WorldWideScience

Sample records for transverse acoustic modes

  1. The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves

    Science.gov (United States)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-07-01

    We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.

  2. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  3. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  5. Transverse mode coupling instability of colliding beams

    Directory of Open Access Journals (Sweden)

    S. White

    2014-04-01

    Full Text Available In high brightness circular colliders, coherent and incoherent beam dynamics are dominated by beam-beam interactions. It is generally assumed that the incoherent tune spread introduced by the beam-beam interactions is sufficiently large to cure any instabilities originating from impedance. However, as the two counterrotating beams interact they can give rise to coherent dipole modes and therefore modify the coherent beam dynamics and stability conditions. In this case, coherent beam-beam effects and impedance cannot be treated independently and their interplay should be taken into account in any realistic attempt to study the beam stability of colliding beams. Due to the complexity of these physics processes, numerical simulations become an important tool for the analysis of this system. Two approaches are proposed in this paper: a fully self-consistent multiparticle tracking including particle-in-cell Poisson solver for the beam-beam interactions and a linearized model taking into account finite bunch length effects. To ensure the validity of the results a detailed benchmarking of these models was performed. It will be shown that under certain conditions coherent beam-beam dipole modes can couple with higher order headtail modes and lead to strong instabilities with characteristics similar to the classical transverse mode coupling instability originating from impedance alone. Possible cures for this instability are explored both for single bunch and multibunch interactions. Simulation results and experimental evidences of the existence of this instability at the LHC will be presented for the specific case of offset collisions.

  6. Transverse stability in multibunch mode for CLIC

    International Nuclear Information System (INIS)

    Guignard, G.

    1993-01-01

    In order to reach the desired luminosity with 250 GeV per beam, multibunch operation (limited to 4 bunches, say) might have to be considered in the CERN linear collider (CLIC). One limitation comes from the coupling of the bunch motion with the long-range transverse wake fields that may induce beam breakup. These wake fields have therefore to be controlled, and means of reducing their effects on the beam are discussed in a companion paper. One possibility consists in detuning the dipole modes in the cells to obtain decoherent contributions and hence reduce the field amplitude at the downstream bunch location. The important question is to know below which value this amplitude must be limited to prevent intolerable beam breakup. In a first attempt at estimating this threshold for CLIC two approaches are considered, i.e. the criterion developed at SLAC and based on the convergence of the multibunch-motion solution, and numerical simulations of two-bunch motion in a focusing lattice

  7. Empirical mode decomposition for analyzing acoustical signals

    Science.gov (United States)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  8. Transverse force on a moving vortex with the acoustic geometry

    International Nuclear Information System (INIS)

    Zhang Pengming; Cao Liming; Duan Yishi; Zhong Chengkui

    2004-01-01

    We consider the transverse force on a moving vortex with the acoustic metric using the phi-mapping topological current theory. In the frame of effective space-time geometry the vortex appear naturally by virtue of the vortex tensor in the Lorentz space-time and we show that it is just the vortex derived with the order parameter in the condensed matter. With the usual Lagrangian we obtain the equation of motion for the vortex. At last, we show that the transverse force on the moving vortex in our equation is just the usual Magnus force in a simple model

  9. Fiber amplifiers under thermal loads leading to transverse mode instability

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power trans...

  10. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  11. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  12. Transverse intrinsic localized modes in monatomic chain and in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Klopov, M. [Department of Physics, Faculty of Science, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn (Estonia); Shelkan, A., E-mail: shell@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-03-06

    In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in this direction, there may exist localized anharmonic transverse modes with the frequencies above the spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal (chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical and numerical calculations it may exceed 10{sup 10} periods. We call these vibrations as transverse intrinsic localized modes. - Highlights: • In a stretched monatomic chain, long-living nonlinear transverse localized modes may exist. • Transverse vibrations of a chain slowly decay due to creation of longitudinal phonons. • Lifetime of transverse vibrations of a chain may exceed billion periods of vibrations. • In stretched graphene, long-living out-of-plain localized vibrations may exist.

  13. Response of a swirl-stabilized flame to transverse acoustic excitation

    Science.gov (United States)

    O'Connor, Jacqueline

    This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of

  14. Fluting Modes in Transversely Nonuniform Solar Flux Tubes

    Science.gov (United States)

    Soler, Roberto

    2017-12-01

    Magnetohydrodynamic waves of different types are frequently observed in magnetic flux tubes of the solar atmosphere and are often modeled using simple models. In the standard flux tube model made of a straight uniform tube with an abrupt boundary, transverse wave modes are classified according to their azimuthal wavenumber, m. Sausage (m = 0) and kink (m = 1) modes produce pulsations of the cross section and transverse oscillations of tube axis, respectively. Both sausage and kink modes have been observed in the solar atmosphere. Fluting (m≥slant 2) modes produce perturbations that are essentially confined around the boundary of the tube, I.e., they have a strong surface-like character. Unlike sausage and kink modes, the detection of fluting modes remains elusive. Here we show that the inclusion of transverse inhomogeneity in the flux tube model dramatically affects the properties of fluting modes. Even in a thin tube, kink and fluting modes are no longer degenerate in frequency when the tube has a smooth boundary. In addition, fluting modes become heavily damped by resonant absorption in a timescale shorter than the oscillation period. The perturbations loose their global shape and their distinctive surface-like appearance. As a consequence of that, we argue that nonuniform flux tubes with smooth boundaries may not be able to support fluting-like perturbations as coherent, global modes.

  15. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  16. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    Double-time temperature dependent Green's function is used to derive soft mode frequency, dielectric permittivity, microwave absorption, quality factor, acoustic attenuation, electric conductivity, smooth function, relaxation time, ratio of figure of merits and respective applications in modern technologies. All theoretical results ...

  17. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    and fifth order phonon anharmonic interaction terms as well as external electric field term in the crystal Hamilto- nian. Double-time temperature dependent Green's function is used to derive soft mode frequency, dielectric permi- ttivity, microwave absorption, quality factor, acoustic attenuation, electric conductivity, smooth ...

  18. Combination of Transverse Mode Selection and Active Longitudinal Mode-Locking of Broad Area Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Christoph Doering

    2014-01-01

    Full Text Available Experimental results of the combination of transverse mode selection and active mode-locking with anti-reflection-coated broad area lasers (BALs are presented. The BALs are subject to feedback from a free-space external Fourier-optical 4f-setup with a reflective spatial frequency filter in the Fourier-plane for transverse mode selection. Driving the BALs with a high frequency modulated pump current above threshold active longitudinal mode-locking is achieved. Pulse durations as low as 88 ps are obtained, while the Gaussian-like fundamental or a higher order transverse mode up to mode number 5 is selected on purpose. Pulse duration and shape are nearly independent of the selected transverse mode.

  19. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    Science.gov (United States)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  20. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  1. Longitudinal and transverse modes dispersion in two-dimensional ...

    African Journals Online (AJOL)

    The dynamical properties of two-dimensional Yukawa fluids in the domain of weak and intermediate coupling parameters were analyzed through molecular dynamics (MD) simulation. The dispersion relation for both the longitudinal and transverse modes were obtained and compared with random phase approximation ...

  2. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  3. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    irreversible Joule heat) by an electric light bulb . The reciprocal (or reverse) of this process by supplying heat and shining light to the same electric bulb ...limit the invention to the precise form disclosed; and obviously many modifications and variations are possible in light of the above teaching...300151 1 of 14 PASSIVE MODE CARBON NANOTUBE UNDERWATER ACOUSTIC TRANSDUCER STATEMENT OF GOVERNMENT INTEREST [0001] The invention described

  4. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  5. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  6. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  7. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  8. Transverse mode analysis of optofluidic intracavity spectroscopy of canine hemangiosarcoma

    Science.gov (United States)

    Wang, Weina; Thamm, Douglas H.; Kisker, David W.; Lear, Kevin L.

    2010-02-01

    The label-free technique of optofluidic intracavity spectroscopy (OFIS) uses the optical transmission spectrum of a cell in a microfluidic optical resonator to distinguish cancerous and non-cancerous cells. Based on their distinctive characteristic transmission spectra, canine hemangiosarcoma (HSA) cancer cells and normal peripheral blood mononuclear cells (PBMCs) have been differentiated using the OFIS technique with high statistical significance (p<10- 6). 95% sensitivity and 98% specificity were achieved simultaneously. A cell lens model explains trends in the transverse mode pattern in the transmission spectra of HSA cells and allows extraction of cell focal length.

  9. Transverse instability excited by rf deflecting modes for PEP

    International Nuclear Information System (INIS)

    Chao, A.W.; Yao, C.Y.

    1979-11-01

    We have looked at the possible transverse instability effects which are caused by the deflecting modes of the rf cavities in PEP. The results are obtained by applying the expression of the instability damping rate. We have assumed that there equal bunches equally spaced in PEP. We have worked out the equivalent for a single bunch beam. The effect of chromaticity ξ is included as a frequency shift in the bunch mode spectra. We rewrite this result in terms of the transverse wake field instead of the impedance. We include an application of the Sacherer formalism to the case of resistive wall. The resulting expression of the damping rate contains two terms. The first term corresponds to the effect of the short wake fields; it agrees with the result of the head-tail instability as derived by Sands. A numerical estimate of this resistive-wall head tail case for PEP is given. It re-confirms that the resistive wall instability is not a serious problem for PEP. The second term gives the effect of long wake fields and it agrees with the result of Courant and Sessler. 10 refs., 2 figs

  10. Acoustic mode converters micromachined in silicon by proton beam writing

    International Nuclear Information System (INIS)

    Scholz, U.; Menzel, F.; Pluta, M.; Grill, W.; Butz, T.

    2011-01-01

    Proton beam writing is a powerful tool for the production of microstructures for acoustic applications because it allows to create structures inclined to the original sample surface which therefore can act as acoustic mode converters. We report on experiments, finding optimal structure sizes in p-type 12 Ω cm silicon for this purpose. For the creation of the structures the proton beam at the LIPSION laboratory was used. Furthermore, by investigating the micromachined silicon with a phase sensitive acoustic microscope we give evidence that inclined structures such as rods and walls can be used to change the mode of acoustic waves in the crystal.

  11. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  12. Modal Theory of Transverse Acoustic Coherence in Shallow Oceans

    Science.gov (United States)

    2012-09-28

    observed in the 1995 Shallow-Water Acoustics in a Random Medium (SWARM) experiment [23]. Using numerical simulations, Finette and Oba [24] discovered the...randomness include the thermohaline microstructure, linear and nonlinear internal waves, bottom impedance, bottom roughness, and surface waves [40

  13. Theoretical study of the transverse acoustic phonons of GaSb at ...

    Indian Academy of Sciences (India)

    Abstract. We have investigated the phonon dispersion curves and one-phonon density of states up to the pressure of 8 GPa using a theoretical model, namely the rigid ion model. The transverse acoustic phonons as a function of pressure have been compared with the recently measured inelastic neutron scattering data ...

  14. Transverse mode coupling instability for leptons in the CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Linnecar, T.; Shaposhnikova, E.N. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    The intensity of leptons accelerated in the SPS machine is limited by a vertical transverse instability. The results of measurements of the thresholds for this transverse instability are compared with theoretical predictions for different broad band impedance models of the SPS. The threshold intensities found for the transverse instability and the position of the losses in the cycle enable the parameters of the broadband resonant impedance to be specified. (author)

  15. On acoustic damping of a cylindrical chamber in resonant modes

    Science.gov (United States)

    Shimizu, Taro; Hori, Dan; Yoshida, Seiji; Tachibana, Shigeru; Matsuyama, Shingo; Shinjo, Junji; Mizobuchi, Yasuhiro; Kobayashi, Kan

    2012-08-01

    Acoustic damping of a cylindrical chamber with open and closed ends in resonant modes is analytically and numerically investigated to understand the low damping characteristic of the chamber without chocked nozzle. First, on the basis of the analytic solution of resonant acoustic modes inside a cylinder, the damping by radiation from the open end is calculated analytically using simple acoustic source modeling for velocity fluctuation. The effect of viscosity is also considered as an attenuation mechanism. The values of acoustic damping calculated for the first longitudinal and tangential modes are in good agreement with the corresponding values obtained using numerical simulation. The damping is also investigated for a configuration of the chamber with an injector installed off-center. Finally, we numerically and semi-analytically investigate the acoustic damping for a configuration that includes a hot-gas injection. The obtained mode is found to be a spinning tangential mode and the radiated wave also has a spinning feature. The damping for the spinning tangential mode is found to be larger than that for the symmetric dipole-like radiation under a uniform standing condition, but much smaller than the chamber with a chocked nozzle. Therefore, the chamber with an open end has the low damping characteristic suitable for intentionally generating oscillatory combustion.

  16. Identification and control of acoustic radiation modes

    NARCIS (Netherlands)

    van Amerongen, J.; Berkhoff, Arthur P.; Jonker, Jan B.; Regtien, Paulus P.L.; Stramigioli, Stefano

    2002-01-01

    A formulation is given of reduced-order acoustic radiation sensors and reduced-order actuators for broadband sound fields. Methods are presented to determine these descriptions from measured data, and their application in systems for broadband active noise control is discussed. One application area

  17. Mode trap for absorbing transverse modes of an accelerated electron beam

    Science.gov (United States)

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  18. Passband widening of transversely coupled resonator filters using the fundamental symmetric and antisymmetric modes.

    Science.gov (United States)

    Tsutsumi, J; Ikata, O; Satoh, Y

    2001-09-01

    This paper describes a method for widening the passband of transversely coupled resonator filters (TCF) using only the fundamental symmetric and antisymmetric modes. The coupling of modes analysis in the transverse direction is applied to the TCF design to investigate the passband width. As a result, it is found that the passband width can be increased by making the surface acoustic wave (SAW) velocity difference between the interdigital transducer (IDT) region and the resonator gap region smaller. It is proposed that a grating structure be applied to the common ground bar, instead of the uniform metal, to reduce the SAW velocity difference. Using the grating-type common ground bar, filters are fabricated on ST-quartz substrate. The passband of a single filter with a center frequency of 248 MHz is widened up to 410 kHz without any increase of the insertion loss. The effect of the impedance mismatch at the junction of two cascaded devices is investigated. It is shown that the filter performance is improved by reduction of the small parasitic capacitance existing at the cascade point. Experimentally, the capacitance formed between the bus bar of the IDT and the bottom surface of the ceramic package is reduced. The insertion loss is reduced by 0.6 dB, and 3-dB passband is widened by 8 kHz for a filter with a center frequency of 248 MHz. On the basis of these two improvements, cascaded TCFs are fabricated. For a filter with a center frequency of 248 MHz, an insertion loss of 5.5 dB and a 3-dB passband width of 270 kHz are obtained.

  19. Measurement of Combustion Response to Transverse Modes at High Pressure

    Data.gov (United States)

    National Aeronautics and Space Administration — The coupling between acoustics and unstable combustion has been a prime concern and unsolved problem over the entire modern history of chemical propulsion. These...

  20. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.

    Science.gov (United States)

    Petosić, Antonio; Ivancević, Bojan; Svilar, Dragoljub

    2009-06-01

    The method for measuring derived acoustic power of an ultrasound point source in the form of a sonotrode tip has been considered in the free acoustic field, according to the IEC 61847 standard. The main objective of this work is measuring averaged pressure magnitude spatial distribution of an sonotrode tip in the free acoustic field conditions at different electrical excitation levels and calculation of the derived acoustic power at excitation frequency (f0 approximately 25 kHz). Finding the derived acoustic power of an ultrasonic surgical device in the strong cavitation regime of working, even in the considered laboratory conditions (anechoic pool), will enable better understanding of the biological effects on the tissue produced during operation with the considered device. The pressure magnitude spatial distribution is measured using B&K 8103 hydrophone connected with a B&K 2626 conditioning amplifier, digital storage oscilloscope LeCroy Waverunner 474, where pressure waveforms in the field points are recorded. Using MATLAB with DSP processing toolbox, averaged power spectrum density of recorded pressure signals in different field positions is calculated. The measured pressure magnitude spatial distributions are fitted with the appropriate theoretical models. In the linear operating mode, using the acoustic reciprocity principle, the sonotrode tip is theoretically described as radially oscillating sphere (ROS) and transversely oscillating sphere (TOS) in the vicinity of pressure release boundary. The measured pressure magnitude spatial distribution is fitted with theoretical curves, describing the pressure field of the considered theoretical models. The velocity and displacement magnitudes with derived acoustic power of equivalent theoretical sources are found, and the electroacoustic efficiency factor is calculated. When the transmitter is excited at higher electrical power levels, the displacement magnitude of sonotrode tip is increased, and nonlinear behaviour

  1. Acoustic modes propagating along the free surface of granular media.

    Science.gov (United States)

    Aleshin, V; Gusev, V; Tournat, V

    2007-05-01

    In unconsolidated granular materials under gravity there exist acoustical waves propagating along the surface with anomalously low sound velocity. The presented theory describes these guided surface acoustic modes (GSAM) confined between the surface of the granular materials and in-depth layers with increasing rigidity. The analysis is based on the obtained original analytical solution of the Helmholtz equation that has never been used both in classical and quantum mechanics. This solution is valid for a particular rigidity profile, whereas the general case of grains with or without adhesion has been analyzed numerically. In contrast to the Rayleigh wave polarized in the sagittal (vertical) plane, which is the unique localized mode in a homogeneous solid, an infinite number of modes with sagittal polarization as well as an infinite number of shear horizontal modes have been found. The difference in physical mechanisms of localization is discussed, and the transformation of the GSAMs into the Rayleigh wave at the increasing adhesion is demonstrated: The first sagittal mode transforms into the Rayleigh one, while the others delocalize. The theory explains the experimentally observed magnitude of velocity for the acoustic waves in sand elliptically polarized in the sagittal plane.

  2. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available The article outlines an approach to mode selection in a microchip laser through judicious shaping of the pump light to create a high modal overlap with the desired mode. The authors demonstrate the principle by creating a donut-shaped pump profile...

  3. The effect of transverse multi-mode oscillation in passively modelocked solid-state lasers

    Science.gov (United States)

    Agnesi, A.; Reali, G. C.; Gabetta, G.

    1992-03-01

    We demonstrate that the pulses from a passively mode-locked flashlamp pumped solid-state laser can be considerably shorter using an antiresonant-ring mirror than using a linear cavity with a standard contacted dye-cell mirror, and we suggest that transverse-mode-filtering effects in the antiresonant ring play an important role in explaining this difference.

  4. Kink and Sausage Modes in Nonuniform Magnetic Slabs with Continuous Transverse Density Distributions

    Science.gov (United States)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe

    2015-11-01

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.

  5. KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe

    2015-01-01

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes

  6. Effect of transverse electron drift on absorption of surface acoustic waves in CdS

    International Nuclear Information System (INIS)

    Kmita, A.M.; Medved', A.V.; Fedorets, V.N.

    1976-01-01

    The effect of the transverse electron drift on acousto-electron interaction in CdS has been studied. It has been revealed that the free electron drift only in the direction normal to the plane of propagation of surface acoustic waves may change the sound electron absorption coefficient in a wide range. In the case of metallization of the active part of a crystal surface a decrease in sound absorption has been observed both on the electron drift to a working crystal surface and on the opposite direction. Whereas in the case of a free crystal surface the transverse electron drift directed to the working plate surface causes an increase in sound absorption, and with the opposite drift electron absorption of the Rayleigh ultrasound waves is almost not observed. An explanation of the effects observed is proposed

  7. Geodesic acoustic modes in noncircular cross section tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P. [National Research Center “Kurchatov Institute,” (Russian Federation); Konovaltseva, L. V. [People’s Friendship University of Russia (Russian Federation); Ilgisonis, V. I. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  8. Customized shaping of vibration modes by acoustic metamaterial synthesis

    Science.gov (United States)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  9. Anomalous Acoustic Plasmon Mode from Topologically Protected States

    Science.gov (United States)

    Jia, Xun; Zhang, Shuyuan; Sankar, Raman; Chou, Fang-Cheng; Wang, Weihua; Kempa, K.; Plummer, E. W.; Zhang, Jiandi; Zhu, Xuetao; Guo, Jiandong

    2017-09-01

    Plasmons, the collective excitations of electrons in the bulk or at the surface, play an important role in the properties of materials, and have generated the field of "plasmonics." We report the observation of a highly unusual acoustic plasmon mode on the surface of a three-dimensional topological insulator (TI) Bi2Se3 , using momentum resolved inelastic electron scattering. In sharp contrast to ordinary plasmon modes, this mode exhibits almost linear dispersion into the second Brillouin zone and remains prominent with remarkably weak damping not seen in any other systems. This behavior must be associated with the inherent robustness of the electrons in the TI surface state, so that not only the surface Dirac states but also their collective excitations are topologically protected. On the other hand, this mode has much smaller energy dispersion than expected from a continuous media excitation picture, which can be attributed to the strong coupling with surface phonons.

  10. Electromagnetic excitation of anomalous acoustic waves in metals subjected to a transverse magnetic field

    International Nuclear Information System (INIS)

    Aronov, I.E.; Irklienko, T.I.; Korolyuk, A.P.; Fal'ko, V.L.; Khizhnyi, V.I.

    1989-01-01

    Experimental and theoretical investigations were made of electromagnetic excitation of sound in a metal plate, characterized by a complex dispersion law in a magnetic field H perpendicular to the surface. Experiments were carried out on tungsten at frequencies ω/2π = 400-800 MHz in magnetic fields H ∼ 100-4,000 Oe. Acoustic vibrations of two types were excited: an acoustic normal mode traveling at the velocity of sound s 0 in the metal and an anomalous (fast) sound with a phase velocity equal to the Fermi velocity of the conduction electrons υ much-gt s 0 . The interaction between these two acoustic signals led to the following effects: (1) oscillations of the output acoustic signal in the magnetic field H with a constant period governed by ballistic transport of energy of the electromagnetic wave into the metal by specific electron groups; (2) resonant changes in the amplitude of these oscillations in a field H near a diamagnetic resonance at ω∼Ω (Ω = eH/mc); (3) an inversion of the acoustic signal lines due to a change in the frequency by an amount Δ line-integral ∼s 0 /2d (d is the plate thickness) and a periodic recovery of the line profiles with a period 2Δ line-integral. This theory is in good agreement with the experimental results

  11. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth of the insta......The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  12. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  13. Selection of transverse modes in laser cavities containing waveguides and open parts

    International Nuclear Information System (INIS)

    Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Tkachenko, V M; Topkov, A N

    2001-01-01

    The transverse modes of a submillimetre laser cavity that contains waveguides and open parts were studied theoretically and experimentally with the purpose of finding methods for mode selection. Two methods based on the filtering of the Fourier spectra of the waveguide modes and the use of their interference were substantiated numerically and realised in experiment. Special attention was paid to the mode selection in tunable lasers. Scaling laws allowing one to use the obtained results in a wide range of the cavity parameters and wavelengths are presented. (laser applications and other topics in quantum electronics)

  14. Topology optimized design of a transverse electric higher order mode converter

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Ding, Yunhong; Sigmund, Ole

    2016-01-01

    present the possibility of employing topology optimization (TO) to design a device that allows for reversible conversion between the transverse electric fundamental even (TE0) mode and the second higher order odd mode (TE2). Topology optimization is an iterative inverse design process, where repeated......]. The design is made for fabrication in silicon-on-insulator (SOI) and previous work has shown excellent concordance between simulations and experimental results when employing 3D TO [6]....

  15. Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall

    Directory of Open Access Journals (Sweden)

    M. Venturini

    2018-02-01

    Full Text Available The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.

  16. Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall

    Science.gov (United States)

    Venturini, M.

    2018-02-01

    The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.

  17. Simulation with Python on transverse modes of the symmetric confocal resonator

    Science.gov (United States)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  18. A numerical method for acoustic normal modes for shear flows

    Science.gov (United States)

    Porter, M. B.; Reiss, E. L.

    1985-05-01

    The normal modes and their propagation numbers for acoustic propagation in wave guides with flow are the eigenvectors and eigenvalues of a boundary value problem for a non-standard Sturm-Liouville problem. It is non-standard because it depends non-linearly on the eigenvalue parameter. (In the classical problem for ducts with no flow, the problem depends linearly on the eigenvalue parameter). In this paper a method is presented for the fast numerical solution of this problem. It is a generalization of a method that was developed for the classical problem. A finite difference method is employed that combines well known numerical techniques and a generalization of the Sturm sequence method to solve the resulting algebraic eigenvalue problem. Then a modified Richardson extrapolation method is used that dramatically increases the accuracy of the computed eigenvalues. The method is then applied to two problems. They correspond to acoustic propagation in the ocean in the presence of a current, and to acoustic propagation in shear layers over flat plates.

  19. Nonlinear excitation of geodesic acoustic modes by drift waves

    International Nuclear Information System (INIS)

    Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.

