Sample records for transtensional shear zone

  1. Transtensional deformation of Montserrat revealed by shear wave splitting (United States)

    Baird, Alan F.; Kendall, J.-Michael; Sparks, R. Stephen J.; Baptie, Brian


    Here we investigate seismic anisotropy of the upper crust in the vicinity of Soufrière Hills volcano using shear wave splitting (SWS) analysis from volcano-tectonic (VT) events. Soufrière Hills, which is located on the island of Montserrat in the Lesser Antilles, became active in 1995 and has been erupting ever since with five major phases of extrusive activity. We use data recorded on a network of seismometers between 1996 and 2007 partially spanning three extrusive phases. Shear-wave splitting in the crust is often assumed to be controlled either by structural features, or by stress aligned cracks. In such a case the polarization of the fast shear wave (ϕ) would align parallel to the strike of the structure, or to the maximum compressive stress direction. Previous studies analyzing SWS in the region using regional earthquakes observed temporal variations in ϕ which were interpreted as being caused by stress perturbations associated with pressurization of a dyke. Our analysis, which uses much shallower sources and thus only samples the anisotropy of the upper few kilometres of the crust, shows no clear temporal variation. However, temporal effects cannot be ruled out, as large fluctuations in the rate of VT events over the course of the study period as well as changes in the seismic network configuration make it difficult to assess. Average delay times of approximately 0.2 s, similar in magnitude to those reported for much deeper slab events, suggest that the bulk of the anisotropy is in the shallow crust. We observe clear spatial variations in anisotropy which we believe are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults which crosses the volcanic complex.

  2. Kinematics and geometry of structures in the southern limb of the Paraíba do Sul divergent structural fan, SE Brazil: a true transtensional shear

    Directory of Open Access Journals (Sweden)

    Nolan M. Dehler


    Full Text Available Shear zones geometry in the Paraíba do Sul belt, southeastern Brazil, delineates a NE-trending fan-like structure. Shear zones dip towards SE in the northern limb, and towards NW in the southern one. This geometry has been interpreted either due to transpression or to late folding of flat-lying thrust surfaces. Stretching lineation plunges to ENE-ESE in the northern limb and towards NNE-NE in the southern one. Structural data in the southern limb of the divergent fan suggest a two stage kinematic evolution in high-temperature conditions: an earlier stage with top-to-SSW/SW sinistral thrusting and orogenic-parallel tangential motion, and a later stage with top-down to NNE/NE transtensional deformation. We propose a heterogeneous deformation model to explain the observed shear reversal, and suggest that the imposed transpressional displacement gradient may change during progressive deformation due to transient rheological inhomogeneities in bulk pure shear strain. In the earlier stage, the partially molten material could easily accommodate the imposed strain rates, giving rise firstly to the SW-directed shearing. As the thermal disturbance tended to vanish and the convergence increased, the NNE-directed transtensional shearing developed. We propose that the transtensional deformation characterized in this paper could be related to extrusion processes during regional transpressional strain.A geometria das zonas de cisalhamento no CinturãoParaíba do Sul no Rio de Janeiro, sudeste do Brasil, delineia uma estrutura-em-leque com direção NE. Estaszonas de cisalhamento mergulham para SE no flanco norte, e para NW no flanco sul da estrutura. Esta geometria tem sido interpretada de duas formas: (a implantação de um regime transpressivo ou (b dobramento tardio de superfícies de empurrão originalmente sub-horizontais. A lineação de estiramento mineral mostra caimento para ENE-ESE, no flanco norte, e para NNE-NE, no flanco sul, onde ocorre a Zona

  3. Fifty years of shear zones (United States)

    Graham, Rodney


    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  4. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris


    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  5. Friction of Shear-Fracture Zones (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.


    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  6. Neoarchean ductile deformation in the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong area, eastern Heibei, China (United States)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue


    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern NCC, one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups were sheared, but some Archean granitic gneisses were also involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400 to 550°C.LA-ICP-MS zircon U-Pb ages of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was

  7. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, H.; Schmeling, H.; Burchardt, S.


    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... magma body (stoping). From the fluid dynamics point of view these shear zones can be regarded as the low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact (aspect ratio 1:1:1) moving bodies generate axial symmetric (cone like) shear zones...

  8. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi


    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... a partially molten magma body (stoping). From the fluid dynamics perspective these shear zones can be regarded as low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact moving bodies (aspect ratio 1:1:1) generate axial symmetric (cone like) shear zones...

  9. Neoarchean ductile deformation of the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei, North China (United States)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue


    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone

  10. Upright folding during extensional and transtensional tectonics (United States)

    Teyssier, Christian; Fossen, Haakon; Rey, Patrice F.; Whitney, Donna L.


    Upright folds are common structures that develop in response to horizontal shortening in layered material, for example in foreland basins that surround orogens. While the contractional nature of these folds is not in doubt, interpretation of their tectonic setting needs careful consideration. Here we focus on two examples: (1) folds developed in transtension; and (2) folds developed during the flow of deep crust in response to lithospheric extension. In both cases we consider folding of nearly horizontal layers that are either primary (bedding) or secondary (foliation). Strain theory inspired by John Ramsay's work makes predictions for the behavior of material lines and planes as well as strain axes (instantaneous, finite) during transtensional deformation. Results show: folds can form in transtension; fold hinges rotate toward the direction of divergence (and not the shear zone boundary as they do in transpression), providing unique insight into ancient plate motions; fold tightness is controlled by the obliquity of divergence and not finite strain; hinge parallel stretching is always greater than hinge-perpendicular shortening, resulting in constriction strain and boudinage of fold hinges. Taken together these results provide a rigorous framework for interpreting field observations where structures are complex and boundary conditions unclear. These principles are applied to various tectonic settings ranging from active tectonic regions of oblique divergence in western North America to ancient folding that developed during oblique extension of the Western Gneiss Region, deposition of Devonian basins, and exhumation of ultrahigh-pressure rocks in the Norwegian Caledonides. The other class of upright folds that form during extension may require revision of the tectonic interpretation of structural overprints in orogenic cores, for example in gneiss/migmatite domes. Dynamic modeling of extension of thick/hot crust predicts a positive feedback between extension of

  11. Contrasting metamorphism across Cauvery Shear Zone, south India

    Indian Academy of Sciences (India)

    The Palghat Cauvery Shear Zone (CSZ) is a major shear zone that possibly extends into different fragments of Gondwanaland. In the present study mafic granulites occurring on either side of the CSZ in Namakkal area, southern India are examined. Textural features recorded in the mafic granulites are crucial in elucidating ...

  12. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...

  13. Review on symmetric structures in ductile shear zones (United States)

    Mukherjee, Soumyajit


    Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast-matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.

  14. Coexistence and transition between shear zones in slow granular flows. (United States)

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang


    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

  15. deposit, Singhbhum shear zone, eastern India

    Indian Academy of Sciences (India)

    Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between ...

  16. Constrictional strain during oblique rifting: A record from transtensional basins in the Gulf Extensional Province (United States)

    Seiler, C.; Quigley, M.; Fletcher, J. M.


    Oblique opening of the Gulf of California provides a unique opportunity to study the mode of deformation in transtensional rift systems. Sedimentation in rifted basins is primarily controlled by the characteristics of the basin-bounding fault and the available sediment supply, and can thus be used as a proxy to understand tectonic processes during oblique shear. Transtensional basins are generally seen as composites between rift and pull-apart basins, with facies distributions that are controlled by interacting normal and strike-slip faults. Yet, transtensional shear may also be accommodated by more distributed constrictional strain that is not localised along fault zones. The Santa Rosa basin, located in the Sierra San Felipe of northern Baja California, is one of a series of transtensional syn-rift basins along the oblique-divergent plate boundary of the northern Gulf of California. The basin represents an asymmetric half-graben in the hanging wall of the Santa Rosa detachment, a low-angle normal fault with ~4-5km of E- to SE-directed displacement. The basin-fill dips NW into the detachment and displays form lines that mimic the corrugations of the detachment. The basin is broadly sigmoidal in shape, is truncated in the south by a dextral transfer zone and pinches out against the hanging wall basement in the north. The syn-rift stratigraphy is dominated by a sequence of alluvial fans shed from the hanging wall and footwall that interfinger with fine grained playa deposits. Stratigraphic analysis reveals systematic basin-scale variations in facies distributions, both along and across the axis of the basin. In a transverse direction, the basin-fill records a fining-upward cycle from conglomerate at the base to alternating sandstone-mudstone in the depocentre, which in turn interfingers with the proximal fault-scarp facies of the Santa Rosa detachment. Facies patterns also vary parallel to the basin axis even though finite displacement on the detachment was

  17. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps (United States)

    Cawood, T. K.; Platt, J. P.


    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  18. From transpressional to transtensional tectonics in Northern Central America controlled by Cocos - Caribbean subduction coupling change (United States)

    Alonso-Henar, Jorge; Alvarez-Gomez, José Antonio; Jesús Martinez-Diaz, José


    The Central American Volcanic Arc (CAVA) is located at the western margin of the Caribbean plate, over the Chortís Block, spanning from Guatemala to Costa Rica. The CAVA is associated to the subduction of the Cocos plate under the Caribbean plate at the Middle America Trench. Our study is focused in the Salvadorian CAVA segment, which is tectonically characterized by the presence of the El Salvador Fault Zone (ESFZ), part of the western boundary of a major block forming the Caribbean plate (the Chortis Block). The structural evolution of the western boundary of the Chortis Block, particularly in the CAVA crossing El Salvador remains unknown. We have done a kinematic analysis from seismic and fault slip data and combined our results with a review of regional previous studies. This approach allowed us to constrain the tectonic evolution and the forces that control the deformation in northern Central America. Along the active volcanic arc we identified active transtensional deformation. On the other hand, we have identified two deformation phases in the back arc region: A first one of transpressional wrenching close to simple shearing (Miocene); and a second one characterized by almost E-W extension. Our results reveal a change from transpressional to transtensional shearing coeval with a migration of the volcanism towards the trench in Late Miocene times. This strain change could be related with a coupled to decoupled transition on the Cocos - Caribbean subduction interface, which could be related to a slab roll-back of the Cocos Plate beneath the Chortis Block. The combination of different degrees of coupling on the subduction interface, together with a constant relative eastward drift of the Caribbean Plate, control the deformation style along the western boundary of the Chortis Block.

  19. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.


    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  20. Shear Zone-Hosted Base Metal Mineralization near Abraha ...

    African Journals Online (AJOL)


    S, NE-SW trending shear zones; hydrothermal quartz (±calcite) veins of different generations; malachite stains .... consists of only metasedimentary rocks of argillite and carbonate composition but predominantly argillaceous. The rock types present are slate, phyllite, graphitic schist and metalimestone. The. Group is further ...

  1. Shear Zone-Hosted Base Metal Mineralization near Abraha ...

    African Journals Online (AJOL)

    Low-grade basement rocks of Neoproterozoic age with well developed shear zones and posttectonic granitic intrusives from Hawzien area of northern Ethiopia were studied for field characteristics, mineralogy, textures, alteration assemblages and geochemistry to explore their potential for base metal mineralization.

  2. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones (United States)

    Yin, A.; Meng, L.


    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  3. Discrete shear-transformation-zone plasticity modeling of notched bars (United States)

    Kondori, Babak; Amine Benzerga, A.; Needleman, Alan


    Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

  4. The Effective Rheology of Natural Subduction Shear Zones: Insights from Numerical Simple Shear Experiments (United States)

    Ioannidi, Paraskevi Io; Le Pourhiet, Laetitia; Moreno, Marcos; Agard, Philippe; Oncken, Onno; Angiboust, Samuel


    Determination of the subduction interface rheological parameters is an interesting aspect of geodynamics since it can help better understand the physical nature of plate locking and its relation to surface deformation patterns observed at different time scales (GPS displacements during the seismic cycle). Since direct rheological measurements are not possible, unfortunately, we herein try to determine the effective rheological parameters of a subduction interface using finite element modelling. We use the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions trying to find the one that can best mimic simple shear experiments performed on rock samples. After examining different parameters including the shearing velocity, the temperature and the viscosity, we added complexity to the geometry by including a second phase. This complexity arose from field observations, where composite shear zone outcrops often characterize the subduction interface. Stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. In order to test our methodology, we first use clast-in-matrix geometries from thin sections taken through lab experiments. In a second stage, we upscale the method to outcrop scale clast-in-matrix geometries. By sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction of a natural interface. In a next step, these effective frictions will be used as input into seismic cycle deformation models in an attempt to assess the

  5. The importance of strain localisation in shear zones (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka


    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands


    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov


    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  7. The Main Shear Zone in Sør Rondane: A key feature for reconstructing the geodynamic evolution of East Antarctica (United States)

    Ruppel, Antonia; Läufer, Andreas; Lisker, Frank; Jacobs, Joachim; Elburg, Marlina; Damaske, Detlef; Lucka, Nicole


    Structural investigations were carried out along the Main Shear Zone (MSZ) of western Sør Rondane (22°-25°E, 71.5°-72.5°S) to gain new information about the position of the East-/West-Gondwana suture and the ancient plate tectonic configuration during Gondwana amalgamation. The WSW-ENE striking MSZ divides south-western Sør Rondane in a northern amphibolite-facies terrane and a southern tonalite-trondhjemite-granodiorite (TTG) terrane. The structure can be traced over a distance of ca. 100 km and reaches several hundred meters in width. It is characterized by a right-lateral sense of movement and marked by a transpressional and also transtensional regime. Ductilely deformed granitoids (ca. 560 Ma: SHRIMP U-Pb of zircon) and ductile - brittle structures, which evolved in a transitional ductile to brittle regime in an undeformed syenite (ca. 499-459 Ma, Ar-Ar mica), provide a late Proterozoic/ early Paleozoic time limit for the activity of the shear zone (Shiraishi et al., 2008; Shiraishi et al., 1997). Documentation of ductile and brittle deformation allows reconstructing up to eight deformation stages. Cross-cutting relationships of structural features mapped in the field complemented by published kinematic data reveal the following relative age succession: [i] Dn+1 - formation of the main foliation during peak metamorphism, [ii] Dn+2 - isoclinal, intrafolial folding of the main foliation, mostly foliation-parallel mylonitic shear zones (1-2 meter thick), [iii] Dn+3 - formation of tight to closed folds, [iv] Dn+4 - formation of relatively upright, large-scale open folds, [v] Dn+5 - granitoid intrusion (e.g. Vengen granite), [vi] Dn+6 - dextral shearing between amphibolite and TTG terranes, formation of the MSZ, [vii] Dn+7 - intrusion of late- to post-tectonic granitoids, first stage of brittle deformation (late shearing along MSZ), intrusion of post-kinematic mafic dykes, [viii] Dn+8 - second stage of brittle deformation including formation of conjugate fault

  8. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.


    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  9. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    DEFF Research Database (Denmark)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons


    The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones...... only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East...... is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions...

  10. Microstructural and rheological evolution of calcite mylonites during shear zone thinning: Constraints from the Mount Irene shear zone, Fiordland, New Zealand (United States)

    Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.


    Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism

  11. San-in shear zone in southwest Japan, revealed by GNSS observations (United States)

    Nishimura, Takuya; Takada, Youichiro


    A right-lateral shear zone in the San-in region, southwest Japan, has been proposed by previous geological and seismological studies. It locates 350 km north of the Nankai Trough, that is, the main plate boundary between the subducting Philippine Sea and overriding Amurian plates and presumably accommodates a part of the relative plate motion. We present a geodetic evidence of the proposed shear zone using GNSS velocity data. Distinct shear deformation is identified only between 132.5°E and 135°E along a coastline which is a part of the proposed shear zone, and we propose to call the geodetically identified shear zone as the San-in shear zone (SSZ). The SSZ is a concentrated deformation zone with a width of 50 km and can be modeled by a deep creep on a vertical strike slip fault with a creep rate of 5 mm/year. There are some active faults parallel and oblique to the overall trend of the SSZ, but no single active fault coincides with the SSZ. Lineaments of microseismicity and source faults of large earthquakes are almost oriented in NNW-SSE in the SSZ and oblique to the overall trend of the SSZ. They are interpreted as conjugate Riedel shears. Based on these geodetic, seismological, and geomorphological observations, we suggest that the SSZ is a developing and young shear zone in a geological time scale.[Figure not available: see fulltext.

  12. Uraninite in the uranium deposits of Singhbhum Shear Zone, Bihar

    International Nuclear Information System (INIS)

    Krishna Rao, N.; Rao, G.V.U.


    Uraninite is the main uranium mineral in the uranium deposits of Singhbhum Shear Zone, Bihar. The uraninite from different deposits have compositions varying between UOsub(2.30) to UOsub(2.44) which is typical of vein uraninites. They contain 2 , but have appreciable rare earths (approximately equal to 5%). They also contain 12-15% PbO, which is all radiogenic. Among the rare earths the heavy lanthanides predominate. In addition uraninite from Narwapahar shows an enrichment in Eu. The unit cell edge of uraninite from different deposits varies between 5.420 A and 5.453 A. The uraninite from the copper deposits of Rakha and Surda, and Narwapahar have decidedly higher cell edge (5.45 A) than those from Bhatin and Jaduguda (5.42 A). On annealing at 1000deg C in an inert atmosphere the cell edge decreased to a near constant value of 5.428 A, the contraction varying between 0.01 A to 0.03 A. D.T.A. and T.G.A. curves of Narwapahar and Bhatin uraninite indicate that these differ considerably from those of pure UO 2 . There are also significant differences between the two. These differences are attributed to crystallinity and degree of disorder in the uraninite lattice. The variations in the composition, cell edge, annealing and oxidation characteristics of uraninite from different uranium deposits reflect different temperature conditions during their formation. (author)

  13. Thermomechanics of an extensional shear zone, Raft River metamorphic core complex, NW Utah (United States)

    Gottardi, Raphaël; Teyssier, Christian


    A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure. Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10-12 and 10-14 s-1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.

  14. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)


    Aug 26, 2016 ... This paper presents an analytical solution, based on Smith and Teng's equations, for interfacial shear and normal stresses in reinforced concrete (RC) beams strengthened with a fibre reinforced polymer (FRP) plate. However, the shear stress–strain relationship is considered to be bilinear curve.

  15. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone (United States)

    Elitez, İrem; Yaltırak, Cenk; Aktuğ, Bahadır


    The tectonic framework of the eastern Mediterranean presented in this paper is based on an active subduction and small underwater hills/mountains on the oceanic crust moving toward the north. The Hellenic Arc, the Anaximander Mountains, the Rhodes and Finike basins, the compressional southern regions of the Western Taurides, and the extensional western Anatolian graben are the main interrelated tectonic structures that are shaped by the complex tectonic regimes. There are still heated debates regarding the structural properties and tectonic evolution of the southwestern Anatolia. GPS velocities and focal mechanisms of earthquakes demonstrate the absence of a single transform fault across the Burdur-Fethiye region; however, hundreds of small faults showing normal and left-lateral oblique slip indicate the presence of a regionally extensive shear zone in southwestern Turkey, which plays an important role in the eastern Mediterranean tectonics. The 300-km-long, 75-90-km-wide NE-SW-trending Burdur-Fethiye Shear Zone developed during the formation of Aegean back-arc extensional system and the thrusting of Western Taurides. Today, the left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3 to 4 mm/yr in the north to 8-10 mm/yr in the south. This finding could be attributed to the fact that while the subduction of the African Plate is relatively fast beneath the western Anatolia at the Hellenic Trench, it is slow or locked beneath the Western Taurides. Therefore, the GPS vectors and their distributions on land indicate remarkable velocity differences and enable us to determine the left-lateral shear zone located between the extensional and compressional blocks. Furthermore, this active tectonic regime creates differences in topography. This study also demonstrates how deep structures, such as the continuation of the subduction transform edge propagator (STEP) fault between the Hellenic and Cyprus arcs in the continental area, can come into play

  16. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.


    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  17. Latest Miocene transtensional rifting of northeast Isla Tiburón, eastern margin of the Gulf of California (United States)

    Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander


    Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the

  18. Effect of tree roots on a shear zone: modeling reinforced shear stress. (United States)

    Kazutoki Abe; Robert R. Ziemer


    Tree roots provide important soil reinforcement that impoves the stability of hillslopes. After trees are cut and roots begin to decay, the frequency of slope failures can increase. To more fully understand the mechanics of how tree roots reinforce soil, fine sandy soil containing pine roots was placed in a large shear box in horizontal layers and sheared across a...

  19. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics (United States)

    Attoh, K.; Brown, L. D.


