polarization. This technique takes advantage of the capability of a Spatial Light Modulator to simultaneously generate two components of an electromagnetic field by halving the screen of the device and subsequently recombining them in a Sagnac interferometer. Our experimental results show the versatility and robustness of this technique for the generation of vector beams.
Spatial Control of Laser Wakefield Accelerated Electron Beams
Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.
2017-10-01
The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.
CLIC Drive Beam Phase Stabilisation
Gerbershagen, Alexander; Schulte, Daniel
The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...
New measurements of transverse spin asymmetries at COMPASS
Sozzi, F
2012-01-01
The study of transverse momentum effects and transverse spin structure of the nucleon is an important part of the scientific program of COMPASS, a fixed target experiment at the CERN SPS. The transverse effects are investigated via semi inclusive DIS reactions with a 160 GeV /c muon beam impinging on transversely polarised targets. The hadrons produced in the reactions are detected in a wide momentum and angular range by a two-stage spectrometer. A deuterium target has been used in the first part of COMPASS data taking from 2002 to 2004, while a proton target has been used in 2007 and 2010. Here we present the recent results obtained from the 2010 data on different channels, involving the azimuthal distribution of single hadrons and the azimuthal dependence of the plane cont aining hadron pairs. The results confirm the published results of the 2007 data taking with an improved statistical significance; the measured azimuthal asymmetries are clearly non zero, at variance with those measured on a deuterium targ...
Transverse spin effect: A means to probe photinos
Energy Technology Data Exchange (ETDEWEB)
Mekhfi, M. (International Centre for Theoretical Physics, Trieste (Italy))
1991-12-02
We consider the e{sup +}e{sup -} system in storage rings with its natural polarization being transverse to the beam direction. We ristrict the analysis to neutrino-like events {nu} (neutrino), {nu}tilde (neutrino), {gamma}tilde (photino) and propose to measure the associated transverse spin asymmetry. We prove that for s >> 4m{sup 2} sub({nu}tilde), photino production is the unique channel which leads to non-vanishing transverse asymmetry. The {nu} ({nu}tilde) in contrast does not contribute through W{sup -} (W{sup t}ilde) exchange due to chirality while for the Z-boson exchange the {nu} and its supersymmetric partner {nu}tilde, contribute equal amounts but with opposite signs in a way similar to that encountered in SUSY-GUTS (hierarchy problem), and hence give a net vanishing result. Using recent limits on the sneutrino mass, we set up the minimum value of {radical}s above which one may expept the photino to dominate over the neutrino. Also we give a qualitative estimate of the asymmetry and find that it is within the actual precision of such experiments. In this respect transverse asymmetry measurements when restricted to the proposed class of events are a possible probe to new physics beyond the standard model. (orig.).
Transversal Lines of the Debates
Directory of Open Access Journals (Sweden)
Yolanda Onghena
1998-12-01
Full Text Available The Transversal Lines of the Debates gathers for publication the presentations of the scholars invited to the seminar. In the papers, Yolanda Onghena observes that the evolution from the cultural to the inter-cultural travels along four axes: the relations between cultureand society; the processes of change within identity-based dynamics; the representations of the Other; and, interculturality. Throughout the presentations and subsequent debates, whenever the different participants referred to aspects of the cultural identity problematic--”angst”, “obsession”, “deficit”, manipulation”, and others, these same participants in the Transversal Lines of the Debates also showed that, in certain areas, an optimistic viewpoint is not out of the question.
TRANSVERSALITY AND INTERDISCIPLINARY DISCUSSION IN ...
African Journals Online (AJOL)
2010-07-19
Jul 19, 2010 ... e o lo g ic a l S tu d ie s http://www.hts.org.za. HTS. Original Research. A rtic le #. 9. 1. 0. (page number not for citation purposes). TRANSVERSALITY ... mentorship. An interview with a mentor and mentee was used as a local, real narrative in the process. In the final section, the author reflected upon his own ...
Tuning the beam: a physics perspective on beam diagnostic instrumentation
Energy Technology Data Exchange (ETDEWEB)
Gulley, Mark S [Los Alamos National Laboratory
2010-01-01
In a nutshell, the role of a beam diagnostic measurement is to provide information needed to get a particle beam from Point A (injection point) to Point B (a target) in a useable condition, with 'useable' meaning the right energy and size and with acceptable losses. Specifications and performance requirements of diagnostics are based on the physics of the particle beam to be measured, with typical customers of beam parameter measurements being the accelerator operators and accelerator physicists. This tutorial will be a physics-oriented discussion of the interplay between tuning evolutions and the beam diagnostics systems that support the machine tune. This will include the differences between developing a tune and maintaining a tune, among other things. Practical longitudinal and transverse tuning issues and techniques from a variety of proton and electron machines will also be discussed.