    2007-01-01

    In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs

  20. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    Science.gov (United States)

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  1. Fast Sausage Modes in Magnetic Tubes with Continuous Transverse Profiles: Effects of a Finite Plasma Beta

    Science.gov (United States)

    Chen, Shao-Xia; Li, Bo; Xiong, Ming; Yu, Hui; Guo, Ming-Zhe

    2016-12-01

    While standing fast sausage modes in flare loops are often invoked to interpret quasi-periodic pulsations (QPPs) in solar flares, it is unclear as to how they are influenced by the combined effects of a continuous transverse structuring and a finite internal plasma beta ({β }{{I}}). We derive a generic dispersion relation governing linear sausage waves in straight magnetic tubes for which plasma pressure is not negligible, and the density and temperature inhomogeneities of essentially arbitrary form take place in a layer of arbitrary width. Focusing on fast modes, we find that {β }{{I}} only weakly influences {k}{{c}}, the critical longitudinal wavenumber separating the leaky from trapped modes. Likewise, for both trapped and leaky modes, the periods P in units of the transverse fast time depend only weakly on {β }{{I}}, which is compatible with the fact that the effective wave vectors of fast sausage modes are largely perpendicular to the background magnetic field. However, a weak {β }{{I}} dependence of the damping times τ is seen only when the length-to-radius ratio L/R is ˜50% larger than some critical value π /({k}{{c}}R), which itself rather sensitively depends on the density contrast, profile steepness, as well as on how the transverse structuring is described. In the context of QPPs, we conclude that the much simpler zero-beta theory can be employed for trapped modes, as long as one sees the deduced internal Alfvén speed as actually being the fast speed. In contrast, effects due to a finite beta in flare loops should be considered when leaky modes are exploited.

  2. Transverse mode tailoring in diode lasers based on coupled large optical cavities

    Science.gov (United States)

    Gordeev, N. Yu; Maximov, M. V.; E Zhukov, A.

    2017-08-01

    The key principles of transverse mode engineering in edge-emitting lasers with broadened waveguides based on coupled large optical cavity (CLOC) structures are presented. The CLOC laser design is shown to be an effective approach for reducing the optical loss, broadening the waveguide, and lowering the beam divergence. Having simulated the sensitivity of the CLOC design to variations in layer thicknesses and compositions we have shown its high robustness. Advanced versions of the CLOC laser structures having two extra passive waveguides have been treated and shown to effectively eliminate several transverse modes. We have considered an application of the CLOC concept for waveguides with shifted active regions aimed at reducing laser thermal and electric resistances.

  3. Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Seidl, Jakub; Krbec, Jaroslav; Hron, Martin; Adámek, Jiří; Hidalgo, C.; Markovič, Tomáš; Melnikov, A.V.; Stöckel, Jan; Weinzettl, Vladimír; Aftanas, Milan; Bílková, Petra; Bogár, Ondrej; Böhm, Petr; Eliseev, L.G.; Háček, Pavel; Havlíček, Josef; Horáček, Jan; Imríšek, Martin; Kovařík, Karel; Mitošinková, Klára; Pánek, Radomír; Tomeš, Matěj; Vondráček, Petr

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126048. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA16-25074S; GA ČR(CZ) GA14-35260S; GA AV ČR(CZ) GA16-24724S; GA ČR(CZ) GA15-10723S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : geodesic acoustic mode * tokamak * turbulence * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  4. Transverse craniofacial dimensions in Angle Class II, Division 1 malocclusion according to breathing mode

    Directory of Open Access Journals (Sweden)

    Agda Rísia David Pinto Coelho

    2010-03-01

    Full Text Available The aim of this longitudinal study was to assess the relation between the transverse craniofacial dimensions of subjects with Class II, Division 1 malocclusion and the breathing mode presented by them. Forty Angle Class II, Division 1 malocclusion subjects of both genders participated in the study, 23 of which were predominantly nose breathers and 17 were predominantly mouth breathers. The mean age ranged from 10 years and 9 months to 14 years - Age range 1; and from 13 years and 4 months to 16 years and 6 months - Age range 2. Measurements of six transverse craniofacial dimensions were performed in P-A teleradiographs: Total Sphenoid, Total Zygomatic, Total Nasal Cavity, Total Maxilla, Total Mastoid and Total Antegonion. The transversal craniofacial dimensions were measured and compared in both groups at age ranges 1 and 2. The longitudinal assessment of age ranges 1 and 2 showed that there was no statistically significant influence of the breathing mode on the craniofacial dimensions evaluated, or on the alteration of these dimensions. Breathing mode had no influence on craniofacial development in the sample studied.

  5. Bound acoustic modes in the radiation continuum in isotropic layered systems without periodic structures

    Science.gov (United States)

    Maznev, A. A.; Every, A. G.

    2018-01-01

    We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In either case, BICs are represented by isolated points in the dispersion relations located within "leaky" branches. We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs whose velocity exceeds the longitudinal velocity of the substrate.

  6. Transverse acoustic phonon anomalies at intermediate wave vectors in MgV2O4

    Science.gov (United States)

    Weber, T.; Roessli, B.; Stock, C.; Keller, T.; Schmalzl, K.; Bourdarot, F.; Georgii, R.; Ewings, R. A.; Perry, R. S.; Böni, P.

    2017-11-01

    Magnetic spinels (with chemical formula A X2O4 , with X a 3 d transition metal ion) that also have an orbital degeneracy are Jahn-Teller active and hence possess a coupling between spin and lattice degrees of freedom. At high temperatures, MgV2O4 is a cubic spinel based on V3 + ions with a spin S =1 and a triply degenerate orbital ground state. A structural transition occurs at TOO=63 K to an orbitally ordered phase with a tetragonal unit cell followed by an antiferromagnetic transition of TN=42 K on cooling. We apply neutron spectroscopy in single crystals of MgV2O4 to show an anomaly for intermediate wave vectors at TOO associated with the acoustic phonon sensitive to the shear elastic modulus (C11-C12)/2 . On warming, the shear mode softens for momentum transfers near close to half the Brillouin zone boundary, but recovers near the zone center. High resolution spin-echo measurements further illustrate a temporal broadening with increased temperature over this intermediate range of wave vectors, indicative of a reduction in phonon lifetime. A subtle shift in phonon frequencies over the same range of momentum transfers is observed with magnetic fields. We discuss this acoustic anomaly in context of coupling to orbital and charge fluctuations.

  7. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  8. Contribution of acoustic modes to the density of vibrational states measured by inelastic scattering techniques

    International Nuclear Information System (INIS)

    Chumakov, A. I.; Bosak, A.; Rueffer, R.

    2009-01-01

    We consider the contribution of acoustic modes to the density of vibrational states measured by nuclear inelastic, inelastic x-ray, and inelastic neutron scattering. In nuclear and x-ray scattering, the low-energy part of the density of states (DOS) is compared with the contribution of acoustic modes to the generalized density of states. Different to that, in neutron scattering the DOS is compared with the contribution of acoustic modes to the true density of states. We argue that in general this is not correct and that similar to nuclear and x-ray scattering, the neutron data in most cases must also be compared with the contribution of acoustic modes to the generalized DOS. For neutron scattering, this contribution usually is smaller than the contribution to the true DOS. Thus, the comparison of the neutron data with the contribution of acoustic modes to the true DOS systematically overestimates the level of acoustic modes. However, an extrapolation of the neutron DOS to zero energy often exceeds even this overestimated level. In our eyes, even for glasses the manifold excess of the extrapolation of the neutron DOS to zero energy over the expected level of acoustic modes seems to be unreasonable even though in this case one can still argue on existing of additional soft modes. However, a similar excess observed also for crystalline samples clearly indicates an uncertainty of the absolute scale of the DOS measured by neutron scattering.

  9. Optimal control of transverse mode coupling instability based on the two particle model

    International Nuclear Information System (INIS)

    Ogata, Atsushi

    1985-01-01

    The optimal regulator design technique is applied to asymptotically stabilize the transverse mode coupling instability of a storage ring. The state equations are based on the two particle model. These are a pair of equation sets, one for the first and one for the second half of the synchrotron phase. Each set consists of first-order difference equations in vector-matrix form, with time step equal to the revolution time of the ring. Solution of the discrete Riccati equation gives the optimal gain matrix of the transverse feedback. Computer simulations are carried out to verify its effectiveness. Some modifications necessary to apply it to the real accelerator operation are made. The old methods, the classical output feedback and the reactive feedback, are interpreted from the viewpoint of the optimal control. (orig.)

  10. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  11. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi

    2014-08-05

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.

  12. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  13. General description of transverse mode Bessel beams and construction of basis Bessel fields

    Science.gov (United States)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Jiao, Yong Chang

    2017-07-01

    Based on an analysis of polarized Bessel beams using the Hertz vector potentials and the angular spectrum representation (ASR), a general description of transverse mode Bessel beams is proposed. As opposed to the cases of linearly and circularly polarized Bessel beams, the magnetic and electric fields of a Bessel beam in a transverse mode are orthogonal to each other. Both sets of fields together form a complete set of basis Bessel fields, in terms of which an arbitrary Bessel beam can be regarded as a linear combination. The completeness of the basis Bessel fields is analyzed from the perspectives of waveguide theory and vector wave functions. Decompositions of linearly polarized, circularly polarized, and circularly symmetric n-order Bessel beams in terms of basis Bessel fields are given. The results presented in this paper provide a fresh perspective on the description of Bessel beams, which are useful in casting insights into the experimental generation of Bessel beams and the interpretation of light scattering-related problems in practice.

  14. Dynamics of longitudinal and transverse modes along the junction plane in GaAlAs stripe lasers

    DEFF Research Database (Denmark)

    Mengel, F; Ostoich, V

    1977-01-01

    Observations of the transient excitation of higher order transverse modes along the junction plane in DH GaAlAs stripe lasers during subnanosecond pulse modulation is reported. These modes are strongly excited at the onset of the light pulse, they decay during 200 ps, and reappear after 400-600 ps...

  15. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  16. Acoustic waves in transversely excited atmospheric CO2 laser discharges: effect on performance and reduction techniques

    CSIR Research Space (South Africa)

    von Bergmann, HM

    2008-08-01

    Full Text Available Results are presented on the influence of acoustic waves on the performance of high-repetition-rate TEA CO2 lasers. It is shown that acoustic waves generated inside the laser cavity lead to nonuniform discharges, resulting in a deterioration...

  17. Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves

    DEFF Research Database (Denmark)

    Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.

    2009-01-01

    The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...

  18. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  19. Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide.

    Science.gov (United States)

    Wang, Donglin; Yu, Zhongyuan; Liu, Yumin; Guo, Xiaotao; Shu, Changgan; Zhou, Shuai

    2013-09-10

    A two-dimensional photonic crystal waveguide structure is designed for both TE- and TM-mode slow light propagation. The minimum group index of the waveguide for TE and TM modes can reach to 137.8 and 126.4, and the two polarizations have the same slow light frequency region. The designed structure can provide a large bandwidth range with very low group velocity dispersion for both TE and TM modes. The transmission property investigation for a suspended two-dimensional slab photonic crystal waveguide (PCW) indicates that such slow light character may be retained when perfect reflectors can be fixed on the horizontal surfaces of the slab. Such high group index for both TE and TM modes in two-dimensional PCWs is, to the best of our knowledge, first reported here, and may provide some useful guides for slow light research in theory.

  20. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  1. Estimation of the shear force in transverse dynamic force microscopy using a sliding mode observer

    Directory of Open Access Journals (Sweden)

    Thang Nguyen

    2015-09-01

    Full Text Available In this paper, the problem of estimating the shear force affecting the tip of the cantilever in a Transverse Dynamic Force Microscope (TDFM using a real-time implementable sliding mode observer is addressed. The behaviour of a vertically oriented oscillated cantilever, in close proximity to a specimen surface, facilitates the imaging of the specimen at nano-metre scale. Distance changes between the cantilever tip and the specimen can be inferred from the oscillation amplitudes, but also from the shear force acting at the tip. Thus, the problem of accurately estimating the shear force is of significance when specimen images and mechanical properties need to be obtained at submolecular precision. A low order dynamic model of the cantilever is derived using the method of lines, for the purpose of estimating the shear force. Based on this model, an estimator using sliding mode techniques is presented to reconstruct the unknown shear force, from only tip position measurements and knowledge of the excitation signal applied to the top of the cantilever. Comparisons to methods assuming a quasi-static harmonic balance are made.

  2. Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images

    Directory of Open Access Journals (Sweden)

    James M. Wakeling

    2014-01-01

    Full Text Available When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected.

  3. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  4. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2012-01-01

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo-Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam posit...

  5. Disorder-induced broadening of transverse acoustic phonons in SixGe1-x mixed crystals

    Czech Academy of Sciences Publication Activity Database

    Beraud, A.; Kulda, Jiří; Yonenaga, I.; Foret, M.; Salce, B.; Courtens, E.

    2004-01-01

    Roč. 350, č. 1 (2004), s. 254-257 ISSN 0921-4526 R&D Projects: GA AV ČR KSK1010104 Keywords : disordered crystals * acoustic branches Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.679, year: 2004

  6. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode.

    Science.gov (United States)

    Long, Chang; Yin, Sheng; Wang, Wei; Li, Wei; Zhu, Jianfei; Guan, Jianguo

    2016-02-18

    By investigating a square-shaped metamaterial structure we discover that wave diffraction at diagonal corners of such a structure excites transverse magnetic harmonics of 210 mode (TM210 harmonics). Multi-layer overlapping and deliberately regulating period length between adjacent unit cells can significantly enhance TM210 harmonics, leading to a strong absorption waveband. On such a basis, a design strategy is proposed to achieve broadband, thin-thickness multi-layered metamaterial absorbers (MMAs). In this strategy big pyramidal arrays placed in the "white blanks" of a chessboard exhibit two isolated absorption bands due to their fundamental and TM210 harmonics, which are further connected by another absorption band from small pyramidal arrays in the "black blanks" of the chessboard. The as-designed MMA at a total thickness (h) of 4.36 mm shows an absorption of above 0.9 in the whole frequency range of 7-18 GHz, which is 38% broader with respect to previous design methods at the same h. This strategy provides an effective route to extend the absorption bandwidth of MMAs without increasing h.

  7. Fundamental transverse mode selection and self-stabilization in large optical cavity diode lasers under high injection current densities

    Science.gov (United States)

    Avrutin, Eugene A.; Ryvkin, Boris S.; Payusov, Alexey S.; Serin, Artem A.; Gordeev, Nikita Yu

    2015-11-01

    It is shown that in high-power, large optical cavity laser diodes at high injection currents, the optical losses due to nonuniform carrier accumulation in the optical confinement layer can ensure the laser operation in the fundamental transverse mode. An experimental demonstration of switching from second order mode to fundamental mode in large optical cavity lasers with current and/or temperature increase is reported and explained, with the calculated values for the switching current and temperature in good agreement with the measurements. The results experimentally prove the nonuniform nature of carrier accumulation in the confinement layer and may aid laser design for optimizing the output.

  8. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    Lake City, Utah; July 27, 2016 Prepared in collaboration with Sierra Lobo, Inc. 14. ABSTRACT An experimental study has been conducted to explore...visually prominent, the impingement sheet was subjected to incremental pressure amplitudes in a pressure anti-node (PAN) and pressure node (PN...been conducted to explore the coupling between the impact waves created by impinging jets and high frequency acoustic pressure perturbations. High

  9. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  10. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  11. Effect of acoustic waveguide properties on the Brillouin gain spectrum in multi-mode fibers

    Science.gov (United States)

    Ke, Wei-Wei; Wang, Xiao-Jun; Tang, Xuan

    2015-02-01

    With a recent developed mode-coupling model, the Brillouin gain spectra (BGS) of multi-mode fibers (MMF) are investigated and compared with the corresponding experiment. It is found that the calculation results are coincident well with the experiment data. Furthermore, the BGS are found to be very sensitive to the index fluctuation. Such phenomenon is demonstrated by introducing a small index hump or dip in the center of the fiber core. And it can be explained by that the index fluctuation may influence the acoustic mode greatly.

  12. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  13. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    Science.gov (United States)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  14. Theoretical study of the transverse acoustic phonons of GaSb at ...

    Indian Academy of Sciences (India)

    Gallium antimonide (GaSb), like many III–V semiconductor compounds crystallizes in the cubic zinc-blende crystal ... and a structural phase transition to a high coordination phase appears. For GaSb the phase ... the changes in different phonon modes due to the change in the interatomic forces after the applications of ...

  15. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  16. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  17. Geodesic acoustic mode (GAM) like oscillations and RMP effect in the STOR-M tokamak

    Science.gov (United States)

    Basu, Debjyoti; Nakajima, Masaru; Melnikov, A. V.; McColl, David; Rohollahi, Akbar; Elgriw, Sayf; Xiao, Chijin; Hirose, Akira

    2018-02-01

    A new kind of quasi-coherent mode was observed in ohmic plasma in the STOR-M tokamak. It is featured with a clear solitary peak around 30–35 kHz in the power spectra of the ion saturation current (I_sat) of Langmuir probe as well as poloidal and toroidal mode numbers (m  =  1,n  =  0) as per the prediction of conventional geodesic acoustic mode (GAM) theory. The dispersion relation of the mode is also similar to GAM and it also shows collisional damping. In contrast to conventional GAM, the floating potential ϕ of the observed GAM-like mode does not show similar symmetric poloidal and toroidal mode numbers (m  =  0,n  =  0), but has (m  =  1,n  =  1). The GAM-like mode has also a pronounced magnetic component with mixed poloidal modes (m=3~and~m=5; n=1 ), as observed by Mirnov coils. This mode is suppressed by the application of resonance magnetic perturbations.

  18. Quantification of Turbulent Driving Forces for the Geodesic Acoustic Mode in the JFT-2M Tokamak

    Science.gov (United States)

    Kobayashi, T.; Sasaki, M.; Ido, T.; Kamiya, K.; Miura, Y.; Nagashima, Y.; Ida, K.; Inagaki, S.; Fujisawa, A.; Itoh, S.-I.; Itoh, K.

    2018-01-01

    We investigate spatial structures of turbulence and turbulent transport modulated by the geodesic acoustic mode (GAM), from which the excitation mechanism of the GAM is discussed. The GAM is found to be predominantly excited through a localized Reynolds stress force, rather than the dynamic shearing force. The evaluated growth rate is larger than the linear damping coefficients and is on the same order of magnitude as the effective growth rate evaluated from time evolution in the GAM kinetic energy.

  19. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    of the mode selection properties of the new structure is rigorously analyzed and compared to other structures reported in the literature. The possibility of engineering the emission shape while retaining strong single mode operation is highly desirable for low-cost mid-range optical interconnects applications......A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  20. Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses

    OpenAIRE

    Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch

    2009-01-01

    In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...

  1. Transverse modes of a bunched beam at space charge dominating impedance

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V.; /Fermilab

    2009-06-01

    Coherent transverse oscillations of a bunched beam are considered at space charge dominated impedance and synchrotron motion taken into account. General equation for the bunch eigenmodes is derived, its exact analytical solution is found for a boxcar bunch at linear synchrotron oscillations, and numerical solutions are presented for other distributions. Both low and high synchrotron frequency approaches are considered and compared, fields of their application are established, and some estimations are proposed for the intermediate region.

  2. Transverse kick in misaligned traveling wave structures driven at the fundamental mode

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-04-01

    Fabrication errors in traveling wave structures result in non-axisymmetric RF fields that couple to the rf drive at the fundamental mode frequency. The authors calculate the excitation of the dipole mode and the integrated effect on the beam, using the thin iris and small hole approximation

  3. Optical and acoustic phonon modes in strained InGaAs/GaAs rolled up tubes

    Science.gov (United States)

    Angelova, T.; Shtinkov, N.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Deneke, Ch.; Schmidt, O. G.; Cros, A.

    2012-05-01

    Rolled-up semiconductor tubes of various diameters made of alternating In0.215Ga0.785As/GaAs layers have been investigated by means of Raman scattering. The optical and acoustic phonon modes of individual tubes have been studied and compared with the characteristics of the surrounding material. After tube formation, the frequency of the phonon modes shifts with respect to the as-grown material and disorder activated modes are observed. The frequency shifts are related to the residual strain in the tubes through the deformation potential approximation. Good agreement with atomistic valence force field simulations and x-ray micro-diffraction measurements is found. By comparison with x-ray data, a Raman strain constant K = 0.65 is proposed for In0.215Ga0.785As. In the low frequency range, acoustic mode doublets are observed on the tubes that are absent in the surrounding material. They show clear evidence of the formation of periodic superlattices after the rolling-up process, and give insight into the quality of their interfaces.

  4. Waveguide modes of 1D photonic crystals in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.; Belotelov, V. I. [Moscow State University, Physics Department (Russian Federation)

    2016-11-15

    We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

  5. Analytic study of transverse shunt resistance and even-odd mode coupling of a rod type RFQ

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-06-01

    To minimize the ohmic power losses, it is necessary to maximize the transverse shunt resistance, R shunt . The cell of a rod-type RFQ is modelled by a parallel two-rod transmission line supported above a parallel ground conductor by two legs. Due to coupling between neighboring supports, the loading impedance is modified depending on the leg spacing. The shunt resistance is improved by reducing the cell length and increasing the leg spacing, and maximized when the legs are equally spaced. However, this is also the condition for strong excitation of the unwanted 'even-mode' in which a potential difference exists between the ends of the rods mid-plane and the grounding conductor or tank, Once the legs of the support are longitudinally separated, some even-mode excitation of the structure is inevitable because some current must be injected into the ground conductor; the even-mode excitation rises as leg separation increases. Further, when the desired odd-mode voltage is symmetric about the cell centre, the even-mode voltage is anti-symmetric This paper is a very much abridged version of two internal design notes[3], [4]. (author). 4 refs.,1 fig

  6. Analysis of the traveltime sensitivity kernels for an acoustic transversely isotropic medium with a vertical axis of symmetry

    KAUST Repository

    Djebbi, Ramzi

    2016-02-05

    In anisotropic media, several parameters govern the propagation of the compressional waves. To correctly invert surface recorded seismic data in anisotropic media, a multi-parameter inversion is required. However, a tradeoff between parameters exists because several models can explain the same dataset. To understand these tradeoffs, diffraction/reflection and transmission-type sensitivity-kernels analyses are carried out. Such analyses can help us to choose the appropriate parameterization for inversion. In tomography, the sensitivity kernels represent the effect of a parameter along the wave path between a source and a receiver. At a given illumination angle, similarities between sensitivity kernels highlight the tradeoff between the parameters. To discuss the parameterization choice in the context of finite-frequency tomography, we compute the sensitivity kernels of the instantaneous traveltimes derived from the seismic data traces. We consider the transmission case with no encounter of an interface between a source and a receiver; with surface seismic data, this corresponds to a diving wave path. We also consider the diffraction/reflection case when the wave path is formed by two parts: one from the source to a sub-surface point and the other from the sub-surface point to the receiver. We illustrate the different parameter sensitivities for an acoustic transversely isotropic medium with a vertical axis of symmetry. The sensitivity kernels depend on the parameterization choice. By comparing different parameterizations, we explain why the parameterization with the normal moveout velocity, the anellipitic parameter η, and the δ parameter is attractive when we invert diving and reflected events recorded in an active surface seismic experiment. © 2016 European Association of Geoscientists & Engineers.

  7. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Directory of Open Access Journals (Sweden)

    Yosef London

    2017-04-01

    Full Text Available An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  8. Acoustic Echo Cancellation Embedded in Smart Transcoding Algorithm between 3GPP AMR-NB Modes

    Directory of Open Access Journals (Sweden)

    Emmanuel Rossignol Thepie Fapi

    2010-01-01

    Full Text Available Acoustic Echo Cancellation (AEC is a necessary feature for mobile devices when the acoustic coupling between the microphone and the loudspeaker affects the communication quality and intelligibility. When implemented inside the network, decoding is required to access the corrupted signal. The AEC performance is strongly degraded by nonlinearity introduced by speech codecs. The Echo Return Loss Enhancement (ERLE can be less than 10 dB for low bit rate speech codecs. We propose in this paper a coded domain AEC integrated in a smart transcoding strategy which directly modifies the Code Excited Linear Prediction (CELP parameters. The proposed system addresses simultaneously problems due to network interoperability and network voice quality enhancement. The ERLE performance of this new approach during transcoding between Adaptive Multirate-NarrowBand (AMR-NB modes is above 45 dB as required in Global System for Mobile Communications (GSM specifications.

  9. Linear gyrokinetic investigation of the geodesic acoustic modes in realistic tokamak configurations

    Science.gov (United States)

    Novikau, I.; Biancalani, A.; Bottino, A.; Conway, G. D.; Gürcan, Ö. D.; Manz, P.; Morel, P.; Poli, E.; di Siena, A.; ASDEX Upgrade Team

    2017-12-01

    In order to provide scaling formulae for the geodesic acoustic mode (GAM) frequency and damping rate, GAMs are studied by means of the gyrokinetic global particle-in-cell code ORB5. Linear electromagnetic simulations in the low-βe limit have been performed in order to separate acoustic and Alfvénic time scales and obtain more accurate measurements. The dependence of the frequency and damping rate on several parameters such as the safety factor, the GAM radial wavenumber, and the plasma elongation is studied. All simulations have been performed with kinetic electrons with a realistic electron/ion mass ratio. Interpolating formulae for the GAM frequency and damping rate, based on the results of the gyrokinetic simulations, have been derived. Using these expressions, the influence of the temperature gradient on the damping rate is also investigated. Finally, the results are applied to the study of a real discharge of the ASDEX Upgrade tokamak.