    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  20. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina


    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  1. New tectono-geochronological constraints on timing of shearing along the Ailao Shan-Red River shear zone: Implications for genesis of Ailao Shan gold mineralization (United States)

    Liu, Junlai; Chen, Xiaoyu; Wu, Wenbin; Tang, Yuan; Tran, My-Dung; Nguyen, Quang-Luat; Zhang, Zhaochong; Zhao, Zhidan


    Several world class gold deposits are located along the Ailao Shan (ALS) belt in eastern Tibet, China. The genesis of gold mineralization along the belt, however, has been the subject of debates in the last decades, which highlights the importance of dating shearing, magmatism and mineralization along the Ailao Shan-Red River shear zone (ASRR). Through detailed field observations and microscopic analysis, a group of leucocratic intrusions from within and outside the shear zone along the ALS belt are investigated in the present paper. Pre-, syn- and post-shearing intrusions are grouped based on structural and microstructural analysis. LA-ICP-MS and SIMS dating of the intrusions revealed the existence of two age populations, a group of ages older than 30 Ma and the other younger than 28 Ma. The former are distributed both within and outside the shear zone, and the latter, in contrast, occur only within the shear zone. Our new results show that the ductile shearing along the ASRR shear zone initiated since ca. 30 Ma ago. The dating results place major constraints on timing of shearing along the ASRR shear zone and have profound implications on the genesis of gold mineralization along the ALS belt. The present study reveals that ductile shearing along the ASRR shear zone was resulted from extrusion of the Indochina block late during the Indian-Eurasian plate collision. Meanwhile, we conclude that the gold mineralization took place prior to the shearing, but in close relation to an early magmatism (>30 Ma) ascribed to post-collisional extension collapse involving mantle processes, early during the plate collision.

  2. Early lineations in a later shear zone: case study from the Eastern Ghats Belt, India (United States)

    Bose, S.; Gupta, S.


    In polydeformed gneissic terranes, ductile shear zones may cut across rocks with older penetrative fabrics. Earlier lineations in later ductile shear zones need to be identified to avoid incorrect kinematic interpretation. To investigate the fate of early lineations during later ductile shearing, the Mahanadi Shear Zone (MSZ) from the Eastern Ghats Belt (EGB) in India is taken as a case study. The EGB is a Proterozoic granulite terrane correlated with Indo-Antarctica collision. The MSZ lies within the EGB, but is oriented almost perpendicular to the trend of the belt. The penetrative structural fabric in the EGB is NE-SW trending and dipping SE. However, a broad swing in structural trend from NE-SW to WNW-ESE can be detected near the MSZ from satellite imagery. In mylonitised rocks of the shear zone, a discrepancy between the shear zone lineation and inferred shear sense leads to uncertainty in kinematic interpretation of the shear zone. The EGB rock types include charnockites, quartzofeldspathic gneisses and garnet-sillimanite-bearing metapelitic gneisses (khondalites). Outside the MSZ, gneisses preserve an earlier, dominantly down-dip intersection lineation. Sillimanite needles in khondalites are aligned parallel to this lineation, while quartz and garnet are also annealed into the granulite facies fabric. In the vicinity of the shear zone, evidence of dextral non-coaxial shearing progressively increases but the lineation distribution is scattered. Quartz grains show strong undulose extinction caused by strain at lower temperatures, and crystallographic c-axis fabric analyses using EBSD indicate deformation by basal c-slip mechanism. Preferred alignment of the sillimanite needles is disrupted in khondalites within the MSZ because of partial rotation of the needles towards the sub-horizontal movement direction, with the extent of rotation of the needles being apparently controlled by grain size. Some sillimanite needles also appear to have undergone

  3. Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia (United States)

    Fridovsky, Valery; Polufuntikova, Lena


    The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits

  4. Sense of shear and displacement estimates in the Abeibara-Rarhous late Pan-African shear zone, Adrar des Iforas, Mali (United States)

    Boullier, Anne-Marie

    The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.

  5. Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation

    Directory of Open Access Journals (Sweden)

    M.Q. Jiang


    Full Text Available A theoretical model that takes into account the free-volume aided cooperative shearing of shear transformation zones (STZs is developed to quantitatively understand the ductile-to-brittle transition (DBT of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-type rearrangements to dilatational processes (termed tension transformation zones (TTZs.

  6. Strain and shape-fabric variations associated with ductile shear zones (United States)

    Simpson, Carol

    The foliated and compositionally-banded granitic orthogneisses in the central core of the Maggia Nappe, a Lower Pennine basement nappe of the Central Swiss Alps, are shown to be the sheared equivalent of late-Hercynian age granitic intrusions. These ductile shear zones show mineral assemblages in amphibolite facies, are Alpine in age and form an anastomosing network enclosing remnant lozenge-shaped pods of relatively undeformed rock. The foliation developed within the shear zones concomitantly with a change in shape of quartz grain aggregates from initially equidimensional, through 'tear-drop' shapes, to ribbon-like aggregates. These shape changes occurred by intracrystalline glide together with intercrystalline slip on deformation-induced planar surfaces.

  7. The Suruli shear zone and regional scale folding pattern in Madurai ...

    Indian Academy of Sciences (India)

    The Suruli shear zone and regional scale folding pattern in. Madurai block of Southern Granulite Terrain, south India. V Srinivasan. 1,∗ and P Rajeshdurai. 2. 1. Geological Survey of India, E/5, Arera Colony, Bhopal 462 016, India. 2. Geological Survey of India, Jawaharlal Nehru Road, Guindy, Chennai 600 032, India. ∗.

  8. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany) (United States)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.


    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone

  9. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California (United States)

    Kluesner, Jared W.; Brothers, Daniel


    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  10. Viscoelastic shear zone model of a strike-slip earthquake cycle (United States)

    Pollitz, F.F.


    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  11. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.


    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  12. Relating rheology to geometry in large-scale natural shear zones (United States)

    Platt, John


    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  13. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone (United States)

    Thatcher, W.; England, P.C.


    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  14. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone, China (United States)

    Wu, Wenbin; Liu, Junlai; Zhang, Lisheng; Qi, Yinchuan; Ling, Chengyang


    Structural and microstructural characteristics, deformation temperatures and flow vorticities of the northern Ailao Shan (ALS) high-grade metamorphic belt provide significant information regarding the nature and tectonic evolution of the Ailao Shan-Red River (ASRR) shear zone. Mineral deformation mechanisms, quartz lattice-preferred orientation (LPO) patterns and the opening angles of quartz c-axis fabrics of samples from the Gasa section indicate that the northern ALS high-grade metamorphic belt has experienced progressive shear deformation. The early stage shearing is characterized by a gradual decrease of deformation temperatures from >650 °C at the northeastern unit to ca. 300 °C at the southwestern unit, that results in the formation of migmatites, mylonitic gneisses, thin bedded mylonites, mylonitic schists and phyllonites from the NE to SW across the strike of the shear zone. The late stage low-temperature (300-400 °C) shearing is superimposed on the early deformation throughout the belt with the formation of discrete, small-scale shear zones, especially in the thin-banded mylonitic rocks along both margins. The kinematic vorticity values estimated by rotated rigid porphyroclast method and oblique grain-shaped/quartz c-axis-fabric method imply that the general shear-dominated flow (0.49-0.77) progressively changed to a simple shear-dominated flow (0.77-1) toward the late stage of ductile deformation. The two stages of shearing are consistent with early shortening-dominated and late extrusion-controlled regional tectonic processes. The transition between them occurred at ca. 27 Ma in the ALS high-grade metamorphic belt along the ASRR shear zone. The large amount of strike-slip displacement along the ASRR shear zone is predominantly attributed to accelerated flow along the shear zone during the late extrusion-controlled tectonic process.

  15. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.


    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  16. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone (United States)

    Zhang, B.


    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  17. Crevasse Extent and Lateral Shearing of the McMurdo Shear Zone, Antarctica: Implications of Ice Shelf Stability (United States)

    Kaluzienski, L. M.; Hamilton, G. S.; Koons, P. O.; Enderlin, E. M.; Arcone, S. A.; Borstad, C.; Walker, B.


    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability is critical for predicting the future evolution of the ice sheet. For the western sector of the Ross Ice Shelf (RIS), a potentially important region of lateral resistance is the McMurdo Shear Zone (MSZ) just downstream of Minna Bluff. Here the fast-moving Ross Ice Shelf ( 450 m/yr) shears past the slower-moving McMurdo Ice Shelf ( 200 m/yr) creating a zone of intense crevassing. An analysis of several satellite image datasets including a high-resolution digital elevation model (DEM) extracted from stereo Worldview imagery suggests that many of these flow features originate as the RIS flows past Minna Bluff. Here we present a sensitivity analysis of RIS ice flow using the Ice Sheet System Model (ISSM) (Larour et al. 2012) and the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). In this analysis we assess the sensitivity of model flow of RIS tributary glaciers to boundary condition perturbations within the Minna Bluff/MSZ region. Perturbations include ice shelf thickness variations as well as a scalar damage variable that quantifies the loss of load-bearing surface area due to ice shelf fracture. Field observations of surface flow and strain (GPS) and crevasse distribution and geometry (GPR)in the MSZ help constrain the model simulations. Initial results point to the importance of sub-ice shelf topography and its interaction with features such as Minna Bluff in determining stress distribution on the western RIS. Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E. 2012. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), Journal of Geophysical Research

  18. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.


    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  19. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  20. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.


    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  1. Coseismic Dehydration and Amorphisation of Serpentinite in a Creeping Shear Zone (United States)

    Tarling, M.; Smith, S. A. F.; Viti, C.; Rooney, J. S.; Gordon, K. C.


    Recent experiments show that coseismic heating in serpentinite-bearing faults can produce dehydration assemblages consisting of olivine + enstatite or talc, as well as amorphous material and melt. Identification of these coseismic products has not been made in natural serpentinite shear zones, possibly because the reaction products would be quickly altered or rehydrated to form serpentine. Magnetite-coated slip surfaces within the serpentinite mélange of the Livingstone Fault, New Zealand, contain microstructural and mineralogical evidence for coseismic dehydration and amorphization of serpentine due to frictional heating. The bulk serpentinite mélange has a scaly fabric that contains abundant evidence for pressure-solution creep. These fabrics are crosscut by multi-layered, magnetite-coated slip surfaces up to 1.5 mm thick that enclose numerous thin (products (nanocrystalline olivine, enstatite, amorphous silica) are restricted to a zone 500 um from the main slip surface, no products of dehydration or amorphisation are identifiable. Encapsulated within the magnetite layers and protected from subsequent hydration, the thin selvages of serpentinite provide the first evidence of highly localised dehydration and amorphisation of serpentinite in a natural shear zone. Interpreted in the context of recent experiments, our results suggest that 1) the slip surfaces experienced extreme dynamic weakening associated with coseismic dehydration and amorphisation and, 2) localized rupture and coseismic slip can propagate through serpentinite mélange deforming by bulk pressure-solution creep.

  2. Shear mixing in stellar radiative zones. I. Effect of thermal diffusion and chemical stratification (United States)

    Prat, V.; Lignières, F.


    Context. Turbulent transport of chemical elements in radiative zones of stars is considered in current stellar evolution codes thanks to phenomenologically derived diffusion coefficients. Recent local numerical simulations suggest that the coefficient for radial turbulent diffusion due to radial differential rotation satisfies Dt ≃ 0.058κ/Ri, in qualitative agreement with the model of Zahn (1992, A&A, 265, 115). However, this model does not apply (i) when differential rotation is strong with respect to stable thermal stratification or (ii) when chemical stratification has a significant dynamical effect, a situation encountered at the outer boundary of nuclear-burning convective cores. Aims: We extend our numerical study to consider the effects of chemical stratification and of strong shear, and compare the results with prescriptions used in stellar evolution codes. Methods: We performed local, direct numerical simulations of stably stratified, homogeneous, sheared turbulence in the Boussinesq approximation. The regime of high thermal diffusivities, typical of stellar radiative zones, is reached thanks to the so-called small-Péclet-number approximation, which is an asymptotic development of the Boussinesq equations in this regime. The dependence of the diffusion coefficient on chemical stratification was explored in this approximation. Results: Maeder's extension of Zahn's model in the strong-shear regime (Maeder 1995, A&A, 299, 84) is not supported by our results, which are better described by a model found in the geophysical literature. As regards the effect of chemical stratification, our quantitative estimate of the diffusion coefficient as a function of the mean gradient of mean molecular weight leads to the formula Dt ≃ 0.45κ(0.12-Riμ) /Ri, which is compatible in the weak-shear regime with the model of Maeder & Meynet (1996, A&A, 313, 140) but not with Maeder's (1997, A&A, 321, 134).

  3. Quantifying Uncertainty in Inverse Models of Geologic Data from Shear Zones (United States)

    Davis, J. R.; Titus, S.


    We use Bayesian Markov chain Monte Carlo simulation to quantify uncertainty in inverse models of geologic data. Although this approach can be applied to many tectonic settings, field areas, and mathematical models, we focus on transpressional shear zones. The underlying forward model, either kinematic or dynamic, produces a velocity field, which predicts the dikes, foliation-lineations, crystallographic preferred orientation (CPO), shape preferred orientation (SPO), and other geologic data that should arise in the shear zone. These predictions are compared to data using modern methods of geometric statistics, including the Watson (for lines such as dike poles), isotropic matrix Fisher (for orientations such as foliation-lineations and CPO), and multivariate normal (for log-ellipsoids such as SPO) distributions. The result of the comparison is a likelihood, which is a key ingredient in the Bayesian approach. The other key ingredient is a prior distribution, which reflects the geologist's knowledge of the parameters before seeing the data. For some parameters, such as shear zone strike and dip, we identify realistic informative priors. For other parameters, where the geologist has no prior knowledge, we identify useful uninformative priors.We investigate the performance of this approach through numerical experiments on synthetic data sets. A fundamental issue is that many models of deformation exhibit asymptotic behavior (e.g., flow apophyses, fabric attractors) or periodic behavior (e.g., SPO when the clasts are rigid), which causes the likelihood to be too uniform. Based on our experiments, we offer rules of thumb for how many data, of which types, are needed to constrain deformation.

  4. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia. (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs


    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  5. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika


    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  6. Analysis of a high intensity shear zone between overlapping fiber ends in a polymer matrix composite

    DEFF Research Database (Denmark)

    Lindgreen, Britta


    The formation of high intensity shear zones in a glass fiber reinforced thermoplast is studied numerically. The thermoplast is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program where plane strain...... that develop as the highly deformed region approaches the limit resulting from network stiffening in the polymer. A simple analysis assuming periodicity is included in order to study the mechanical behaviour of the polymer matrix between fiber ends with long overlap....

  7. Internal shear layers and uniform momentum zones in a turbulent pipe flow (United States)

    Gul, Melika; Elsinga, Gerrit E.; Westerweel, Jerry


    Turbulent pipe flow has previously been shown to contain large-scale nearly uniform momentum, which are separated by layers of significant shear. These internal layers are of interest, because they are associated with fluid transport between uniform momentum zones, hence with the growth of these large energy-containing motions. In this study, we compare two methods to detect and analyse the internal shear layers; the triple decomposition method (TDM) and the streamwise velocity histogram method. The assessment is based on time-resolved PIV measurements in the cross-section of the pipe spanning a range of Reynolds numbers (Reτ = 700-1178). The strong jumps in the conditionally averaged flow statistics across the layers detected by TDM are smeared out with the histogram method. Using the TDM method, some scaling analyses are performed for the layer thickness, and the velocity jump over the layer. It is found that the layer thickness becomes almost constant after 0.4R, and the streamwise velocity jump decreases from the wall region to the core of the pipe. With the histogram method, on the other hand, one distinct shear layer is distinguished from the distribution of all local peak velocities, which is corresponding to the 95% of the central velocity of the pipe.

  8. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses (United States)

    Kim, S. Y.; Oh, H. S.; Park, E. S.


    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  9. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  10. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  11. Fabric evolution of polydeformed orthogneisses and quartzites along the Curitiba Shear Zone, Curitiba Domain, Southern Brazil (United States)

    Cabrita, Dina; Salamuni, Eduardo; Lagoeiro, Leonardo


    In Southern Brazil there is a series of strike-slip shear zones that represent the late-collisional event of Western Gondwana in the Neoproterozoic-Eopaleozoic transition. The Curitiba Shear Zone (CSZ) is a part of this strike-slip regime separating two different domains: the supracrustal metasedimentary rocks and the basement composed of orthogneiss, migmatite and quartzite. The absence of detailed structural data for this discontinuity has motivated us to study this important part of the geology of southern of Brazil. The main purpose of this work is the characterization of meso and microstructures and determination of crystallographic fabric of quartz in orthogneisses and quartzites along the CSZ southern block. Structural data suggest that the CSZ consists of one ductile-brittle strike-slip deformation phase leading to the deformation of orthogneiss and quartzites of the Atuba Complex. The ductile regime was responsible for the formation of low-grade mylonite in greenschist facies. Crystallographic texture indicate a restricted recrystallization of quartz mainy via dislocation creep through activation ob basal slip system. The brittle regime led to the formation of cataclasites, faults and joints, with a mean orientation of N50E/75SE and N33E/80SE, respectively. Extensive dissolution-precipitation creep affected the rocks and infilled veins with carbonate and quartz.

  12. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record (United States)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain


    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record

  13. Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain) : a record of pre-drift extension of the Piemonte–Ligurian Ocean?

    NARCIS (Netherlands)

    Vissers, Reinoud L. M.; Van Hinsbergen, Douwe J. J.; Wilkinson, Camilla M.; Ganerød, Morgan

    The Cap de Creus peninsula in NE Spain consists of greenschist- to amphibolite-facies metasediments and granitoid bodies of the Variscan Axial Zone of the Pyrenees, overprinted in the north by anastomosed greenschist-facies shear zones. Current tectonic interpretations ascribe these shear zones to

  14. Role of the Western Anatolia Shear Zone (WASZ) in Neotectonics Evolution of the Western Anatolia Extended Terrain, Turkey (United States)

    Cemen, I.; Gogus, O. H.; Hancer, M.


    The Neotectonics period in western Anatolia Extended Terrain, Turkey (WAET) may have initiated in late Oligocene following the Eocene Alpine collision which produced the Izmir-Ankara suture zone. The Western Anatolia Shear Zone (WASZ) bounds the WAET to the east. The shear zone contains mostly normal faults in the vicinity of the Gulf of Gokova. However, its movement is mostly oblique slip from the vicinity of Tavas towards the Lake of Acigol where it makes a northward bend and possibly joins the Eskisehir fault zone to the north of the town of Afyon. The shear zone forms the southern and eastern margins of the Kale-Tavas, Denizli and Acigol basins. The shear zone is similar in its structural/tectonics setting to the Eastern California Shear zone (ECSZ) of the Basins and Ranges of North America Extended terrain which is also composed of many normal to oblique-slip faults and separates two extended terrains with different rates of extension. Western Anatolia experienced many devastating earthquakes within the last 2000 years. Many of the ancient Greek/Roman city states, including Ephesus, Troy, and Hierapolis were destroyed by large historical earthquakes. During the second half of the 20th century, the region experienced two major large earthquake giving normal fault focal mechanism solutions. They are the 1969, M=6.9 Alasehir and the 1970, M=7.1 Gediz earthquakes. These earthquakes had caused substantial damage and loss of life in the region. Therefore, a comprehensive understanding of the kinematics of the Cenozoic extensional tectonics and earthquake potential of the WASZ in the region, is very important, especially since the fault zone is very close to the major towns in eastern part of western Turkey, such as Mugla, Denizli, Sandikli, Dinar and Afyon.

  15. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi


    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  16. Investigation of the Maule, Chile rupture zone using seismic attenuation tomography and shear wave splitting methods (United States)

    Torpey, Megan Elizabeth

    The Maule, Chile 2010 Mw 8.8 earthquake afforded the opportunity to study the rupture zone (33°S-38°S) in detail using aftershocks recorded by the rapid-response IRIS CHAMP seismic network. We used measurements of differential S to P seismic attenuation to characterize the attenuation structure of the South American crust and upper mantle wedge. We implemented an evolving time window to determine Qs-1 values using a spectral ratio method and incorporated these measurements into a bounded linear inequality least squares inversion to solve for Qs -1 in a 3D volume. On a large-scale, we observe an east-dipping low attenuation feature, consistent with the location of the Nazca oceanic slab, and image progressively greater attenuation as we move towards the surface of our model. A dramatic feature in our model is a large, low-attenuation body in the same location where Hicks et al. (2014) resolved a high P wave velocity anomaly in their velocity tomography model. We calculated the shear wave splitting intensity of the Maule rupture zone by implementing the multichannel method of Chevrot (2000) which calculates the splitting intensity of teleseismic SK(K)S phases and splitting parameters, ϕ and deltat. The results we obtained show an overall fast direction with a strong component of trench parallel splitting and very few trench normal splits. The fast directions do not parallel the Nazca APM, but are instead dominated by splits rotated 40°-50° counter-clockwise from Nazca APM. Based on these data, we see little evidence for sub-slab entrained mantle flow and invoke the trench-parallel retrograde flow model as an explanation for our measurements. We developed an extended splitting intensity method to allow for use of the upgoing S phase from Maule aftershocks, utilizing the initial event polarization. For this local dataset, we observe three dominant fast directions oriented N20°W, N40°E, and N10°W-20°E and a subset of fast directions trending N60°-90°E which

  17. Onshore-offshore evidence for periodic post-rift shear reversal along the Pernambuco Fracture Zone, NE Brazil (United States)

    Balsamo, Fabrizio; Nestola, Yago; Storti, Fabrizio; Nogueira, Cézar; Bezerra, Hilario F. R.