Beam-beam synchrobetatron resonance at the LHC
OHMI, K
2012-01-01
Some beam-beam simulations are presented for the LHC beam parameters of late 2012, with collisions at nonzero crossing angle in IPs 1 and 5. Long-range encounters and other IPs are not included. Strong emittance growth is observed above 3the -rd order resonance. Synchrotron motion and z dependent beam-beam force, in particular the nonzero crossing angle, are essential ingredients for this growth. Bunch shortening is observed simultaenously with the strong transverse emittance growth, which is consistent with LHC observations in November 2012. The simulations do not show any significant growth close to the 7-th order resonance ~0.29. The simulated bunch shortening at 3Qy~1is sensitive to Qx. Open questions are if the tune of some bunches may exceed 0.33 in LHC, and/or whether electron cloud also contributes to the phenomenon. This presentation was given at CERN on 4 December 2012.
Stability of Superconducting Rutherford Cables For accelerator magnets
Willering, GP; Verweij, A P
2009-01-01
The stability of superconducting magnets has a high priority for particle accelerators, since the operational time and operational collision energy depend strongly on it. Local heat dissipation due to beam loss and conductor movement is inevitable, causing local hot spots in the conductor, possibly leading to magnet quench. For stability against local and transient energy deposition, the cable is the most important unit to investigate. Most superconducting accelerator magnets are wound from Rutherford cables with a flat cable layout, consisting of twisted strands. The mechanisms of normal zone propagation in Rutherford cables have been described in detail with experimental and modeling data. The onset of a local normal zone forces current to redistribute in adjacent neighboring superconducting strands, reducing the longitudinal normal zone propagation. Transversal normal zone propagation in adjacent and crossing strands is caused by the redistribution of current and by heat exchange. The mechanism of normal z...
Validation of Transverse Oscillation Vector Velocity Estimation In-Vivo
DEFF Research Database (Denmark)
Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten
2007-01-01
Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound (US) beam direction. This implies that a Doppler angle under examination close to 90deg results in unreliable information about the true blood direction and blood velocity. The novel...... method Transverse Oscillation (TO), which combines estimates of the axial and the transverse velocity components in the scan plane, makes it possible to estimate the vector velocity of the blood regardless of the Doppler angle. The present study evaluates the TO method with magnetic resonance angiography...... +/- 1.7 ml and for MRA: 5.8 ml +/- 2.0 ml with the full range for TO: 3.4 ml - 9.5 ml and for MRA 3.0 ml - 10.8 ml. The correlation between the SV estimated by TO and MRA was 0.91 (p
Thermal Studies on the SPS Wideband Transverse Feedback Kicker
Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department
2016-01-01
As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.
Improved Vector Velocity Estimation using Directional Transverse Oscillation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2015-01-01
emissions at a 90 degrees beam-to-flow angle at a vessel depth of 30 mm. The standard deviation (SD) drops from 9.14% for TO to 5.4%, when using DTO. The bias is -5.05% and the angle is found within +/- 3.93 degrees. At 70 mm a relative SD of 7% is obtained, the bias is -1.74%, and the angle is found within......A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is selfcalibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal......, and a modified TO estimator can be used to find both the lateral and axial velocity. The approach is self-calibrating as the lateral oscillation period directly is estimated from the directional signal through a Fourier transform. The approach was implemented on the SARUS scanner using a BK Medical 8820e...
Vertical blow-up in a low-current, stored, laser-cooled ion beam
Madsen, N; Siegfried, L E; Hangst, J S; Nielsen, J
2003-01-01
Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored, laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents we observe an abrupt change in this behavior: the vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser- cooling. (12 refs).
Low-current, vertical blowup in a stored laser-cooled ion beam
Madsen, N; Nielsen, S; Siegfried, L E; Hangst, J S
2001-01-01
Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents, we observe an abrupt change in this behavior: The vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser cooling. (11 refs).
Transversals in non-discrete groups
Indian Academy of Sciences (India)
Abstract. The concept of 'topological right transversal' is introduced to study right transversals in topological groups. Given any right quasigroup S with a Tychonoff topol- ogy T , it is proved that there exists a Hausdorff topological group in which S can be embedded algebraically and topologically as a right transversal of a ...
Appraisal of transverse nasal groove: A study
Directory of Open Access Journals (Sweden)
Belagola D Sathyanarayana
2012-01-01
Full Text Available Background: Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. Aims: We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. Methods: We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. Results: One hundred patients were recruited in the study. Females (80% predominated over males. Most patients were of 15-45 years age group (70%. Majority of the transverse nasal lesions were classical transverse nasal groove (39% and others included transverse nasal line (28%, strip (28%, ridge (4% and loop (1%. Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Conclusions: Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.
Transversity of quarks in a nucleon
Indian Academy of Sciences (India)
The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon's properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (inﬁnite) momentum. It is a chiral-odd ...
International Nuclear Information System (INIS)
Tribouillard, C.
1997-01-01
In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)