  10. Fast scanning mode and its realization in a scanning acoustic microscope

    International Nuclear Information System (INIS)

    Ju Bingfeng; Bai Xiaolong; Chen Jian

    2012-01-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  11. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  12. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    the otherwise nearly diffraction-limited beam quality of fiber amplifiers, was discovered. The latter effect has impeded the further power scaling of fiber lasers, since the mode instability sets in when the average power exceeds a certain threshold. The purpose of the research presented in this thesis...... based on the beam propagation method, and the second is by a formulation of a coupled-mode model of thermally induced mode instability. The former approach is used to study the effect of quantum defect heating on the guiding properties of the fiber, while the latter provides a simplified description......The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...

  13. Using Acoustic Structure Quantification During B-Mode Sonography for Evaluation of Hashimoto Thyroiditis.

    Science.gov (United States)

    Rhee, Sun Jung; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Cha, Jang Gyu; Jeong, Sun Hye

    2015-12-01

    This study aimed to evaluate the usefulness of Acoustic Structure Quantification (ASQ; Toshiba Medical Systems Corporation, Nasushiobara, Japan) values in the diagnosis of Hashimoto thyroiditis using B-mode sonography and to identify a cutoff ASQ level that differentiates Hashimoto thyroiditis from normal thyroid tissue. A total of 186 thyroid lobes with Hashimoto thyroiditis and normal thyroid glands underwent sonography with ASQ imaging. The quantitative results were reported in an echo amplitude analysis (Cm(2)) histogram with average, mode, ratio, standard deviation, blue mode, and blue average values. Receiver operating characteristic curve analysis was performed to assess the diagnostic ability of the ASQ values in differentiating Hashimoto thyroiditis from normal thyroid tissue. Intraclass correlation coefficients of the ASQ values were obtained between 2 observers. Of the 186 thyroid lobes, 103 (55%) had Hashimoto thyroiditis, and 83 (45%) were normal. There was a significant difference between the ASQ values of Hashimoto thyroiditis glands and those of normal glands (P Hashimoto thyroiditis were significantly greater than those in patients with normal thyroid glands. The areas under the receiver operating characteristic curves for the ratio, blue average, average, blue mode, mode, and standard deviation were: 0.936, 0.902, 0.893, 0.855, 0.846, and 0.842, respectively. The ratio cutoff value of 0.27 offered the best diagnostic performance, with sensitivity of 87.38% and specificity of 95.18%. The intraclass correlation coefficients ranged from 0.86 to 0.94, which indicated substantial agreement between the observers. Acoustic Structure Quantification is a useful and promising sonographic method for diagnosing Hashimoto thyroiditis. Not only could it be a helpful tool for quantifying thyroid echogenicity, but it also would be useful for diagnosis of Hashimoto thyroiditis. © 2015 by the American Institute of Ultrasound in Medicine.

  14. Model of the transverse modes of stable and unstable porro–prism resonators using symmetry considerations

    CSIR Research Space (South Africa)

    Burger, L

    2007-01-01

    Full Text Available intensities in the central region of each petal, each pattern reminiscent of a small Gaussian beam. Following from the model of the petal−pattern formation2,3 it is hypothesized that the petals are individual Gaussian−like modes, each resonating...

  15. Raman scattering from ZnO incorporating Fe nanoparticles: Vibrational modes and low-frequency acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Romcevic, N., E-mail: romcevi@ipb.ac.r [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kostic, R.; Hadzic, B.; Romcevic, M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kuryliszyn-Kudelska, I.; Dobrowolski, W.D. [Institute of Physics PAS, Al. Lotnikow 32/46, 02/668 Warsaw (Poland); Narkiewicz, U.; Sibera, D. [Szcecin University of Tehnology, Institute of Chemical and Environmental Engineering, Puleskiego 10, 70-322 Szczecin, Warsaw (Poland)

    2010-10-08

    Research highlights: Nanocrystaline samples of ZnO(Fe) were synthesized by wet chemical method. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, Fe{sub 2}O{sub 3}, ZnFe{sub 2}O{sub 4}) and the mean crystalline size (8-52 nm). Small amount (5 wt.%) of Fe{sub 2}O{sub 3} at the beginning of the synthesis results in forming of ZnFe{sub 2}O{sub 4} nanoparticles. Large amount (90 wt.%) of Fe{sub 2}O{sub 3} at the beginning of the synthesis results in forming Fe{sub 2}O{sub 3} nanoparticles. Both samples contain ZnO phase which is not registered by XRD, but is clearly seen in the Raman spectra. Main characteristics of experimental Raman spectrum in 200-1600 cm{sup -1} spectral region are: sharp peak at 436 cm{sup -1} and broad two-phonon structure at {approx}1150 cm{sup -1}, typical for ZnO; broad structure below 700 cm{sup -1} that has different position and shape in case of ZnFe{sub 2}O{sub 4} or Fe{sub 2}O{sub 3} nanoparticles. In low-frequency Raman spectra of ZnFe{sub 2}O{sub 4} nanoparticles registered peaks agree well with the calculated frequencies of acoustic phonons. As a result we identified (0,2), (0,0), (2,2) and (1,0) modes. - Abstract: Nanocrystaline samples of ZnO(Fe) were synthesized by wet chemical method. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, Fe{sub 2}O{sub 3}, ZnFe{sub 2}O{sub 4}) and the mean crystalline size (8-52 nm). In this paper we report the experimental spectra of Raman scattering. Main characteristics of experimental Raman spectrum in 200-1600 cm{sup -1} spectral region are: sharp peak at 436 cm{sup -1} and broad two-phonon structure at {approx}1150 cm{sup -1}, typical for ZnO; broad structure below 700 cm{sup -1} that has different position and shape in case of ZnFe{sub 2}O{sub 4} or Fe{sub 2}O{sub 3} nanoparticles. Low-frequency Raman modes were measured and assigned according to confined acoustic vibrations of spherical nanoparticles

  16. Thermal expansion in 2D honeycomb structures: Role of transverse phonon modes

    OpenAIRE

    Mann, Sarita; Jindal, V. K.

    2016-01-01

    Graphene and its derivatives including hexagonal BN are notorious for their large negative thermal expansion over a wide range of temperature which is quite unusual. We attempt to analyze this unusual behavior on the basis of character of the phonon modes. The linear thermal expansion coefficients (LTEC) of two-dimensional honeycomb structured pure graphene, h-BN and B/N doped graphene are studied using density functional perturbation theory (DFPT) under quasi harmonic approximation. The dyna...

  17. 14 MeV neutron-induced transverse mode shifts in multimode VCSELs

    CERN Document Server

    Pailharey, E; D'Hose, C; Musseau, O

    2000-01-01

    Research on optical communication behavior in radiative environments is a key point for the design of diagnostic links for the large physical instruments (Laser MegaJoule at CEA, Large Hadron Collider at CERN). For years, the radiation tolerance of several types of emitters (LED and LD) have been tested with promising results for the LDs. New technologies and devices (VCSEL) have recently appeared as promising candidates to replace conventional edge emitting LDs. The shorter wavelength VCSELs (below 1 mu m) are well adapted for short distance data links, due to their low threshold current, high efficiency and large possibilities for integration. 850 nm VCSELs are tested under 14 MeV neutron irradiation. Three different aperture (8 mu m monomode, 15 mu m and 20 mu m multimode) COTS devices are irradiated up to 3.4*10/sup 13/ n/cm/sup 2/. Transverse pattern behavior is studied using infrared camera imaging, while optical power modifications are measured as a function of bias current. Displacement damage induces...

  18. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.

    Science.gov (United States)

    Foerster, Michael; Macià, Ferran; Statuto, Nahuel; Finizio, Simone; Hernández-Mínguez, Alberto; Lendínez, Sergi; Santos, Paulo V; Fontcuberta, Josep; Hernàndez, Joan Manel; Kläui, Mathias; Aballe, Lucia

    2017-09-01

    The magnetoelastic effect-the change of magnetic properties caused by the elastic deformation of a magnetic material-has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.Understanding the effects of local dynamic strain on magnetization may help the development of magnetic devices. Foerster et al. demonstrate stroboscopic imaging that allows the observation of both strain and magnetization dynamics in nickel when surface acoustic waves are driven in the substrate.

  19. Analysis of Waveguide Devices Involving Lateral and Transverse Perfect Magnetic Wall Boundary Conditions by the Mode-Matching Method

    Science.gov (United States)

    Polo-López, Lucas; Ruiz-Cruz, Jorge A.; Montejo-Garai, José R.; Rebollar, Jesús M.

    2017-09-01

    This contribution presents the analysis of waveguide problems involving general boundary conditions of perfect magnetic wall. This type of boundary condition is used in electromagnetic solvers very commonly when the device under analysis has physical symmetry, in order to speed up the computation time. This paper is focused on extending its use in problems having this type of boundary condition in the lateral and transverse walls of the waveguides involved in the problem. The presented formulation, based on the mode-matching method, will be applied to classical waveguide devices, but also to address radiating problems with a novel formulation. Different applications will be targeted, and the simulation results will be compared with those obtained by other numerical techniques (based on different solvers), validating the presented approach as another suitable tool for computer-aided design.

  20. Mode Transition and Intermittency in an Acoustically Uncoupled Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary A.

    2014-06-16

    The prediction of dynamic instability remains an open and important issue in the development of gas turbine systems, particularly those constrained by emissions limitations. The existence and characteristics of dynamic instability are known to be functions of combustor geometry, flow conditions, and combustion parameters, but the form of dependence is not well understood. By modifying the acoustic boundary conditions, changes in flame and flow structure due to inlet parameters can be studied independent of the acoustic modes with which they couple. This paper examines the effect of equivalence ratio on the flame macrostructure — the relationship between the turbulent flame brush and the dominant flow structures — in an acoustically uncoupled environment. The flame brush is measured using CH* chemiluminescence, and the flow is interrogated using two-dimensional particle image velocimetry. We examine a range of equivalence ratios spanning three distinct macrostructures. The first macrostructure (ϕ = 0.550) is characterized by a diffuse flame brush confined to the interior of the inner recirculation zone. We observe a conical flame in the inner shear layer, continuing along the wall shear layer in the second macrostructure (ϕ = 0.600). The third macrostructure exhibits the same flame brush as the second, with an additional flame brush in the outer shear layer (ϕ = 0.650). Between the second and third macrostructures, we observe a regime in which the flame brush transitions intermittently between the two structures. We use dynamic mode decomposition on the PIV data to show that this transition event, which we call flickering, is linked to vorticity generated by the intermittent expansion of the outer recirculation zone as the flame jumps in and out of the outer shear layer. In a companion paper, we show how the macrostructures described in this paper are linked with dynamic instability [1].

  1. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    Science.gov (United States)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  2. Low-frequency magnetohydrodynamics and geodesic acoustic modes in toroidally rotating tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wahlberg, C, E-mail: Christer.Wahlberg@fysast.uu.s [Department of Physics and Astronomy, EURATOM/VR Fusion Association, PO Box 516, Uppsala University, SE-751 20 Uppsala (Sweden)

    2009-08-15

    This paper analyses low-frequency magnetohydrodynamic (MHD) modes, especially the geodesic acoustic modes (GAMs), in toroidal plasmas with large aspect ratio and circular cross section, including the effects of toroidal plasma rotation. A system of equations describing MHD modes with frequency of the order of the sound frequency in such plasmas is derived from the Frieman-Rotenberg equation, using a technique where the plasma perturbation xi and the perturbed magnetic field Q are expanded separately in the inverse aspect ratio epsilon = r/R, where r and R denote the minor and major radii of the plasma torus, respectively. The large-scale, ideal MHD properties of the GAM induced by toroidal rotation (Wahlberg 2008 Phys. Rev. Lett. 101 115003) are thereafter analysed in more detail employing this system of equations. It is shown that both the axisymmetric GAMs existing in rotating plasmas are localized on a specific magnetic surface only to leading order in epsilon, and that a 'halo' consisting of finite components of both xi and Q with dominant poloidal mode numbers m = +-2 appears outside this magnetic surface to higher orders in epsilon.

  3. On the exploitation of mode localization in surface acoustic wave MEMS

    Science.gov (United States)

    Hanley, T. H.; Gallacher, B. J.; Grigg, H. T. D.

    2017-05-01

    Mode localization sensing has been recently introduced as an alternative resonant sensing protocol. It has been shown to exhibit several advantages over other resonant methods, in particular a potential for higher sensitivity and rejection of common mode noise. This paper expounds the principles of utilising surface acoustic waves (SAW) to create a mode localization sensor. A generalised geometry consisting of a pair of coupled resonant cavities is introduced and an analytical solution found for the displacement fields within the cavities. The solution is achieved by coupling the internal cavity solutions using a ray tracing method. The results of the analytical solution are compared to a numerical solution found using commercial finite element method (FEM) software; exact agreement is found between the two solutions. The insight gained from the analytical model enables the determination of critical design parameters. A brief analysis is presented showing analogous operation to previous examples of mode localization sensors. The sensitivity of the device is shown to depend nonlinearly on the number of periods in the array coupling the two cavities.

  4. New vibrational mode of the acoustic type in Nd(Pr)2 Cu O4 single crystals

    International Nuclear Information System (INIS)

    Fil', D.V.; Kolobov, I.G.; Fil', V.D.; Barilo, S.N.; Zhigunov, D.I.

    1995-01-01

    Sound velocities along main symmetry directions as well as their angle dependences in (100),(110)-type planes are measured in Nd(Pr) 2 Cu O 4 . Anomalies in the angle dependences are found, which are interpreted as a result of the interaction of elastic vibrations with an additional plane mode of the acoustic type. According to the proposed interpretation, the bare spectrum of the additional mode is two-dimensional, and the origin of the mode is connected with the electron degrees of freedom in the Cu O 2 -planes. A phenomenological model for description of acoustic mode spectra in the investigated systems is proposed. On the basis of the anion model of HTSC, a possible microscopic scenario of the appearance of the additional mode is analyzed. In the framework of the phenomenological model, the Debye temperatures are computed, which are in agreement with the specific heat data. The values of the components of the elastic moduli tensor are given

  5. Transverse mode dynamics in vertical-cavity surface-emitting lasers: Spatiotemporal versus modal expansion descriptions

    International Nuclear Information System (INIS)

    Mulet, Josep; Balle, Salvador

    2002-01-01

    We discuss the range of validity of a modal description for the spatiotemporal dynamics of the optical field in vertical-cavity surface-emitting lasers. We focus on the secondary pulsations that appear during the turn-off transients when the injection current is modulated by a square-wave signal. We compare the results obtained with both a full spatiotemporal model [J. Mulet and S. Balle, IEEE J. Quantum. Electron. 38, 291 (2002)] and a modal expansion derived from this model. We find that the results obtained from the two descriptions agree for strong lateral guiding. However, for weak lateral guiding we find differences because the optical-field profile changes significantly due to spatial changes in the refractive index induced by the carrier density. The reason is that in the full spatiotemporal model a shrinkage of the mode profile occurs, which leads to an enhancement of the secondary pulsations. This effect is not included in the modal expansion, and it determines the limits of validity of such an approach for gain-guided devices

  6. Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime

    International Nuclear Information System (INIS)

    Yin, L.; Daughton, W.; Albright, B. J.; Bowers, K. J.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.; Roper, Q.

    2006-01-01

    The backward stimulated Raman scattering (BSRS) of a laser from electron beam acoustic modes (BAM) in the presence of self-consistent non-Maxwellian velocity distributions is examined by linear theory and particle-in-cell (PIC) simulations in one and two dimensions (1D and 2D). The BAM evolve from Langmuir waves (LW) as electron trapping modifies the distribution to a non-Maxwellian form that exhibits a beam component. Linear dispersion relations using the nonlinearly modified distribution from simulations are solved for the electrostatic modes involved in the parametric coupling. Results from linear analysis agree well with electrostatic spectra from simulations. It is shown that the intersection of the Stokes root with BAM (instead of LW) determines the matching conditions for BSRS at a nonlinear stage. As the frequency of the unstable Stokes mode decreases with increasing wave number, the damping rate and the phase velocity of BAM decreases with the phase velocity of the Stokes mode, providing a self-consistently evolving plasma linear response that favors continuation of the nonlinear frequency shift. Coincident with the emergence of BAM is a rapid increase in BSRS reflectivity. The details of the wave-particle interaction region in the electron velocity distribution determine the growth/damping rate of these electrostatic modes and the nonlinear frequency shift; in modeling this behavior, the use of sufficiently large numbers of particles in the simulations is crucial. Both the reflectivity scaling with laser intensity and the spectral features from simulations are discussed and are consistent with recent Trident experiments

  7. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  8. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    Science.gov (United States)

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  9. Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris

    2013-01-01

    An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...... implementation for a simple single mode soliton propagation example. As opposed to the standard implementation, the new implementation is able to reproduce pulsed four wave mixing observed experimentally in a higher order mode fiber....

  10. Neutron scattering investigation of the acoustic-mode Grüneisen parameters in RbBr

    DEFF Research Database (Denmark)

    Ernst, G.; Krexner, G.; Quittner, G.

    1984-01-01

    The microscopic Grüneisen parameters in RbBr have been determined for 44 acoustic modes in the main symmetry directions Δ, Σ, and Λ by inelastic neutron scattering under hydrostatic pressure. The experimental data are well described within the framework of a breathing-shell model, which includes...

  11. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jinjin; Li, Wenfang; Wen, Ruijuan; Li, Gang; Zhang, Pengfei; Zhang, Tiancai [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)

    2013-08-19

    We have experimentally demonstrated the strong coupling between single atoms and the higher-order Hermite-Gaussian transverse modes in a high-finesse optical microcavity. Compared to the usual low-order symmetric transverse modes, multiple lobes and the asymmetric spatial pattern of the titled modes provide more information about the motion of single atoms in the cavity. The motional information can be extracted from the measured transmission spectra, which includes the velocities and the positions of the atoms in vertical and off-axis directions. The scheme has great potential in time-resolved atom-cavity microscopy and in tracking the three-dimensional single atom trajectory in real time.

  12. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  13. CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through Fourier transform methods.

    Science.gov (United States)

    Rønnekleiv, Arne

    2005-12-01

    A method for analyzing capacitive micromachined ultrasonic transducer (CMUT) arrays and arrays of elements composed of several CMUTs is proposed. It is based on a combination of a free acoustic mode description of an isolated CMUT, and the coupling of these modes to the fluid in which waves should be excited or detected through an impedance matrix that will depend on frequency. The parameters of the model describing the isolated CMUT is independent of frequency and excitation of neighbor CMUTs, whereas the acoustic impedance matrix describing the coupling to the fluid will depend on both the excitation of neighbor CMUTs and frequency. Hence, this splitting of the calculations has a potential for saving computer time. The analysis gives transfer functions from excitations that vary harmonically with time and space along the array surface to CMUT parameters as current, mode excitations, or output acoustic pressure. Based on this, the response of essentially arbitrary excitations of the CMUTs may be obtained. The method is used to analyze an infinitely large array of circular CMUTs on a rectangular grid. The CMUTs are assumed to be operating in collapsed mode. Sharp resonances are shown to occur that could be significantly damped by adding series resistors to the CMUTs or increasing the water viscosity.

  14. Acoustics

    Science.gov (United States)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  15. A new mode of acoustic NDT via resonant air-coupled emission

    Science.gov (United States)

    Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc

    2017-06-01

    Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.

  16. Dynamics of turbulent transport dominated by the geodesic acoustic mode near the critical gradient regime

    International Nuclear Information System (INIS)

    Miki, Kazuhiro; Kishimoto, Yasuaki; Li, Jiquan; Miyato, Naoaki

    2008-01-01

    The effects of geodesic acoustic modes (GAMs) on the toroidal ion temperature gradient turbulence and associated transport near the critical gradient regime in tokamak plasma are investigated based on global Landau-fluid simulations and extended predator-prey modeling analyses. A new type of intermittent dynamics of transport accompanied with the emission and propagation of the GAMs, i.e., GAM intermittency [K. Miki et al., Phys. Rev. Lett. 99, 145003 (2007)], has been found. The intermittent bursts are triggered by the onset of spatially propagating GAMs when the turbulent energy exceeds a critical value. The GAMs suffer collisionless damping during the propagation and nonlocally transfer local turbulence energy to wide radial region. The stationary zonal flows gradually increase due to the accumulation of non-damped residual part over many periods of quasi-periodic intermittent bursts and eventually quench the turbulence, leading to a nonlinear upshift of the linear critical gradient; namely, the Dimits shift. This process is categorized as a new class of transient dynamics, referred to as growing intermittency. The Dimits shift is found to be established through this dynamical process. An extended minimal predator-prey model with collisionless damping of the GAMs is proposed, which qualitatively reproduce the main features of the growing intermittency and approximately predict its various time scales observed in the simulations

  17. Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution

    Science.gov (United States)

    Ren, Haijun; Wang, Hao

    2018-04-01

    Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \

  18. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki

    2014-01-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small

  19. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  20. Rayleigh Waves in Phononic Crystal Made of Multilayered Pillars: Confined Modes, Fano Resonances, and Acoustically Induced Transparency

    Science.gov (United States)

    Oudich, M.; Djafari-Rouhani, B.; Bonello, B.; Pennec, Y.; Hemaidia, S.; Sarry, F.; Beyssen, D.

    2018-03-01

    We present a design of phononic crystal based on pillars distributed on a substrate surface in which each pillar is constructed by a periodic stacking of PMMA and silicon layers. The pillar behaves like a one-dimensional phononic crystal which allows the creation of band gaps that prohibit wave propagation along the pillar. Thanks to this property, we show that confined modes are produced at the pillar-substrate interface which couples with surface acoustic waves (SAW) and causes their attenuation. Furthermore, by tailoring a defect inside the phononic pillar, we reveal the possibility to create confined cavity modes inside the band gap which can strongly couple with SAW. The cavity modes can be excited by SAW and the coupling produces sharp SAW transmissions. Additionally, we demonstrate that the coupling between the cavity modes and the confined modes at the pillar-substrate interface can give rise to a Fano-like resonance. We also evidence the possibility of generating an acoustic analogue of electromagnetically induced transparency for SAW with high transmission in a narrow bandwidth. The system presents perspectives for the design of high-quality-factor phononic excitation for optomechanic devices and phonon circuits based on SAW manipulation.

  1. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean.

    Science.gov (United States)

    Chandrayadula, Tarun K; Colosi, John A; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.

  2. Confinement of acoustical modes due to the electron-phonon interaction within 2D-electron gas

    International Nuclear Information System (INIS)

    Kochelap, V.A.; Gulseren, O.

    1992-09-01

    We study the confinement of acoustical modes within 2DEG due only to the electron-phonon interaction. The confined modes split out from the bulk phonons even at uniform lattice parameters, when the 2DEG is created by means of modulation doping. The effect is more pronounced when the wave vector q of the modes increases and is maximum at q = 2 k F (k F is the Fermi wave vector). In the case of several electron sheets the additional features of the confinement effect appear. In the limit of the strong electron-phonon coupling and high surface concentration of the electrons the considered system can suffer Peierls-type phase transition. In this case periodical deformation of the lattice and charge density wave are confined within the electron sheet. (author). 18 refs, 2 figs

  3. Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress

    Science.gov (United States)

    Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.

    2011-04-01

    Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.

  4. Acoustic agglomeration methods and apparatus

    Science.gov (United States)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  5. Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal

    Science.gov (United States)

    Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes, also called bound states in continuum, which have recently found a high renewal interest. These modes appear as resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure (i.e., the same solid layers) we show, by detuning the incidence angle θ , the possibility

  6. Observation of transverse and longitudinal modes in non-neutral electron clouds confined in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1979-01-01

    Electrostatic modes on non-neutral electron clouds confined in a magnetic mirror field have been investigated. The cloud contains 2 x 10 11 electrons at an average kinetic energy of 0.3 MeV for a magnetic field with a peak intensity of 9 kG at the midplane. It was found that the cloud is moving azimuthally as well as longitudinally. The azimuthal motion has an m=1 spatial nature. The longitudinal modes have a more complicated nature, but their frequency equals that of the azimuthal mode

  7. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  8. About the selection of transverse modes in the X-band oversized oscillator with 2.5 GW output power

    Science.gov (United States)

    Tsygankov, R. V.; Rostov, V. V.; Gunin, A. V.; Elchaninov, A. A.; Markov, A. B.; Ozur, G. E.