    Oceanic facture zones are among the most evident bathymetric features of seafloors. They include transform faults that connect adjacent mid-ocean ridge segments and accommodate opposite spreading directions. According to the plate tectonics theory, only the latter are tectonically active. Recent onshore and offshore evidence in the Antarctic plate sector facing Australia suggest, conversely, that oceanic fracture zones can transfer shear into the plate interior. In this contribution we illustrate the results of a research project performed in the NE Brazilian passive margin, where the seismic activity is clustered along major crustal-scale, long-lived shear zones, thus resembling the Antarctic case. In particular, we performed a detailed study of the offshore pattern of seafloor age domains on both sides of the Pernambuco Fracture Zone (PFZ), which indicates non-uniform spreading rates on the two lithospheric lanes separated by the PFZ. The differential spreading rate, calculated in 8 age provinces from Upper Cretaceous to Present, varies between 1.3 and 8.8 mm/yr and periodically switched from right-lateral to left-lateral excess transform shear along the PFZ. Five major inversions were found, including a Tortonian inversion from right-lateral to left-lateral excess shear, consistently with structural data acquired in Miocene to Quaternary sediments along the PFZ. We discuss the impact of our findings in the current plate tectonic theory framework.

  18. The influence of the Precambrian Mughese Shear Zone structures on strain accommodation in the northern Malawi Rift (United States)

    Dawson, Sam M.; Laó-Dávila, Daniel A.; Atekwana, Estella A.; Abdelsalam, Mohamed G.


    Precambrian shear zones have been recognized as regions that affect the propagation, segmentation, and location of continental rifts. However, it is still unclear how the orientation of these shear zones influence strain accommodation along the rifts. In this study, we investigated the influence of the Mughese Shear Zone (MSZ) on strain accommodation within the young magma-poor Malawi Rift, a seismically-active segment of the Western Branch of the East African Rift System. We used Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEM), aeromagnetic data, and mapped mesoscopic-scale structures within the Precambrian MSZ and younger rocks in the Karonga area. We found that in the northern portion of the Karonga Fault Zone, a fault zone that accommodates the majority of extension in this region, one major fault is oriented 32°/59° SE and cuts across the Precambrian foliation that has an orientation of 301°/79° NE. South of the city of Karonga, the Precambrian foliation is sub-vertical and has a strike of 321°. Here, the Karonga fault splays from a main fault with a 2 km damage zone to several distinct E-and W-dipping faults over a 10 km zone that strike in the general direction of the foliation planes of the MSZ. Recent seismicity is distributed within this zone. The faults formed in reactivated foliation planes of the MSZ. The N-striking Karoo rift horsts and grabens and their associated rock formations might have also been reactivated in this area. These relationships suggest that within the northern Malawi Rift, extension was accommodated differently based on the nature and orientation of the pre-existing structures. The orientation of the Precambrian MSZ influences strain accommodation in the Karonga area and has important implications for seismic hazards. We conclude that the Karonga area is an important seismically active zone based on favorably-oriented and reactivated pre-existing structures.

  19. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements (United States)

    Ngako, V.; Affaton, P.; Nnange, J. M.; Njanko, Th.


    Kinematic analysis of the central Cameroon shear zone (CCSZ) and its Sanaga fault relay, indicate early sinistral shear movement (phase D 2) that was later followed by a dextral shear movement (phase D 3) during the Pan-African orogeny. The correlation of tectonic events among the CCSZs, thrusting of the Yaounde Group and the deformation in the Lom Group indicate a diachronous deposition history of these groups, where the Yaounde Group is pre-kinematic while the sedimentary and magmatic rocks of the Lom basin are syn-kinematic. Sinistral shear movements along the CCSZ and Sanaga faults are correlated with metamorphism and thrusting of the Yaounde granulites onto the Congo craton, on one hand, and to the opening of the Lom pull-apart basin, oblique to the shear zone, on the other. Kinematic interactions between shear and thrust movements characterize transpression, whereas interactions between shear and oblique normal fault movements characterize transtension. Resulting kinematic indicators show that the Lom basin represents a sinistral transtensional relay of the Sanaga fault. Greenschist-facies metamorphism in the Lom Group rocks dominantly affected by a monophase tectonic evolution were achieved during the late dextral shear movements along the Sanaga fault.

  20. Magnetotelluric imaging of the crustal structure of the Great Slave Lake shear zone in Northwest Alberta (United States)

    WANG, E.; Unsworth, M. J.; Chacko, T.


    The Alberta basement is part of the North American craton - Laurentia, which was assembled in the Paleoproterozoic era. The Great Slave Lake shear zone (GSLsz) is the major crustal-scale right-lateral strike-slip feature in northwest Laurentia. Because of the extensive coverage of the rocks of the WCSB, geological studies in northern Alberta are limited to studies of drill core samples. The crustal structures of northern Alberta were defined from potential field in combination with isotopic studies. Magnetotelluric method is helpful in this case, because it is sensitive to conductive bodies. New Broadband magnetotelluric data were collected across the GSLsz to give a clear image of the crustal structure. Dimensionality analyses showed that the data are two-dimensional at the crustal depth, even though 3-D effects are present at the lowest frequencies. Consequently, 2-D inversions were applied and a preferred resistivity model was achieved. The WCSB was imaged as a conductive layer on the top of the resistive Precambrian basement rocks. Four conductive bodies associate with terrane boundaries were identified. The largest conductor - KC is located coincident with the Kiskatinaw terrane at the mid-crustal depth. The second conductor - KCC is located at the boundary of the Ksituan and Chinchaga terranes at upper-crustal depth. The KC and KCC are suspected to be linear conductors that are consistent along the strikes of the Kiskatinaw terrane and the western boundary of the Chinchaga terrane, respectively. This is concluded when considering the result of this study in combination with the potential field data, a previously proposed 3-D resistivity model and a 2-D seismic reflection result. Both of the KC and KCC corresponds to seismically reflective zones. The third conductor - HC is imaged beneath the Hottah terrane. The GSLsz is close to the HC and they may be related in origin. The fourth conductor - CBHC is imaged at the boundary of the Chinchaga and Buffalo Head

  1. Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland (United States)

    Bergemann, C.; Gnos, E.; Berger, A.; Whitehouse, M.; Mullis, J.; Wehrens, P.; Pettke, T.; Janots, E.


    Th-Pb age dating of zoned hydrothermal monazite from alpine-type fissures/clefts is a powerful tool for constraining polyphase deformation at temperatures below 350°C and presents an alternative to K/Ar and 40Ar/39Ar dating techniques for dating brittle tectonics. This study considers the relationship between cleft orientations in ductile shear zones and cleft mineral crystallization during subsequent brittle overprinting. In the Grimsel area, located in the Aar Massif of the Central Alps, horizontal clefts formed during a primary thrust dominated deformation, while younger and vertically oriented clefts developed during secondary strike-slip movements. The change is due to a switch in orientation between the principal stress axes σ2 and σ3. The transition is associated with monazite crystallization and chloritization of biotite at around 11.5 Ma. Quartz fluid inclusion data allow a link between deformation stages and temperatures to be established and indicate that primary monazite crystallization occurred in both cleft systems at 300-350°C. While cleft monazite crystallization ceases at 11 Ma in inactive shear zones, monazite growth, and/or dissolution-reprecipitation continues under brittle deformation conditions in vertical clefts during later deformation until 7 Ma. This younger shear zone activity occurs in association with dextral strike-slip movement of the Rhone-Simplon fault system. With the exception of varying Th/U values correlated with the degree of oxidation, there is only limited compositional variation in the studied cleft monazites.

  2. Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt (United States)

    Simonetti, Matteo; Carosi, Rodolfo; Montomoli, Chiara; Langone, Antonio; D'Addario, Enrico; Mammoliti, Elisa


    In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollières shear zone) cross-cuts Variscan migmatites in the Argentera-Mercantour External Crystalline Massif. Structural analysis joined with kinematic vorticity and finite strain analyses allowed to recognize a high-temperature deformation associated with dextral transpression characterized by a variation in the percentage of pure shear and simple shear along a deformation gradient. U-Th-Pb dating of syn-kinematic monazites was performed on mylonites. The oldest 340 Ma ages were obtained in protomylonites, whereas ages of 320 Ma were found in mylonites from the core of the shear zone. These ages indicate that the Ferriere-Mollières shear zone is a still preserved Variscan shear zone. Ages of 320 Ma obtained in this work are in agreement with ages of the dextral transpressional shear zones occurring in the Maures-Tanneron Massif and Corsica-Sardinia. However, transpression in the Argentera-Mercantour Massif started earlier than in other sectors of the southern Variscan Belt. This is possibly caused by the curvature of the belt triggering the progressive migration of shear deformation. Our data allow a correlation between the Argentera-Mercantour Massif and other segments of the Southern European Variscan Belt, in particular with Maures-Tanneron Massif and Corsica-Sardinia, and contribute to fill a gap in the age of activity and in the kinematics of the flow of the system of dextral shear zones of the southern portion of the EVSZ.

  3. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆ (United States)

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai


    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  4. Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India

    Directory of Open Access Journals (Sweden)

    P. Pratheesh


    Full Text Available The Moyar Shear Zone (MSZ of the South Indian granulite terrain hosts a prominent syenite pluton (∼560 Ma and associated NW-SE to NE-SW trending mafic dyke swarm (∼65 Ma and 95 Ma. Preliminary magnetic fabric studies in the mafic dykes, using Anisotropy of Magnetic Susceptibly (AMS studies at low-field, indicate successive emplacement and variable magma flow direction. Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites, indicating shear zone guided emplacement. Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated. The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear. Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.

  5. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area......, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy...... and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting...

  6. Modelling The Transport Of Solutes And Colloids In The Grimsel Migration Shear Zone

    Energy Technology Data Exchange (ETDEWEB)

    Kosakowski, G.; Smith, P


    This report describes modelling of the transport of solutes and colloids in an experimental system comprising an artificial dipole flow field in a water-conducting shear zone at Nagra's Grimsel Test Site (GTS) in the central Swiss Alps. The modelling work forms part of the Colloid and Radionuclide Retardation Project (CRR), which includes a series of field transport experiments and a supporting laboratory programme, as well as modelling studies. Four independent groups representing different organisations or research institutes have conducted the modelling, with each group employing its own modelling approach or approaches. Only the work conducted at the Paul Scherrer Institute (PSI) is described in the present report. The modelling approaches used in the present study may not be directly applicable to safety assessment problems and the direct implications of the results of this study for safety assessment are limited. It can, however, be said that the study has demonstrated the high degree of mobility of bentonite and other colloids in a system that is at least in some ways comparable to those of interest in safety assessment, and has shown that bentonite colloids can at least potentially affect the transport of some safety relevant radionuclides over longer temporal and spatial scales than those addressed here. (author)

  7. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Gibou, Frederic


    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  8. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar


    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  9. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.


    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  10. Middle cretaceous crustal anatexis associated to contractional deformation on Eden's shear zone

    International Nuclear Information System (INIS)

    Calderon, M.; Herve, F; Godoy, E.; Suarez, M; Watters, W.A


    The Puerto Eden's igneous and metamorphic complex (PEIMC) is composed by amphibolite facies schists, melanocratic and leucocratic diatexites (with biotite in schlieren structure), and orthomylonites intruded by schlieren bearing porphyritic biotite monzogranite, tabular garnet - tourmaline and white mica - garnet leucogranites, pegmatitic felsic dikes, andesitic dikes, and biotite hornblende granodiorites belonging to the South Patagonian Batholith (SPB). This locality represent the westernmost outcrop of the Eastern Andean Metamorphic Complex (EAMC), situated at 49 o 8min. 20.seg S - 74 o 23min.20seg. W, on the eastern margin of the SPB. A common relationship exists in convergent orogenic belts between a shear zone system, high-grade metamorphic rocks, and granites, which suggests a feedback relationship between crustal anatexis and contractional deformation that helps granite extraction and focusses granite ascent (Solar et al, 1998). The aim of this study is to constraint the temporal relationship between the magmatic and deformational evolution in Puerto Eden, associated to one or more events of crustal anatexis recorded. This work is based on geochemistry and K-Ar radiometric age data set previously presented as part of first author's MSc thesis related to the petrogenesis of PEIMC (au)

  11. Strain Localization in Crustal-scale Shear Zones and Argon Isotopic Record: Insights from Natural Fossilized Subduction Zones (Cycladic Blueschist Unit, Greece) (United States)

    Laurent, V.; Scaillet, S.; Jolivet, L.; Augier, R.


    Retrieving realistic estimates of strain rates accumulated along major lithospheric structures is critical to understand the rheological behaviour of the lithosphere. We use the 40Ar/39Ar dating technique to obtain dense age transects along strain gradients at various scales across HP-LT shear zones from the Cycladic Blueschist Unit (CBU) to quantify rates of strain localization in a former subduction zone. This HP-LT metamorphic unit was exhumed through a continuum of extensional top-to-the east shearing, all the way from the depth of the eclogite- to greenschist-facies P-T conditions. During exhumation, deformation progressively localized downward in the CBU, along several large-scale ductile shear zones. The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. White micas along these strain gradients were then dated with the 40Ar/39Ar method through various techniques (laser step heating on phengite single grain and population, and in situ laser ablation). We discuss the significance of obtained ages in terms of crystallization vs. cooling ages and use the crystallization ages for P-T-t paths. We compare our results with previous low-resolution studies on the examples of Alpine Corsica and the Betic Cordillera suggesting that strain localization at km-scale results into age gradients with a correlation between the most deformed samples and the youngest 40Ar/39Ar ages, leading to estimates of strain localization rates. We also discuss these results at small-scale to see whether deformation and fluid circulation, channelled within shear bands, can homogenize compositions and reset the 40Ar/39Ar isotopic record both in phengites within shear bands and the close-by foliation. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.

  12. An integrated study of aerospace data for uranium exploration in the Magajhi-Kotapali shear zone, Surguja district, Madhya Pradesh, India

    International Nuclear Information System (INIS)

    Chaturvedi, A.K.; Kak, S.N.


    Lower Proterozoic granite gneiss and associated cataclastic rocks of Surguja crystalline complex record uranium mineralisation along the WNW-ESE trending Magajhi-Kotapali shear zone. Extension of the shear zone and cross faults trending NE-SW were established using enhanced satellite data. On integrating it with aeroradiometric data, it has been found that uranium mineralisation is shear controlled and occur around the zone of intersection between the WNW-ESE trending shear and the NE-SW faults. The study has narrowed down the target area for detailed ground investigations and finally resulted in locating promising areas such as Chathila Pahar, Haskepi, Jarhakhar-Semarkhar, and Tilti forest with good extensions along the shear zone. (author). 18 refs., 5 figs

  13. Crustal structure in high deformation zones: Insights from gravimetric and magnetometric studies in the Guacha Corral shear zone (Eastern Sierras Pampeanas, Argentina) (United States)

    Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.


    The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.

  14. Field Observations and Modeling Results of the McMurdo Shear Zone, Antarctica: Implications on Shear Margin Dynamics and Long- Term Viability of the South Pole Traverse (United States)

    Kaluzienski, L. M.; Koons, P. O.; Enderlin, E. M.; Courville, Z.; Campbell, S. W.; Arcone, S.; Jordan, M.; Ray, L.


    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability are critical to predicting the future evolution of the Antarctic Ice Sheet. For the Ross Ice Shelf (RIS), an important region of lateral resistance is the McMurdo Shear Zone (MSZ), a 5-10 km wide strip of heavily crevassed ice. On a yearly basis the United States Antarctic Program (USAP) mitigates crevasse hazards along the South Pole Traverse (SPoT) route that crosses this region. However, as ice advects northward past the lateral buttress of White Island into a region of greater flow divergence, intensified crevassing has been observed which will continue to place a substantial burden on safety mitigation efforts. The route has advected down-glacier towards this complex region since 2002 so the USAP currently has plans to relocate the shear zone crossing upstream in the near future. Our work aims to assess the feasibility of moving the route to several potential locations based on results from an integrated project incorporating detailed field-based observations of crevasse distributions and orientation from ground-penetrating radar (GPR), GPS and remote sensing observations of the flow and stress field within the MSZ, and finite element numerical modeling of local and regional kinematics within the region. In addition, we assess plausible dynamic forcings both upstream and downstream of the MSZ that could influence shear zone stability. These include changes in mass flux across the grounding lines of tributary glaciers such as the observed increase in ice discharge from of Byrd Glacier (Stearns et al., 2008) as well as changes at the MIS front due to recent intensified rift propagation (Banwel et al., 2017). Results from this work will increase our understanding of ice shelf shear margin dynamics and provide a firm basis for predicting the long-term behavior of the MSZ and viability of the SPoT. Stearns, Leigh A., Benjamin E. Smith, and

  15. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique) (United States)

    Hagag, W.; Moustafa, R.; Hamimi, Z.


    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  16. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier


    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  17. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique (United States)

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone


    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  18. Metamorphic history of garnet-rich gneiss at Ktiš in the Lhenice shear zone, Moldanubian Zone of the southern Bohemian Massif, inferred from inclusions and compositional zoning of garnet

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, T.; Hirajima, T.; Kawakami, T.; Svojtka, Martin


    Roč. 124, 1/2 (2011), s. 46-65 ISSN 0024-4937 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bohemian Massif * Lhenice shear zone * garnet * P-T path * partial melting Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.246, year: 2011

  19. Preliminary report of the uranium favorability of shear zones in the crystalline rocks of the southern Appalachians

    International Nuclear Information System (INIS)

    Penley, H.M.; Schot, E.H.; Sewell, J.M.


    Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U 3 O 8 and the radiometric surveys. Although anomalous radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium

  20. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon


    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  1. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California (United States)

    Cochran, W. J.; Spotila, J. A.


    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  2. Crustal Anisotropy Beneath the Western Segment of North Anatolian Fault Zone from Local Shear-Wave Splitting (United States)

    Altuncu Poyraz, S.; Teoman, U.; Kahraman, M.; Turkelli, N.; Rost, S.; Thompson, D. A.; Houseman, G.


    Shear-wave splitting from local earthquakes provides valuable knowledge on anisotropy of the upper crust. Upper-crustal anisotropy is widely interpreted as due to aligned fluid-filled cracks or pores. Differential stress is thought to close cracks aligned perpendicular to the maximum principal stress and leaves cracks open that are aligned perpendicular to the minimum horizontal compressional stress. In other cases local shear-wave splitting has been found to be aligned with regional faulting. Temporal variations in local splitting patterns might provide hints of changes in stress orientation related to earthquakes or volcanoes. North Anatolian Fault Zone (NAFZ) is a large-scale continental strike slip fault system originating at the Karlıova Junction in the east where it intersects the East Anatolian Fault (EAF) and extends west cutting across the entire Northern Turkey towards the Aegean Sea and the mainland Greece. Our primary focus is to provide constraints on the crustal anisotropy beneath the western segment of the North Anatolian Fault Zone with the use of a data set collected from a dense temporary seismic network consisting of 70 stations that was deployed in early May 2012 and operated for 18 months in the Sakarya region and the surroundings during the Faultlab experiment. For the local shear wave splitting analysis, out of 1344 events, we extracted 90 well located earthquakes with magnitudes greater than 2.0. Local shear-wave splitting makes use of earthquakes close to and nearly directly below the recording station. Incidence angles of less than 45 degrees were used to avoid the free-surface effect and resulting non-linear particle motion. Basically, two essential parameters for each station-event pair is needed for shear wave splitting calculations. One of them is fast polarization direction (ɸ) and the other is delay time (δt) between the fast and slow components of the shear wave. In this study, delay times vary between 0,02 and 0,25 seconds

  3. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang


    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  4. Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand

    International Nuclear Information System (INIS)

    Milham, L.; Craw, D.


    The Globe-Progress gold deposit at Reefton is hosted in a curvilinear mineralised zone that cuts Paleozoic Greenland Group basement metagreywackes. Two discrete phases of mineralisation have resulted in the formation of five different ore types along the shear. An initial phase of mineralisation formed hydrothermal quartz veins and associated Au, As, and S enrichment, with low-grade mineralised host rock. These quartz veins and mineralised host rocks form the outer regions of the mineralised zone. A second hydrothermal phase introduced Sb, Au, As, and S during brittle shear deformation focused on the pre-existing mineralised rocks. This deformation and mineralisation resulted in the formation of metre-scale cataclasite ore and quartz breccia from mineralised host rock and hydrothermal quartz veins, respectively. Cataclasite was derived from argillite layers in the host rock, from which Na, Fe, and Mg have been leached during mineralisation; Al, Ti, and Cr have been conserved; and there has been minor enrichment in Sr, Pb, Zn, and Cu. No quartz was added to the cataclasite or quartz breccia during mineralisation, but some quartz recrystallisation occurred locally, and quartz clasts were physically incorporated into the cataclasite during deformation. The presence of euhedral sulfides in the cataclasite (40% of total sulfides), late-stage undeformed stibnite veins infilling breccia (1-5 cm 3 scale), and undeformed free gold in quartz breccia, imply that the second phase of mineralisation persisted both during and after cataclasis and brecciation. Antimony deposition is greatest in the central cataclasite, up to 6 wt%, and locally in the quartz breccia where stibnite veins are present. Concentrations of Sb decrease with distance from the shear zone. The second, Sb-rich phase of mineralisation in the Globe-Progress deposit resembles similar Sb-rich overprints in the correlative Victorian goldfield of Australia. (author). 38 refs., 10 figs., 1 tab.

  5. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil; Analise estrutural e caracterizacao do magmatismo da zona de cisalhamento Major Gercino, SC

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Claudia Regina


    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps

  6. Edge-driven Rayleigh Taylor Instabilities at Transtensional Continental Margins: Western North Island, New Zealand (United States)

    Stern, T. A.; Houseman, G. A.; Evans, L.