    2017-05-01

    The paper describes the numerical and experimental results of the microwave O-type oscillator based on an oversized slow wave structure (SWS). The feedback is applied to the design scheme, which provides intense modulation of the electron beam in the cathode-anode region and two special cavities before SWS. The selectivity of TM02 operating mode occurs due to increased diffraction loss of parasitic modes in the cathode part. The slow wave structure consists of two identical sections with the phase-shifting region in between. The use of this configuration leads to the formation of a locked TM01 wave, having good conditions for the transformation into the working mode TM02. In the experiments, a stable generation regime with pure TM02 mode at a frequency of 10 GHz with an efficiency of about 30% and the output power of 2.5 GW in the magnetic field below the cyclotron resonance was obtained.

  9. Suppression of the Neoclassical Tearing Modes in Tokamaks under Anomalous Transverse Transport Conditions when the Magnetic Well Effect Predominates over the Bootstrap Drive

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Tsypin, V.S.

    2005-01-01

    A study is made of the suppression of neoclassical tearing modes in tokamaks under anomalous transverse transport conditions when the magnetic well effect predominates over the bootstrap drive. It is stressed that the corresponding effect, which is called the compound suppression effect, depends strongly on the profiles of the electron and ion temperature perturbations. Account is taken of the fact that the temperature profile can be established as a result of the competition between anomalous transverse heat transport, on the one hand, and longitudinal collisional heat transport, longitudinal heat convection, longitudinal inertial transport, and transport due to the rotation of magnetic islands, on the other hand. The role of geodesic effects is discussed. The cases of competition just mentioned are described by the model sets of reduced transport equations, which are called, respectively, collisional, convective, inertial, and rotational plasmophysical models. The magnetic well is calculated with allowance for geodesic effects. It is shown that, for strong anomalous heat transport conditions, the contribution of the magnetic well to the generalized Rutherford equation for the island width W is independent of W not only in the collisional model (which has been investigated earlier) but also in the convective and inertial models and depends very weakly (logarithmically) on W in the rotational model. It is this weak dependence that gives rise to the compound effect, which is the subject of the present study. A criterion for the stabilization of neoclassical tearing modes by the compound effect at an arbitrary level of the transverse heat transport by electrons and ions is derived and is analyzed for two cases: when the electron heat transport and ion heat transport are both strong, and when the electron heat transport is strong and the ion heat transport is weak

  10. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    Science.gov (United States)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes

  11. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    Science.gov (United States)

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs.

  12. Collective acoustic modes as renormalized damped oscillators: Unified description of neutron and x-ray scattering data from classical fluids

    International Nuclear Information System (INIS)

    Bafile, Ubaldo; Guarini, Eleonora; Barocchi, Fabrizio

    2006-01-01

    In the Q range where inelastic x-ray and neutron scattering are applied to the study of acoustic collective excitations in fluids, various models of the dynamic structure factor S(Q,ω) generalize in different ways the results obtained from linearized-hydrodynamics theory in the Q→0 limit. Here we show that the models most commonly fitted to experimental S(Q,ω) spectra can be given a unified formulation. In this way, direct comparisons among the results obtained by fitting different models become now possible to a much larger extent than ever. We also show that a consistent determination of the dispersion curve and of the propagation Q range of the excitations is possible, whichever model is used. We derive an exact formula which describes in all cases the dispersion curve and allows for the first quantitative understanding of its shape, by assigning specific and distinct roles to the various structural, thermal, and damping effects that determine the Q dependence of the mode frequencies. The emerging picture describes the acoustic modes as Q-dependent harmonic oscillators whose characteristic frequency is explicitly renormalized in an exact way by the relaxation processes, which also determine, through the widths of both the inelastic and the elastic lines, the whole shape of collective-excitation spectra

  13. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  14. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    Science.gov (United States)

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  15. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles

  16. Scattering of the transverse magnetic modes from an abruptly ended strongly asymmetrical slab waveguide by an accelerated integral equation technique.

    Science.gov (United States)

    Manenkov, A B; Latsas, G P; Tigelis, L G

    2001-12-01

    We study the problem of the scattering of the first TM guided mode from an abruptly ended strongly asymmetrical slab waveguide by an improved iteration technique, which is based on the integral equation method with "accelerating" parameters. We demonstrate that the values of these parameters are related to the variational principle, and we save approximately 1-2 iterations compared with the case in which these parameters are not employed. The tangential electric-field distribution on the terminal plane, the reflection coefficient of the first TM guided mode, and the far-field radiation pattern are computed. Furthermore, a simple technique based on the Aitken extrapolation procedure is employed for faster computation of the higher-order solutions of the reflection coefficient. Numerical results are presented for several cases of abruptly ended waveguides, including systems with variational profile, while special attention is given to the far-field radiation pattern rotation and its explanation.

  17. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Directory of Open Access Journals (Sweden)

    A. Datta

    2018-03-01

    Full Text Available We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love–Rayleigh coupling, but incidence of any mode and coupling to any (other mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git.

  18. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Science.gov (United States)

    Datta, Arjun

    2018-03-01

    We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git).

  19. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    International Nuclear Information System (INIS)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P.; Girard, S.; Van Uffelen, M.; Berghmans, F.; Regnier, E.; Berghmans, F.; Thienpont, H.

    2009-01-01

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  20. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability

    Science.gov (United States)

    Yang, Baolai; Zhang, Hanwei; Shi, Chen; Tao, Rumao; Su, Rongtao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2018-01-01

    We report a high power monolithic ytterbium-doped fiber laser oscillator with an output power of 3.05 kW, which is achieved by simultaneous optimizations of the stimulated Raman scattering (SRS) and transverse mode instability (TMI). The optimizations of the SRS are designed and utilized in the construction of the fiber laser oscillator, while the TMI threshold is optimized with the study of the dependence of TMI threshold on the pump distribution. In the fiber laser oscillator, the TMI threshold is enhanced by ˜30% when the counter-pump scheme is employed instead of the co-pump scheme. By applying bidirectional-pump scheme and appropriately distributing the pump power, the TMI threshold is further enhanced and the monolithic fiber laser oscillator achieves an output power of 3.05 kW with near diffraction limited beam quality.

  1. Development and Application of a Three-Dimensional Seismo-Acoustic Coupled-Mode Model

    Science.gov (United States)

    2015-09-30

    under development. REFERENCES M. S. Ballard, K. M. Lee, A. R. McNeese, T. G. Muir , P. S. Wilson, and R. D. Costley. In situ direct measurement of... Muir , “Laboratory P- and S-wave measurements of a reconstituted muddy sediment with comparison to card-house theory,” Journal of the Acoustical...McNeese, Thomas G. Muir , and Preston S. Wilson, R. Daniel Costley, “In situ direct measurements of sediment compressional and shear wave properties in

  2. Transverse feedback

    CERN Document Server

    Cornelis, K; Sladen, Jonathan P H; CERN. Geneva. SPS and LEP Division

    1997-01-01

    The aim of these MD's was to set up the transverse feedback for damping in both planes, and to test the charge normalization and gain compensation. The latter is intended to reduce the gain of the feedback for small oscillations in order to improve compatibility with the Q loop. All work was done with 2 x 4 bunches, family A. In the first two MD's the feedback was set up for damping in both planes with charge normalization. In the third, gain compensation was commissioned in the vertical plane with Qv' set to -2. It was found either to increase the level of the m = 0 mode or to leave it unchanged. Under these conditions 6mA total current was accumulated.

  3. Feasibility of using acoustic method in monitoring the penetration status during the Pulse Mode Laser Welding process

    Science.gov (United States)

    Yusof, M. F. M.; Ishak, M.; Ghazali, M. F.

    2017-09-01

    In this paper, the feasibility of using acoustic method to monitor the depth of penetration was investigated by determine the characteristic of the acquired sound throughout the pulse mode laser welding process. To achieve the aim, the sound signal was acquired during the pulsed laser welding process on the 2 mm structural carbon steel plate. During the experiment, the laser peak power and pulse width was set to be varied while welding speed was constantly at 2 mm/s. Result from the experiment revealed that the sound pressure level of the acquired sound was linearly related to the pulse energy as well as the depth of penetration for welding process using 2ms pulse width. However, as the pulse width increase, the sound pressure level show insignificant change with respect to the change in the depth of penetration when the pulse energy reaches certain values. The reported result shows that this was happen due to the occurrence of spatter which suppressed the information associated with the generation of plasma plume as the product of high pulse energy. In this work, it was demonstrated that in some condition, the acoustic method was found to be potentially suitable to be used as a medium to monitor the depth of weld on online basis. To increase the robustness of this method to be used in wider range of parameter, it was believed that some other post processing method is needed in order to extract the specific information associated with the depth of penetration from the acquired sound.

  4. Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers

    Science.gov (United States)

    Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping

    2018-03-01

    Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.

  5. A Dual-Mode Magnetic-Acoustic System for Monitoring Fluid Intake Behavior in Animals.

    Science.gov (United States)

    Sargolzaei, Saman; Elahi, Hassan; Sokoloff, Alan; Ghovanloo, Maysam

    2017-09-01

    We have developed an unobtrusive magnetic-acoustic fluid intake monitoring (MAFIM) system using a conventional stainless-steel roller-ball nipple to measure licking and drinking behavior in animals. Movements of a small permanent magnetic tracer attached to stainless-steel roller balls that operate as a tongue-actuated valve are sensed by a pair of three-axial magnetometers, and transformed into a time-series indicating the status of the ball (up or down), using a Gaussian mixture model based data-driven classifier. The sounds produced by the rise and fall of the roller balls are also recorded and classified to substantiate the magnetic data by an independent modality for a more robust solution. The operation of the magnetic and acoustic sensors is controlled by an embedded system, communicating via Universal Serial Bus (USB) with a custom-designed user interface, running on a PC. The MAFIM system has been tested in vivo with minipigs, accurately measuring various drinking parameters and licking patterns without constraints imposed by current lick monitoring systems, such as nipple access, animal-nipple contact, animal training, and complex parameter settings.

  6. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    Directory of Open Access Journals (Sweden)

    Darius Zizys

    2015-12-01

    Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  7. NORM2L: An Interactive Computer Program for Acoustic Normal Mode Calculations for the Pekeris Model.

    Science.gov (United States)

    1980-12-01

    RESUME Le programme d’ordinateur interactif NORM2L, sert A calcuier les - modes normaux discrets et la perte de propagation acoustique pour le mod -e...6tudier la propagation des ondes acoustiques aux basses fr~quences. Pour en faciliter l’expansion et la modification futures, le programme NORM2L, est

  8. Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode

    Science.gov (United States)

    Biancalani, A.; Bottino, A.; Ehrlacher, C.; Grandgirard, V.; Merlo, G.; Novikau, I.; Qiu, Z.; Sonnendrücker, E.; Garbet, X.; Görler, T.; Leerink, S.; Palermo, F.; Zarzoso, D.

    2017-06-01

    The linear properties of the geodesic acoustic modes (GAMs) in tokamaks are investigated by means of the comparison of analytical theory and gyrokinetic numerical simulations. The dependence on the value of the safety factor, finite-orbit-width of the ions in relation to the radial mode width, magnetic-flux-surface shaping, and electron/ion mass ratio are considered. Nonuniformities in the plasma profiles (such as density, temperature, and safety factor), electro-magnetic effects, collisions, and the presence of minority species are neglected. Also, only linear simulations are considered, focusing on the local dynamics. We use three different gyrokinetic codes: the Lagrangian (particle-in-cell) code ORB5, the Eulerian code GENE, and semi-Lagrangian code GYSELA. One of the main aims of this paper is to provide a detailed comparison of the numerical results and analytical theory, in the regimes where this is possible. This helps understanding better the behavior of the linear GAM dynamics in these different regimes, the behavior of the codes, which is crucial in the view of a future work where more physics is present, and the regimes of validity of each specific analytical dispersion relation.

  9. Guided wave mode dispersion of transient acoustic emission on copper pipes-Its visualisation and application to source location

    Science.gov (United States)

    Wang, Chao; Joe Au, Y. H.; Li, Lin; Cheng, Kai

    2016-03-01

    In this paper is presented an improved method for locating a transient acoustic emission (AE) source on a pipeline with two broad-band AE sensors. Using Short Time Fourier Transform (STFT), the method identifies a flexural wave mode, F(1,1), in the two AE signals detected, notes its respective arrival times at different frequencies, and determines the location of the AE source based on the arrival times. Due to velocity dispersion, the arrival time of the wave mode varies with frequency. The method has three main advantages: that the wave speed is not required in the calculation, that it is insensitive to threshold setting for arrival time estimation, and that, at least in theory, the accuracy of the source location can be made as high as desired. The paper first demonstrates, by way of an experiment, the inadequacy of threshold-crossing as a method for identifying the first arrival time of the AE wave. The paper then presents the theory of the proposed method and of the estimated error inherent in the theory and an explanation on how the error can be reduced. The method is then verified experimentally using results obtained from a 3-m long copper pipe of 22 mm diameter.

  10. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  11. Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal

    International Nuclear Information System (INIS)

    Li Jing; Liu Zhengyou; Qiu Chunyin

    2008-01-01

    By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves

  12. Fundamental Transverse Mode Selection (TMS#0 of Broad Area Semiconductor Lasers with Integrated Twice-Retracted 4f Set-Up and Film-Waveguide Lens

    Directory of Open Access Journals (Sweden)

    Henning Fouckhardt

    2017-01-01

    Full Text Available Previously we focused on fundamental transverse mode selection (TMS#0 of broad area semiconductor lasers (BALs with two-arm folded integrated resonators for Fourier-optical spatial frequency filtering. The resonator had a round-trip length of 4f, where f is the focal length of the Fourier-transform element (FTE, that is, a cylindrical mirror in-between the orthogonal resonator branches. This 4f set-up can be called “retracted once” due to the reflective filter after 2f; that is, the 2f path was used forwards and backwards. Now the branches are retracted once more resulting in a compact 1f long linear resonator (called “retracted twice” with a round-trip length of 2f. One facet accommodates the filter, while the other houses the FTE, now incorporating a film-waveguide lens. The BAL facet with the filter represents both the Fourier-transform plane (after 2f, i.e., one round-trip as well as the image plane (after 4f, two round-trips. Thus filtering is performed even after 4f, not just after 2f. Experimental results reveal good fundamental TMS for pump currents up to 20% above threshold and a one-dimensional beam quality parameter M1D2 = 1.47. The BALs are made from AlGaInAsSb, but the concept can equally well be employed for BALs of any material system.

  13. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  14. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  15. The Application of the Theory of Synthesis of a Delay Line with a Surface Acoustic Wave for a Single-Mode Oscillator of Electric Signals in Some Sensors of Non-Electrical Quantities

    Directory of Open Access Journals (Sweden)

    Šimko Milan

    2017-09-01

    Full Text Available The paper deals with the issue of constructing delay lines on the basis of surface acoustic waves and their application to single-mode oscillators. As a result of a theoretical analysis concrete delay lines are proposed.

  16. Solitary-wave emission fronts, spectral chirping, and coupling to beam acoustic modes in RPIC simulation of SRS backscatter.

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. F. (Donald F.); Yin, L. (Lin); Daughton, W. S. (William S.); Bezzerides, B. (Bandel); Dodd, E. S. (Evan S.); Vu, H. X. (Hoanh X.)

    2004-01-01

    Detailed diagnostics of quasi-2D RPIC simulations of backward stimulated Raman scattering (BSRS), from single speckles under putative NIF conditions, reveal a complex spatio-temporal behavior. The scattered light consists of localized packets, tens of microns in width, traveling toward the laser at an appreciable fraction of the speed of light. Sub pico-second reflectivity pulses occur as these packets leave the system. The LW activity consists of a front traveling with the light packets with a wake of free LWs traveling in the laser direction. The parametric coupling occurs in the front where the scattered light and LW overlap and are strongest. As the light leaves the plasma the LW quickly decays, liberating its trapped electrons. The high frequency part of the |n{sub e}(k,{omega})|{sup 2} spectrum, where n{sub e} is the electron density fluctuation, consists of a narrow streak or straight line with a slope that is the velocity of the parametric front. The time dependence of |n{sub e}(k,t)|{sup 2}, shows that during each pulse the most intense value of k also 'chirps' to higher values, consistent with the k excursions seen in the |n{sub e}(k,{omega})|{sup 2} spectrum. But k does not always return, in the subsequent pulses, to the original parametrically matched value, indicating that, in spite of side loss, the electron distribution function does not return to its original Maxwellian form. Liberated pulses of hot electrons result in down-stream, bump on tail distributions that excite LWs and beam acoustic modes deeper in the plasma. The frequency broadened spectra are consistent with Thomson scatter spectra observed in TRIDENT single-hot-spot experiments in the high k{lambda}{sub D}, trapping regime. Further details including a comparison of results from full PIC simulations, and movies of the spatio-temporal behavior, will be given in the poster by L Yin et al.

  17. Observation of soft phonon mode in TbFe3(BO3)4 by inelastic neutron scattering

    Science.gov (United States)

    Pavlovskiy, M. S.; Shaykhutdinov, K. A.; Wu, L. S.; Ehlers, G.; Temerov, V. L.; Gudim, I. A.; Shinkorenko, A. S.; Podlesnyak, A.

    2018-02-01

    The phonon dispersion in terbium iron borate TbFe3(BO3)4 has been measured by inelastic neutron scattering in a temperature range 180 transverse acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T ⪆TS , in full agreement with theoretical calculations. The TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.

  18. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    Science.gov (United States)

    2016-12-13

    Technol.Lett.11, 39 (1999) 21. Y. Panbiharwala, C. S. Kumar, D. Venkitesh, and B. Srinivasan in International Conference on Fibre Optics and Photonics...24. Y. Panbiharwala, C. S. Kumar, D. Venkitesh, and B. Srinivasan in International Conference on Fibre Optics and Photonics, OSA Technical Digest...AFRL-AFOSR-JP-TR-2017-0001 The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and

  19. Transversity 2005

    Science.gov (United States)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I

  20. Confirmation of the detection and classification of low-order, low-degree solar acoustic modes with the 1978 solar diameter observations

    International Nuclear Information System (INIS)

    Hill, H.A.; Caudell, T.P.

    1985-01-01

    The 1978 solar diameter observations of Caudell et al. (1980) have been examined for evidence of the low-order, low-degree acoustic modes found by Hill (1984) in the 1979 observations of Bos and Hill (1983). The 1978 power spectrum was tested for evidence of (1) a nonrandom distribution of peaks relative to the eigenfrequency spectrum found by Hill (1984), (2) spatial symmetry properties of the eigenfunctions for the modes classified by Hill (1984), and (3) a theta-dependence, specified by angular order m, of the amplitudes of oscillations for these same modes. The characterization of the symmetry properties of the eigenfunctions and the values of m were taken from the work of Hill (1984). The findings of these three tests confirm the detection of modes and their classifications as given by Hill (1984). These three tests are independent of each other and, when combined, furnish a confirmation of considerable statistical significance. In addition, these modes are found to be randomly excited; the average intrinsic line widths for the n = 1, l = 6, 8, 10, and 12 modes are > or =0.01 μHz

  1. [Transversal problems].

    Science.gov (United States)

    Mendoza Mendoza, A; Solano Reina, E

    1990-04-01

    In this worn we introduce the alterations of the occlusion in the horizontal level or transversal problems, in which lateral crossed bites appear, either with or without a deviation of the medium line, underlying its differential diagnostic and guide lines treatment through several different clinic cases.

  2. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    Science.gov (United States)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  3. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Science.gov (United States)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  4. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  5. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  6. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    Science.gov (United States)

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  7. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    Directory of Open Access Journals (Sweden)

    Ye Chang

    2018-01-01

    Full Text Available In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET and a film bulk acoustic resonator (FBAR. We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  8. Transverse myelitis

    International Nuclear Information System (INIS)

    Black, M.J.; Motaghedi, B.; Robitaille, Y.

    1980-01-01

    Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented

  9. Oscillation modes and transmission into a Fibonacci slab

    Science.gov (United States)

    Castro-Arce, Lamberto; Molinar-Tabares, Martin; Campos-Garcia, Julio; Figueroa-Navarro, Carlos; Isasi-Siqueiros, Leonardo; Manzanares-Martinez, Betsabe

    In our contribution we developed a study on the behavior of the transmission modes and a Pt / Zn slab of a Fibonacci array of longitudinal and transverse acoustic waves. We have worked with arrangements from n = 1 to10 and has managed to find the energy bands and transmission, filling factor 0.4 observing the appearance of Pseudo-Gaps in the evolution of the study when the arrangement Fibonacci increases. We acknowledge the support of SNI CONACYT.

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  11. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  12. Transverse damper

    CERN Document Server

    Höfle, W

    2012-01-01

    Plans for the operation of the transverse damper in 2012 at bunch spacings of 50 ns and 25 ns and at increased collision energy will be reviewed. The increased energy and the experience that will be gained at 25 ns are very important to define any upgrades that may be necessary for the high luminosity operation at 7 TeV after LS1. This means that the available parameter space must be probed in 2012 which in particular includes a higher feedback gain in the ramp and with colliding beams. Limits for the feedback gain for the current system will be outlined. The potential benefits of running with higher feedback gain for a better emittance preservation will be stressed and weighed against the operational difficulties and the potential impact of noise in the damper system. A plan for re-commissiong at 50 ns and 25 ns for operation at 4 TeV will be outlined.

  13. Acoustic field measurements in austenitic welds and dissimilar welds

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.

    1997-01-01

    Acoustic field measurements were performed in identical specimen geometries of NPP components, in order to contribute the results to the interpretation of US testing results and evaluation of the testing reliability. With an electrodynamic probe of type T, the sonic fields were scanned by scanning heads at 45 T, 45 L, 60 L, and 70 L. The following selected groups of measured data are discussed in the paper: (a) acoustic fields in a narrow-gap weld and a dissimilar weld; (b) longitudinal sound impact testing of welds for detection of transverse defects; (c) variation of transmissibility of acoustic waves along a welded seam; (d) strength and range of the secondary creep wave; (e) multiply reflected sonic modes. (orig./CB) [de

  14. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  15. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  16. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  17. Study of the loading mode dependence of the twinning in random textured cast magnesium by acoustic emission and neutron diffraction methods

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Máthis, K.; Clausen, B.; Stráská, J.; Beran, Přemysl; Lukáš, Petr

    2014-01-01

    Roč. 602, APR (2014), s. 25-32 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.567, year: 2014

  18. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  19. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  20. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  1. Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO(112¯0)/Si(100) with high sensitivity and temperature stability.

    Science.gov (United States)

    Luo, Jing-Ting; Quan, Ao-Jie; Liang, Guang-Xing; Zheng, Zhuang-Hao; Ramadan, Sami; Fu, Chen; Li, Hong-Lang; Fu, Yong-Qing

    2017-03-01

    A multilayer structure of TeO 2 /interdigital transducers (IDTs)/ZnO(112¯0)/Si(100) was proposed and investigated to achieve both high sensitivity and temperature-stability for bio-sensing applications. Dispersions of phase velocities, electromechanical coupling coefficients K 2 , temperature coefficient of delay (TCD) and sensitivity in the multilayer structures were simulated as functions of normalized thicknesses of ZnO (h ZnO /λ) and TeO 2 (h TeO2 /λ) films. The fundamental mode of Love mode (LM) - surface acoustic wave (SAW) shows a larger value of K 2 and higher sensitivity compared with those of the first mode. TeO 2 film with a positive TCD not only compensates the temperature effect induced due to the negative TCD of ZnO(112¯0)/Si(100), but also enhances the sensitivity of the love mode device. The optimal normalized thickness ratios were identified to be h TeO2 /λ=0.021 and h ZnO /λ=0.304, and the devices with such structures can which generate a normalized sensitivity of -1.04×10 -3 m 3 /kg, a TCD of 0.009ppm/°C, and a K 2 value of 2.76%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  3. Rapid communication: Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses, we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the ...

  4. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  5. Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation

    International Nuclear Information System (INIS)

    Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J

    2010-01-01

    A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.

  6. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  7. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  8. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  9. Linear deformation effect on the SWR acoustic mode in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} manganite film

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V.; Zhikharev, I. [A. A. Galkin Donetsk Physico-Technical Institute NASU, 83114 Donetsk (Ukraine); Dyakonov, V. [A. A. Galkin Donetsk Physico-Technical Institute NASU, 83114 Donetsk (Ukraine); Institute of Physics, PAS, 02-669 Warsaw (Poland); Aleshkevych, P.; Kuzminski, M.; Szymczak, H. [Institute of Physics, PAS, 02-669 Warsaw (Poland); Dyakonov, K. [A. F. Ioffe Physico-Technical Institute, 192021, St.-Petersburg (Russian Federation)

    2007-01-15

    In this work, the influence of linear deformation on the magnetic resonance spectrum including the surface spin wave mode in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} manganite film grown on LiNbO{sub 3} substrate has been investigated using a microwave technique. The parameters of the spectrum are established to depend strongly on strains in the film that influence both the profile of the magnetic resonance spectrum and the mode position and intensity. The magnetostriction constants of both the bulk film and surface mode were first determined using the shift of resonance fields as a function of mechanical stress. The tensile strain is shown to favor excitation of the surface spin-wave mode, and its influence is stronger on the film surface layer. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Transverse beam dynamics

    CERN Document Server

    Wilson, Edmund J N

    2006-01-01

    This contribution describes the transverse dynamics of particles in a synchrotron. It builds on other contributions to the General Accelerator School for definitions of transport matrices and lattice functions. After a discussion of the conservation laws which govern emittance, the effects of closed orbit distortion and other field errors are treated. A number of practical methods of measuring the transverse behaviour of particles are outlined.

  11. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  12. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....

  13. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    Science.gov (United States)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection

  14. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  15. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  16. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...

  17. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  18. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    In this work, we study the existence of coupled bandgaps for corrugated plate structures and acoustic channels. The study is motivated by the observation that the performance of traditional bandgap structures, such as periodic plates, may be compromised due to the coupling to a surrounding acoustic...... medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  19. The transverse spin

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, IN2P3-CNRS, Universite Claude Bernard, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2002-07-01

    The aim of this introduction, which is far from exhaustive, was to give an overview on the richness of transverse spin quantity and its differences in comparison with helicity. From the experimental point of view, the physics of quark transversity in deep inelastic reaction is still practically unexplored. This situation will certainly change rapidly, with planned experiments at DESY (HERMES), Brookhaven (RHIC) and CERN (COMPAS), but there is a long way before knowing the transversity distribution, {delta}q(x), as precisely as the helicity distribution, {delta}q(x), now. Unless polarized anti-proton beams become feasible, experiments probing quark transversity will rely mainly on 'quark polarimeters', like {lambda}'s or the Collins effect. These polarimeters will have to be calibrated at e{sup +}e{sup -} colliders. The Collins polarimeter will by the way allow the flavor decomposition of {delta}q(x), using mesons of various charging and strangeness. Quark polarimetry is by itself an interesting topic of non-perturbative QCD, and may teach us something about the breaking of chiral symmetry. Let us recall that, if chiral symmetry were unbroken, transversity would be undefined. The transversity physics program is not at all a 'remake' of the helicity one. Helicity and transversity probe rather different aspects of the hadron structure. Differences between {delta}q(x) and {delta}q(x) will reveal non-relativistic effects in the baryon wave function. Also {delta}q(x) does not couples to gluon distributions, thus it is free from anomaly. In that respect it is a more clean probe than {delta}q(x). In fact, the combination of helicity and transversity measurements will perhaps be the most interesting. Polarized parton densities taking only the helicity degree of freedom are almost 'classical'. Quantum aspects of spin correlations, like violation of Bell's inequality, can be found only when varying the spin quantification axis

  20. Kovasznay modes in the linear stability analysis of self-similar ablation flows

    International Nuclear Information System (INIS)

    Lombard, V.

    2008-12-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of ablative flows in inertial confinement fusion, when a shock wave propagates in front of a thermal front. Both the similarity solutions and their linear perturbations are numerically computed with a dynamical multi-domain Chebyshev pseudo-spectral method. Laser-imprint results, showing that maximum amplification occurs for a laser-intensity modulation of zero transverse wavenumber have thus been obtained (Abeguile et al. (2006); Clarisse et al. (2008)). Here we pursue this approach by proceeding for the first time to an analysis of perturbations in terms of Kovasznay modes. Based on the analysis of two compressible and incompressible flows, evolution equations of vorticity, acoustic and entropy modes are proposed for each flow region and mode couplings are assessed. For short times, perturbations are transferred from the external surface to the ablation front by diffusion and propagate as acoustic waves up to the shock wave. For long times, the shock region is governed by the free propagation of acoustic waves. A study of perturbations and associated sources allows us to identify strong mode couplings in the conduction and ablation regions. Moreover, the maximum instability depends on compressibility. Finally, a comparison with experiments of flows subjected to initial surface defects is initiated. (author)

  1. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward

    2016-12-01

    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  2. Noninterceptive transverse beam diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.

    1981-01-01

    The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project

  3. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  4. Experimental evaluation of a spinning-mode acoustic-treatment design concept for aircraft inlets. [suppression of YF-102 engine fan noise

    Science.gov (United States)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1980-01-01

    An aircraft-inlet noise suppressor method based on mode cutoff ratio was qualitatively checked by testing a series of liners on a YF-102 turbofan engine. Far-field directivity of the blade passing frequency was used extensively to evaluate the results. The trends and observations of the test data lend much qualitative support to the design method. The best of the BPF liners attained a suppression at design frequency of 19 dB per unit length-diameter ratio. The best multiple-pure-tone linear attained a remarkable suppression of 65.6 bB per unit length-diameter ratio.

  5. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  6. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.

    1982-01-01

    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  7. Experimental analysis of the aero-acoustic coupling in a plane impinging jet on a slotted plate

    International Nuclear Information System (INIS)

    Assoum, Hassan H; Abed-Meraïm, Kamel; Sakout, Anas; El Hassan, Mouhammad; Martinuzzi, Robert

    2013-01-01

    Impinging jets are encountered in many industrial applications and suppression of the noise generated by these jets is of great fundamental and practical interest. The vortex dynamics and the interaction between the vortical structures and the impinging wall should be understood in order to control the aero-acoustic coupling between shear layer oscillation and the acoustic modes (self-sustained tones). In this study, a plane jet issuing from a rectangular nozzle and impinging on a plate is considered for Re = 3900. The sound pressure, the vibration of the impinged plate and the spatial velocity field are obtained simultaneously using a microphone, an accelerometer and the time-resolved particle image velocimetry technique, respectively. Spectra and cross-correlations are used to educe the role of different vortical structures leading to the aero-acoustic coupling. The results show the evolution of the correlation between acoustic and transverse velocity fields in the longitudinal direction. A pre-whitening technique is used to investigate the coupling between the acoustic and the velocity signals. This method shows that the correlation between the two signals has a centred peak that is not directly related to the passage of the dominant Kelvin–Helmholtz vortices. (paper)

  8. Large transverse momentum phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1977-09-01

    It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references

  9. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  10. On the Road to Computational Acoustics

    National Research Council Canada - National Science Library

    Hogge, H

    1978-01-01

    ...) because of the success of the linearized normal-mode approach and because the numerical viscosity inherent in traditional computational methods damps out acoustic disturbances at an unrealistic rate...

  11. On excitation of acoustic plasmons in bismuth

    International Nuclear Information System (INIS)

    Babkin, G.I.; Kravchenko, V.Ya.

    1977-01-01

    The amplitude of the transverse electromagnetic wave penetrating through a bismuth plate under conditions of existence of an acoustic plasma wave is calculated. Two wave coupling mechanisms due to the anisotropy of the carrier spectrum and the carrier drift in the magnetic field of the wave are considered. In the latter case, a wave of double frequency penetrates through the plate

  12. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  13. Acoustic Neuroma

    Science.gov (United States)

    ... a team composed of neurosurgeons, radiation oncologists, medical physicists and a nursing staff. Specialists in neuroimaging join ... Even though most acoustic neuromas arise from the balance nerve (and not from the adjacent hearing nerve), ...

  14. Acoustic neuroma

    Science.gov (United States)

    ... Medical Professional Call your provider if you have: Hearing loss that is sudden or getting worse Ringing in one ear Dizziness (vertigo) Alternative Names Vestibular schwannoma; Tumor - acoustic; ... Patient Instructions Brain surgery - discharge ...

  15. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  16. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  17. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  18. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  19. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates.

    Science.gov (United States)

    Minonzio, Jean-Gabriel; Foiret, Josquin; Talmant, Maryline; Laugier, Pascal

    2011-12-01

    Robust signal processing methods adapted to clinical measurements of guided modes are required to assess bone properties such as cortical thickness and porosity. Recently, an approach based on the singular value decomposition (SVD) of multidimensional signals recorded with an axial transmission array of emitters and receivers has been proposed for materials with negligible absorption, see Minonzio et al. [J. Acoust. Soc. Am. 127, 2913-2919 (2010)]. In presence of absorption, the ability to extract guided mode degrades. The objective of the present study is to extend the method to the case of absorbing media, considering attenuated plane waves (complex wavenumber). The guided mode wavenumber extraction is enhanced and the order of magnitude of the attenuation of the guided mode is estimated. Experiments have been carried out on 2 mm thick plates in the 0.2-2 MHz bandwidth. Two materials are inspected: polymethylacrylate (PMMA) (isotropic with absorption) and artificial composite bones (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) which is a transverse isotropic absorbing medium. Bulk wave velocities and bulk attenuation have been evaluated from transmission measurements. These values were used to compute theoretical Lamb mode wavenumbers which are consistent with the experimental ones obtained with the SVD-based approach. © 2011 Acoustical Society of America

  20. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  1. Large-eddy simulation and acoustic analysis of a turbulent flow field in a swirl-stabilized combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chan; Yoo, Kwang Hee; Sung, Hong Gye [Korea Aerospace University, Goyang (Korea, Republic of)

    2011-10-15

    To conduct a comprehensive study on the flow characteristics and acoustic oscillation in a gas turbine combustor, a 3D large-eddy simulation (LES) was implemented. The formulation consists of the Favre-filtered conservation equations of mass, momentum, and energy. The subgrid-scale dynamics are modeled using a compressible flow version of the Smagorinsky model. To investigate the dominant coherent structure, the proper orthogonal decomposition (POD) method was used for post-processing. The combustor of concern is the LM6000, lean-premixed dry low-NOx annular combustor, developed by General Electric Aircraft Engines (GEAE). Four important characteristics of swirl flow are visualized: vortex breakdown, procession and dissipation of vortical structures, recirculation zones, and helical waves immediately downstream of the swirl injector. It is shown that the turbulent motion of swirl flow directly affects acoustic oscillation through the cycle and spectral analysis. The four most dominant acoustic modes are extracted from the flow field by the POD analysis. The transverse modes in the y and z directions are dominant in all four modes, since the pressure fields are significantly affected by swirl flow.

  2. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    Science.gov (United States)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  3. Figures of transversality

    DEFF Research Database (Denmark)

    Gammeltoft, Tine

    2008-01-01

    In this article, I explore how prenatal screening is imbricated within state agendas, aspirations, and imaginings in contemporary Vietnam. In an effort to develop new ethnographic tropes for understanding the formation called "the state," I argue for a phenomenological take that emphasizes its...... affective and embodied aspects. Seeing the anomalous fetus as a "figure of transversality," as a critical focus for powerful imaginings and desires, I show how state–society relations in Vietnam are suffused by visceral affectivity and moral engagement. In the realm of reproduction, intense sentiments...... of anxiety, dread, desire, ambition, and hope tie together the state and its citizens, animating individual aspirations as well as national population policies....

  4. Acoustic Resonance in School Hallways

    Science.gov (United States)

    Bucki, Elliot; Nagle, Matthew; Smith, Pearson; Taylor, Ken

    2010-03-01

    This paper takes the theory of acoustic standing waves for air columns and applies it to school hallways. By utilizing an audio generator and power amplifier/speaker the authors set up an experiment in a school hallway and studied the resonant patterns created for a range of driving frequencies. Data describing the various mode structures are presented.

  5. Black hole elasticity and gapped transverse phonons in holography

    Science.gov (United States)

    Alberte, Lasma; Ammon, Martin; Baggioli, Matteo; Jiménez, Amadeo; Pujolàs, Oriol

    2018-01-01

    We study the elastic response of planar black hole (BH) solutions in a simple class of holographic models with broken translational invariance. We compute the transverse quasi-normal mode spectrum and the propagation speed of the lowest energy mode. We find that the speed of the lowest mode relates to the BH rigidity modulus as dictated by elasticity theory. This allows to identify these modes as transverse phonons — the pseudo Goldstone bosons of spontaneously broken translational invariance. In addition, we show that these modes have a mass gap controlled by an explicit source of the translational symmetry breaking. These results provide a new confirmation that the BHs in these models do exhibit solid properties that become more manifest at low temperatures. Also, by the AdS/CFT correspondence, this allows to extend the standard results from the effective field theory for solids to quantum-critical materials.

  6. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    Science.gov (United States)

    2016-06-01

    the formulation of Clay and Medwin [20] was coded into Matlab [21]. This formulation allows for the interaction of the water column with a second...Figure 7. Comparison of COMSOL and Normal Modes: Acoustic Magnitude Code predicted magnitude of acoustic pressure over the 0–600 m range from source ... source location. Figure 8. Comparison of COMSOL and Normal Modes: Imaginary Component Code predicted imaginary component of the total acoustic

  7. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    KAUST Repository

    Mei, Jun

    2014-12-02

    A general design paradigm for a novel type of acoustic metasurface is proposed by introducing periodically repeated supercells on a rigid thin plate, where each supercell contains multiple cut-through slits that are filled with materials possessing different refractive indices but the same impedance as that of the host medium. When the wavelength of the incident wave is smaller than the periodicity, the direction of the transmitted wave with nearly unity transmittance can be chosen by engineering the phase discontinuities along the transverse direction. When the wavelength is larger than the periodicity, even though the metasurface is impedance matched to the host medium, most of the incident energy is reflected back and the remaining portion is converted into a surface-bound mode. We show that both the transmitted wave control and the high reflection with the surface mode excitation can be interpreted by a unified analytic model based on mode-coupling theory. Our general design principle not only supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing wave energy.

  8. Recent advances in lateral field excited and monolithic spiral coil acoustic transduction bulk acoustic wave sensor platforms

    International Nuclear Information System (INIS)

    McCann, Donald F; French, Lester A Jr; Wark, Mitchell S; Vetelino, John F

    2009-01-01

    The quartz crystal microbalance (QCM) has been used extensively as a bulk acoustic wave (BAW) platform for applications such as chemical and biological sensors and rate monitors in thin film deposition systems. Although the QCM is capable of measuring mechanical property changes critical in many thin film deposition systems, it cannot measure electrical property changes that can occur in many sensor applications. In this paper we review the recent developments of two novel transducer configurations for BAW sensors. In the first sensor, called the lateral field excited (LFE) sensor, the transverse shear mode (TSM) in AT-cut quartz is excited by two electrodes on the reference surface, resulting in a bare sensing surface which allows both electrical and mechanical properties of target analytes to be measured. In the second sensor, called the monolithic spiral coil acoustic transduction (MSCAT) sensor, the TSM is excited by a photolithographically deposited spiral antenna on the reference surface which can excite high-order harmonics in the substrate, and potentially lead to increased sensitivity. The responses of both the LFE and MSCAT sensors to electrical and mechanical property changes of liquids have been examined and compared to the response of the standard QCM. In addition, results relating to the detection of chemical and biological target analytes using the LFE and MSCAT sensor platforms are presented

  9. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  10. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  11. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  12. Asymmetrical transverse structures in nonlinear interferometers

    CERN Document Server

    Romanov, O G

    2003-01-01

    The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.

  13. Acoustic emission

    Indian Academy of Sciences (India)

    3Universidade do Minho, Department Engineering Mecânica, Azurém,. 4800058 Guimar˜aes, Portugal e-mail: mathew@dem.uminho.pt. Abstract. Acoustic Emission (AE) has been widely used for monitoring man- ufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the ...

  14. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    Science.gov (United States)

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  15. Acoustic Energy Storage in Single Bubble Sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef; Rosales, Rodolfo R.

    1996-01-01

    Single bubble sonoluminescence is understood in terms of a shock focusing towards the bubble center. We present a mechanism for significantly enhancing the effect of shock focusing, arising from the storage of energy in the acoustic modes of the gas. The modes with strongest coupling are not

  16. Acoustical-Levitation Chamber for Metallurgy

    Science.gov (United States)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  17. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  18. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  19. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  20. Advertisement recognition using mode voting acoustic fingerprint

    Science.gov (United States)

    Fahmi, Reza; Abedi Firouzjaee, Hosein; Janalizadeh Choobbasti, Ali; Mortazavi Najafabadi, S. H. E.; Safavi, Saeid

    2017-12-01

    Emergence of media outlets and public relations tools such as TV, radio and the Internet since the 20th century provided the companies with a good platform for advertising their goods and services. Advertisement recognition is an important task that can help companies measure the efficiency of their advertising campaigns in the market and make it possible to compare their performance with competitors in order to get better business insights. Advertisement recognition is usually performed manually with help of human labor or is done through automated methods that are mainly based on heuristics features, these methods usually lack abilities such as scalability, being able to be generalized and be used in different situations. In this paper, we present an automated method for advertisement recognition based on audio processing method that could make this process fairly simple and eliminate the human factor out of the equation. This method has ultimately been used in Miras information technology in order to monitor 56 TV channels to detect all ad video clips broadcast over some networks.

  1. Acoustic detection

    International Nuclear Information System (INIS)

    Riccobene, Giorgio

    2008-01-01

    The proposal of acoustic neutrino detection is living a renaissance: the interest in ultra high energy neutrino detection, the fast improvements of deep sea technology and the availability of large deep sea research infrastructures are the three main ingredients to explain the new interest in this technique. The status of simulation work, medium studies, sensor developments and first results from test experimental setups are presented.

  2. Acoustic Territoriality

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2011-01-01

    Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of ci...... this article outline a few approaches to a theory of acoustic territoriality....

  3. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    1973) applied molecular field approximation in tunneling model for same crystal system. And Blinc et al. (1961) applied pseudospin model to triglycine group crystal. Much later, Chaudhuri et al (1988) applied Mitsui's (1958) model (which was ...

  4. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  5. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  6. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords ... patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question ...

  7. Marine Acoustic Sensor Assembly

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2007-01-01

    A marine acoustic sensor assembly includes an acoustic panel having a forward surface and an after surface, a laser scanner oriented so as to project a laser beam onto the acoustic panel after surface...

  8. Acoustofluidics 4: Piezoelectricity and application in the excitation of acoustic fields for ultrasonic particle manipulation.

    Science.gov (United States)

    Dual, Jurg; Möller, Dirk

    2012-02-07

    Piezoelectric materials are widely used in the excitation of MHz frequency vibrations in devices for ultrasonic manipulation. An applied electrical voltage is transformed into mechanical stress, strain and displacement. Piezoelectric elements can be used in either a resonant or non-resonant manner. Depending on the desired motion the piezoelectric longitudinal, transverse or shear effects are exploited. Because of the coupling between electrical and mechanical quantities in the constitutive law the modelling of devices turns out to be quite complex. In this paper, the general equations that need to be used are delineated. For a one-dimensional actuator the underlying physics is described, including the consequences resulting for the characterization of devices. For a practical setup used in ultrasonic manipulation, finite element models are used to model the complete system, including piezoelectric excitation, solid motion and acoustic field. It is shown, how proper tailoring of transducer and electrodes allows selective excitation of desired modes.

  9. Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators.

    Science.gov (United States)

    Ghosh, Siddhartha; Piazza, Gianluca

    2015-06-15

    We present a fully-integrated monolithic aluminum nitride optomechanical device in which lateral vibrations generated by a piezoelectric contour mode acoustic ring resonator are used to produce amplitude modulation of an optical signal in a whispering gallery mode photonic ring resonator. Acoustic and optical resonances are independently characterized in this contour mode optomechanical resonator (CMOMR). Electrically driven mechanical modes are optically detected at 35MHz, 654MHz and 884MHz.

  10. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  11. The acoustic environment in large HTGR's

    International Nuclear Information System (INIS)

    Burton, T.E.

    1979-01-01

    Well-known techniques for estimating acoustic vibration of structures have been applied to a General Atomic high-temperature gas-cooled reactor (HTGR) design. It is shown that one must evaluate internal loss factors for both fluid and structure modes, as well as radiation loss factors, to avoid large errors in estimated structural response. At any frequency above 1350 rad/s there are generally at least 20 acoustic modes contributing to acoustic pressure, so statistical energy analysis may be employed. But because the gas circuit consists mainly of high-aspect-ratio cavities, reverberant fields are nowhere isotropic below 7500 rad/s, and in some regions are not isotropic below 60 000 rad/s. In comparison with isotropic reverberant fields, these anistropic fields enhance the radiation efficiencies of some structural modes at low frequencies, but have surprisingly little effect at most frequencies. The efficiency of a dipole sound source depends upon its orientation. (Auth.)

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  14. Single-transverse-mode Ti:sapphire rib waveguide laser

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus

    2005-01-01

    Laser operation of Ti:sapphire rib waveguides fabricated using photolithography and ion beam etching in pulsed laser deposited layers is reported. Polarized laser emission was observed at 792.5 nm with an absorbed pump power threshold of 265 mW, which is more than a factor of 2 lower in comparison

  15. Resonator with Bessel-Gauss transverse mode distribution

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available , R1=0.95 R0, λ=0.53 10-6м 1.44 1.46 1.48 1.5 radius of mirror L1, ´ 10- 4 m e d u t i l p m a , r . u . 1 3 5 7 9 0 6 0.2 0.25 0.3 0.35 0.4 n o i t c a r f f i d s e s s o l 0 2 4 6 8 10 12 14 16 18 20... 22 24 26 1 3 5 7 9 11 13 15 17 19 21 23 25 27 0.2 0.25 0.3 0.35 0.4 0.45 0.5 n o i t c a r f f i d s e s s o l 0 2 4 6 8 10 12 14 16 18 20 22 24 26 1 3 5 7 9 11 13 15 17 19 21 23 5 27 f = 0.7 m, R0=1.5 10...

  16. Performance of the transverse coupled-bunch feedback system in the SRRC

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Kuo, C.H.; Lin, K.K.; Ueng, T.S.; Weng, W.T.

    1996-01-01

    A transverse feedback system has been implemented and commissioned in the SRRC storage ring to suppress transverse coupled-bunch oscillations of the electron beam. The system includes transverse oscillation detectors, notch filter, baseband quadrature processing circuitry, power amplifiers, and kickers. To control a large number of transverse coupled-bunch modes, the system is broad-band, bunch-by- bunch in nature. Because the system is capable of bunch-by-bunch correction, it can also be useful for suppressing instabilities introduced by ions. The sextupole strength was then reduced to improve dynamic aperture and hence lifetime of the storage ring

  17. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  18. Acoustic wave rectification in viscoelastic materials

    Science.gov (United States)

    Tanaka, Yukihiro; Shimomura, Yukito; Nishiguchi, Norihiko

    2018-03-01

    We have numerically investigated the propagation of acoustic waves in a periodic array of triangular holes embedded in a matrix composed of viscoelastic materials, such as polymers, using an extended finite-difference time-domain method. Although the viscoelasticity of the substrate in acoustic wave rectifiers smears out the fine structures observed at the transmission rate, the rectifying effect of acoustic waves survives. Moreover, the transmittance for longitudinal wave incidence broadly shows a vivid rectification effect in a wide frequency range when the difference between the velocities of longitudinal and transverse waves is large. In addition, the extreme sensitivity of shear rate with respect to time (or frequency) gives rise to the marked modulation of the frequency dependence of the transmission rate.

  19. TRANSVERSE OSCILLATIONS OF SYSTEMS OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Luna, M.; Oliver, R.; Ballester, J. L.; Terradas, J.

    2009-01-01

    We study the collective kinklike normal modes of a system of several cylindrical loops using the T-matrix theory. Loops that have similar kink frequencies oscillate collectively with a frequency which is slightly different from that of the individual kink mode. On the other hand, if the kink frequency of a loop is different from that of the others, it oscillates individually with its own frequency. Since the individual kink frequency depends on the loop density but not on its radius for typical 1 MK coronal loops, a coupling between kink oscillations of neighboring loops takes place when they have similar densities. The relevance of these results in the interpretation of the oscillations studied by Schrijver and Brown in 2000 and Verwichte et al. in 2004, in which transverse collective loop oscillations seem to be detected, is discussed. In the first case, two loops oscillating in antiphase are observed; interpreting this motion as a collective kink mode suggests that their densities are roughly equal. In the second case, there are almost three groups of tubes that oscillate with similar periods, and therefore their dynamics can be collective, which again seems to indicate that the loops of each group share a similar density. All the other loops seem to oscillate individually and their densities can be different from the rest.

  20. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...

  1. Transverse correlation: An efficient transverse flow estimator - initial results

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Henze, Lasse; Kortbek, Jacob

    2008-01-01

    Color flow mapping has become an important clinical tool, for diagnosing a wide range of vascular diseases. Only the velocity component along the ultrasonic beam is estimated, so to find the actual blood velocity, the beam to flow angle has to be known. Because of the unpredictable nature...... for estimating the transverse velocity component. The method measures the transverse velocity component by estimating the transit time of the blood between two parallel lines beamformed in receive. The method has been investigated using simulations performed with Field II. Using 15 emissions per estimate...