    At a continental transform system with an element of extension, regular and thinned lithosphere are juxtaposed. Such a system will be gravitationally unstable as negative buoyancy is created by the regular mantle lithosphere terminating at an abrubt edge with less dense asthenospheric mantle. Finite element experiments with dimensionless ratios of viscosity and density show that such a gravitational instability can grow, migrate and eventually drip off into the lower density asthenosphere providing two criteria are met: lithospheric thinning across the edge is at least 30% or more; and that viscosity at the top of the mantle lithosphere is no more than 2.4 or 4.5 x1021 Pa s, for lithospheric thicknesses of 100 and 200 km respectively. These are low values for regular mantle lithosphere, but are in keeping with mantle lithosphere found adjacent to plate boundaries, or paleo subduction zones. As the mantle lithosphere deforms and migrates away from an edge it both thins and thickens different portions of the overlying crust. At the surface regions of subsidence and uplift migrated in concert with the subjacent gravitational instability. A dimensionless variable analysis of instability development shows that 3 critical dimensionless ratios control the shape, migration speed and form of the instability: η' = ratio of viscosity between crust and mantle; m' = ratio of crust to lithosphere thickness; and d' = portion of mantle lithosphere thinning to initiate the instability. Western North Island, New Zealand, displays characteristics of uplift and subsidence in the past 10-12 Ma, which can be explained by a migrating instability that initiated from the Auckland-Hauraki area around 10 Ma. Transtensional faults developed in mid-North Island from 5 Ma as back-arc spreading from the oceanic Lau Havre trough penetrated into the continental lithosphere of New Zealand. It is this transtensional phase that we argue started the edge-driven instability. The present position of

  7. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.


    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  8. Granite emplacement at the termination of a major Variscan transcurrent shear zone: The late collisional Viseu batholith (United States)

    Valle Aguado, B.; Azevedo, M. R.; Nolan, J.; Medina, J.; Costa, M. M.; Corfu, F.; Martínez Catalán, J. R.


    A major event of plutonic activity occurred all across the Central Iberian Zone of the Iberian Variscan Belt at the end of Late Paleozoic Variscan collisional tectonism. The present study focuses on the western sector of the Viseu late-post-tectonic batholith (central Portugal), a large composite intrusion comprising three main plutonic units: (a) small bodies of mafic to intermediate composition preferentially concentrated along the northern border, (b) a wide ring of coarse porphyritic biotite monzogranite (Cota-Viseu granite) and (c) a more evolved medium porphyritic, biotite-muscovite monzogranite occupying the central part of the intrusion (Alcafache granite). The compositional zonation pattern of the whole batholith and the complex mixing/mingling relationships between the voluminous Cota-Viseu porphyritic granite and the mafic/intermediate rocks suggest that these melts were withdrawn from a lower crustal source region undergoing partial melting, invasion by mantle-derived mafic magmas, mixing and fractional crystallization. New CA-ID-TIMS U-Pb zircon ages indicate that pluton assembly via multipulse injection of successive magma batches took place between 299.4 ± 0.4 Ma and 296.0 ± 0.6 Ma. A detailed anisotropy of magnetic susceptibility (AMS) survey suggests that pluton emplacement occurred at the extensional termination of a regional-scale, ENE-WSW trending, sinistral D3 shear zone - the Juzbado-Penalva Shear Zone (JPSZ). A dilational opening model involving the development of "en-échelon" tensional gashes at the extensional termination of the fault, followed by progressive opening and widening of north-south trending fractures, provided the space into which the successive magma batches arriving from below were emplaced. Vertical inflation was accommodated by depression of the pluton floor. The proposed model is consistent with the asymmetric wedge-shaped geometry of the intrusion (steep root zone on the northern side, discordant subvertical walls and

  9. A hidden variable in shear transformation zone volume versus Poisson’s ratio relation in metallic glasses

    Directory of Open Access Journals (Sweden)

    S. Y. Kim


    Full Text Available Herein, we elucidate a hidden variable in a shear transformation zone (STZ volume (Ω versus Poisson’s ratio (ν relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs. On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation and macroscopic properties (plasticity in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  10. Formation of Lithospheric Shear Zones: Effect of Temperature on Two-Phase Grain Damage (United States)

    Mulyukova, E.; Bercovici, D.


    Shear localization in the lithosphere is an important element of the planetary scale dynamics. Being a characteristic feature of the tectonic plate boundaries, as is geologically evidenced by the presence of small grain mylonites and ultramylonites, understanding shear localization can shed light on the initiation and evolution of plate tectonics. Shear localization in the ductile portion of the lithosphere can arise when its constituting polycrystalline material deforms by diffusion creep, which has a grain size sensitive viscosity, in combination with the Zener pinning, which reduces grain size and impedes grain growth. We explore the deformation conditions under which these self-weakening effects take place, and, in particular, the effect of temperature on these conditions. In the presented model, the lithosphere-like polycrystalline material is deformed in a two-dimensional simple shear set-up by applying a constant stress or strain rate at the boundaries. The mineral grains evolve to a stable size, which is obtained when the rate of coarsening by normal grain growth and the rate of grain size reduction by damage are in balance. The rates of these microstructural transformations are dictated by the applied rate of mechanical work and temperature. The temperature-dependence enters through its influence on the diffusion and dislocation creep compliances, as well as the coarsening coefficient for grain growth, and the value of the damage partitioning fraction, which is the fraction of deformational work that goes into creating new surface energy. We demonstrate that the increase of temperature with depth can lead to a significant change in the microstructure and influence the degree of localization in the ductile portion of the lithosphere. Within the framework of the two-phase grain damage model, we present the theoretical constraints on the temperature-dependent material properties that can best explain the field observations of mylonites and ultramylonites.

  11. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.


    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  12. Intraplate earthquake swarm in Belo Jardim, NE Brazil: reactivation of a major Neoproterozoic shear zone (Pernambuco Lineament) (United States)

    Lopes, Afonso E. V.; Assumpção, Marcelo; do Nascimento, Aderson F.; Ferreira, Joaquim Mendes; Menezes, Eduardo A. S.; Barbosa, José Roberto


    Intraplate earthquakes in stable continental areas have been explained basically by reactivation of pre-existing zones of weakness, stress concentration, or both. Zones of weakness are usually identified as sites of the last major orogeny, provinces of recent alkaline intrusions, or stretched crust in ancient rifts. However, it is difficult to identify specific zones of weakness and intraplate fault zones are not always easily correlated with known geological features. Although Northeastern Brazil is one of the most seismically active areas in the country (magnitudes 5 roughly every 5 yr), with hypocentral depths shallower than ~10 km and seismic zones as long as 30-40 km, no clear relationship with the known surface geology can be usually established with confidence, and a clear identification of zones of weakness has not yet been possible. Here we present the first clear case of seismic activity occurring as reactivation of an old structure in Brazil: the Pernambuco Lineament, a major Neoproterozoic shear zone. The 2004 earthquake swarm of Belo Jardim (magnitudes up to 3.1) and the recurrent activities in the nearby towns of São Caetano and Caruaru (magnitudes up to 4.0 and 3.8), show that the Pernambuco Lineament is a weak zone. A local seismic network showed that the Belo Jardim swarm of 2004 November occurred by normal faulting on a North dipping, E-W oriented fault plane in close agreement with the E-W trending structures within the Pernambuco Lineament. The Belo Jardim activity was concentrated in a 1.5 km (E-W) by 2 km (downdip) fault area, and average depth of 4.5 km. The nearby Caruaru activity occurs as both strike-slip and normal faulting, also consistent with local structures of the Pernambuco Lineament. The focal mechanisms of Belo Jardim, Caruaru and S. Caetano, indicate E-W compressional and N-S extensional principal stresses. The NS extension of this stress field is larger than that predicted by numerical models such as those of Coblentz

  13. Extension of Hellenic forearc shear zones in SW Turkey: the Pliocene-Quaternary deformation of the Eşen Çay Basin (United States)

    ten Veen, Johan H.


    The Pliocene-Quaternary Eşen Çay Basin in southwestern Turkey has a key position in the southern Aegean to gain insight into both lateral and temporal changes in stresses exerted by plate convergence at the Hellenic-Cyprus arc junction. A tectonosedimentary study of the basin development in combination with a structural analysis helped to reveal internal basin deformation and adjacent basement kinematics in order to delineate 3D strain through time. In the Pliocene the basin originated as a fluviolacustrine basin situated in a depression related to a ramp-fold geometry in the Lycian nappe stack. During the late Pliocene, E-W extension caused the development of N-S normal faults, displacement along which caused the differentiation of the relief and deposition of local alluvial fan systems. The Pleistocene is also marked by widespread alluvial-fluvial sedimentation that is triggered by activity at 020° faults. This fault system resulted from WNW-ESE extension and caused disruption of the former basin floor by uplift and tilting of intrabasinal areas, which initiated development of new source areas for the fan sedimentation. The Holocene-Recent period is characterized by a complex combination of faults of which 070° sinistral strike-slip faults are the most important. Fault-slip analysis reveals that deformation occurred in transtension, explained by the addition of a sinistral shear component. This implies that stresses evolved from simple tensional to transtensional over the Pliocene-Quaternary period. The initial extension phase is explained by the kinematic effects of outward growth of the Hellenic forearc, comparable with observations from the island of Rhodes and the eastern Anaximander Mountains. The time-transgressive addition of a sinistral shear component was likely produced by the northeastward propagating transcurrent motions of forearc slivers sheared from the expanding forearc as has been previously inferred for Crete and Rhodes. The latter process

  14. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada (United States)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  15. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow (United States)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.


    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  16. Double layer anisotropy beneath the New Madrid seismic zone and adjacent areas: insights from teleseismic shear wave splitting

    Directory of Open Access Journals (Sweden)

    Moikwathai Dax Moidaki


    Full Text Available A total of 93 well-defined PKS, 54 SKKS, and 126 SKS shear-wave splitting parameters are determined at 25 broadband seismic stations in an approximately 1000 by 1000 km2 area centered at the New Madrid seismic zone (NMSZ in order to test the existence of two anisotropic layers and to map the direction and strength of mantle fabrics. The individual splitting parameters suggest a significant and systematic spatial and azimuthal variation in the splitting parameters. The azimuthal variations at most stations can be explained as the results of present SW ward asthenospheric flow and NNE trending lithospheric fabrics formed during past orogenic events. In the NMSZ, rift-parallel fast directions (potentially related to a long-rift flow and rift-orthogonal fast directions from small-scale mantle convection are not observed. In addition, reduction in splitting times as a result of vertical asthenospheric flow is not observed.

  17. Representation and Management of the Knowledge of Brittle Deformation in Shear Zones Using Microstructural Data From the SAFOD Core Samples (United States)

    Babaie, H. A.; Broda, C. M.; Kumar, A.; Hadizadeh, J.


    Web access to data that represent knowledge acquired by investigators studying the microstructures in the core samples of the SAFOD (San Andreas Observatory at Depth) project can help scientists efficiently integrate and share knowledge, query the data, and update the knowledge base on the Web. To achieve this, we have used OWL (Web Ontology Language) to build the brittle deformation ontology for the microstructures observed in the SAFOD core samples, by explicitly formalizing the knowledge about deformational processes, geological objects undergoing deformation, and the underlying mechanical and environmental conditions in brittle shear zones. The developed Web-based ‘SAFOD Brittle Microstructure and Mechanics Knowledge base’ (SAFOD BM2KB), which instantiates this ontology and is available at, will host and serve data that pertains to spatial objects, such as microstructure, gouge, fault, and SEM image, acquired by the SAFOD investigators through the studies of the SAFOD core samples. Deformation in shear zones involves complex brittle and ductile processes that alter, create, and/or destroy a wide variety of one- to three-dimensional, multi-scale spatial entities such as rocks and their constituent minerals and structure. These processes occur through a series of sub-processes that happen in different time intervals, and affect the spatial objects at granular to regional scales within shear zones. The processes bring about qualitative change to the spatial entities over time intervals that start and end with events. Processes, such as mylonitization and cataclastic flow, change the spatial location, distribution, dimension, size, shape, and orientation of some objects through translation, rotation and strain. These processes may also result in newly formed entities, such as a new mineral, gouge, vein, or fault, during one or more phases of deformation. Deformation processes may also destroy entities, such as a

  18. Deformation Microstructures of the Yugu Peridotites in the Gyeonggi Massif, Korea: Implications for Olivine Fabric Transition in Mantle Shear Zones (United States)

    Jung, H.; Park, M.


    Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.

  19. Geochemistry of the granitoids from the Central Surguja Shear Zone, India: geological evolution and implications on uranium mineralization and exploration

    International Nuclear Information System (INIS)

    Saxena, V.P.; Murugan, C.; Sabot, H.K.; Krishnamurthy, P.


    Numerous stock-like bodies of grey granites (up to 15 km 2 across) and sheet-like bodies of pink granite (1 km to 15 km long and 0.2-0.5 km thick) have intruded along the cores of anticlines of the Central Surguja Shear Zone(CSSZ), during the Satpura Orogeny (Middle Proterozoic). Major, minor, and trace element data, critical elemental ratios, and Qz-Or-Ab normative mineralogical data indicate that the granitic melt was derived from palingenesis of crustal rocks. The pink granites represent melts equilibrated under very low pressure in a hydrous system, apparently influenced by fractionation and differentiation. The grey granites represent hydrous melts derived under pressure of about 5 kb. The pink granites are the youngest intrusives and show distinct enrichment of Rb(235-407 ppm), Y(33-356 ppm), Zr(120-533 ppm), Nb(16-161 ppm), and U(10-141 ppm). In general, the granites show high Rb/Sr and Ba/Sr, and low Ba/Rb ratios pointing to their evolved nature. Uranium mineralization at a number of places, such as at Jajawal, Dhabi, Dumhat, Pakni, and others is hosted by grey and pink granites, quartzo-feldspathic cataclasite, and chlorite-biotite schist, within the Central Surguja Shear Zone. Discriminant diagrams to infer palaeotectonic regimes using Rb, Nb, and Y indicate a within plate environment for the granites, notably for the pink types. Besides structurally controlled vein-type uranium mineralization, sedimentary rocks of the Gondwana Supergroup enveloping the Surguja Crystalline Complex (SCC) may also hold potential for sedimentary-type uranium mineralization in conducive locales. (author). 22 refs., 16 figs., 3 tabs

  20. Geodynamic hazard and risk assessments for sites close or in tectonic zones with shear movements

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Jechumtálová, Zuzana


    Roč. 51, č. 7 (2007), s. 1113-1117 ISSN 0943-0105 R&D Projects: GA MŠk LN00A005; GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA ČR GA205/97/0679; GA ČR GA205/01/0480; GA ČR GA205/05/2287; GA AV ČR 1QS300460551 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : geodynamic hazard and risk * tectonic shear movements * urban and territorial planning Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.722, year: 2007

  1. Quartz and feldspar rheology at mid-crustal conditions: the example of the Pernambuco shear zone (NE Brazil) (United States)

    Ferreira Viegas, Luís Gustavo; Menegon, Luca; Archanjo, Carlos; Vauchez, Alain


    Rheological models that predict the strength of the middle- to upper continental crust are mainly based on the behaviour of the two most common silicate minerals, feldspar and quartz. At natural pressure-temperature conditions typical of the middle crust, quartz is expected to be mechanically weaker than feldspars if deformation is accommodated by crystal plasticity. Dislocation creep in quartz localizes in recrystallized layers while feldspar forms stronger porphyroclasts. However, the presence of mineral reactions may promote a drastic change in feldspar rheology, causing marked grain size reduction and weakening due to activation of diffusion creep. Under such conditions, the feldspar-derived reaction products represent the mechanically weak rheological phase that accommodates most of the bulk strain while quartz deforms via dislocation creep. The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at upper-greenschist/amphibolite facies conditions, thus representing a preserved section of the middle continental crust. Initially coarse (> 50 µm) grained feldspar crystals are intensively fractured and reduced to an ultrafine-grained mixture consisting of fractured albite and K-feldspar grains (~ 5-8 µm in size) localized in C' oriented shear bands. Detailed microstructural observations and EBSD analysis do not show any evidence of intracrystalline plasticity in feldspars and/or uid-enhanced reaction weakening. Quartz occurs either as thick (~ 1mm) monomineralic bands or as thin ribbons dispersed in the feldspathic mixture. The microstructure and recrystallized grain size (~ 20 µm) are similar in both the thick monomineralic band and in the thin ribbons. Elongated quartz grains form [0001] axis maxima around Y, while recrystallized grains tend to scatter their c-axes between Y and Z in a girdle-like pattern in both the monomineralic band and in the thin ribbons embedded in the

  2. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.


    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30 degrees-40 degrees W-trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the potential repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the open-quotes Sundance fault systemclose quotes and the dominant structure, occurring near the middle of the zone, the open-quotes Sundance faultclose quotes. Some field relations suggest left-stepping deflections of north-trending faults along a pre-existing northwest-trending structural fabric. Other field observations suggest that the open-quotes Sundance fault systemclose quotes offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies are needed to better understand structural complexities at Yucca Mountain

  3. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.


    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30 degrees - 40 degrees W - trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ''Sundance fault system'' and the dominant structure, occurring near the middle of the zone, the ''Sundance fault.'' Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ''Sundance fault system'' offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain

  4. Size distribution and roundness of clasts within pseudotachylytes of the Gangavalli Shear Zone, Salem, Tamil Nadu: An insight into its origin and tectonic significance (United States)

    Behera, Bhuban Mohan; Thirukumaran, V.; Soni, Aishwaraya; Mishra, Prasanta Kumar; Biswal, Tapas Kumar


    Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1-3 km wide NNE-SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE-SSW and NW-SE directions, suggesting an N-S compression. The Gangavalli Shear Zone represents the NNE-SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000^{circ }\\hbox {C}. Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.

  5. Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K.

    Directory of Open Access Journals (Sweden)

    P. M. Davis


    Full Text Available The classical one-dimensional advection-diffusion equation (ADE gives an inadequate description of tracer cloud evolution in the River Severn, U.K. A solute transport model incorporating the effects of tracer storage in dead zones is presented in which the channel is conceived as being divided into two parallel regions. The bulk flow region occurs in the central part. Its longitudinal dispersive properties are described by the ADE. Adjacent to this, an additional cross-sectional area is defined in which tracer can be stored temporarily in regions of slowly moving water called dead zones. Exchange between the two regions follows a first order rate equation. Applying the model to the River Severn shows that a dispersing cloud’s evolution occurs in two distinct stages with a rapid transitional phase. Initially, shear-dispersion is dominant while the tracer particles mix fully over the bulk flow. Once this has occurred, dead zone storage accounts well for the non-Fickian evolution of the cloud. After the transitional phase the dead zone storage mechanism clearly dominates over shear-dispersion. Overall, the combined shear flow dispersion – dead zone model (D-DZM provides a much better, physically consistent description of the tracer cloud’s evolution than the simple classical ADE approach can do alone. Keywords: Channels; dispersion; dead zones; tracers; River Severn

  6. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons


    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust petroch...

  7. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China

    NARCIS (Netherlands)

    Wu, Y.B.; Hanchar, J.H.; Gao, S.; Sylvester, P.J.; Tubrett, M.; Qiu, H.N.; Wijbrans, J.R.; Brouwer, F.M.; Yang, S.H.; Yang, Q.J.; Liu, Y.S.


    In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh

  8. Thermal evolution of the Sisters shear zone, southern New Zealand; Formation of the Great South Basin and onset of Pacific-Antarctic spreading (United States)

    Kula, Joseph; Tulloch, Andy J.; Spell, Terry L.; Wells, Michael L.; Zanetti, Kathleen A.


    The separation of Zealandia from West Antarctica was the final stage in the Cretaceous breakup of the Gondwana Pacific margin. Continental extension resulting in formation of the Great South Basin and thinning of the Campbell Plateau leading to development of the Pacific-Antarctic spreading ridge was partially accommodated along the Sisters shear zone. This east-northeast striking brittle-ductile structure exposed along the southeast coast of Stewart Island, New Zealand, is a greenschist facies extensional shear zone that separates a hanging wall of chloritic, brecciated granites, and undeformed conglomerate from a footwall of mylonitic Carboniferous and Early Cretaceous granites. This complex structure exhibits bivergent kinematics and can be subdivided into a northern and southern segment. The 40Ar/39Ar thermochronology indicates that cooling of the shear zone footwall began at ˜94 Ma with accelerated cooling over the interval ˜89-82 Ma. Structural and thermochronological data indicate a spatial and temporal link between the Sisters shear zone, initial sedimentation within the offshore Great South Basin, extension of the Campbell Plateau, and initiation of the Pacific-Antarctic spreading ridge.

  9. The TIPA shear zone (NW-Argentina): Evidence for early devonian movement verified by Sm-Nd dating of garnet and whole rock systems

    International Nuclear Information System (INIS)

    Hockenreiner, M.; Sollner, F.; Miller, H


    The Sierra de Copacabana (Catamarca province, NW Argentina) hosts in its northernmost part a large shear zone, which can be traced back to the north into the Sa. de Fiambala and to the south at least into the Sa. de Velasco. Timing of mylonitization is an important puzzle-piece in order to understand Paleozoic geotectonic processes on the western border of Gondwana (au)

  10. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.