  2. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse oscillat......Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  3. Reduced-Order Models for Acoustic Response Prediction

    Science.gov (United States)

    2011-07-01

    written in ASCII format as a "punch" file. Implementation with Abaqus required a series of Python [35] programs to translate the data from the binary...66. Abaqus acoustic pressure results of the clamped, baffled plate .......................................106 67. Real part of complex first mode of...107 68. Baffled plate center displacement response to initial pressure in Abaqus .......................108 69. Abaqus acoustic pressure of

  4. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    Science.gov (United States)

    2015-09-30

    single mode at 1000 Hz, based on depth of 19 m. 5 The waveguide supports 10 modes at this frequency and this mode -6, a...OBJECTIVES This year our objective has been to investigate properties of the acoustic vector field within a waveguide as they are influenced by the...meeting in May 2015 (Pittsburgh). A more finalized compendium of results is currently being worked on for a special issue on TREX13 to be published

  5. Modified Acoustic Emission for Prognostic Health Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Prime Photonics proposes to team with Dr. Duke of Virginia Tech to develop a multi-mode, enhanced piezoelectric acoustic emission sensing system to couple large...

  6. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)

    GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.

    2014-01-01

    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  7. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here...... of localized acoustic resonance modes in such a straight acoustic waveguide without any geometrical cavities in the axial direction of the capillary. The model further predicts that some of these modes are well suited for acoustic trapping, and it provides estimates for their frequencies and quality factors...

  9. Different acoustic wave effects of thickness extension and thickness shear mode resonance oscillation on ethanol decomposition over Pd catalysts deposited on poled ferroelectric LiNbO 3 single crystals

    Science.gov (United States)

    Yukawa, Y.; Saito, N.; Nishiyama, H.; Inoue, Y.

    2003-06-01

    The vibration mode effects of resonance oscillation (RO) on ethanol decomposition over thin Pd film catalysts were studied using thickness shear mode RO (TSRO) and thickness extension mode RO (TERO). The TSRO accelerated neither ethylene nor acetaldehyde productions, whereas the TERO increased selectivity for ethylene production dramatically. Laser Doppler method showed that the TSRO caused small vertical lattice displacement, which contrasted to large vertical lattice displacement of the TERO. Photoelectron emission spectra showed clear differences in threshold energy shifts between TSRO and TERO: the TSRO induced little threshold energy shift, but the TERO caused marked positive shifts. A mechanism of catalyst activation due to the lattice vibration modes is discussed.

  10. An Optimisation Approach for Room Acoustics Design

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Kirkegaard, Poul Henning; Andersen, Lars

    2005-01-01

    This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled us...... using the boundary element method where absorption is incorporated. An example is given where the geometry of a room is defined by four design modes. The room geometry is optimised to get a uniform sound pressure.......This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled...

  11. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  12. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  13. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  14. Transverse permeability of woven fabrics

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.

    2008-01-01

    The transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver

  15. On the spectrum of plasma modes in a field-free pair plasma: Dispersion and Landau damping in Tsallis statistics

    Science.gov (United States)

    Saberian, E.

    2018-01-01

    The full spectrum of possible plasma modes and their Landau damping in a field-free pair plasma are examined analytically in the context of Tsallis statistics. This study is based on the solving the linearized Vlasov equation and Maxwell's equations by employing the general method of characteristics, i.e., integrating along unperturbed orbits. Three types of plasma modes are confirmed: two of them are electrostatic waves with Landau damping, i.e., ion plasma waves (IPWs) and ion-acoustic waves (IAWs); and one mode is the transverse electromagnetic waves (light waves) without Landau damping. Our analysis shows that the Landau damping time for IAWs is negligible for most of wave lengths, and so these modes are heavily damped. Furthermore, Landau damping time for IPWs are considerable and these modes are of a great importance. Comparison of Landau damping in the case of a supra-thermal background distribution (confirmed by considering q electromagnetic modes are comparatively less sensitive to the background distribution.

  16. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  17. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  19. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  20. Metamaterial based embedded acoustic filters for structural applications

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2013-09-01

    Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.

  1. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  2. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  3. Acoustic Holography

    Science.gov (United States)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  4. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic ... Stories Keywords Shop ANA Discussion Forum About Back Learn more about ANA About ANA Mission, Vision & Values ...

  6. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  7. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN ... a Sponsor Patient Events Acoustic Neuroma Association Latest News Join / Renew Login Contact Us Become a Sponsor ...

  8. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials.

    Science.gov (United States)

    Wen, Jihong; Zhao, Honggang; Lv, Linmei; Yuan, Bo; Wang, Gang; Wen, Xisen

    2011-09-01

    Recently, by introducing locally resonant scatterers with spherical shape proposed in phononic crystals into design of underwater sound absorption materials, the low-frequency underwater sound absorption phenomenon induced by the localized resonances is observed. To reveal this absorption mechanism, the effect of the locally resonant mode on underwater sound absorption should be studied. In this paper, the finite element method, which is testified efficiently by comparing the calculation results with those of the layer multiple scattering method, is introduced to investigate the dynamic modes and the corresponding sound absorption of localized resonance. The relationship between the resonance modes described with the displacement contours of one unit cell and the corresponding absorption spectra is discussed in detail, which shows that the localized resonance leads to the absorption peak, and the mode conversion from longitudinal to transverse waves at the second absorption peak is more efficient than that at the first one. Finally, to show the modeling capability of FEM and investigate shape effects of locally resonant scatterers on underwater sound absorption, the absorption properties of viscoelastic materials containing locally resonant scatterers with ellipsoidal shape are discussed. © 2011 Acoustical Society of America

  9. Introduction to Transverse Beam Dynamics

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  10. Transversal Lines of the Debates

    Directory of Open Access Journals (Sweden)

    Yolanda Onghena

    1998-12-01

    Full Text Available The Transversal Lines of the Debates gathers for publication the presentations of the scholars invited to the seminar. In the papers, Yolanda Onghena observes that the evolution from the cultural to the inter-cultural travels along four axes: the relations between cultureand society; the processes of change within identity-based dynamics; the representations of the Other; and, interculturality. Throughout the presentations and subsequent debates, whenever the different participants referred to aspects of the cultural identity problematic--”angst”, “obsession”, “deficit”, manipulation”, and others, these same participants in the Transversal Lines of the Debates also showed that, in certain areas, an optimistic viewpoint is not out of the question.

  11. TRANSVERSALITY AND INTERDISCIPLINARY DISCUSSION IN ...

    African Journals Online (AJOL)

    2010-07-19

    Jul 19, 2010 ... e o lo g ic a l S tu d ie s http://www.hts.org.za. HTS. Original Research. A rtic le #. 9. 1. 0. (page number not for citation purposes). TRANSVERSALITY ... mentorship. An interview with a mentor and mentee was used as a local, real narrative in the process. In the final section, the author reflected upon his own ...

  12. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  13. Ultrasound acoustic energy for microbubble manipulation

    Science.gov (United States)

    Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Jung, Sunghwan; Shahab, Shima

    2017-04-01

    Many bio-medical applications entail the problems of spatially manipulating of bubbles by means of acoustic radiation. The examples are ultrasonic noninvasive-targeted drug delivery and therapeutic applications. This paper investigates the nonlinear coupling between radial pulsations, axisymmetric modes of shape oscillations and translational motion of a single spherical gas bubble in a host liquid, when it is subjected to an acoustic pressure wave field. A mathematical model is developed to account for both small and large amplitudes of bubble oscillations. The coupled system dynamics under various conditions is studied. Specifically, oscillating behaviors of a bubble (e.g. the amplitudes and instability of oscillations) undergoing resonance and off-resonance excitation in low- and high- intensity acoustic fields are studied. Instability of the shape modes of a bubble, which is contributing to form the translational instability, known as dancing motion, is analyzed. Dynamic responses of the bubble exposed to low- and high-intensity acoustic excitation are compared in terms of translational motion and surface shape of the bubble. Acoustic streaming effects caused by radial pulsations of the bubble in the surrounding liquid domain are also reported.

  14. Transversals in non-discrete groups

    Indian Academy of Sciences (India)

    Abstract. The concept of 'topological right transversal' is introduced to study right transversals in topological groups. Given any right quasigroup S with a Tychonoff topol- ogy T , it is proved that there exists a Hausdorff topological group in which S can be embedded algebraically and topologically as a right transversal of a ...

  15. Appraisal of transverse nasal groove: A study

    Directory of Open Access Journals (Sweden)

    Belagola D Sathyanarayana

    2012-01-01

    Full Text Available Background: Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. Aims: We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. Methods: We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. Results: One hundred patients were recruited in the study. Females (80% predominated over males. Most patients were of 15-45 years age group (70%. Majority of the transverse nasal lesions were classical transverse nasal groove (39% and others included transverse nasal line (28%, strip (28%, ridge (4% and loop (1%. Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Conclusions: Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.

  16. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon's properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd ...

  17. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  18. Experimental Studies of Acoustics in a Spherical Couette Flow

    Science.gov (United States)

    Gowen, Savannah; Adams, Matthew; Stone, Douglas; Lathrop, Daniel

    2016-11-01

    The Earth, like many other astrophysical bodies, contains turbulent flows of conducting fluid which are able to sustain magnetic field. To investigate the hydromagnetic flow in the Earth's outer core, we have created an experiment which generates flows in liquid sodium. However, measuring these flows remains a challenge because liquid sodium is opaque. One possible solution is the use of acoustic waves. Our group has previously used acoustic wave measurements in air to infer azimuthal velocity profiles, but measurements attempted in liquid sodium remain challenging. In the current experiments we measure acoustic modes and their mode splittings in both air and water in a spherical Couette device. The device is comprised of a hollow 30-cm outer sphere which contains a smaller 10-cm rotating inner sphere to drive flow in the fluid in between. We use water because it has material properties that are similar to those of sodium, but is more convenient and less hazardous. Modes are excited and measured using a speaker and microphones. Measured acoustic modes and their mode splittings correspond well with the predicted frequencies in air. However, water modes are more challenging. Further investigation is needed to understand acoustic measurements in the higher density media.

  19. Interchromatidal central ridge and transversal symmetry in early metaphasic human chromosome one.

    Science.gov (United States)

    Argüello-Miranda, Orlando; Sáenz-Arce, Giovanni

    2008-01-01

    The topographic structure of Giemsa-banded (G-banded) early metaphase human chromosomes adsorbed on glass was analyzed by atomic force microscope using amplitude modulation mode (AM-AFM). Longitudinal height measurements for early metaphasic human chromosomes showed a central ridge that was further characterized by transversal height measurements. The heterochromatic regions displayed a high level of transversal symmetry, while the euchromatic ones presented several peaks across the transversal height measurements. We suggest that this central ridge and symmetry patterns point out a transitional arrangement of the early metaphase chromosome and support evidence for interchromatidal interactions prior to disjunction. 2008 John Wiley & Sons, Ltd

  20. On resonant coupling of acoustic waves and gravity waves

    Science.gov (United States)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  1. Design of the APS transverse and longitudinal damping system

    International Nuclear Information System (INIS)

    Sellyey, W.; Barr, D.; Kahana, E.; Votaw, A.

    1994-01-01

    The main sources of instabilities in the Advanced Photon Source (APS) storage ring are expected to be higher-order modes (HOMs) of the accelerating cavities and the resistive wall impedance of the small insertion devices beam tubes. Extensive efforts are being made to reduce the Qs of HOMs. The maximum operating current of the ring will be 300 mA. At this current, analysis of measurements on cavity prototypes shows that the transverse growth rates will be less than 500/sec above radiation damping. The longitudinal growth rate due to HOMs is predicted to never exceed the radiation damping of 213/sec. The largest transverse resistive wall growth rate is calculated to be 2720/sec when 54 evenly spaced rigid bunches are used to produce 300 mA. There will be 26 additional unstable modes. The sum of these growth rates is 17,163/sec. Thus, it is clear that an effective transverse damping system will be needed and that the strength of this damper will be dominated by the resistive wall modes. A longitudinal damper system will also be built. This will provide damping about 2/3 times that due to synchrotron radiation. The most serious disturbances which can initiate instabilities will take place at injection. Typically, each bunch in the ring will be accumulated by injecting 115 of the final charge five times. A standard mode of operation is used in this paper in which there will be 54 evenly spaced bunches around the ring. During the ring filling process, the highest growth rates will occur when the last fifth of a bunch is injected into the last bunch. The largest expected vertical excursion of 1/5 of a bunch is about 5 mm. Anything larger will cause the bunch to scrape in the insertion device sections

  2. Characteristics of Resonantly-Guided Modes in Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yasuo Ohtera

    2014-11-01

    Full Text Available Modal characteristics of resonantly-guided modes (RGMs in microstructured fibers were investigated through numerical simulation. The modes of interest are supported in a class of fibers consisting of a circularly arranged periodic array of high index rods embedded in a low index cladding. Light is confined and guided by the guided-mode resonance (GMR that the rod array exhibit. According to the numerical analysis we clarified that duplicated transverse modes having the same radial mode number for TM and TE modes were supported. Also the existence and detailed mode profiles of hybrid modes were confirmed.

  3. Noninterceptive transverse-beam measurements

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Mottershead, C.T.

    1981-01-01

    Totally noninterceptive techniques for accurate measurement of transverse beam distributions are required for high-current continuous wave (cw) linacs, such as the Fusion Materials Irradiation Test (FMIT) accelerator. Sensors responding to visible radiation from beam interactions with residual gas and computer algorithms reconstructing spatial and phase space distributions have been implemented. This paper reports on early measurements of the beam from the injector of the prototype FMIT facility at Los Alamos. The first section indicates hardware setup and performance whereas the second section describes the data-processing software. The third section outlines the resultant measurements and further developments are discussed in the fourth section

  4. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  5. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  6. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  7. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  9. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. II. FE analysis of bulk wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    The paper studies numerically the bulk acoustic wave generation by the surface acoustic wave propagating across a grating created on the surface of an elastically anisotropic half-infinite substrate. The computations are fully based on the finite element method. Applying the discrete Fourier transformation to the displacement field found inside the substrate and using an orthogonality relation valid for plane modes we determine separately the spatial spectrum of the quasi longitudinal and the quasi transverse bulk waves, that is, the dependence of the amplitudes of these waves on the tangential component of the wave vector. The dependence is investigated of the central spectral peak height and shape on the frequency of the incident surface wave as well as on the thickness, the width, and the number of strips forming the grating. In particular, it is found that under certain conditions the central peak can be approximated fairly precisely by the central peak of a sinc-function describing the spectrum of the bounded acoustic beam of rectangular shape and of width equal to the length of the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Transverse and Longitudinal proximity effect

    Science.gov (United States)

    Jalan, Pryianka; Chand, Hum; Srianand, Raghunathan

    2018-04-01

    With close pairs (˜1.5arcmin) of quasars (QSOs), absorption in the spectra of a background quasar in the vicinity of a foreground quasar can be used to study the environment of the latter quasar at kpc-Mpc scales. For this we used a sample of 205 quasar pairs from the Sloan Digital Sky-Survey Data Release 12 (SDSS DR12) in the redshift range of 2.5 to 3.5 by studying their H I Ly-α absorption. We study the environment of QSOs both in the longitudinal as well as in the transverse direction by carrying out a statistical comparison of the Ly-α absorption lines in the quasar vicinity to that of the absorption lines caused by the inter-galactic medium (IGM). This comparison was done with IGM, matched in absorption redshift and signal-to-noise ratio (SNR) to that of the proximity region. In contrast to the measurements along the line-of-sight, the regions transverse to the quasars exhibit enhanced H I Ly-α absorption. This discrepancy can either be interpreted as due to an anisotropic emission from the quasars or as a consequence of their finite lifetime.

  11. Acoustical analysis of gear housing vibration

    Science.gov (United States)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.

    1991-01-01

    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  12. Second Order Mode Selective Phase-Matching

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Bachor, Hans. A-

    2006-01-01

    We exploit second order (χ(2)) nonlinear optical phase matching for the selection of individual high order transverse modes. The ratio between the generated components can be adjusted continuously via changes in the phase-matching condition. ©2007 Optical Society of America......We exploit second order (χ(2)) nonlinear optical phase matching for the selection of individual high order transverse modes. The ratio between the generated components can be adjusted continuously via changes in the phase-matching condition. ©2007 Optical Society of America...

  13. An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation

    KAUST Repository

    Hao, Q.

    2017-05-26

    We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.

  14. Unraveling the acoustic electron-phonon interaction in graphene

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    Using a first-principles approach we calculate the electron-phonon couplings in graphene for the transverse and longitudinal acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first...... that the intrinsic effective acoustic deformation potential of graphene is Ξeff=6.8 eV and that the temperature dependence of the mobility μ~T-α in the Bloch-Gru¨neisen regime increases beyond an α=4 dependence even in the absence of screening when the true coupling matrix elements are considered. The α>4...

  15. Fundamental modes of new dispersive SH-waves in ...

    Indian Academy of Sciences (India)

    Keywords. Piezoelectromagnetics; magnetoelectric effect; acoustic SH-waves in plates; wave dispersion; fundamental modes. ... Author Affiliations. A A Zakharenko1. International Institute of Zakharenko Waves (IIZWs), 660037, Krasnoyarsk-37, 17701, Krasnoyarsk, Russia ...

  16. Reverse time migration in tilted transversely isotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.

  17. A modular guitar for teaching musical acoustics

    DEFF Research Database (Denmark)

    Marozeau, Jeremy

    2016-01-01

    In order to keep students activated in a course on musical acoustics, they were asked to build a modular guitar, designed to be updated throughout the course. In the first stage, dedicated to the physics of strings, a guitar was made out of three strings attached to a long piece of wood....... The students measured the effect of the place of plucking on the mode of the vibrations of the strings. The second stage was dedicated to the acoustic resonances. Using a laser cutter, the students built a wooden box that was coupled to their guitar using straps. New acoustical measurements were made to study...... the effect of the shape of the resonator on the spectrum of the sound. In the third stage, as the different tuning systems were learned, the students built a fingerboard with the appropriated positions of the frets. In the last stage, the students have implemented some digital effects and tested them...

  18. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations.

    Science.gov (United States)

    Lee, Hyoung-In; Mok, Jinsik

    2014-01-01

    This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  19. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

    Directory of Open Access Journals (Sweden)

    Hyoung-In Lee

    2014-10-01

    Full Text Available This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE and transverse magnetic (TM waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  20. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... oscillating plates. Furthermore, under general thermodynamic conditions, we derive the time-dependent first- and second-order equations for the conservation of mass, momentum, and energy. The coupling from fluid equations to particle motion is achieved through the expressions for the streaming-induced drag...

  1. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  2. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  3. Distributed ion pump related transverse instability in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T.; Holmquist, T. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

    1996-08-01

    An anomalous damping or growth of transverse coupled bunch modes is observed in the Cornell Electron Storage Ring (CESR). The growth rates and tune shifts of these modes are a highly nonlinear function of current. Unlike an instability produced by the coupling impedance of the vacuum chamber, the magnitude of the growth rate first increases, then declines, as the beam current is increased. The effect is known to be related to the operation of the distributed ion pumps, as it disappears when the pumps are not powered. We review the observations of this effect, and show that it can be explained by the presence of electrons trapped in the CESR chamber by the field of the dipole magnets and the electrostatic leakage field of the distributed ion pumps. Photoelectrons are introduced into the chamber by synchrotron radiation and can be captured in or ejected from the chamber by the passage of the beam. The transverse position of the beam thus modulates the trapped photoelectron charge density, which in turn deflects the beam, creating growth or damping and a tune shift for each coupled bunch mode. Predictions of the dependence of growth rate and tune shift on bunch current and bunch pattern by a numerical model of this process are in approximate agreement with observations. (author)

  4. Transverse impedance of a periodic array of cavities

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-06-01

    Full Text Available We examine the transverse impedance of a periodic array of cavities in a beam pipe at high frequency. The calculation is an extension of a previous one for the longitudinal impedance of a periodic array of azimuthally symmetric pillboxes, for which only TM modes were needed. In the present case, we must include TE modes as well. In addition, we extend the applicability of the previous calculation by including an extra term in the coupling kernel so that the results are valid for all values of the ratio of the cavity length to the period of the structure (all values of the ratio of iris thickness to structure period. In spite of the presence of TE modes, we find that the high frequency limit of the transverse impedance is simply (2/ka^{2} times the corresponding limit of the longitudinal impedance, just as it is for the resistive wall impedances, a relation which occurs frequently for azimuthally symmetric structures. Finally, we present numerical results as well as approximate expressions for the impedance per period, valid for all ratios of cavity length to structure period.

  5. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    analysis was conducted on the North Pacific Acoustics Laboratory Philippine Sea tests 2009 and 2010, both of which Dr. Heaney participated as a co-chief...obtained from the ambient noise field. In underwater acoustics , this travel time strongly depends on the depth and temperature and to a lesser extent...et al. 2012) and underwater volcanoes (Green at al. 2013). Guided wave propagation contributes to the limited acoustical attenuation by the SOFAR

  6. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  7. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  8. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  9. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  10. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  11. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  12. Receptivity of a Cryogenic Coaxial Gas-Liquid Jet to Acoustic Disturbances

    Science.gov (United States)

    2014-06-01

    Gas-Liquid Jet to Acoustic Disturbances 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Wegener , J; Forliti, D...range of transverse acoustic conditions.4-6 A new experimental facility for reacting coaxial jet flows has been developed as described by Wegener et...the inner and outer injector flows. Further details on the experimental facility can be found in Wegener et al.7 A single coaxial jet injector was

  13. Effects of construction changes in the teeth of a gear transmission on acoustic properties.

    Science.gov (United States)

    Wieczorek, Andrzej

    2012-01-01

    This paper presents results of experimental research on the acoustic properties of gear wheels with high-profile teeth with differentiated tooth height. Those results showed that gear transmissions with high-profile teeth have the best acoustic properties, with the value of the transverse contact ratio εα ≈ 2.0. They also showed that a reduction in tooth height, and thereby in contact ratio, increased the sound pressure level.

  14. Laparoscopic colectomy for transverse colon carcinoma.

    Science.gov (United States)

    Zmora, O; Bar-Dayan, A; Khaikin, M; Lebeydev, A; Shabtai, M; Ayalon, A; Rosin, D

    2010-03-01

    Laparoscopic resection of transverse colon carcinoma is technically demanding and was excluded from most of the large trials of laparoscopic colectomy. The aim of this study was to assess the safety, feasibility, and outcome of laparoscopic resection of carcinoma of the transverse colon. A retrospective review was performed to identify patients who underwent laparoscopic resection of transverse colon carcinoma. These patients were compared to patients who had laparoscopic resection for right and sigmoid colon carcinoma. In addition, they were compared to a historical series of patients who underwent open resection for transverse colon cancer. A total of 22 patients underwent laparoscopic resection for transverse colon carcinoma. Sixty-eight patients operated for right colon cancer and 64 operated for sigmoid colon cancer served as comparison groups. Twenty-four patients were identified for the historical open group. Intraoperative complications occurred in 4.5% of patients with transverse colon cancer compared to 5.9% (P = 1.0) and 7.8% (P = 1.0) of patients with right and sigmoid colon cancer, respectively. The early postoperative complication rate was 45, 50 (P = 1.0), and 37.5% (P = 0.22) in the three groups, respectively. Conversion was required in 1 (5%) patient in the laparoscopic transverse colon group. The conversion rate and late complications were not significantly different in the three groups. There was no significant difference in the number of lymph nodes harvested in the laparoscopic and open groups. Operative time was significantly longer in the laparoscopic transverse colectomy group when compared to all other groups (P = 0.001, 0.008, and transverse colectomy, respectively). The results of laparoscopic colon resection for transverse colon carcinoma are comparable to the results of laparoscopic resection of right or sigmoid colon cancer and open resection of transverse colon carcinoma. These results suggest that laparoscopic resection of transverse

  15. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  16. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  17. Radiative damping of standing acoustic waves in solar coronal loops

    OpenAIRE

    Bradshaw, S.J.; Erdelyi, R.

    2008-01-01

    Context. A detailed understanding of the physical processes that determine the damping timescales of magneto-acoustic waves is essential to interpret diagnostic results from the application of solar magneto-seismology.\\ud Aims. The influence of the transition region and the importance of radiative emission, arising from equilibrium and non-equilibrium ionisation balances, for the damping timescale of the fundamental mode standing acoustic wave is investigated.\\ud Methods. An extensive numeric...

  18. Resonant interaction between hydrogen vibrational modes in AlSb:Se.

    Science.gov (United States)

    McCluskey, M D

    2009-04-03

    Vibrational modes and their interactions affect numerous physical processes in condensed-matter systems. In the present work, hydrogen vibrations in Se-doped AlSb were investigated with first-principles calculations. Vibrational frequencies were calculated for the longitudinal, transverse, wag (bending), and stretch modes of the Al-H complex. The Al-H stretch mode interacts with a combination mode involving a wag overtone and transverse fundamental. This resonant interaction yields vibrational states that are linear superpositions of the stretch mode and the combination mode. The spatial extent of such excitations is significantly larger than that of a local vibrational mode.