    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  11. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.


    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  12. Quartz grainsize evolution during dynamic recrystallization across a natural shear zone boundary (United States)

    Xia, Haoran; Platt, John P.


    Although it is widely accepted that grainsize reduction by dynamic recrystallization can lead to strain localization, the details of the grainsize evolution during dynamic recrystallization remain unclear. We investigated the bulge size and grainsizes of quartz at approximately the initiation and the completion stages of bulging recrystallization across the upper boundary of a 500 m thick mylonite zone above the Vincent fault in the San Gabriel Mountains, southern California. Within uncertainty, the average bulge size of quartz, 4.7 ± 1.5 μm, is the same as the recrystallized grainsize, 4.5 ± 1.5 μm, at the incipient stage of dynamic recrystallization, and also the same within uncertainties as the recrystallized grainsize when dynamic recrystallization is largely complete, 4.7 ± 1.3 μm. These observations indicate that the recrystallized grainsize is controlled by the nucleation process and does not change afterwards. It is also consistent with the experimental finding that the quartz recrystallized grainsize paleopiezometer is independent of temperature.

  13. Upper crustal earthquake swarms in São Caetano: Reactivation of the Pernambuco shear zone and trending branches in intraplate Brazil (United States)

    Lima Neto, Heleno C.; Ferreira, Joaquim M.; Bezerra, Francisco Hilário R.; Assumpção, Marcelo S.; do Nascimento, Aderson F.; Sousa, Maria O. L.; Menezes, Eduardo A. S.


    Seismogenic fault reactivation of continental-scale structures has been observed in a few intraplate areas, but its cause is still a matter of debate. The objective of the present study is to analyze two seismic swarms that occurred along the EW-trending Pernambuco ductile shear zone and in a NE-trending branch, in 2007 and 2010 in São Caetano County, Northeastern Brazil. We studied both epicentral areas using a nine- and a seven-station network during 180 and 54 days, respectively. The results indicate that the 2007 swarm correspond to a right-lateral, strike-slip fault with a normal component of slip (strike 74°, dip 60°, and rake - 145°) and the 2010 swarm corresponds to a normal fault (strike 265°, dip 79°, and rake - 91°). The former reactivated a NE-trending branch, whereas the latter reactivated the main E-W-trending mylonitic belt of the Pernambuco shear zone. These results are consistent with seismogenic reactivation of this major structure, generated by the present-day EW-trending compression and NS-trending extension, as observed by previous studies. This shear zone was reactivated as rift faults in the Cretaceous during the South America-Africa breakup. However, our study confirms that the basement fabric such as continental-scale ductile shear zones, show evidence of crustal weakness outside areas of previous rifting, and it reveals the potential for large earthquakes along dormant rift segments associated with major basement shear belts.

  14. Uraninite, Coffinite and Brannerite from Shear-Zone Hosted Uranium Deposits of the Bohemian Massif (Central European Variscan Belt

    Directory of Open Access Journals (Sweden)

    Miloš René


    Full Text Available New mineralogical data are presented for shear-zone hosted uranium mineralisation from selected uranium deposits that occur in the Bohemian Massif. The uranium mineralisation is in high-grade metamorphic rocks of the Moldanubian Zone and/or in granitic rocks of the Moldanubian batholith and Bor pluton as complex uraninite–coffinite and uraninite–coffinite–brannerite assemblages. For analysed coffinites and brannerites, anomalous enrichment of Y (up to 3.4 wt % Y2O3 and Zr (up to 13.8 wt % ZrO2 is significant. The microprobe data indicate that coffinites from the Rožná and Okrouhlá Radouň uranium deposits contain variable PbO (0–4.3 wt %, FeO (0–2.5 wt %, Al2O3 (0–3.5 wt %, P2O5 (0–1.8 wt %, and CaO (0.7–3.5 wt %. Brannerite is present in unaltered and altered grains with variable concentrations of U4+ (0–0.5 apfu, U6+ (0.06–0.49 apfu, Ti (0.90–2.63 apfu, Ca (0.09–0.41 apfu, and low concentrations of Al (0–0.19 apfu, Th (0–0.04 apfu, Y (0–0.08 apfu, Zr (0–0.13 apfu and REE (0–0.14 apfu.

  15. Geochemical significance of neoproterozoic rasimalai alkali syenite emplaced along Dharmapuri shear zone in the Northern part of Tamil Nadu

    International Nuclear Information System (INIS)

    Thangavel, S.; Balasubramani, S.; Nagaraju, M.; Bhattacharya, D.; Zakaulla, Syed; Rai, A.K.


    The Rasimalai alkali syenite complex is emplaced within Peninsular Gneissic complex and spatially associated with NE-SW trending major Dharmapuri shear zone (DSZ) in the northern part of Tamil Nadu. It is surrounded by epidote hornblend egneiss, which is the fenetised product of Charnockite and occurs about 20 km NE of Alangayam in Vellore district. It is mainly comprised of medium to coarse grained grey syenite (albite and orthoclase) and medium to micro grained pink syenite (orthoclase, microcline and perthite) at places porphyritic in nature with hornblende, riebeckitc, aegirine and acmite as accessory minerals. Grey syenite is non radioactive and uranium mineralisation is associated with pink syenite (syngenetic and disseminated type) and quartz-barite veins (hydrothermal type). Hydrothermal activity is manifested in the form of pyrite, chalcopyrite, galena, barite, calcite and calcian-strontianite which occur in the form of disseminations, stringers, lumps, aggregates, veinlets and veins. Presence of high silica (63.14-75.43%) with high field strength elements (U, Th, Nb and Pb) and large ion lithophile elements (Rb, Sr, K, Ba) possibly indicates that Rasimalai alkali syenite is the product of crustal communication and partial melting of protracted emplacement of parental alkali basaltic magma

  16. Strain localization in the middle- to upper continental crust: examples from the Patos and Pernambuco shear zones (Borborema Province, NE Brazil) (United States)

    Viegas, G.; Archanjo, C. J.; Hollanda, M. H.; Vauchez, A. R.


    The accommodation of deformation in the Earth's lithosphere typically results in a heterogeneous distribution of strain in the continental crust, which is a function of effective pressure, temperature and strain rate at different structural levels. In Northeast Brazil, the Borborema Province is characterized by an interconnected, crustal-scale shear zone system associated with a widespread granitic plutonism. Two of the most prominent structures of this system, the Patos and Pernambuco shear zones, are characterized by ~ 600 km long E-W striking mylonite belts in which strain localization processes are observed either in association with partial melting in the Patos strike-slip fault, or as zones of overprinting brittle-ductile deformation in the Pernambuco shear zone. Deformation mechanisms are distinct across the Patos shear zone, mainly marked by crystalline plasticity and diffusion creep in the high-temperature northern border, magmatic flow in the central region and dislocation creep coupled with microfracturing in the southern sector. The Espinho Branco migmatite (~ 565 Ma) acts as a weak rheological layer that accumulates strain in the northern portion of the fault. Alternatively, the absence of partial melting and the dominant cataclastic/plastic flow regime lead to grain-size sensitive strain localization at the southern border. The Pernambuco shear zone was nucleated at the vicinities of two granitoid batholiths at c.a. 588 Ma. Low-temperature mylonites adjacent to the batholiths show several microstructures indicating coeval activity of brittle-ductile deformation. Recent zircon U-Pb (SHRIMP) data on these mylonites yielded mean ages of ~ 539 Ma, suggesting successive events of thermal input and shearing within the structure. These features suggest that strain localization processes exert an important control on the rheology of the continental lithosphere; the accommodation of deformation in the middle crust is mainly attained by the presence of weak

  17. Slip events propagating along a ductile mid-crustal strike-slip shear zone (Malpica-Lamego line, Variscan Orogen, NW Iberia) (United States)

    Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio


    The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it

  18. C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U deposit (United States)

    Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick


    Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked

  19. Constraints on strain rate and fabric partitioning in ductilely deformed black quartzites (Badajoz-Córdoba Shear Zone, Iberian Massif) (United States)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio


    The Badajoz-Córdoba Shear Zone is a is 30-40 km wide and 400 km long, NW-SE trending structure located at the boundary between the Ossa-Morena and Central-Iberian Zones of the Iberian Massif. Two elongated domains can be differentiated inside: the Obejo-Valsequillo domain to the NE and the Ductile Shear Belt (DSB) to the SW. The former exhibits Precambrian to Cambrian volcano-sedimentary rocks unconformably overlaying a Neoproterozoic basement formed by the "Serie Negra". The latter, 5-15 km wide, is composed mainly of metamorphic tectonites including the "Serie Negra" and other units located structurally under it. The petrofabric of "Serie Negra" black quartzites from the DSB is analyzed in this study with the Electron Back-Scattered Diffraction technique (EBSD). Black quartzites represent originally siliceous, chemical-biochemical shallow-water marine deposits, currently composed almost exclusively of quartz and graphite. Macroscopically they exhibit an outstanding planolinear tectonic fabric. Petrographically, coarse- and fine-grained dynamically recrystallized quartz bands alternate. The former contain quartz grains with irregular shapes, mica inclusions and "pinning" grain boundaries. Oriented mica grains and graphite particles constrain irregular quartz grain shapes. Quartz ribbons with chessboard microstructures also occur, indicating recrystallization under elevated temperatures coeval with extreme stretching. Fine-grained recrystallized quartz bands are dominated by quartz grains with straight boundaries, triple junctions, a scarcer evidence of bulging, and a higher concentration of dispersed, minute graphite grains. Quartz lattice-preferred orientation (LPO) patterns permit to identify two well-developed maxima for [c] axes: one close to the Y structural direction and the other one around Z, and -axes girdles normal to Y and Z. Although both [c] axis maxima appear in the coarse- and fine-grained bands, subsets can be isolated with grain cluster

  20. Stratigraphy, palynology and organic geochemistry of the Devonian-Mississippian metasedimentary Albergaria-a-Velha Unit (Porto-Tomar shear zone, W Portugal)

    Czech Academy of Sciences Publication Activity Database

    Machado, G.; Franců, E.; Vavrdová, Milada; Flores, D.; Fonseca, P. E.; Rocha, F.; Gama Pereira, L. C.; Gomes, A.; Fonseca, M.; Chaminé, H. I.


    Roč. 55, č. 2 (2011), s. 139-164 ISSN 1641-7291. [International Palynological Conference of the International Commission of the Paleozoic Microflora (CIMP). Warsaw-Kielce, 13.09.2010-19.09.2010] Institutional research plan: CEZ:AV0Z30130516 Keywords : Mississippian * Late Devonian * Ossa-Morena Zone * Porto-Tomar shear zone * palynology * organic geochemistry * turbidite systems * provenance * phytoplankton Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.844, year: 2011

  1. Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone (United States)

    Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander


    Long-term (105 years) fault slip rates test the scale of discrepancy between infrequent paleoseismicity and relatively rapid geodetic rates of dextral shear in the Eastern California Shear Zone (ECSZ). The Calico fault is one of a family of dextral faults that traverse the Mojave Desert portion of the ECSZ. Its slip rate is determined from matching and dating incised Pleistocene alluvial fan deposits and surfaces displaced by fault slip. A high-resolution topographic base acquired via airborne laser swath mapping aids in identification and mapping of deformed geomorphic features. The oldest geomorphically preserved alluvial fan, unit B, is displaced 900 ± 200 m from its source at Sheep Springs Wash in the northern Rodman Mountains. This fan deposit contains the first preserved occurrence of basalt clasts derived from the Pipkin lava field and overlies Quaternary conglomerate deposits lacking these clasts. The 40Ar/39Ar dating of two flows from this field yields consistent ages of 770 ± 40 ka and 735 ± 9 ka. An age of 650 ± 100 ka is assigned to this fan deposit based on these ages and on the oldest cosmogenic 3He exposure date of 653 ± 20 ka on a basalt boulder from the surface of unit B. This assigned age and offset together yield a mid-Pleistocene to present average slip rate of 1.4 ± 0.4 mm/yr. A younger fan surface, unit K, records 100 ± 10 m of dextral displacement and preserves original depositional morphology of its surface. Granitic boulders and pavement samples from this surface yield an average age of 56.4 ± 7.7 ka after taking into account minimal cosmogenic inheritance of granitic clasts. The displaced and dated K fans yield a slip rate of 1.8 ± 0.3 mm/yr. Distributed deformation of the region surrounding the fault trace, if active, could increase the overall displacement rate to 2.1 ± 0.5 mm/yr. Acceleration of slip rate from an average of 1.4 mm/yr prior to ˜50 ka to 1.8 mm/yr since ˜50 ka is possible, though a single time-averaged slip

  2. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone? (United States)

    ten Brink, Uri S.; Flores, C.H.


    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  3. crustal shear zone

    Indian Academy of Sciences (India)

    area of Delhi Fold Belt, Rajasthan, are characterised by foliation parallel alternate bands of amphibole- ... Kajalbas, the present study area (lat: 25. ◦. 38 ... (b). Stereographic plot showing the π girdle of calc-silicate foliation (n = 56) contoured at intervals of 3%, 6%, 12% and 24%. (in increasing shades of grey; max 27.78%).

  4. crustal shear zone

    Indian Academy of Sciences (India)

    significant mass transfer of rock-forming elements. (Fyfe et al. 1978 ... flow of these elements may control the metamor- phic reactions which in ..... Planet. Sci. Lett. 236 524–541. Etheridge M A, Wall V J and Vernon R H 1983 The role of the fluid phase during regional metamorphism and deformation; J. Metamorph. Geol.

  5. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil (United States)

    de Lima, Jefferson V.; Guimarães, Ignez de P.; Santos, Lucilene; Amorim, José Victor A.; Farias, Douglas José S.


    Two granitoid plutons (Pilõezinhos and Curral de Cima) intruded along the Remígio - Pocinhos shear zone, eastern part of the Borborema Province. The Pilõezinhos and Curral de Cima granites were dated at 566 ± 3 Ma and 618 ± 5 Ma respectively. The granitoids from both plutons have distinct initial 143Nd/144Nd ratios, expressed by εNd(t) values, i.e. the granitoids of Pilõezinhos pluton have lower εNd(t) values (-15.47 to -15.81) and negative εHf (t = 570 Ma) values (-16.0 to -18.6), while the granitoids of the Curral de Cima pluton have εNd(t) values between -1.12 and -5.23. The granitoids of the Curral de Cima pluton are epidote bearing, magnesian calcalkaline I-type granitoids, crystallized under high fO2 conditions. The granitoids of the Pilõezinhos pluton are alkaline, low-fO2, ferroan, ilmenite-series, A2-type granite intrusions. The geochemical and isotopic signatures suggest that the origin of magma of the Curral de Cima granitoids involved mixing/mingling at depth between crustal and mantle magmas, associated to decompression (lateral escape) during the convergent stage of Brasiliano/Pan/African orogeny, which lead the asthenosphere melts to rise into the lower crust. The source of magma of the granitoids of the Pilõezinhos pluton involved a strong crustal component with geochemical and isotopic signatures similar to the orthogneisses of the Serrinha-Pedro Velho Complex, and small mantle component. The emplacement of the Pilõezinhos pluton is associated to an extensional space formed during high-T strike-slip shearing developed by the synchronic movement of the Matinhas sinistral shear zone and Remígio - Pocinhos dextral shear zone.

  6. Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): Implications to the late-Pan-African evolution of Central Cameroon Shear Zone (United States)

    Dawaï, Daouda; Tchameni, Rigobert; Bascou, Jérome; Awe Wangmene, Salomon; Fosso Tchunte, Périclex Martial; Bouchez, Jean-Luc


    The Ngaoundéré granite pluton, in Central-North Cameroon, located near the Central Cameroon Shear zone (CCSZ), and previously studied for its petrography and geochemistry, is characterized by the absence of macroscopic markers of deformation. In this study, we report microstructures and magnetic fabrics (AMS) of this pluton and discuss the relationship with the Pan-African evolution of the CCSZ. The pluton consists of a porphyritic Hbl-Bt-monzogranite at its rim and a porphyritic biotite-granite at its core, a petrographic distribution denoting a normal zoning pattern, i.e. more silicic toward the centre. As expected, magnetic susceptibilities values also exhibit a zoning pattern in agreement with petrographic zonation. Thermomagnetic data indicate that this pluton is dominantly ferromagnetic in behaviour. As indicated by its microstructures, the pluton has suffered a continuum of deformation from the magmatic state to the high temperature solid-state during magma crystallization and solidification. The magnetic foliations dominantly strike NE-SW and dip moderately to steeply and the lineations mostly plunge shallowly to the NE or SW, roughly parallel to NE-to ENE-trending Central Cameroun Shear Zone (CCSZ). The foliation poles define a girdle pattern with a zone axis (52°/11°) rather close to the best line of the lineations (44°/21°). These fabrics correlate with the structures of the country rocks ascribed by several workers to a regional transpression. Toward the margins of the pluton, particularly the northern one, the lineations tend to rotate from NE to N in azimuth. This change is interpreted as due to strain partitioning, simple shearing with NE-SW extension being relayed by compression toward the northern pluton border. This new magnetic fabric study suggests that the Ngaoundéré pluton (poorly dated at c. 575 Ma) was emplaced during the late stages of the CCSZ dextral transpressive movement. It also provides some more constraints on the correlation

  7. Bauxite to eclogite: Evidence for late Permian supracontinental subduction at the Red River shear zone, northern Vietnam (United States)

    Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van


    We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia

  8. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs (United States)

    Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen


    The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi

  9. Static and dynamic experimental study of strengthened reinforced short concrete corbel by using carbon fabrics, crack path in shear zone

    Directory of Open Access Journals (Sweden)

    I. Ivanova


    Full Text Available The paper presents an experimental analysis of tracking the path of the cracks and crack growth in strengthened or repair reinforced concrete short corbels bonded by carbon fiber fabrics under static and dynamic loads. The reinforced short concrete corbel is a used precast element, for industrial buildings and structures. In fact, their functioning interestingly unconventional is compared to classical beam type elements. Then the effects of bending and shearing are combined in this case. The horizontal reinforced steel is localized to resist to tensile strength induced in bending top and a transversal strength-absorbing contribution. The introduction of carbon fiber composite in the field of Civil Engineering allows to strengthen or repair reinforced concrete structures using adhesive. So the carbon fiber material has many advantages as its low weight, flexibility, easier handling and also interesting physicochemical properties. However maintenance of civil engineering works is to protect them by ensuring better sealing or limiting corrosion. Then strengthening is to repair structures by using bonding technique to compensate their rigidity loss and limit the cracking. This allows to improve their performance and durability. Bonding of composite material in tensile zone of corbel retrieves most tensile stress and allows the structure to extend their load-bearing capacity. The local behavior of the structure is measured by means of the extensometer technique based on electrical strain gauges. This technique allowed to measure strains of steel, carbon fiber fabrics and concrete. The results of this investigation showed that strengthened reinforced concrete corbel bonded by carbon fiber fabrics can improve the ultimate load to twice and stiffens less than a third. The ultimate load, strain and displacement of the specimen are compared to reference experimental model of monotonic and cyclic applied loads. The success of strengthening depends strongly

  10. Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): How quartz dynamic recrystallization relates to fluid-rock interaction (United States)

    Quilichini, Antoine; Siebenaller, Luc; Nachlas, William O.; Teyssier, Christian; Vennemann, Torsten W.; Heizler, Matthew T.; Mulch, Andreas


    We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (δD) from synkinematic muscovite fish are constant (δD ˜ -130‰) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of ˜365 ± 30 °C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging recrystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica 40Ar/39Ar ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz δ18O values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall.

  11. Petrology and ⁴⁰Ar/3⁹Ar-chronology of metavolcanic rocks from the Northern Phyllite Zone (Southern Hunsrück and Taunus Mountains, Germany): insights into a late Variscan ductile shear zone. (United States)

    Fladt, Matthias; Soder, Christian; Schwarz, Winfried; Trieloff, Mario


    The Northern Phyllite Zone (NPZ) is a low-grade mylonitic shear zone between the high-grade rocks of the Mid-German Crystalline Zone and the very low-grade rocks of the Rhenohercynian Zone of the Variscan orogen. The NPZ comprises low-grade metasedimentary and metavolcanic rocks. Basaltic, intermediate and rhyolitic metavolcanics from the Soonwald and the Southern Taunus Mountains show the following paragenesis: actinolite + chlorite + epidote + albite + phengite + titanite + quartz ± calcite ± stilpnomelane ± pumpellyite ± aegirine-augite; blue amphibole (winchite) + chlorite + phengite + stilpnomelane + albite + titanite + quartz + magnetite ± epidote ± hematite; quartz + albite + K-feldspar + phengite + chlorite + titanite ± stilpnomelane ± ilmenite ± magnetite ± hematite. Occasionally, relict magmatic phases are present. The foliation strikes SW-NE and dips 60-70° to the NW. Stretching lineations are subhorizontal. P-T-estimations were done on the basis of equilibrium assemblage modelling yielding peak metamorphic conditions of 300-350 °C and 6-6.5 kbar. Thus, burial depths of 20-22 km and a low geothermal gradient of 15-16 °C/km are inferred. ⁴⁰Ar/3⁹Ar-dating of stepwise heated phengite separates (100-200 µm) results in plateau ages of ˜320 Ma. Two of the examined separates show argon diffusive loss ⁴⁰Ar/3⁹Ar-age spectra, which yield a period of argon loss between 145 and 130 Ma. Diffusive argon loss is possibly related to widespread Jurassic-Cretaceous hydrothermal activity in SW Germany. We interpret the Northern Phyllite Zone as a sinistral shear zone documenting prolonged oblique convergence following the peak of the Variscan orogeny between 340-330 Ma until 320 Ma.

  12. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland (United States)

    Blechschmidt, I.; Martin, A. J.


    The Grimsel Test Site ( is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  13. An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de Murcia fault (Eastern Betic shear zone, Spain)

    DEFF Research Database (Denmark)

    Ortuño, María.; Masana, Eulalia.; García-Meléndez, Eduardo.


    for the southern tip of the Alhama de Murcia fault (Eastern Betic shear zone), which is characterized by morphological expression of current tectonic activity and by a lack of historical seismicity. At its tip, the fault divides into a splay with two main faults bounding the Góñar fault system. At this area...... and the application of an improved protocol for the infrared stimulated luminescence (IRSL) dating of K-feldspar allowed us to constrain a paleoseismic record as old as 325 ka. We identified a minimum of six possible paleo of Mw = 6–7 and a maximum mean recurrence interval of 29 k.y. This provides compelling evidence...

  14. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W. [Los Alamos National Laboratory


    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  15. A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone (United States)

    Houlie, N.; Stern, T. A.


    The strain rate and vertical velocity fields for New Zealand are computed using GPS data from GEONET (NZ) collected during the past decade. Two domains for shear in the mantle are inferred by comparing the principal shortening direction with the fast direction of shear wave splitting. Beneath the central- southern part of the South Island the strains are low and its unclear if irrotational strain is taking place or if the splitting here is dominated by anisotropy in the asthenosphere. In contrast, data for the central and northern South Island suggest simple shear is dominant and distributed over a zone 200 km wide. An analysis of the major strike-slip faults confirms that the strike of the major South Island fault systems makes a 60±15 deg. angle with the shortening direction. A map of the vertical component of GEONET GPS velocities shows regions of surface uplift >5mm/y in both the central South and North Islands. While the pattern of uplift in central South Island is consistent with known geology, the rate of uplift in the central North Island is an order of magnitude higher than the geological rate estimated on a my timescale.

  16. Metamorphic and Ar/Ar geochronology constraints on the Alakeci shear zone: Implications for the extensional exhumation history of the northern Kazdag Massif, NW Turkey

    International Nuclear Information System (INIS)

    Bonev, N; Beccaletto, L; Robyr, M; Monie, P


    The Kazdag Massif exposes a metamorphic dome in the Biga Peninsula of northwest Turkey. An extensional origin has been proposed for the dome, limited on both flanks by detachments and/or shear zones. The northern flank is bounded by the extensional Alakeci Shear Zone (ASZ), whose P-T-t path is still poorly known. We therefore focus on its metamorphic conditions and related temporal history to precise its tectono-metamorphic evolution. The local tectonostratigraphy in structurally ascending order comprises: (i) the high-grade metamorphic core rocks of the Kazdag Massif (gneisses and micaschists intercalated with amphibolites and marbles); (ii) the two kilometer-thick ASZ; (iii) the overlaying unmetamorphosed pre-Cenomanian accretionary Cetmi melange; and (iv) Neogene sedimentary and volcanic cover rocks. ASZ mylonites were derived from both the core rocks and the melange lithologies. From the north to the south the mylonitic fabrics in the ASZ depict a top-to-the N-NNE shearing, parallel to the NNE-plunging stretching lineation and NNW-dipping mylonitic foliation. This geometry implies normal sense movement i.e. north-side down-dip extensional displacement along this flank of the Kazdag Massif. The northward transition from ductile to brittle-ductile regime through the ASZ shows that the deformation occurred at decreasing temperatures and degree of metamorphism. The paragenesis in equilibrium within the mylonitic gneisses and schists contains Qtz + Fs + Ms + Bt + Grt ± St ± Sill, with late retrogressive chlorite after biotite and garnet. Four samples of ASZ rocks yielded pressures between 6.9-5.7 kbar and temperatures between 706-587 deg. C. Three samples from the mylonitic rocks supplied in situ isochron 36 Ar/ 40 Ar mica ages between 31.2-24.2 Ma, which we interpret to date the cooling of the mylonites following the P-T decrease across the ASZ. The metamorphic and structural results support the extensional character of the ASZ, and sketch transition from

  17. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil) (United States)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos


    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse-grained (> 50 µm) feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains ( and rhomb slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the quartz monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 µm vs. 5 µm respectively). The fine-grained feldspar mixture has a weak crystallographic-preferred orientation interpreted as the result of shear zone parallel-oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Once C' shear bands were generated and underwent viscous deformation at constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate 1 order of magnitude faster than the monophase quartz monomineralic veins, as evidenced by applying experimentally and theoretically calibrated flow laws for dislocation creep in quartz and diffusion creep in feldspar. Overall, our data set indicates that feldspar underwent a brittle-viscous transition while quartz was deforming via crystal plasticity. The resulting rock microstructure consists of a two-phase rheological mixture (fine-grained feldspars and recrystallized quartz) in which the polyphase feldspathic material localized much of the strain. Extensive grain-size reduction and weakening of feldspars is attained in the East Pernambuco mylonites mainly via fracturing which would trigger a switch to diffusion creep and strain localization without a prominent role of metamorphic reactions.

  18. Brittle grain size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil) (United States)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos


    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse (> 50 μm) grained feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains ( and rhomb slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 μm vs 5 μm, respectively).The fine-grained feldspar mixture has a weak crystallographic preferred orientation interpreted as the result of oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Assuming that the C' shear bands deformed under constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate one order of magnitude faster than the monophase quartz ribbons. Overall, our dataset indicates that feldspar underwent a brittle-viscous transition while quartz was deforming via crystalline plasticity. The resulting rock microstructure consists of a two-phase rheological mixture (fine-grained feldspars and recrystallized quartz) in which the feldspathic material localized much of the strain. Extensive grain-size reduction and weakening of feldspars is attained in the East Pernambuco shear zone mainly via fracturing under relatively fluid-absent conditions which would trigger a switch to diffusion creep and further strain localization without a prominent role of metamorphic reactions.

  19. A new chronostratigraphy (40Ar-39Ar and U-Pb Dating) for the Middle Section of the Burdur-Fethiye Shear Zone, SW Turkey (United States)

    Elitez, İrem; Yaltırak, Cenk; Sunal, Gürsel


    There are few basins containing younger rocks along the Burdur-Fethiye Shear Zone, such as the Burdur, Tefenni, Eşen and Acı göl basins. The middle section of the Burdur-Fethiye Shear Zone, where Neogene sediments predominate, includes three modern basins: the Acı payam, Çameli and Gölhisar basins. All these basins represent portions of larger carbonate lakes. A considerable number of studies suggested controversial Neogene stratigraphy of these basins and environs. In most cases, the local river and alluvial fan deposits were mapped together with the lacustrine sediments. According to most studies, the lacustrine deposits are of Pliocene age, except in small areas north and east of Acı payam Basin. Our field observations revealed two distinct young sedimentary sequences that unconformably overlies the pre-Neogene basement in the middle section of the Burdur-Fethiye Shear Zone. The first sequence begins with meandering- and braided-river sediments, which transition upward into lacustrine sediments. The uppermost part of the lacustrine sediments consists mostly of red-wine-coloured claystones and silty carbonates including caliche. This sequence is overlain by alluvial fan conglomerates, mudstones and claystones. In the northern part of Acı payam Basin at elevations of ˜1500-1600 m, the lamproites cut or overlie both fluvial conglomerates and lacustrine marls, claystones and limestones. In addition, a tuff level was found in the lacustrine sediments south-west of Çameli Basin. We provide new geochronological data from these volcanic rocks. Zircon U-Pb results from tuff level yielded age of 6.933±0.041 Ma. The lamproites are dated at 5.06±1.44, 5.69±2.34, 6.08±0.48, 6.43±0.29, 6.94±0.35, 6.98±0.31 and 6.88±0.22 Ma by 39Ar/40Ar dating method. Consequently, a Messinian age is suggested for the uppermost part of the river deposits. Field relations show that the lacustrine sediments are upper Miocene-lower Pliocene in age and the widespread exposures of

  20. Deformation assisted by fluids in quartz veins of shear zones: an example from Iron Formations of Quadrilátero Ferrífero, Brazil. (United States)

    Barbosa, Paola; Lagoeiro, Leonardo


    The evidences of fluid activity in rocks are well recognized. In many cases, the fluid is responsible to remobilize many elements (e.g. Au, Mn, Si) that may be transported over a long distance and precipitated as new minerals in regions of low stress of the rock. In many deformed rocks, the origin of a large number of structures (veins, pressure shadows, dissolved grain boundaries, etc) may be correlated to the fluid activity. However, the fluids are important not only during the crack-and-seal process but also after the sealing ceases. As an example of how the fluids are responsible to rearrange the structure of the rock, we studied many quartz veins of one iron-formation from Brazil. The rocks were collected in Quadrilátero Ferrífero (QF), Brazil, that is one of the most important metalogenetic provinces in the world. It is assumed the existence of a deformational and metamorphic gradient in the rocks of QF, increasing the occurrence of penetrative structures from southwest to northeast. However, the effects of the local shear zones in the deformation pattern of QF may not be neglected. Shear zones are generally recognized as structures that accommodate deformation, eventually with intense fluid percolation. It is indubitable that there is a relationship between the fluid activity and the deformation accommodation in shear zones. So, to investigate how the fluid activity can affect the mechanisms of accommodation of deformation in rocks of shear zones from QF, we characterized the crystallographic preferred orientation (CPO) of some quartz vein by EBSD (electron backscattering diffraction). All the samples came from the same outcrop and from the same dextral shear zone, localized in the low-deformation region of QF, under greenschist metamorphic conditions. The samples were oriented according to the XYZ reference system, with X parallel to the foliation and Z normal to the XY plane. The veins are quartz-rich layers parallel to the rock foliation. They do not

  1. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study (United States)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat


    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  2. Quartz preferred orientation in naturally deformed mylonitic rocks (Montalto shear zone-Italy): a comparison of results by different techniques, their advantages and limitations (United States)

    Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Pezzino, Antonino; Wenk, Hans-Rudolf; Goswami, Shalini; Mamtani, Manish A.


    In the geologic record, the quartz c-axis patterns are widely adopted in the investigation of crystallographic preferred orientations (CPO) of naturally deformed rocks. To this aim, in the present work, four different methods for measuring quartz c-axis orientations in naturally sheared rocks were applied and compared: the classical universal stage technique, the computer-integrated polarization microscopy method (CIP), the time-of-flight (TOF) neutron diffraction analysis , and the electron backscatter diffraction (EBSD). Microstructural analysis and CPO patterns of quartz, together with the ones obtained for feldspars and micas in mylonitic granitoid rocks, have been then considered to solve structural and geological questions related to the Montalto crustal scale shear zone (Calabria, southern Italy). Results obtained by applying the different techniques are discussed, and the advantages as well as limitations of each method are highlighted. Importantly, our findings suggest that patterns obtained by means of different techniques are quite similar. In particular, for such mylonites, a subsimple shear (40% simple shear vs 60% pure shear) by shape analysis of porphyroclasts was inferred. A general tendency of an asymmetric c-maximum near to the Z direction (normal to foliation) suggesting dominant basal slip, consistent with fabric patterns related to dynamically recrystallization under greenschist facies, is recognized. Rhombohedral slip was likely active as documented by pole figures of positive and negative rhombs (TOF), which reveal also potential mechanical Dauphiné twinning. Results showed that the most complete CPO characterization on deformed rocks is given by the TOF (from which also other quartz crystallographic axes can be obtained as well as various mineral phases may be investigated). However, this use is restricted by the fact that (a) there are very few TOF facilities around the world and (b) there is loss of any domainal reference, since TOF is a

  3. Evolution of Brasiliano-age granitoid types in a shear-zone environment, Umarizal-Caraubas region, Rio Grande do Norte, northeast Brazil (United States)

    Galindo, A. C.; Dall'Agnol, R.; McReath, I.; Lafon, J. M.; Teixeira, N.


    A sequence of Brasiliano-age granitoid types is exposed in a small area near the cities of Umarizal and Caraúbas in Rio Grande do Norte State, Northeast Brazil. Porphyritic K-alkali-calcic monzogranite is an important facies of the oldest Caraúbas intrusion (RbSr whole rock isochron age of ca. 630 Ma), which suffered solid-state deformation due to movements on a major NE-trending shear zone. The intrusion of the Prado and part of the Quixaba bodies was probably controlled by the shear zone. These two bodies include mafic/intermediate rocks, some of which contain two pyroxenes, and have hybrid, partly alkaline and partly shoshonitic geochemical characteristics. Rock types and ages are similar to those of some Pan-African occurrences in southwestern Nigeria. The Tourão body, intruded at ca. 590 Ma, presents preferred mineral orientations which are probably largely magmatic, since little evidence is found for widespread solid-state deformation. On the other hand, its intrusion may have been facilitated by the presence of the shear-zone faults. The rocks form a monomodal felsic K-alkali-calcic suite. With the exception of the Quixaba body, all these earlier granitoids are magmatic epidote- and magnetite-bearing porphyritic monzogranites with trace element geochemical characteristics of modern syn-collisional granites. The latest intrusion at ca. 545 Ma is mainly represented by potassic quartz syenites and related rocks, some of which contain fayalite or ferrohypersthene. These rocks possess neither well developed mineral orientations of magmatic origin nor signs of solid-state deformation. They are mineralogically similar to, but younger than some of the "bauchites" of central Nigeria. Geochemical signatures are comparable with those of modern within-plate granites. All granitoids present high ( 87Sr/ 86Sr)i ratios which range from 0.708 to 0.712, and increase with decreasing age. Such ratios are compatible with important or dominant crustal contributions. On the

  4. Uraninite, coffinite and brannerite from shear-zone hosted uranium deposits of the Bohemian Massif (Central European Variscan belt)

    Czech Academy of Sciences Publication Activity Database

    René, Miloš; Dolníček, Z.


    Roč. 7, č. 4 (2017), č. článku 50. ISSN 2075-163X Institutional support: RVO:67985891 Keywords : uranium deposits * mineralogy * uraninite * coffinite * brannerite * Moldanubian Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.088, year: 2016

  5. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones (United States)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam


    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  6. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed


    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  7. Do the eclogites of the Variscan Malpica-Tuy shear zone in NW Spain point to continental subduction? (United States)

    Li, Botao; Massonne, Hans-Joachim


    High-pressure (HP: P > 10 kbar) rocks such as eclogite typically occur in suture zones of collided continental plates in Phanerozoic times. In case of an extended area at the surface of a denuded orogen with HP and even ultrahigh pressure (UHP) metamorphic rocks, they are often interpreted as the result of continental subduction. We have tested this idea for the HP-UHP area of the Malpica-Tuy zone of the Variscan orogen, which was formed by the collision of Gondwana and Laurussia. For the test, we have initially studied an eclogite and its surrounding gneiss of this zone in detail. The eclogite contains the assemblage garnet, omphacite, amphibole, rutile, ilmenite, clinozoisite/epidote, quartz, and phengite with Si-contents as high as 3.45 per formula unit (pfu) in inner portions and 3.27-3.35 pfu in rims. Garnet exhibits chemical zonation with Gro25Alm55Pyr15Spe5, Gro29Alm57Pyr13Spe1, and Gro23Alm56Pyr20Spe1 as inner core, mantle, and outermost rim compositions, respectively. The gneiss is a former medium-grained granite now composed of quartz, plagioclase, K-feldspar, biotite, phengite, garnet, clinozoisite/epidote, titanite, apatite and ilmenite. Phengite shows Si contents between 3.40 (core) and 3.00 (rim) pfu. Garnet is chemically zoned with Gro69.6Alm27Pyr0.4Spe3, Gro65.5Alm32.5Pyr0.5Spe1.5, Gro65.7Alm31.7Pyr0.6Spe2, and Gro56.6Alm41.6Pyr1.2Spe0.6 as core, mantle, rim and outermost rim compositions, respectively. P-T pseudosections were calculated with the PERPLEX computer program in the system Na2O-K2O-CaO-FeO-O2-MnO-MgO-Al2O3-SiO2-TiO2-H2O for the bulk-rock compositions of the studied eclogite and gneiss. These pseudosections were contoured by isopleths of various parameters such as molar fractions of garnet components. Based on this contouring a P-T path was derived that starts at HP conditions for both lithologies. Garnet began to form at 22 kbar and 565°C in the eclogite. Subsequently, the temperatures increased to 585°C and the pressure decreased to

  8. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform (United States)

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.


    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  9. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration? (United States)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.


    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  10. Geotechnical studies at Jaduguda uranium mine for optimisation of stopping and support parameters in molybdenite shear zone

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sinha, A.; Prasad, L.; Prasad, M.; Raju, N.M.


    In recent years, a few geotechnical studies have been conducted by the Central Mining Research Station, Dhanbad, at Jaduguda mine to improve ground control system and to optimise stopping parameters in the wide orebody zone at deeper levels and thus to add to productivity and recovery of these mines ensuring adequate safety. The replacement of mechanical point-anchored rock-bolts by full column cement grouted bolts, installed as per the designed pattern, has improved the ground condition, decreased the consumption of timber supports by around 70%, curtailed the support installation time and reduced the support cost to a remarkable extent even at the most problematic sites of Jaduguda mine. The analysis of stress development observations in the slope pillars of this mine reveals that the size of the slope pillars may be reduced by 20% in width which means an extra recovery of about 75 to 100 tonnes of ore per pillar per slice. In this paper, the authors have presented a brief account of their studies at this mine in the last four years. (author). 10 refs., 10 tabs., 9 figs

  11. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.


    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  12. Age of blastomilonites of the Yenisei regional shear zone as evidence of the Vendian accretionary-collision events at the western margin of the Siberian Craton (United States)

    Likhanov, I. I.; Reverdatto, V. V.; Zinov'ev, S. V.; Nozhkin, A. D.


    The age of the latest impulse of dynamometamorphic structural-compositional transformations (603-615 Ma) was established from the 40Ar-39Ar age of micas from balstomilonites of the Garevka metamorphic complex of the Yenisei Ridge confined to the Priyenisei shear zone. The age of these tectonic-thermal events marks the final stage of the Neoproterozoic evolution of the Yenisei Ridge related to the accretion of the Isakovka terrane to the western margin of the Siberian Craton. These results are in agreement with the age of metamorphic rocks of northwestern Prisayany, which are incorporated into the Sayany-Yenisei accretionary belt along with Yenisei Ridge. The conformable data on two regions indicate a global Vendian accretionary-collision event, which led to the formation of the Sayany-Yenisei accretionary belt, lateral thickening of the continental crust to the southwestern margin of the Siberian Craton, and its subsequent tectonic reworking. The synchronous Vendian orogenesis and consequence of the tectonic-thermal events along the periphery of the large Precambrian cratons of the Baltic and Siberia confirm their close spatial relation about 800 Ma ago, which agrees with contemporary paleomagnetic reconstructions.

  13. On some aspects of the stratigraphy, depositional environment and its bearing on uranium mineralisation in parts of the Singhbhum shear zone, Bihar

    International Nuclear Information System (INIS)

    Virnave, S.N.; Mukhopadhyay, T.K.; Krishnabadri, N.S.R.


    A review of the geology and controls of uranium mineralisation in the Singhbhum Shear Zone between Narwapahar (Lat. 22deg44'N; Long. 86deg15'E) in the west, to Ghatsila (Lat. 22deg25'N; Long. 86deg20'E) in the southeast and up to Dalmas in the north is presented in the light of new data based on facies analysis and palaeo-current studies on the conglomerate and associated meta-sediments in the area. Synthesis and integration of geologic data have led to the following conclusions: a) The facies variation and its distribution pattern in the area demonstrate fluviatile conditions of deposition with upward fining and thinning sequences b) The sedimentary sequence shows progressive younging towards north without any obvious break or juxta-position of the older over the younger. c) The nature of Jaduguda sedimentary facies assemblage is indicative of a fluvial fan with conglomerate gray-wacke-arenite assemblage representing proximal fan facies. On the basis of facies model, the area north of Subarnarekha river represents a meandering fluvial pattern. d) Uranium mineralisation is distinctly stratabound with characteristic facies association. (author). 13 refs., 11 figs., 3 tabs

  14. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China. (United States)

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran


    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  15. Two-stage rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters shear zone, Stewart Island, New Zealand (United States)

    Kula, Joseph; Tulloch, Andy; Spell, Terry L.; Wells, Michael L.


    The Sisters shear zone is a newly discovered Late Cretaceous detachment fault system exposed for 40 km along the southeast coast of Stewart Island, southernmost New Zealand. Footwall rocks consist of variably deformed ca. 310 and 105 Ma granites that range from undeformed to protomylonite, mylonite, and ultramylonite. The hanging wall includes non-marine conglomerate and brittley deformed granite. K-feldspar thermochronometry of the footwall indicates moderately rapid cooling (20 30 C°/m.y.) due to tectonic denudation over the interval ca. 89 82 Ma. Return to slow cooling at 82 Ma coincides with the age of the oldest seafloor adjacent to the Campbell Plateau and reflects the mechanical transition from continental extension to lithospheric rupture and formation of the Pacific-Antarctic Ridge. Our findings support a two-stage rift model for continental breakup of this part of the Gondwana margin. Stage one (ca. 101 88 Ma) is the northward propagation of continental extension and the Tasman Ridge as recorded in mylonite dredged from the Ross Sea and the Paparoa core complex. Stage two (ca. 89 82 Ma) is extension between the Campbell Plateau and West Antarctica leading to formation of the Pacific-Antarctic Ridge.