  19. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  20. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  1. Behavior of grid-stiffened composite structures under transverse loading

    Science.gov (United States)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  2. Dynamic Stability of Rotating Blades with Transverse Cracks

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    2003-01-01

    Full Text Available In this paper, the main objective is to examine the effects of transverse cracks on the dynamic instability regions of an axially loaded rotating blade. The blade is modeled as an Euler-Bernoulli beam. To reduce the governing equations to a set of ordinary differential equations in matrix form, Hamilton's principle is used in conjunction with the assumed-mode method. The crack is accounted for by considering the energy release rate and the parametric instability regions are obtained using Bolotin's first approximation. Benchmark results are presented for cracked rotating blades at different rotating speeds, crack lengths and crack positions.

  3. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  4. Mode composition of radiation from waveguide gas lasers

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, A.V.; Kozel, S.M.

    1979-06-01

    Calculations are made of the mode composition of radiation emerging from a waveguide laser. Allowance is made for all types of resonator losses and also for a spatially inhomogeneous distribution of the population inversion. Using a two-mode model, it is shown that a transverse inhomogeneity of the inversion results in efficient filtering of higher-order modes even in the case of identical diffraction losses for the different modes.

  5. A Parametric Study of the Acoustic Mechanism for Core-collapse Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Harada, A. [Physics Department, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nagakura, H. [TAPIR, Walter Burke Institue for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Iwakami, W.; Yamada, S., E-mail: harada@utap.phys.s.u-tokyo.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2017-04-10

    We investigate the criterion for the acoustic mechanism to work successfully in core-collapse supernovae. The acoustic mechanism is an alternative to the neutrino-heating mechanism. It was proposed by Burrows et al., who claimed that acoustic waves emitted by g -mode oscillations in proto-neutron stars (PNS) energize a stalled shock wave and eventually induce an explosion. Previous works mainly studied to which extent the g -modes are excited in the PNS. In this paper, on the other hand, we investigate how strong the acoustic wave needs to be if it were to revive a stalled shock wave. By adding the acoustic power as a new axis, we draw a critical surface, which is an extension of the critical curve commonly employed in the context of neutrino heating. We perform both 1D and 2D parametrized simulations, in which we inject acoustic waves from the inner boundary. In order to quantify the power of acoustic waves, we use the extended Myers theory to take neutrino reactions into proper account. We find for the 1D simulations that rather large acoustic powers are required to relaunch the shock wave, since the additional heating provided by the secondary shocks developed from acoustic waves is partially canceled by the neutrino cooling that is also enhanced. In 2D, the required acoustic powers are consistent with those of Burrows et al. Our results seem to imply, however, that it is the sum of neutrino heating and acoustic powers that matters for shock revival.

  6. Observation of acoustically induced modulation instability in a Brillouin photonic crystal fiber laser.

    Science.gov (United States)

    Stiller, Birgit; Sylvestre, Thibaut

    2013-05-01

    We report the experimental observation of self-induced modulation instability (MI) in a Brillouin fiber laser made with a solid-core photonic crystal fiber (PCF) with strong anomalous dispersion. We identify this MI as the result of parametric amplification of optical sidebands generated by guided acoustic modes within the core of the PCF. It is further shown that MI leads to passive harmonic mode locking and to the generation of a picosecond pulse train at a repetition rate of 1.15 GHz which matches the acoustic frequency of the fundamental acoustic mode of the PCF.

  7. Impurity modes in the one-dimensional XXZ Heisenberg model

    International Nuclear Information System (INIS)

    Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.

    2014-01-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  8. Quasinormal modes and classical wave propagation in analogue black holes

    International Nuclear Information System (INIS)

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow

  9. Deep Water Ocean Acoustics

    Science.gov (United States)

    2015-07-17

    Ocean Acoustics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...paper and presented on global acoustic propagation (including on Europa, a small moon of Jupiter ) at the International Conference of Sound and

  10. Acoustic emission source modeling

    Czech Academy of Sciences Publication Activity Database

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  11. Helioseismology in a bottle: modal acoustic velocimetry

    International Nuclear Information System (INIS)

    Triana, Santiago Andrés; Zimmerman, Daniel S; Lathrop, Daniel P; Nataf, Henri-Claude; Thorette, Aurélien; Lekic, Vedran

    2014-01-01

    Measurement of the differential rotation of the Sun's interior is one of the great achievements of helioseismology, providing important constraints for stellar physics. The technique relies on observing and analyzing rotationally-induced splittings of p-modes in the star. Here, we demonstrate the first use of the technique in a laboratory setting. We apply it in a spherical cavity with a spinning central core (spherical-Couette flow) to determine the mean azimuthal velocity of the air filling the cavity. We excite a number of acoustic resonances (analogous to p-modes in the Sun) using a speaker and record the response with an array of small microphones on the outer sphere. Many observed acoustic modes show rotationally-induced splittings, which allow us to perform an inversion to determine the air's azimuthal velocity as a function of both radius and latitude. We validate the method by comparing the velocity field obtained through inversion against the velocity profile measured with a calibrated hot film anemometer. This modal acoustic velocimetry technique has great potential for laboratory setups involving rotating fluids in axisymmetric cavities. It will be useful especially in liquid metals where direct optical methods are unsuitable and ultrasonic techniques very challenging at best. (paper)

  12. Intraoperative performance and postoperative outcome comparison of longitudinal, torsional, and transversal phacoemulsification machines.

    Science.gov (United States)

    Christakis, Panos G; Braga-Mele, Rosa M

    2012-02-01

    To compare the intraoperative performance and postoperative outcomes of 3 phacoemulsification machines that use different modes. Kensington Eye Institute, Toronto, Ontario, Canada. Comparative case series. This chart and video review comprised consecutive eligible patients who had phacoemulsification by the same surgeon using a Whitestar Signature Ellips-FX (transversal), Infiniti-Ozil-IP (torsional), or Stellaris (longitudinal) machine. The review included 98 patients. Baseline characteristics in the groups were similar; the mean nuclear sclerosis grade was 2.0 ± 0.8. There were no significant intraoperative complications. The torsional machine averaged less phacoemulsification needle time (83 ± 33 seconds) than the transversal (99 ± 40 seconds; P=.21) or longitudinal (110 ± 45 seconds; P=.02) machines; the difference was accentuated in cases with high-grade nuclear sclerosis. The torsional machine had less chatter and better followability than the transversal or longitudinal machines (Pmachines had better anterior chamber stability than the transversal machine (Pmachine yielded less central corneal edema than the transversal (Pmachines, corresponding to a smaller increase in mean corneal thickness (torsional 5%, transversal 10%, longitudinal 12%; P=.04). Also, the torsional machine had better 1-day postoperative visual acuities (Pmachines were effective with no significant intraoperative complications. The torsional machine outperformed the transversal and longitudinal machines, with a lower mean needle time, less chatter, and improved followability. This corresponded to less corneal edema 1 day postoperatively and better visual acuity. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  14. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  15. Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Prokudin, Alexei [JLAB; Bacchetta, Alessandro [INFN-PAVIA

    2013-07-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  16. No generalized transverse momentum dependent factorization in the hadroproduction of high transverse momentum hadrons

    NARCIS (Netherlands)

    Rogers, T.C.; Mulders, P.J.G.

    2010-01-01

    It has by now been established that standard QCD factorization using transverse momentum dependent parton distribution functions fails in hadroproduction of nearly back-to-back hadrons with high transverse momentum. The essential problem is that gauge-invariant transverse momentum dependent parton

  17. Modes of storage ring coherent instabilities

    International Nuclear Information System (INIS)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered

  18. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  19. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  20. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    These transverse momentum-dependent parton distribution functions are of significance for the analysis of azimuthal asymmetries in semi-inclusive deep inelastic scattering, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized hadrons. In this context we also ...

  1. Average Transverse Momentum Quantities Approaching the Lightfront

    NARCIS (Netherlands)

    Boer, Daniel

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the p (T) broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large

  2. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    Collaboration [2] describes correlations of the intrinsic quark transverse momen- tum and the transverse nucleon ..... These results are in agreement with the large Nc predictions [41], Bag. Model results reported in [42], ..... work is supported by a grant from the US Department of Energy under contract. DE-FG02-07ER41460.

  3. Anaesthetic considerations in patients with transverse myelitis ...

    African Journals Online (AJOL)

    Transverse myelitis is an acute or subacute inflammatory disorder involving the spinal cord. Clinical signs are due to the involvement of the ascending and descending tracts in the transverse plane of the spinal cord. The most common cause is autoimmune. These patients may present with various clinical findings with ...

  4. MRI in acute transverse myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Holtaas, S. (Dept. of Diagnostic Radiology, Univ. Hospital Lund (Sweden)); Basibueyuek, N. (Dept. of Diagnostic Radiology, Univ. Hospital Lund (Sweden)); Fredriksson, K. (Dept. of Neurology, Univ. Hospital Lund (Sweden))

    1993-03-01

    The MRI examinations of seven patients with acute transverse myelopathy (ATM) were analysed. The patients were examined 2-5 times during the course of their disease with short and long TR/TE spin-echo sequences in the sagittal projection. A previous history of autoimmune disorder and/or signs of infection at the onset of ATM were present in all cases. Cerebrospinal fluid analysis showed local synthesis of immunoglobulin in the nervours system in three cases and signs of infectious myelitis in one. During the acute phase four patients had local enlargement of the cord and all had increased signal on long TR/TE sequences. The outcome was grave in the majority of patients and there seemed to be a correlation between the degree of cord enlargement, persistence of increased signal intensity and limited recovery. Atrophy and remaining high signal intensity were noted on late MRI patients with poor outcome. In one patient with probable anterior spinal artery occlusion, cavitation of the cord was seen. (orig.)

  5. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  6. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  7. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  8. Transverse spin dependent azimuthal asymmetries at COMPASS

    CERN Document Server

    Parsamyan, Bakur

    2011-01-01

    In semi-inclusive deep inelastic scattering of polarized leptons on a transversely polarized target eight target transverse spin-dependent azimuthal modulations are allowed. In the QCD parton model half of these asymmetries can be interpreted within the leading order approach and the other four are twist-three contributions. The first two leading twist asymmetries extracted by HERMES and COMPASS experiments are related: one to the transversity distribution and the Collins effect, the other to the Sivers distribution function. These results triggered a lot of interest in the past few years and allowed the first extractions of the transversity and the Sivers distribution functions of nucleon. The remaining six asymmetries were obtained by the COMPASS experiment using a 160 GeV/c longitudinally polarized muon beam and transversely polarized deuteron and proton targets. Here we review preliminary results from COMPASS proton data of 2007.

  9. Comparative Study of Bio-implantable Acoustic Generator Architectures

    International Nuclear Information System (INIS)

    Christensen, D; Roundy, S

    2013-01-01

    This paper is a comparative study of the design spaces of two bio-implantable acoustically excited generator architectures: the thickness-stretch-mode circular piezoelectric plate and the bending-mode unimorph piezoelectric diaphragm. The generators are part of an acoustic power transfer system for implanted sensors and medical devices such as glucose monitors, metabolic monitors, drug delivery systems, etc. Our studies indicate that at small sizes the diaphragm architecture outperforms the plate architecture. This paper will present the results of simulation studies and initial experiments that explore the characteristics of the two architectures and compare their performance

  10. The transverse acetabular ligament: optimizing version.

    Science.gov (United States)

    Beverland, David

    2010-09-07

    In total hip arthroplasty (THA), excessive retroversion is associated with posterior instability, anterior impingement, and resultant groin pain. Excessive anteversion can lead to anterior instability and posterior impingement. The transverse acetabular ligament straddles the inferior limit of the bony acetabulum. It is a strong load-bearing structure and, in the normal hip, in association with the labrum, provides part of the load-bearing surface for the femoral head. It is our hypothesis that the transverse acetabular ligament defines normal version for the acetabulum. In Belfast, we found that using the transverse acetabular ligament helped reduce our primary dislocation rate from 3.7% to 1%. The key is good intraoperative exposure. A grading of 1 to 4 was based on 1000 consecutive cases: (1) normal transverse acetabular ligament easily visible on exposure of the acetabulum, 49%; (2) covered by soft tissue, 35.1%--cleared by blunt dissection; (3) covered by osteophytes, 15.6%--cleared using an acetabular reamer; (4) no transverse acetabular ligament identified, 0.3%. As can be seen, the transverse acetabular ligament is only immediately visible in 49% of cases. In the other 51%, soft tissue or bone must be cleared to define the ligament. The advantages of the transverse acetabular ligament are many. It is independent of patient positioning. The cup version can be individualized by the patient. The surgeon can avoid estimating version angle of 15° to 20° intraoperatively. It is easy to teach and consistently present. It is valuable in minimally invasive surgery. Using the transverse acetabular ligament provides an acceptable dislocation rate with the posterior approach. If the cup is cradled by the transverse acetabular ligament, it helps restore acetabular joint center. However, the transverse acetabular ligament does not help with inclination. We recommend 35° of operative inclination when using the posterior approach. Copyright 2010, SLACK Incorporated.

  11. Forced response sound radiation from acoustically or mechanically excited small plates

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1992-01-01

    Sound radiation from an acoustically excited, clamped aluminum plate is measured and expressed in terms of noise reduction to take into account the incident acoustic excitation field. Its mode shapes and modal frequencies are measured and show good agreement with the predictions from a finite element MSC/NASTRAN model. Noise reduction is measured at 15 points behind the plate and demonstrate good agreement with predictions employing the SYSNOISE numerical analysis system for acoustic-structure interaction.

  12. Transverse correlations in triphoton entanglement: Geometrical and physical optics

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua; Xu, P.

    2007-01-01

    The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton state produced in the parametric processes. One consequence of transverse effects of entangled states is quantum imaging, which is theoretically studied in photon counting measurements. Klyshko's two-photon advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the Gaussian thin lens equation (GTLE) holds, the imaging shown in coincidences is obscure and has a poor quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the effective distance between the lens and imaging plane is the parallel combination of two distances between the lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain conditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual features compared with the two-photon case. This unusual behavior is a

  13. Spontaneous excitations of low amplitude hole filaments, acoustic vortices, and rogue wave events in weakly disordered dust acoustic waves

    Science.gov (United States)

    Tsai, Ya-Yi; Chang, Mei-Chu; Tsai, Jun-Yi; I, Lin

    2017-05-01

    In this work, we briefly review our recent experimental studies on the observations and waveform dynamics of spontaneous excitations of low and high amplitude singular objects: low amplitude hole filaments coinciding with the wiggling trajectories of topological defects surrounded by acoustic vortices with helical waveforms, and uncertain rogue wave events, in self-excited weakly disordered dust acoustic waves. The changes of waveform topology, caused by kinking, rupturing and reconnection of sequential wave crests surfaces, and the reversed process, are responsible for the chaotic creation, propagation, and annihilation of acoustic vortex pairs with opposite helicities winding around low amplitude hole filaments. The observed rogue wave events are preceded by a higher probability of surrounding defects. Particle focusing by the transverse electric forces from ruptured and tilted wave crests nearby defects are identified as the major cause for rogue wave generation.

  14. Acoustic building infiltration measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  15. Acoustic well cleaner

    Science.gov (United States)

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  16. Small-displacement measurements using high-order Hermite-Gauss modes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui, E-mail: jrgao@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  17. Nonlinear Interchange Modes in 3D

    Science.gov (United States)

    Bagaipo, Jupiter; Hassam, Adil

    2012-10-01

    We have shown previously that, in 2D, the ideal magnetohydrodynamic interchange mode stabilized by a constant transverse magnetic field is nonlinearly unstable if near marginal conditions. This study is extended to a 3D system where the mode is marginally stabilized by allowing for wavenumbers weakly transverse to an axial field. Two different boundary conditions are studied: periodic and line-tied in the axial direction. Periodic boundary conditions have applications in toroidal fusion devices while line-tied systems are common in the solar corona. We use reduced equations for a strong axial field to find an analytic solution as a function of the deviation from marginality. Using a systematic perturbation analysis we show that, to lowest order, there exists a secondary, quasistatic equilibrium with a critical field strength. Allowing for deviations from criticality yield a nonlinear time-evolution equation for the perturbation amplitude. The periodic case allows for two types of modes, and it is shown that the mode isomorphic to the earlier 2D problem is nonlinearly unstable, while the ``sausage''-type mode is nonlinearly stable. These modes are modes along a rational surface and ballooning type modes, respectively. The line-tied case is shown to always be nonlinearly stable.

  18. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bryk, Taras [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv (Ukraine); Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv (Ukraine); Ruocco, G. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma (Italy); Scopigno, T. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); IPCF-CNR, c/o Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Seitsonen, Ari P. [Département de Chimie, Université de Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)

    2015-09-14

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  19. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  20. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...

  1. Scaling properties of the transverse mass spectra

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.

    2002-01-01

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's relativistic heavy-ion collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m t . The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m t -scaling is also present in proton-antiproton collider data and compare it to m t -scaling at RHIC. (orig.)

  2. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  3. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Connections Overview Find a Meeting Host a Meeting Volunteer Become a Volunteer Opportunities Support Overview Patient Events ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ...

  4. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... with AN Healthcare Providers Acoustic Neuroma Association Donate Now Newly Diagnosed What is AN? Request a Patient ... Volunteer About ANA Get Info Shop ANA Donate Now DONATE Ways to Give Legacy Society Team ANA © ...

  5. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  6. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  7. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  8. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  9. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  10. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English ...

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English Arabic Catalan Chinese ( ...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Info Booklets Research Back ANA Survey/Registry AN Research ... About Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ... 205-8211 info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home ...

  16. Department of Cybernetic Acoustics

    Science.gov (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  17. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma ... 8211 info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn ...

  19. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  20. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  1. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  2. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  3. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side ... Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient ...

  4. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway ... ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video ...

  6. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  7. Transverse effects in a microchip laser with asymmetric end-pumping: modal interference and dynamic instability

    CERN Document Server

    Otsuka, K; Makino, H; Ohtomo, T; Okamoto, A

    2003-01-01

    Formation of complicated emission patterns consisting of many transverse modes and associated intensity pulsations at beat frequencies between some pairs of transverse eigenmodes in microchip solid-state lasers with laser-diode asymmetric end-pumping are reviewed. The dependence of billiard-like transverse patterns on pump power and crystal rotation (i.e. kaleidoscopic patterns) was demonstrated in a 0.3 mm thick thin-slice LiNdP sub 4 O sub 1 sub 2 laser with sheet-like end-pumping. Pump-power-dependent high-speed self-pulsations were observed. The asymmetric optical confinement resulted in the formation of transverse patterns which were totally different from normal Hermite-Gaussian resonator modes. The interference among pairs of non-orthogonal transverse eigenmode fields, whose energy levels exhibited avoided crossing with increasing pump power, was shown to result in high-speed intensity modulations. A good numerical reproduction of the observed high-speed modulations was obtained with model equations. (...

  8. Curbing - The Metallic Mode In-Between

    DEFF Research Database (Denmark)

    Aaen, Mathias; McGlashan, Julian; Sadolin, Cathrine

    2017-01-01

    Objectives This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum....... Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second...... is statistically significantly different from Overdrive and Edge, and can be categorized based on audio perception. This study demonstrates consistently different laryngeal gestures between Curbing and Overdrive and Edge, with high corresponding differences in LTAS, EGG and acoustic measures....

  9. Underwater Acoustic Target Tracking: A Review.

    Science.gov (United States)

    Luo, Junhai; Han, Ying; Fan, Liying

    2018-01-02

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper.

  10. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  11. Neutron scattering investigation of layer-bending modes in alkali-metal--graphite intercalation compounds

    International Nuclear Information System (INIS)

    Zabel, H.; Kamitakahara, W.A.; Nicklow, R.M.

    1982-01-01

    Phonon dispersion curves for low-frequency transverse modes propagating in the basal plane have been measured in the alkali-metal--graphite intercalation compounds KC 8 , CsC 8 , KC 24 , and RbC 24 by means of neutron spectroscopy. The acoustic branches show an almost quadratic dispersion relation at small q, characteristic of strongly layered materials. The optical branches of stage-1 compounds can be classified as either graphitelike branches showing dispersion, or as almost dispersionless alkali-metal-like modes. Macroscopic shear constants C 44 and layer-bending moduli have been obtained for the intercalation compounds by analyzing the data in terms of a simple semicontinuum model. In stage-2 compounds, a dramatic softening of the shear constant by about a factor of 8 compared with pure graphite has been observed. Low-temperature results on KC 24 indicate the opening of a frequency gap near the alkali-metal Brillouin-zone boundary, possibly due to the formation of the alkali-metal superstructure

  12. The KRAKEN normal mode program

    Science.gov (United States)

    Porter, M. B.

    1992-05-01

    In the late 1970's, several normal-mode models existed which were widely used for predicting acoustic transmission-loss in the ocean; however, each had its own problems. Typical difficulties included numerical instabilities for certain types of sound-speed profiles and failures to compute a complete set of ocean modes. In short, there was a need for a model that was robust, accurate, and efficient. In order to resolve these problems, a new algorithm was developed forming the basis for the KRAKEN normal mode model. Over subsequent years, KRAKEN was greatly extended, with options for modeling ocean environments that are range-independent, range-dependent, or fully 3-dimensional. The current version offers the specialist a vast number of options for treating ocean-acoustics problems (or more generally acousto-elastic waveguides). On the other hand, it is easy for a less sophisticated user to learn the small subset of tools needed for the common problem of transmission-loss modeling in range-independent ocean environments. This report addresses the need for a more complete user's guide to supplement the on-line help files. The first chapters give a fairly technical description of the mathematical and numerical basis of the model. Additional chapters give a simpler description of its use and installation in a manner that is accessible to less scientifically-oriented readers.

  13. Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.

    Science.gov (United States)

    Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J

    2017-06-16

    Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.

  14. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  15. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  16. Transverse steering of two-component beams

    International Nuclear Information System (INIS)

    Murin, B.P.; Bondarev, B.U.; Durkin, A.P.; Lomize, L.G.; Soloviev, L.Yu.; Fedotov, A.P.

    Coherent transverse oscillations are considered which occur during simultaneous acceleration of proton and H - beams due to arbitrary displacements in elements of the focusing channel. To suppress these oscillations, a beam adjustment station is proposed, in which each quadrupole lens of two doublets is provided with a special dipole component of the magnetic field. These steering elements, together with the beam transverse position monitors, permit steering the transverse position of beams of opposite signs in both transverse planes. The number of steering stations needed is chosen, and some algorithms for control are discussed. It is shown that some of the control algorithms will permit not only the suppression of coherent oscillations, but a decrease in the radius and emittance of the beam

  17. Elliptic flow coefficients from transverse momentum conservation

    Science.gov (United States)

    Bzdak, Adam; Ma, Guo-Liang

    2018-01-01

    We calculate the k -particle (k =2 ,4 ,6 ,8 ) azimuthal cumulants resulting from the conservation of transverse momentum. We find that c2{k } >0 and, depending on the transverse momenta, c2{k } can reach substantial values even for a relatively large number of particles. The impact of our results on the understanding of the onset of collectivity in small systems is emphasized.

  18. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  19. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  20. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained...

  1. Transverse structure of the QCD string

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2010-01-01

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.

  2. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  3. Evaluation of the photocathode laser transverse distribution

    Energy Technology Data Exchange (ETDEWEB)

    Saisa-ard, Chaipattana [DESY, Zeuthen (Germany); Chiang Mai Univ., Chiang Mai (Thailand); Krasilnikov, Mikhail; Vashchenko, Grygorii [DESY, Zeuthen (Germany)

    2016-07-01

    Many years experience of electron source developments at the photo injector test facility at DESY in Zeuthen (PITZ) show that the photocathode laser is the one of major tools to produce high brightness electron beams. The transverse distribution of the laser on the photocathode plays a significant role in the high brightness photo injector optimization. However, the imperfections in the laser beam profile according to the deviation from a radially homogeneous profile directly result in transversely distorted charged particle distributions. This includes inhomogeneous core as well as transverse halo which is due to not sharp edges around the core. The laser transverse distribution is measured at PITZ using a virtual cathode:this is a CCD camera located at the position which is optically equivalent to the photocathode position (so called virtual cathode). An algorithm is developed for the evaluation of the experimentally obtained transverse profiles. It fits a flat-top or an inhomogeneous rotational symmetric core with exponentially decaying tails to an experimental distribution. The MATLAB script with implemented algorithm is applied to a set of measured transverse laser distributions. Results of the analysis will be presented.

  4. Model for a Torsional-Mode Ultrasonic Transducer for an Acousto-Optic In-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Gerald T. Moore

    2010-01-01

    torsional modes in a cylindrical fiber. This model predicts that almost all of the power applied to the transducer is radiated into the desired mode. The paper also discusses effects produced by acoustic absorption and the dependence of the acoustic velocity on temperature.