  16. Structural fabrics, mineralization and Lamaride kinematics of the Idaho Springs-Ralston shear zone, Colorado mineral belt and central Front Range uplift (United States)

    Caine, Jonathan S.; Nelson, E.P.; Beach, S.T.; Layer, P.W.


    The Idaho Springs and Central City mining districts form the central portion of a structurally controlled hydrothermal precious- and base-metal vein system in the Front Range of the northeast-trending Colorado Mineral Belt. Three new 40Ar/39Ar plateau ages on hydrothermal sericite indicate the veins formed during the Laramide orogeny between 65.4??1.5 - 61.9??1.3 Ma. We compile structural geologic data from surface geological maps, subsurface mine maps, and theses for analysis using modern graphical methods and integration into models of formation of economic mineral deposits. Structural data sets, produced in the 1950s and 1960s by the U.S. Geological Survey, are compiled for fabric elements, including metamorphic foliations, fold axial trends, major brittle fault zones, quartz and precious- and base-metal veins and fault veins, Tertiary dikes, and joints. These fabric elements are plotted on equal-area projections and analyzed for mean fabric orientations. Strike-slip fault-vein sets are mostly parallel or sub-parallel, and not conjugate as interpreted by previous work; late-stage, normal-slip fault veins possibly show a pattern indicative of triaxial strain. Fault-slip kinematic analysis was used to model the trend of the Laramide maximum horizontal stress axis, or compression direction, and to determine compatibility of opening and shear motions within a single stress field. The combined-model maximum compression direction for all strike slip fault veins is ???068??, which is consistent with published Laramide compression directions of ???064?? (mean of 23 regional models) and ???072?? for the Front Range uplift. The orientations of fabric elements were analyzed for mechanical and kinematic compatibility with opening, and thus permeability enhancement, in the modeled regional east-northeast, Laramide compression direction. The fabric orientation analysis and paleostress modeling show that structural permeability during mineralization was enhanced along pre

  17. On thrusting, regional unconformities and exhumation of high-grade greenstones in Neoarchean orogens. The case of the Waroonga Shear Zone, Yilgarn Craton (United States)

    Zibra, I.; Korhonen, F. J.; Peternell, M.; Weinberg, R. F.; Romano, S. S.; Braga, R.; De Paoli, M. C.; Roberts, M.


    During the Neoarchean, the dominant tectonic style progressively changed from an episodic-overturn/stagnant-lid regime to modern-style plate tectonics. The Neoarchean strengthening of continental lithosphere changed the style of deformation of orogenic belts. The case study presented here provides insights into how such transition in tectonic style occurred, a matter that is generally controversial. We present structural and metamorphic data from the c. 2660 Ma Waroonga Shear Zone (WSZ) in the Neoarchean Yilgarn orogen (Western Australia). The WSZ contains a syntectonic pluton and older, high-grade greenstones. The tectonic fabric in the pluton developed during melt-present thrusting, followed by syn-cooling wrench-dominated transpression. Mafic greenstones preserve three metamorphic assemblages. The M1 assemblage (Grt-Cpx-Qtz) records peak P-T conditions of 12 ± 1 kbar and 800 ± 50 °C, followed by isothermal decompression to 9 kbar (M2). These anhydrous assemblages might predate the WSZ. Greenstones then underwent decompression at c. 2660 Ma (3-4 kbar; 600-650 °C), defined by the amphibole-rich M3 assemblage, synkinematic with the tectonic fabric in the WSZ. We show that shearing along the WSZ exhumed these greenstones by at least 10 km, inducing major uplift and erosion. Archean accretionary orogens developed on weak lithosphere, where deformation suppressed crustal thickening, orogenic relief and synorogenic exhumation of orogenic roots. However, our study indicates a genetic link between (i) strain localization along contractional structures, inducing large-scale uplift; (ii) exhumation of high-grade greenstones; (iii) development of inverse metamorphic gradients; (iv) establishment of a regional unconformity, with clastic sediments fed by the uplifted terrane; (v) incorporation of portions of the newly-formed orogenic basins into the footwall of the WSZ. These features imply that the Yilgarn orogenic lithosphere at c. 2660 Ma was stiff enough to allow

  18. Constraining the thermal and tectonic evolution of a greenschist facies shear zone on Syros, Greece by using stable isotopes and mineral chemistry. (United States)

    Cisneros, M.; Barnes, J.; Behr, W. M.


    Retrograde metamorphic rocks are key to understanding the exhumation history of high-pressure/low-temperature terranes. The Cycladic Blueschist Unit of Syros, Greece experienced peak metamorphic conditions of 15 kbar and 500 °C at 50 Ma and was subsequently exhumed to the shallow-crust ( 1-3 km) by 15 Ma; however, the processes associated with exhumation from mantle depths to the mid-crust remain poorly understood. We present structural, microstructural, and geochemical analyses of greenschist facies metamafic rocks exposed on Lotos beach in Syros that help to constrain the early exhumation history of these rocks. The outcrop preserves two main fabrics: 1) an early transposition foliation (Ss) defined by tight, isoclinal folds with shallow hingelines, and 2) upright open folds with a steep axial-planar cleavage (Sc). Ss is associated with viscous deformation and alignment of both amphibole and epidote into the foliation plane, whereas Sc is associated with semi-brittle deformation, amphibole overgrowths, and boudinage in elongate epidote (ep). Amphiboles display a progressive evolution from Na-to-Ca-rich end-members and exhibit continuous crystallization throughout Ss and Sc, as evidenced by new amphibole growth and overgrowths oriented parallel to foliation. Cal-qtz precipitates in ep boudin necks and chl + cal pseudomorphs after actinolite represent the last stage of lower greenschist facies metamorphism. These results indicate that foliation-forming deformation initiated prior-to or during blueschist facies and continued through lowermost greenschist facies. Oxygen isotope thermometry indicates that qtz-cal pairs equilibrated at 187 °C. Carbon and oxygen isotope values of fluids in equilibrium with qtz-cal pairs (δ18O and δ13C ≈ 0 ‰) indicate a seawater-derived fluid source. Preliminary results suggest this shear zone experienced cooling during decompression, followed by interaction with fluids transferred along a low-angle detachment.

  19. Phylogeography of Beck's Desert Scorpion, Paruroctonus becki, reveals Pliocene diversification in the Eastern California Shear Zone and postglacial expansion in the Great Basin Desert. (United States)

    Graham, Matthew R; Jaeger, Jef R; Prendini, Lorenzo; Riddle, Brett R


    The distribution of Beck's Desert Scorpion, Paruroctonus becki (Gertsch and Allred, 1965), spans the 'warm' Mojave Desert and the western portion of the 'cold' Great Basin Desert. We used genetic analyses and species distribution modeling to test whether P. becki persisted in the Great Basin Desert during the Last Glacial Maximum (LGM), or colonized the area as glacial conditions retreated and the climate warmed. Phylogenetic and network analyses of mitochondrial cytochrome c oxidase 1 (cox1), 16S rDNA, and nuclear internal transcribed spacer (ITS-2) DNA sequences uncovered five geographically-structured groups in P. becki with varying degrees of statistical support. Molecular clock estimates and the geographical arrangement of three of the groups suggested that Pliocene geological events in the tectonically dynamic Eastern California Shear Zone may have driven diversification by vicariance. Diversification was estimated to have continued through the Pleistocene, during which a group endemic to the western Great Basin diverged from a related group in the eastern Mojave Desert and western Colorado Plateau. Demographic and network analyses suggested that P. becki underwent a recent expansion in the Great Basin. According to a landscape interpolation of genetic distances, this expansion appears to have occurred from the northwest, implying that P. becki may have persisted in part of the Great Basin during the LGM. This prediction is supported by species distribution models which suggest that climate was unsuitable throughout most of the Great Basin during the LGM, but that small patches of suitable climate may have remained in areas of the Lahontan Trough. Published by Elsevier Inc.

  20. Influence of micaceous impurity on dynamically recrystallized quartz c-axis fabric in L- S tectonites from the Singhbhum Shear Zone and its footwall, Eastern India (United States)

    Joy, S.; Saha, D.


    When temperature and strain rate remain constant the quartz c-axis fabric in deformed pure quartz aggregates, is largely dependent on deformation kinematics. Asymmetry of the fabric, e.g. in type-I asymmetric crossed girdle pattern in natural quartz tectonites, simulated fabric or experimentally deformed quartz aggregates is generally related to sense of vorticity for a non-coaxial flow. Natural quartz tectonites, however, often contain micaceous impurities. Measurement on a sample of 59 quartz tectonites with mesoscopic L- S fabric and representing low {T}/{T m}, deformation under non-coaxial flow, from the Singhbhum Shear Zone and Dhanjori quartzites. Eastern India provides the basic data to quantitatively assess the influence of mica on (i) asymmetry of quartx c-axis fabric and (ii) degree of crystallographic preferred orientation, i.e. fabric intensity, taking c-axes of dynamically recrystallized quartz grains as a fabric element. A fabric intensity parameter (κ) is defined as the ratio of the greatest eigenvalue to the least eigenvalue of the orientation tensor matrix corresponding to c-axis orientations in each measured specimen. The modal percent of mica (μ) in the sample varies from 2 to 35; that of recrystallized quartz grains (ν), as opposed to relict clasts. from 45 to 98. The asymmetry of the fabrics in the above sample, measured either as the Am statistic or as the angle between the central segment of the fabric skeleton and direction of mineral elongation lineation is independent of mica content. Correlation-regression analysis of the variables κ, μ, and ν. demonstrate a negative correlation between micaceous impurity and the fabric intensity parameter. The regression equation is of the form κ = 0.13 ν1.11μ-0.617.

  1. Influence of the Eastern California Shear Zone on deposition of the Mio-Pliocene Bouse Formation: Insights from the Cibola area, Arizona (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; Homan, Mindy B.; Bennett, Scott E. K.


    The Eastern California Shear Zone (ECSZ) is a wide zone of late Cenozoic strike-slip faults and related diffuse deformation that currently accommodates ~20–25% of relative Pacific–North America plate motion in the lower Colorado River region (Fig. 1A; Dokka and Travis, 1990; Miller et al., 2001; Guest et al., 2007; Mahan et al., 2009). The ECSZ is kinematically linked southward to dextral faults in the northern Gulf of California (Bennett et al., 2016a), and it may have initiated ca. 8 Ma when major strike-slip faults developed in the northern Gulf and Salton Trough region (Bennett et al., 2016b; Darin et al., 2016; Woodburne, 2017). Thus deformation related to the ECSZ occurred in the lower Colorado River region during deposition of the Bouse Formation, which is commonly bracketed between 6.0 and 4.8 Ma (House et al., 2008; Sarna-Wojcicki et al., 2011; Spencer et al., 2013) and may be as old as 6–7 Ma in the south (McDougall and Miranda Martínez, 2014, 2016). Post-4.5 Ma broad sagging is recognized along the lower Colorado River (Howard et al., 2015), but the possibility that faults of the ECSZ influenced local to regional subsidence patterns during deposition of the Bouse Formation has received little attention to date (e.g., Homan, 2014; O’Connell et al., 2016). The Bouse Formation is a widespread sequence of late Miocene to early Pliocene deposits exposed discontinuously along the lower Colorado River corridor (Fig. 1A). In the southern Blythe basin it consists of three regionally correlative members: (1) Basal Carbonate, consisting of supratidal and intertidal mud-flat marls, intertidal and shallow subtidal bioclastic grainstone and conglomerate, and subtidal marl; (2) Siliciclastic member, consisting of Colorado River-derived green claystone, red mudstone and siltstone, and cross-bedded river channel sandstone; and (3) Upper Bioclastic member fossiliferous sandy calcarenite, coarse pebbly grainstone, and calcareous-matrix conglomerate (Homan, 2014

  2. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras


    Traditionally, material response to shear deformation has been studied with methods where the shear is gradually increasing from zero to the final value over a certain fixed deformation zone, e.g. in the well-known torsion test of a tube with a defined shear zone established by a machined...... circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  3. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region, southeastern Ailao Shan-Red River shear zone, southwestern China-northwestern Vietnam (United States)

    Tran, My Dung; Liu, Junlai; Nguyen, Quang Luat; Chen, Yue; Tang, Yuan; Song, Zhijie; Zhang, Zhaochong; Zhao, Zhidan


    The Jinping-Fan Si Pan (JFP) Cenozoic magmatic and Cu-Mo-Au metallogenic belt in the southeastern part of the Ailao Shan shear zone host the Tongchang, Chang‧an, Habo, and Chinh Sang Cu-Mo-Au deposits. These deposits form an integrated epithermal-porphyry regional mineralization system associated with 40-32 Ma high-K alkaline magmatism. The magmatic rocks in the belt have relatively low TiO2 (<0.73 wt%), P2O5 (<0.29 wt%), and FeO* (<4.99 wt%), and high Na2O (2.86-4.75 wt%) and K2O (4.01-7.98 wt%). They also have high contents of incompatible trace elements, and are enriched in LILE (Rb, Ba, K, Sr) and LREE. They have marked Nb, Ta, Ti and P depletion in primitive mantle-normalized spidergrams, and plot close to the EMII mantle field in the Sr-Nd isotopic diagram. These characteristics are similar to those of the Eocene high-K alkaline rocks along the northern Ailao Shan belt, eastern Tibet plateau. The sulfur and lead isotope analyses of sulfide minerals from both the ores and related magmatic rocks confirm the involvement of a magmatic ore fluid. The Cenozoic alkaline intrusions and Cu-Mo-Au mineralization in the JFP were formed prior to the initiation of left-lateral shearing along the Ailao Shan shear zone. The magmas appear to have been derived from enriched mantle, possibly with mixing of materials from the buried Tethyan oceanic lithosphere, and/or crust.

  4. Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroon) (United States)

    Nomo, Emmanuel Negue; Tchameni, Rigobert; Vanderhaeghe, Olivier; Sun, Fenguye; Barbey, Pierre; Tekoum, Léontine; Tchunte, Periclex Martial Fosso; Eglinger, Aurélien; Fouotsa, Nicaise Alliance Saha


    The Tcholliré massif, in central north Cameroon, consists of elongated granite plutons that crop out along the Pan-African Tcholliré-Banyo shear zone (TBSZ), a potential suture zone within the Central Africa Orogenic Belt. New structural and geochronological data on these granites constrain the tectonic regime and timing of the TBSZ. The plutons consist of syntectonic granites and granodiorite containing dioritic mafic enclaves. They show an S2 sub-vertical foliation, that trends NE-SW to ENE-WSW. The related L2 lineation is subhorizontal to shallowly plunging to the SW or NE. Kinematic indicators such as asymmetric folds, sigmoidal-shape boudins, shear bands, imbricated feldspar phenocrysts along antithetic fractures point to a sinistral sense of shear. Microstructural analysis shows that structures are acquired from the submagmatic to the low temperature solid state suggesting progressive deformation of the magma during its emplacement, crystallization and cooling. U-Pb zircon dating on this massif yields emplacement ages of 719 ± 12 Ma for the biotite-amphibole granite and muscovite granite, 652.2 ± 5.4 Ma for the biotite-granite and 632 ± 13 Ma for the leucogranite. These geochronological data show in addition, Palaeoproterozoic inherited ages of 1631 ± 30 Ma on the leucogranites of this massif, and point to a Palaeoproterozoic contribution in their genesis. The range of ages (ca. 87 Ma) points to the timing of syntectonic emplacement of felsic magmas coeval with sinistral transpression along the TBSZ during the Pan-African orogeny. These results show that the TBSZ has recorded prolonged deformation associated with crustal magmatism between the Palaeoproterozoic Adamawa-Yadé domain to the southeast and the Sinassi-Mayo Kebbi Neoproterozoic magmatic arc to the Northwest.

  5. Local Stress fields and paleo-fluid distribution within a transtensional duplex: An example from the northern termination of the Liquiñe-Ofqui Fault System. (United States)

    Perez-Flores, P.; Cembrano, J. M.; Sanchez-Alfaro, P.


    The northern termination of Liquiñe-Ofqui Fault System (LOFS) is characterized by major NNE-striking dextral strike-slip faults and several second and third-order NE-to-ENE-striking oblique-slip faults. This geometry forms a transtensional duplex structure. The LOFS has a complex crosscutting relationship with inherited NW-striking structures of the Arc-oblique long-lived Fault System (ALFS). We conducted a structural mapping of fault and vein populations at key structural sites representative of each regional structural system. Field observations were combined with different methods of inversion of fault-slip heterogeneous data and with the use of different open-source computer programs that calculate resolved stress tensors and P-T axes for each structural site in order to unravel the significance of this complex architecture. The results of the inversion of fault-slip analysis show that a transtensional strike-slip regime, with NE-SW-trending subhorizontal σ1, predominate in the first and second order faults in the northern termination of the duplex. A more local tensional regime was calculated for the same area. The inversion solutions are compatible with NE-trending subvertical veins system and dilational jogs and breccia. In contrast, within the central area of the duplex fault slip inversion of fault populations shows both transpressional and compressional regimes. The first tectonic regime is compatible with ENE-striking veins and dikes. In the southern part of the duplex, fault populations are compatible with either a local transtensional stress field with an ESE-trending subhorizontal σ1 or with a tensional regime with a SW-trending, steeply plunging σ1. Our results show the complexity in the nature and spatial distribution of stress fields within strike-slip duplexes and its role in the geometrical distribution of paleo-fluid flow, part of which may account for the reactivation of inherited faults or strain incompatibilities at fault intersections.

  6. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina (United States)

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.


    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  7. Areas of Active Tectonic Uplift Are Sensitive to Small Changes in Fold Orientations within a Broad Zone of Left-lateral Transpression and Shearing, Dominican Republic and Haiti (Hispaniola) (United States)

    Ambrosius, I.; Mann, P.


    Previous GPS studies have shown that the island of Hispaniola is a 250 km-wide zone of active, east-west, left-lateral shearing along two major strike-slip zones: the Septentrional-Oriente fault zone through the northern part of the island and the Enriquillo-Plantain Garden fault zone (EPGFZ) through the southern part of the island. The total interplate rate distributed on both faults is 21 mm/yr. Using a high-resolution DEM, we constructed fluvial channel profiles across transpression-related folds of late Miocene to recent age in the area of central and southern Dominican Republic and Haiti to determine controls of areas of relatively high, moderate, and slow uplift inferred from fluvial channel profiles. Fold axes in this area extend for 50-150 km and exhibit two different trends: 1) folds that occupy the area of the Sierra de Neiba-Chaine des Matheux north of the Enriquillo-Cul-de-Sac Valley and EPGFZ and folds that occupy the area of the Sierra de Bahoruco-Massif de la Selle all exhibit more east-west fold axes trending 110; 2) folds that occupy the area northwest of the EPGFZ in the western Chaine des Matheux and Sierra de Neiba all exhibit fold axes with more northwest trends of 125. River channel profiles show that the second group of more northwesterly-trending fold axes show relatively higher rates of tectonic uplift based on their convex-upward river profiles. Our interpretation for regional variations in river profiles and inferred uplift is that uplift is more pronounced on fold axes trending 15 degrees more to the northwest because their axes are more oblique to the interplate direction of east-west shearing. Longterm uplift rates previously measured from a stairstep of late Quaternary coral terraces at the plunging nose of the westernmost Chaine des Matheux have been previously shown to be occurring at a rate of 0.19 mm/yr. Onland exposures of Holocene corals are found only on one locality within the southern area of folds 30 km west of the epicenter

  8. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.


    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  9. The dynamics of a shear band (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide


    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  10. E–W strike slip shearing of Kinwat granitoid at South East Deccan ...

    Indian Academy of Sciences (India)

    R D Kaplay


    Jul 21, 2017 ... cO Indian Academy of Sciences. DOI 10.1007/s12040-017-0853-8. E–W strike slip shearing of Kinwat granitoid at South East. Deccan ...... shear zone, Sutlej section-structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes; Int. J.

  11. Petrogenesis and tectonic of the Urucum granitic suite, Rio Doce Valley (Minas Gerais - Brazil: an example of syn to late collisional peraluminous magmatism associated with high-angle transcurrent shear zone

    Directory of Open Access Journals (Sweden)

    Hermínio Arias Nalini Júnior

    Full Text Available The Urucum suite (582 ± 2 Ma, zircon U-Pb age, situated in the Mid-Rio Doce Valley, eastern part of Minas Gerais State, is characterized by elongated, NW-SE and N-S trending granitic massifs associated with the Conselho Peña-Resplendor high-angle shear zone. It corresponds to a syn to late collisional magmatism that presents dominant solid-state foliation. Four facies are distinguished within the Urucum suite: (i a porphyritic (Urucum; (ii a medium- to coarse nequigranular (Palmital; (iii a tourmaline-bearing; and (iv a pegmatitic facies. These facies are peraluminous, with alumina saturation index varying from 0.98 to 1.38. SiO2 contents vary from 70.7 to 73.7 wt%, with K2O values ranging from 3.5 to 5.7 wt%, Na2O from 1.9 to 4.4 wt%, MgO from 0.6 to 1.2 wt%, and CaO from 0.3 to 0.9%. Harker-type diagrams show rather continuous trends from the less-evolved Urucum facies to the more evolved tourmaline-bearing and pegmatitic facies. The behavior of several major oxides and trace elements (Fe2O3, MgO, MnO, CaO, TiO2, Al2O3, K2O, Rb and Ba reflects the role played by fractionation of ferromagnesian minerals, feldspars and accessory minerals. Initial Sr87/Sr86 ratios vary from 0.711 to 0.716, with εNd (580 Ma values between -7.4 to -8.2, and Sm-Nd TDM model ages ranging from 2290 to 1840 Ma.