  5. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    Science.gov (United States)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  6. Various phenomena of self-mode-locked operation in optically pumped semiconductor lasers

    Science.gov (United States)

    Tsou, C. H.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2017-02-01

    This work presents several optical experiments to investigate the phenomenon of self-mode locking (SML) in optically pumped semiconductor lasers (OPSLs). First of all, we systematically explore the influence of high-order transverse modes on the SML in an OPSL with a linear cavity. Experimental results reveal that the occurrence of SML can be assisted by the existence of the first high-order transverse mode, and the laser is operated in a well-behaved SML state with the existence of the TEM0,0 mode and the first high-order transverse mode. While more high-order transverse modes are excited, it is found that the pulse train is modulated by more beating frequencies of transverse modes. The temporal behavior becomes the random dynamics when too many high-order transverse modes are excited. We observe that the temporal trace exhibits an intermittent mode-locked state in the absence of high-order transverse modes. In addition to typical mode-locked pulses, we originally observe an intriguing phenomenon of SML in an OPSL related to the formation of bright-dark pulse pairs. We experimentally demonstrated that under the influence of the tiny reflection feedback, the phase locking between lasing longitudinal modes can be assisted to form bright-dark pulse pairs in the scale of round-trip time. A theoretical model based on the multiple reflections in a phase-locked multi-longitudinal-mode laser is developed to confirm the formation of bright-dark pulse pairs.

  7. Low frequency coupled mode sound propagation over a continental shelf.

    Science.gov (United States)

    Knobles, D P; Stotts, S A; Koch, R A

    2003-02-01

    A two-way integral equation coupled mode method is applied to a continental shelf ocean waveguide proposed for a special session devoted to range-dependent acoustic modeling at the 141st meeting of the Acoustical Society of America. The coupled mode solution includes both sediment trapped and continuum modes. The continuum is approximated by a finite number of leaky modes but neglects the branch cut contribution. Mode coupling matrix elements and the range evolution of the modal amplitudes show the nature of the mode coupling. Transmission loss versus range at 100 Hz predicted by the integral equation approach is compared to the transmission loss predicted by a wide angle parabolic equation method. While there is very good agreement, one observes small differences that can be interpreted as backscattering predicted by the integral equation solution.

  8. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  9. One-dimensional acoustic modeling of thermoacoustic instabilities (on cd)

    NARCIS (Netherlands)

    van Kampen, J.F.; Huls, R.A.; Kok, Jacobus B.W.; van der Meer, Theodorus H.; Nilsson, A.; Boden, H.

    2003-01-01

    In this paper the acoustic stability of a premixed turbulent natural gas flame confined in a combustor is investigated. Specifically when the flame is operated in a lean premixed mode, the thermoacoustic system is known to exhibit instabilities. These arise from a feedback mechanism between the

  10. Application of inertia-induced excitation theory for nonlinear acoustic ...

    Indian Academy of Sciences (India)

    acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are ... If there is multispecies ionic composition in a plasma system, varieties of plasma sound waves are likely to ... A simplified field-free model of a dust grain laden gaseous mixture of free ions, electrons and dust ...

  11. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    ion-acoustic waves. Recently, Stenflo et al [24] observed two new low-frequency elec- trostatic modes in ultra-cold unmagnetized quantum dusty plasmas. Ali and Shukla ... waves in a nonuniform ultra-cold Fermi dusty gas composed of inertialess electrons, and ions as well ... the Van Allen radiation belts [34] etc. Streaming ...

  12. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  13. Transverse plane wave analysis of short elliptical chamber mufflers: An analytical approach

    Science.gov (United States)

    Mimani, A.; Munjal, M. L.

    2011-03-01

    Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations.

  14. Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method

    KAUST Repository

    Wu, Zedong

    2018-04-12

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  15. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  16. Sausage Waves in Transversely Nonuniform Monolithic Coronal Tubes

    Science.gov (United States)

    Lopin, I.; Nagorny, I.

    2015-09-01

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel-Kramers-Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.

  17. SAUSAGE WAVES IN TRANSVERSELY NONUNIFORM MONOLITHIC CORONAL TUBES

    International Nuclear Information System (INIS)

    Lopin, I.; Nagorny, I.

    2015-01-01

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel–Kramers–Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide

  18. Constitutive behaviour of mixed mode loaded adhesive layer

    DEFF Research Database (Denmark)

    Högberg, J.L.; Sørensen, Bent F.; Stigh, U.

    2007-01-01

    Mixed mode testing of adhesive layer is performed with the Mixed mode double Cantilever Bean? specimen. During the experiments, the specimens are loaded by transversal and/or shear forces; seven different mode mixities are tested. The J-integral is used to evaluate the energy dissipation...... in the failure process zone. The constitutive behaviour of the adhesive layer is obtained by a so called inverse method and fitting an existing mixed mode cohesive model, which uses a coupled formulation to describe a mode dependent constitutive behaviour. The cohesive parameters are determined by optimizing...

  19. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  20. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  1. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  2. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  3. Dispersion properties of transverse waves in electrically polarized BECs

    International Nuclear Information System (INIS)

    Andreev, Pavel A; Kuz'menkov, L S

    2014-01-01

    Further development of the method of quantum hydrodynamics in applications for Bose–Einstein condensates (BECs) is presented. To consider the evolution of polarization direction along with particle movement, we have developed a corresponding set of quantum hydrodynamic equations. It includes equations of the polarization evolution and the polarization-current evolution along with the continuity equation and the Euler equation (the momentum-balance equation). Dispersion properties of the transverse waves, including the electromagnetic waves propagating through the BECs, are considered. To this end, we consider a full set of the Maxwell equations for the description of electromagnetic field dynamics. This approximation gives us the possibility of considering the electromagnetic waves along with the matter waves. We find a splitting of the electromagnetic-wave dispersion on two branches. As a result, we have four solutions, two for the electromagnetic waves and two for the matter waves; the last two are the concentration-polarization waves appearing as a generalization of the Bogoliubov mode. We also find that if the matter wave propagates perpendicular to the external electric field then the dipolar contribution does not disappear (as it follows from our generalization of the Bogoliubov spectrum). A small dipolar frequency shift exists in this case due to the transverse electric field of perturbation. (paper)

  4. Acoustic observations of internal tides and tidal currents in shallow water.

    Science.gov (United States)

    Turgut, Altan; Mignerey, Peter C; Goldstein, David J; Schindall, Jeffrey A

    2013-04-01

    Significant acoustic travel-time variability and frequency shifts of acoustic intensity level curves in broadband signal spectrograms were measured in the East China Sea during the summer of 2008. The broadband pulses (270-330 Hz) were transmitted from a fixed source and received at a bottomed horizontal array, located at the 33 km range. The acoustic intensity level curves of the received signals indicate regular frequency shifts that are well correlated with the measured internal tides. Similarly, regular travel-time shifts of the acoustic mode arrivals correlate well with the barotropic tides and can be explained by tidal currents along the acoustic propagation track. These observations indicate the potential of monitoring internal tides and tidal currents using low-frequency acoustic signals propagating at long ranges.

  5. Crossed ratchet effects on magnetic domain walls: geometry and transverse field effects

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Hierro-Rodriguez, A; Perez-Junquera, A; Alameda, J M; Martin, J I; Velez, M, E-mail: mvelez@uniovi.es [Dept. Fisica, Universidad de Oviedo-CINN, 33007 Oviedo (Spain)

    2011-08-17

    Domain wall propagation across a 2D array of asymmetric holes is strongly dependent on the domain wall configuration: i.e. on whether the wall is flat or kinked. This results in interesting crossed ratchet and asymmetric accommodation effects that have been studied as a function of geometry and transverse field. Micromagnetic simulations have shown that the observation of crossed ratchet effects is easier for arrow than for triangular holes due to a larger field range in which kink propagation is the preferred mode for domain wall motion. Also, it has been found that dc transverse fields can produce a significant enhancement of the easy axis asymmetric accommodation and, also, that ac transverse fields can be rectified by the crossed ratchet potential.

  6. Controlling guided modes in plasmonic metal/dielectric multilayer waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wickremasinghe, N.; Wang, X.; Wagner, H. P. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Thompson, J. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States); Schmitzer, H. [Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States)

    2015-06-07

    We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index when one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.

  7. Comparison of extended hemicolectomy versus transverse colectomy in patients with cancer of the transverse colon.

    Science.gov (United States)

    van Rongen, I; Damhuis, R A M; van der Hoeven, J A B; Plaisier, P W

    2013-01-01

    Cancer of the transverse colon is rare and postoperative mortality tends to be high. Standard surgical treatment involves either extended hemicolectomy or transverse colectomy, depending on the location of the tumour. The aim of the present study was to compare postoperative mortality and five-year survival between these types of surgery. For this observational study, data on patients with a tumour of the transverse colon, treated by open resection in the Dordrecht Hospital from 1989 through 2003, were derived from the database of the regional cancer registry. Information on type of resection, tumour stage, complications, postoperative mortality (30-day) and survival was abstracted from the medical files. Patients with multi-organ surgery, (sub)total colectomy or stage IV disease were excluded from the analysis, leaving a total series of 103 patients. Transverse colectomy comprised one third of operations, predominantly involving partial resections. Postoperative mortality was 6% (2/34) after transverse colectomy and 7% (5/69) after extended hemicolectomy. Five-year survival was slightly higher for the hemicolectomy group (61% versus 50%), but this difference did not reach statistical significance (p = 0.34). Our results confirm the high postoperative risk after surgery for cancer of the transverse colon and show that this risk does not depend on the type of surgery. Considering the satisfactory results after partial transverse colectomy, segmental resections may be considered as an option for the treatment of localised tumours of the transverse colon.

  8. First observation of the exchange of transverse and longitudinal emittances

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Thurman-Keup, R.; Edwards, H.; Fliller, R.P.; Koeth, T.; Sun, Y.-E; /Fermilab

    2011-02-01

    An experimental program to demonstrate a novel phase space manipulation in which the horizontal and longitudinal emittances of a particle beam are exchanged has been completed at the Fermilab A0 Photoinjector. A new beamline, consisting of a TM{sub 110} deflecting mode cavity flanked by two horizontally dispersive doglegs has been installed. We report on the first direct observation of transverse and longitudinal emittance exchange: {l_brace}{var_epsilon}{sub x}{sup n}, {var_epsilon}{sub y}{sup n}, {var_epsilon}{sub z}{sup n}{r_brace} = {l_brace} 2.9 {+-} 0.1, 2.4 {+-} 0.1, 13.1 {+-} 1.3{r_brace} {yields} {l_brace}11.3 {+-} 1.1, 2.9 {+-} 0.5, 3.1 {+-} 0.3{r_brace} mm-mrad.

  9. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  10. Acoustic integrated extinction

    OpenAIRE

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we der...

  11. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  12. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  13. Possibilities for reduction of transverse projected emittances by partial removal of transverse to longitudinal beam correlations

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2014-09-01

    We show that if in the particle beam there are linear correlations between energy of particles and their transverse positions and momenta (linear beam dispersions), then the transverse projected emittances always can be reduced by letting the beam to pass through magnetostatic system with specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice dispersions required for that are completely defined by the values of the beam dispersions and the beam rms energy spread and are independent from any other second-order central beam moments. Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear correlations between longitudinal positions of particles and their transverse coordinates (linear beam tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the transverse projected emittances is not guaranteed.

  14. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    Science.gov (United States)

    Abaie, Behnam; Mafi, Arash

    2016-08-01

    The intention of this paper is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered quasi-one-dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information is generally obscured when disordered waveguides are analyzed using other techniques such as the beam propagation method. As an example of the utility of the mode-width PDF, it is shown that the cladding refractive index can be used to quench the number of extended modes, hence improving the contrast in image transport properties of disordered waveguides.

  15. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  16. Associated transverse energy in hadronic jet production

    International Nuclear Information System (INIS)

    Marchesini, G.; Webber, B.R.

    1988-01-01

    We present a theoretical study of the ''pedestal height'' in hadronic jet production, i.e., the mean transverse energy per unit of rapidity accompanying a high-transverse-energy jet. We find that perturbative QCD, supplemented by a Monte Carlo estimate of higher-order corrections and a soft underlying event structure similar to that of minimum-bias collisions, can account for the observed pedestal height and its dependence on jet transverse energy. We propose a way of separating the hard pedestal contribution from that of the underlying event by measuring the quantity , which is one-half the absolute difference of the pedestal heights on the two sides of the jet. This quantity is dominated by the hard QCD component, whereas = - is dominated by the soft underlying event. We also discuss the differential distribution of pedestal height and the charged multiplicity in the pedestal

  17. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  18. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  19. Operative Method for Transverse Colon Carcinoma: Transverse Colectomy Versus Extended Colectomy.

    Science.gov (United States)

    Chong, Choon Seng; Huh, Jung Wook; Oh, Bo Young; Park, Yoon Ah; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2016-07-01

    The type of surgery performed for primary transverse colon cancer varies based on tumor characteristics and surgeon perspective. The optimal oncological outcome following different surgical options has not been clearly established, and transverse colectomy has shown oncological equivalence only in small cohort studies. Our aim was to compare long-term oncological outcomes after transverse colectomy versus extended resection for transverse colon cancer. This study is a retrospective review of prospectively collected data. This study was conducted at a tertiary care hospital. All patients treated for transverse colon cancer at the Samsung Medical Center between 1995 and 2013 were included. Oncological outcomes were compared between 2 groups of patients: a transverse colectomy group and an extended colectomy group (which included extended right hemicolectomy and left hemicolectomy). A total of 1066 patients were included, of whom 750 (70.4%) underwent extended right hemicolectomy, 127 (11.9%) underwent transverse colectomy, and 189 (17.7%) underwent left hemicolectomy. According to univariate analysis, surgical approach, histological type, tumor morphology, cancer T and N stage, cancer size, and lymphovascular invasion were significant factors contributing to disease-free survival (DFS). However, as seen in multivariate analysis, only node-positive disease (HR = 2.035 (1.188-3.484)), tumors with ulcerative morphology (HR = 3.643 (1.132-11.725)), and the presence of vascular invasion (HR = 2.569 (1.455-4.538)) were significant factors for DFS. Further analysis with a propensity-matched cohort between the transverse and extended colectomy groups demonstrated no significant differences in DFS and overall survival. This study was limited because it was performed at a single institution and it was retrospective in nature. In terms of perioperative and oncological outcomes, transverse colectomy and extended colectomy did not differ despite a shorter specimen length and

  20. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  1. Inclusive eta production at large transverse momenta

    International Nuclear Information System (INIS)

    Donaldson, G.J.; Gordon, H.A.; Lai, K.; Stumer, I.; Barnes, A.V.; Mellema, D.J.; Tollestrup, A.V.; Walker, R.L.; Dahl, O.; Johnson, R.; Ogawa, A.; Pripstein, M.; Shannon, S.

    1978-01-01

    We have measured the ratio of inclusive production of eta to π 0 at transverse momenta above 1.5 GeV/c. Results are presented for various meson and proton beams with momenta of 100, 200, and 300 GeV/c incident upon a hydrogen target. The eta/π 0 production ratio is found to be independent of incident beam momentum and of the transverse and longitudinal momenta of production. The ratio for pion- and proton-induced reactions is 0.44 +- 0.05; for kaons, it is 0.74 +- 0.12

  2. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  3. Results on large transverse momentum phenomena

    CERN Document Server

    Büsser, F W; Blumenfeld, B; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E

    1973-01-01

    Preliminary results of an experiment on large transverse momentum phenomena performed at the CERN-ISR at centre-of-mass energies of 52.7 and 44.8 GeV are presented. The topics studied were the inclusive reaction p+p to pi /sup 0/+'anything', where the pi /sup 0/ was emitted around 90 degrees in the centre- of-mass system, ( pi /sup 0/ pi /sup 0/) correlations, and the charged multiplicity associated with large transverse momentum pi /sup 0/'s. In addition, results of a search for electrons and electron pairs are included. (4 refs).

  4. [The transversality and health promotion schools].

    Science.gov (United States)

    Gavidia Catalán, V

    2001-01-01

    The following article shows the evolution of the schools contribution to the Health Education of children and young people. Moving on from the traditional concept of health, today, Health Education has a general and global meaning, which encompasses all of the physical, psychological and social aspects of health. These aspects define the characteristics of the "Healthy School". The need to broach the "transversal subject" offers schools the possibility of developing "transversality" in the Health Education. Finally, the concept of promoting health defines, together with the other subjects, that which we understand by "the heath promotion schools", which attempts to progress the full integration of schools in the society in which they are located.

  5. Acoustic behaviour of zinc chloride p osphate glasses

    International Nuclear Information System (INIS)

    Sidek, H.A.A.; Senin, H.B.; Shaari, A.H.; Chow, S.P.

    1999-01-01

    The effect of hydrostatic pressure and temperature on the velocities of longitudinal and shear ultrasonic waves propagated in (ZnCl/sub 2/)/sub x/ (P/sub 2/O/sub 5/)/sub 1-x/ glasses (x = 0.2, 0.3, 0.5) have been measured. The hydrostatic pressure derivatives (del C/sub 11/del p) and (del C/sub 44/del P) of the longitudinal (C-s 11 and shear C-s 44 elastic stiffness are negative: both longitudinal and shear acoustic mode Grueneisen parameters are small and negative: the application of hydrostatic pressure results in softening of the long wavelength acoustic mode phonon modes. (authors)

  6. Acoustic displacement triangle based on the individual element test

    Directory of Open Access Journals (Sweden)

    S. Correa

    Full Text Available A three node -displacement based- acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. This higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain resulting from the incompatible strain field satisfies the Individual Element Test (IET requirements without affecting convergence. The higher order stiffness is modulated, element by element, with a factor. As a result, the displacement based formulation presented on this paper is capable of placing the spurious rotational modes above the range of the physical compressional modes that can be accurately calculated by the mesh.

  7. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...

  8. how acoustic schwannomas?

    African Journals Online (AJOL)

    chemistry In the diagnosis of brain tumours and, furthermore, shows that acoustic schwannoma must be considered In the appropriate clinical setting, even in a group previously regarded as low-risk. S Atr Med J 1990; 78: 11-14. Studies from various parts of the world on the relative. freqIJency of primary intracranial tumours ...

  9. Nonlinear acoustic tomography

    International Nuclear Information System (INIS)

    Monk, P.

    1993-01-01

    The use of acoustic waves as probes to determine otherwise inaccessible properties of a medium is extremely widespread. Applications include sonar, medical imaging and non-destructive testing. Despite the importance of the applications, there is as yet no acceptable method for solving the full non-linear problem at resonance frequencies (frequencies at which the size of the features under investigations are approximately the wavelength of the incident acoustic field). The medical imaging problem, which consists in trying to determine the sound speed, density and absorption properties of a bounded inhomogeneous medium from scattered acoustic waves is the motivaiton for the investigation described in this paper. We shall present a solution technique for a standard model inverse acoustic scattering problem which consists of reconstructing the refractive index of an inhomogeneity from given far field data (far field data is essentially the measured scattered field at considerable distance from the inhomogeneity). This model inverse problem simplifies the inhomogeneity by neglecting density and absorption but includes two important features of the real problem: nonlinearity and illposedness. Furthermore the method we present can easily by extended to more general problems

  10. Acoustic emission from beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Adams, R.O.

    1976-01-01

    The acoustic emission from both powder and ingot source beryllium has been measured as a function of strain and prior heat treatment. Most measurements were made during tensile deformation, but a limited number of compression tests have also been performed. The acoustic emission observed was of the burst type, with little or no contribution from continuous type emission. The emission was characterized by the variation of burst rate and average energy per burst as a function of strain. The tensile behavior was qualitatively similar for all the materials tested. Burst rate maxima centered roughly at 0.1 percent and 1.0 percent plastic strain were observed. The magnitude but not the strain at the low strain burst rate peak was very sensitive to prior thermal treatment, while the higher strain burst rate peak was insensitive to prior heat treatment. An energy per burst maximum was observed at 0.2 percent plastic strain, the magnitude of which was moderately sensitive to heat treatment. The Kaiser effect is observed in the material studied. Emission during compression was similar to that observed in tension. The acoustic emission observed is attributed to dislocation motion, as proposed by James and Carpenter for LiF, NaCl, and Zn. Metallographic studies of the beryllium at various strains have ruled out microcracking and twin formation as major contributors to the acoustic emission

  11. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 770-205-8211 info@ANAUSA.org ANAwareness Week 2018 – read more Click to learn more... LOGIN CALENDAR ... DONATE Ways to Give Legacy Society Team ANA © 2018 Acoustic Neuroma Association • 600 Peachtree Parkway • Suite 108 • ...

  13. Diagnosing Acoustic Neuroma

    Science.gov (United States)

    ... triggered by a patient’s symptoms. The most common presenting feature of acoustic neuromas, occurring in 90% of patients, is unilateral hearing loss. When "pure tone audiometry" is used, the most common finding is high frequency hearing loss. The hearing loss ...

  14. Propagation characteristics of acoustic emission wave in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Haoxiong Feng

    Full Text Available Due to the complexity of components and damage mechanism of reinforced concrete, the wave propagation characteristics in reinforced concrete are always complicated and difficult to determine. The objective of this article is to study the failure process of reinforced concrete structure under the damage caused by pencil-broken. A new method on the basis of the acoustic emission technique and the Hilbert-Huang transform theory is proposed in this work. By using acoustic emission technique, the acoustic emission wave signal is generating while the real-time damage information and the strain field of the reinforced concrete structure is receiving simultaneously. Based on the Hilbert-Huang transform (HHT theory, the peak frequency characteristics of the acoustic emission signals were extracted to identify the damage modes of the reinforced concrete structure. The results demonstrate that this method can quantitatively investigate the acoustic emission wave propagation characteristic in reinforced concrete structures and might also be promising in other civil constructions. Keywords: Acoustic emission, Reinforced concrete structure, Hilbert-Huang transform (HHT, Propagation characteristics

  15. Internal Fixation of Transverse Patella Fractures Using Cannulated Cancellous Screws with Anterior Tension Band Wiring

    Directory of Open Access Journals (Sweden)

    Khan I

    2016-07-01

    Full Text Available Aims: To evaluate the effectiveness and safety of anterior tension band wiring technique using two cannulated cancellous screws in patients with transverse (AO34-C1 or transverse with mildly comminuted (AO34-C2 patellar fractures. Materials and Methods: This is a prospective study of 25 patients with transverse fracture or transverse fracture with mildly comminuted patella fractures. All the patients were treated with open reduction and internal fixation using two parallel cannulated screws and 18G stainless steel wire as per the tension band principle. Results: There were eighteen males (72% and seven females (28%. The age group ranged from 24 to 58 years, with mean age of 38 years. The most common mode of injury was fall (72% followed by road traffic accident (20% and violent quadriceps contraction (8%. Transverse fracture was present in 60% and transverse fracture with mild comminution in 40% of patients. Mean time to achieve union was 10.7 weeks (range 8-12 weeks. Mean ROM at three months was 113.8 degree (90-130 and at final follow up this improved to 125.4 degrees (range 100-140. There was one case of knee stiffness and no case of implant failure was observed. Patients were evaluated using Bostman scoring, the mean score at three months being 26.04 which improved to 27.36 at the end of final follow up at one year. Conclusion: Cannulated cancellous screws with anterior tension band wiring is a safe, reliable and reproducible method in management of transverse patellar fractures, with less chances of implant failure and soft tissue irritation.

  16. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    Science.gov (United States)

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  17. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  18. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  19. Investigating broadband acoustic adsorption using rapid manufacturing

    Science.gov (United States)

    Godbold, O.

    The reduction of nuisance noise and the removal of unwanted sound modes within a room or component enclosure-area can be accomplished through the use of acoustic absorbers. Sound absorption can be achieved through conversion of the kinetic energy associated with pressure waves, into heat energy via viscous dissipation. This occurs within open porous materials, or by utilising resonant effects produced using simple cavity and orifice configurations. The manufacture of traditional porous and resonant absorbers is commonly realised using basic manufacturing techniques. These techniques restrict the geometry of a given resonant construction, and limit the configuration of porous absorbers. The aim of this work is to exploit new and emerging capabilities of Rapid Manufacturing (RM) to produce components with geometrical freedom, and apply it to the development of broadband acoustic absorption. New and novel absorber geometric configurations are identified and their absorption performance is determined. The capabilities and limitations of RM processes in reproducing these configurations are demonstrated. The geometric configuration of RM resonant absorbers is investigated. Cavity modifications aimed at damping the resonant effect by restricting the motion of cavity air, and adding increased viscous resistance are explored. Modifications relating to cavity shape, the addition of internal perforations and increased cavity surface area have all been shown to add acoustic resistance, thereby increasing the bandwidth of absorption. Decreasing the hydraulic radius of the cavity cross section and reducing internal feature dimensions provide improved resistance over conventional configurations..

  20. Advancing microarray assembly with acoustic dispensing technology.

    Science.gov (United States)

    Wong, E Y; Diamond, S L

    2009-01-01

    In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying, it avoids the drawbacks of undesired physical contact with the sample; difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities; and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, prespotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 microm (and higher) and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 x 10(8) beads/mL in a linear fashion. There are no tips that can clog, and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially addressed assembly of multicomponent microarrays on the nanoliter scale.