  12. Assessment of Shear Strength in Silty Soils

    Directory of Open Access Journals (Sweden)

    Stefaniak Katarzyna


    Full Text Available The article presents a comparison of shear strength values in silty soils from the area of Poznań, determined based on selected Nkt values recommended in literature, with values of shear strength established on the basis of Nkt values recommended by the author. Analysed silty soils are characterized by the carbonate cementation zone, which made it possible to compare selected empirical coefficients both in normally consolidated and overconsolidated soils

  13. The strain-dependent spatial evolution of garnet in a high- P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Energy Technology Data Exchange (ETDEWEB)

    Macente, A. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Fusseis, F. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Menegon, L. [School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, Plymouth University, Fitzroy Drake Circus Plymouth Devon PL4 8AA UK; Xianghui, X. [Argonne National Laboratory, 9700 S. Cass Ave Building 431-B003 Argonne IL USA; John, T. [Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100 12249 Berlin Germany


    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  14. MM98.21 Method for studying material element passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Christensen, Thomas


    Traditionally, material response to shear deformation has been studied with methods where the shear is gradually increasing from zero to the final value over a certain fixed deformation zone as e.g. in the well-known torsion test of tube with a defined shear zone established by a machined...... circumferential grove. Normally shear in metal forming processes are of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is suggested....

  15. Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes


    This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...

  16. Effects of shear coupling on shear properties of wood (United States)

    Jen Y. Liu


    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  17. Remarks on impact shearing (United States)

    Klepaczko, J. R.


    A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.

  18. Shear Thinning in Xenon (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.


    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  19. Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes


    This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...... with a transverse double T-headed bar to ensure transfer of tension between the overlapping U-bars. Push-off tests show that a significantly ductile load-displacement response can be obtained by the new solution as compared to the performance of the conventional keyed shear connection design. The influence...

  20. Reorientation of lineation in the Central Crystalline Zone, Munsiari ...

    Indian Academy of Sciences (India)

    During large scale ductile shear deformation, linear features of the rocks tend to be reoriented towards the direction of bulk shear. This is demonstrated in a crustal scale shear zone of the Himalaya, the. Main Central Thrust (MCT), typically exposed in the Munsiari–Milam area of eastern Kumaun Greater. Himalaya.

  1. Examining shear processes during magma ascent (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.


    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  2. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu


    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  3. Mechanical analysis of a shear-cracked RC beam

    Directory of Open Access Journals (Sweden)

    Shahriar Shahbazpanahi


    Full Text Available Shear crack analysis is essential for engineers to estimate repair work in concrete structures. So far, conventional theoretical and numerical analyses in fracture mechanics have been applied to study concrete flexural beams, but there is still little knowledge regarding the shear capacity for beams with a diagonal initial notch. In this study, a theoretical analysis is presented to obtain fracture resistance in a four-point RC beam with two inclined initial notch on supports. Here, a fictitious crack approach is adopted for estimating the equivalent effect of the fracture process zone of concrete in shear-cracked. Based on equilibrium equation in the beam notch cross section, shear force was expressed in terms of fracture process zone length. Then, in a double notch four-point beam, Mode II of the stress intensity factor due to the external load is determined. Finally, this process presents the relationship between the shear capacity and the fracture process zone length and expresses the fracture resistance as a function of fracture process zone length.The predicted results of loading capacities are then shown.

  4. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter


    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  5. Sheared Electroconvective Instability (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon


    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  6. Sheared solid materials

    Indian Academy of Sciences (India)

    cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). .... Figure 1 displays the stress–strain curves at constant shear rate ˙γ applied for t > 0 in units of µ0 and τ−1 ..... In particular, the slow structural relaxations evidently arise from migration of the free volume.

  7. Experiments on sheet metal shearing


    Gustafsson, Emil


    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  8. Reaction enhanced channelised fluid-flux along midcrustal shear ...

    Indian Academy of Sciences (India)

    ... 6.6±0.25 kbar (corresponding to ∼20 km depth). Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate rocks of Mesoproterozoic Phulad Shear Zone thus indicate that extremely channelled fluid flow was reaction enhanced and caused major change in the rock rheology.

  9. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim


    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  10. Shear-thinning Fluid (United States)


    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  11. Forflytning: shear og friktion

    DEFF Research Database (Denmark)


    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  12. Shear Roll Mill Reactivation (United States)


    pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included

  13. Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device (United States)

    Cen, Duofeng; Huang, Da


    Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.

  14. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study. (United States)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.


    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport

  15. DEM Simulation of Direct Shear: 1. Rupture Under Constant Normal Stress Boundary Conditions (United States)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.; Bahrani, N.


    A particle-based distinct element method and its grain-based method are used to generate and simulate a synthetic specimen calibrated to the rupture characteristics of an intact (non-jointed) low-porosity brittle rock deformed in direct shear. The simulations are compared to the laboratory-generated ruptures and used to investigate rupture at various normal stress magnitudes. The fracturing processes leading to shear rupture zone creation and the rupture mechanism are found to be normal stress dependent (progressing from tensile splitting to shear rupture) and show partial confirmation of rupture zone creation in nature and in experiments from other materials. The normal stress dependent change is found to be due to the orientation of the major principal stress and local stress concentrations internal to the synthetic specimens being deformed. The normal stress dependent rupture creation process results in a change to the rupture zone's geometry, shear stress versus horizontal displacement response, and thus ultimate strength.

  16. Designing shear-thinning (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.


    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  17. Displacement-length scaling of brittle faults in ductile shear. (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius


    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  18. Displacement–length scaling of brittle faults in ductile shear (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius


    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  19. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B


    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  20. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Dicle, S.; Üner, S.


    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  1. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    International Nuclear Information System (INIS)

    Dicle, S.; Üner, S.


    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  2. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh


    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...

  3. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain


    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  4. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus; Truex, Michael J.; Shen, Xin; Li, Xiqing


    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D column and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.

  5. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes ...

  6. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    The granite becomes intensely foliated with astrong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite showsstretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. Theangle between the C and S fabric is further reduced and finally becomes ...

  7. Deformation of footwall rock of Phulad Shear Zone, Rajasthan

    Indian Academy of Sciences (India)

    The granite becomes intensely foliated with astrong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite showsstretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. Theangle between the C and S fabric is further reduced and finally becomes ...

  8. Contrasting metamorphism across Cauvery Shear Zone, south India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    would be instantaneous, whereas, the geothermal gradient approaches equilibrium after about 20 Ma. (Philpotts 1990) and the rate of heat flow by. Figure 7. P–T trajectories for three samples each from north and south of CSZ. The southern samples S37 and S39 have more or less parallel P–T trajectories, which may indi-.

  9. Shear zone-related pseudotachylite occurences from the northern Transvaal

    International Nuclear Information System (INIS)

    Reimold, W.U.; Meyer, F.M.


    Pseudotachylite from the Sand River localities displays very variable composition when formed in Sand River Gneiss, but is less variable when originating from diabase. Comparison of individual pseudotachylite (granitic) host rock pairs shows consistent depletion and enrichment. Rather high LoI values indicate significant secondary alteration for some specimens. The chemical variations agree well with the theory that pseudotachylite in granitic-granodioritic environment is formed by preferential melting of hydrous ferromagnesian minerals plus varied proportions of feldspar components. 'Basaltic' pseudotachylite is characterised by increase of SiO 2 and K 2 O, which is also known from other occurences. With respect to most trace elements, pseudotachylite is generally enriched. Comparison of all pseudotachylite analyses with Sand River Gneiss data reveals that mixing on a dm scale cannot be completely excluded, but 'basaltic' pseudotachilyte obtained in granodioritic host rock has not assimilated more than approximately 5% of felsic material. The cataclastic breccias chemically compare well with undeformed Sand River Gneiss. These results agree well with current theory on pseudotachylite formation, but at the Geocongress a larger data base will be discussed. 1 fig., 6 refs

  10. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, University of Constantine 1, Constantine, Algeria e-mail: MS received 24 April 2014; revised 14 July 2014; accepted 12 September 2014. Abstract. The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress ...

  11. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    Abstract. The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress concentration of FRP–concrete interface. Understand- ing the cause and mechanism of the debonding of the FRP plate and the prediction of the stress distribution at the concrete–FRP interface are important for ...

  12. Plankton dynamics associated with the convergence zone of a shear ...

    African Journals Online (AJOL)

    Multiple linear regression was used to determine the relationships between water quality variables and plankton abundances. Community analysis was also run on the data in order to determine community dynamics associated with frontal system convergence and downwelling. Key words: ichthyoplankton, phytoplankton, ...

  13. Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt) (United States)

    Marshak, Stephen; Bonatti, Enrico; Brueckner, Hannes; Paulsen, Timothy


    Zabargad Island, which lies along the western margin of the Red Sea rift, is a remarkable place because it provides fresh exposures of undepleted mantle peridotite. How this peridotite came to be exposed on Zabargad remains unclear. Our field mapping indicates that most of the contacts between peridotite and the adjacent bodies of Pan-African gneiss and Cretaceous(?) Zabargad Formation on the island are now high-angle brittle faults. Zabargad Formation strata have been complexly folded, partly in response to this faulting. Overall, the array of high-angle faults and associated folds on the island resembles those found in cross-rift transfer zones. We suggest, therefore, that the Zabargad fracture zone, a band of submarine escarpments on the floor of the Red Sea north of the island, crosses Zabargad Island and has actively resolved differential movement between the central Red Sea rift and the northern Red Sea rift. The final stage of uplift that brought the unusual peridotite to the earth's surface is related to shallow crustal transpression, which may have inverted an earlier transtensional regime.

  14. Kelvin-Helmholtz instability with mixing zone

    International Nuclear Information System (INIS)

    Chong-Techer, R.


    This thesis is part of the FATHER experiment and the analyze of the hydrodynamical instabilities which appear during the mixing of two liquids of same volume mass with shearing speed in the mixing zone. The aim is to understand the possible influence of a Kelvin-Helmholtz hydrodynamical instability with mixing zone, compared to classical Kelvin-Helmholtz instability with interface and with theoretical results of Rayleigh-Taylor instability. (A.L.B.)

  15. A Piezoelectric Shear Stress Sensor (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning


    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  16. Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone (United States)

    Tischler, M.; Gröger, H. R.; Fügenschuh, B.; Schmid, S. M.


    The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ˜18.5 Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (˜18.5 to 16 Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16 Ma) NE SW shortening and NW SE extension correlate with “soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12 Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12 10 Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail splay.

  17. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence (United States)

    Leonard, Andy D.; Hill, James C.


    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  18. Improving Interlaminar Shear Strength (United States)

    Jackson, Justin


    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  19. The experimental basis for interpreting particle and magnetic fabrics of sheared till (United States)

    Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.


    Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a necessary but insufficient criterion for confirming the model

  20. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.


    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  1. Shear heating in creeping faults changes the onset of convection (United States)

    Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.


    The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.

  2. REE Geochemistry of ore zones in the Archean auriferous schist ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    The rare earth element (REE) geochemistry of the host metabasalts, alteration zones, ore veins ..... with disseminations of sulfides; gold occurring in native form in the quartz vein within the shear zones. in the host actinolite- chlorite schists with minor sulfides. Gold ... belt diamond drill core samples from the western block of ...

  3. Parametric Study of Rockbolt Shear Behaviour by Double Shear Test (United States)

    Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.


    Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.

  4. SEDflume - High Shear Stress Flume (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  5. Multi Resonance Shear Mode Transducers (United States)


    engineering in the single crystal lead magnesium niobate-lead titanate (PMNT) system has uncovered a very unique piezoelectric shear mode. Contrary to...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...utilize the d36 shear piezoelectric coefficient, which has advantages for compact low frequency sonar transducers. The d36 cut is unique in that large

  6. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.


    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  7. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.


    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  8. Experimental method for the evaluation of the susceptibility of materials to shear band formation

    Directory of Open Access Journals (Sweden)

    Tham R.


    Full Text Available In order to characterize materials with respect to their susceptibility to shear band formation at high strain rates, a modified Hopkinson pressure bar apparatus and hat-shaped steel specimens with a shear zone having a width significantly larger than the typical width of adiabatic bands are used. The sample is directly impacted by the striker. The force acting on the sample is measured with a PVDF-gauge between the sample and the output bar. The displacement is recorded with an electro-optical extensometer. The energy absorbed by the shearing process up to failure can be used as a reference for the susceptibility of materials to shear band formation. The method is demonstrated comparing the shear behavior of two high-strength steels with similar metallic structure and strength. Differences were found in the transition region between quasi-static and fully adiabatic shearing conditions where the energy up to rupture differs by 40 %. For fully adiabatic shear band formation, the deformation process of both materials equals. At extreme rates, shear processes are mainly governed by the thermodynamic properties of the materials. On the other hand, strength and structural properties play a role for low and intermediate rates where global and localized shear mechanisms occur in parallel.

  9. Magma shearing and friction in the volcanic conduit: A crystal constraint (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.


    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  10. Kelvin-Helmholtz instability with mixing zone; Instabilite de Kelvin-Helmholtz avec zone de melange

    Energy Technology Data Exchange (ETDEWEB)

    Chong-Techer, R. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/DIR-SFME), 91 - Gif sur Yvette (France)


    This thesis is part of the FATHER experiment and the analyze of the hydrodynamical instabilities which appear during the mixing of two liquids of same volume mass with shearing speed in the mixing zone. The aim is to understand the possible influence of a Kelvin-Helmholtz hydrodynamical instability with mixing zone, compared to classical Kelvin-Helmholtz instability with interface and with theoretical results of Rayleigh-Taylor instability. (A.L.B.)

  11. Laser-assisted shearing: new application for high-power diode lasers (United States)

    Emonts, Michael; Brecher, Christian


    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  12. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao


    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  13. Shear viscosity of an ordering latex suspension

    NARCIS (Netherlands)

    van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.


    The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the

  14. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko


    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  15. Localization and instability in sheared granular materials: Role of friction and vibration (United States)

    Kothari, Konik R.; Elbanna, Ahmed E.


    Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.

  16. Simulating stick-slip failure in a sheared granular layer using a physics-based constitutive model (United States)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; Ecke, Robert E.; Marone, Chris; Johnson, Paul A.


    We model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shear load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. We also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.

  17. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.


    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  18. Carbonatitic dykes during Pangaea transtension (Pelagonian Zone, Greece) (United States)

    Schenker, Filippo Luca; Burg, Jean-Pierre; Kostopoulos, Dimitrios; Baumgartner, Lukas P.; Bouvier, Anne-Sophie


    Carbonatitic dykes surrounded by K-Na-fenites were discovered in the Pelagonian Zone in Greece. Their carbonate portions have an isotopic mantle signature of δ13C and δ18O ranging from -5.18 to -5.56 (‰ vs. VPDB) and from 10.68 to 11.59 (‰ vs. VSMOW) respectively, whereas their mafic silicate portions have high Nb, Ta and ɛNd values, typical of alkaline basalts. Textural relationships hint at a cogenetic intrusion of silicate and carbonate liquids that according to antithetic REE profiles segregated at shallow depths (rims (δ18O = 6.78-7.02). From 300 to 175 Ma the ɛNd of the Pelagonian magmatism rose irregularly to more primitive values attesting to a higher increment of asthenosphere-derived melts. In this context, the carbonatite formed within a transtensional regime of an intra-Pangaea dextral transform fault that signalled the forthcoming penetrating breakoff of the supercontinent, manifested in the Permo-Triassic.

  19. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin


    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  20. Focusing of Shear Shock Waves (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco


    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  1. Squirming through shear thinning fluids (United States)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun


    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  2. Shear Brillouin light scattering microscope. (United States)

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun


    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.


    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail:, E-mail: [University College Dublin, Belfield, Dublin 4 (Ireland)


    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  4. Consideration on punching shear strength of steel-fiber-reinforced concrete slabs

    Directory of Open Access Journals (Sweden)

    Hyunjin Ju


    Full Text Available The flat plate slab system is widely used in construction fields due to its excellent constructability and savings in story height compared to the conventional beam-column moment-resisting system. Many researchers are, however, concerned about the punching shear failure that can happen in a two-way flat plate slab system, for which many shear-strength-enhancement techniques have been suggested. One of the effective alternatives is the application of steel-fiber-reinforced concrete. However, most previous studies on the punching shear strength of steel-fiber-reinforced concrete flat slabs had presented empirical formulas based on experimental results. On the other hand, theoretical models proposed in previous studies are difficult to be applied to practical situations. Therefore, in this study, a punching shear strength model of the steel-fiber-reinforced concrete two-way flat slab is proposed. In this model, the total shear resistance of the steel-fiber-reinforced concrete flat slab is expressed by sum of the shear contribution of steel fibers in the cracked tension region and that of intact concrete in the compression zone. A total of 91 shear test data on steel-fiber-reinforced concrete slab–column connection were compared to the analysis results, and the proposed model provided a good accuracy on estimating the punching shear strength of the steel-fiber-reinforced concrete flat slabs.

  5. Shear rheology of extended nanoparticles (United States)

    Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.


    Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended “jack”-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction.

  6. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh


    . The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...

  7. Coastal zone

    International Nuclear Information System (INIS)


    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  8. Meniscal shear stress for punching

    NARCIS (Netherlands)

    Tuijthof, Gabrielle J. M.; Meulman, Hubert N.; Herder, Just L.; van Dijk, C. Niek


    Aim: Experimental determination of the shear stress for punching meniscal tissue. Methods: Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available

  9. In vivo shear stress response. (United States)

    Egginton, Stuart


    EC (endothelial cell) responses to shear stress generated by vascular perfusion play an important role in circulatory homoeostasis, whereas abnormal responses are implicated in vascular diseases such as hypertension and atherosclerosis. ECs subjected to high shear stress in vitro alter their morphology, function and gene expression. The molecular basis for mechanotransduction of a shear stress signal, and the identity of the sensing mechanisms, remain unclear with many candidates under investigation. Translating these findings in vivo has proved difficult. The role of VEGF (vascular endothelial growth factor) flow-dependent nitric oxide release in remodelling skeletal muscle microcirculation is established for elevated (activity, dilatation) and reduced (overload, ischaemia) shear stress, although their temporal relationship to angiogenesis varies. It is clear that growth factor levels may offer only a permissive environment, and alteration of receptor levels may be a viable therapeutic target. Angiogenesis in vivo appears to be a graded phenomenon, and capillary regression on withdrawal of stimulus may be rapid. Combinations of physiological angiogenic stimuli appear not to be additive.

  10. The role of fluids in a major crustal thrust zone, Redbank High Strain Zone, central Australia

    International Nuclear Information System (INIS)

    Read, C.M.; Cartwright, I.


    The Redbank High Strain Zone (RHSZ) forms a major crustal boundary separating the Central and Southern Provinces of the Arunta Inlier in central Australia. The RHSZ is a 400km long north-dipping zone of faults and shears that juxtaposes amphibolite facies Southern Province gneisses with Central Province granulites. Deep seismic, teleseismic and gravity work indicates that the RHSZ offsets the moho by some 25km (Korsch et al., 1998), implying that it is a crustal-scale thrust structure. Geophysical and structural studies on the Redbank have been extensive owing to the size of this major lineament. Exhumation along the Redbank High Strain Zone is thought to have occurred in two major episodes. Two generations of shearing have been established on the basis of differing metamorphic facies assemblages within mylonite zones and the intrusion of the Stuart Dyke Swarm into previously deformed rocks that were later sheared by Alice Springs ages structures (Shaw and Black, 1991; Zhao etal., 1992). According to Shaw and Black (1991), Rb-Sr ages indicate that shearing occurred initially around 1500-1400 Ma forming amphibolite facies (Type 1) mylonites. This was followed 1100m.y. later by the formation of low-grade (greenschist facies) mylonites (Type 2) during the Alice Springs Orogeny (at 300 350 Ma). Oxygen isotope values across the RXSZ in several across strike traverses along the RHSX indicate a complex history of fluid-rock interaction. δ 18 O values range from 3.3 to 11 per mill with most values between 6-9 per mill. Lowering of the δ 18 O values locally within larger shears occurs in conjunction with major silicification and epidotisation. Owing to the large volumes of fluids that have infiltrated these areas, the isotope signature of the fluids is likely to be preserved over loge distances, and therefore be recorded in the rock values. However there are zones of silicification and epidotisation which have δ 18 O values in the 6-9 per mill range. The lower δ 18 O

  11. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell


    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  12. Shear viscosity of the quark matter


    Iwasaki, Masaharu; Ohnishi, Hiromasa; Fukutome, Takahiko


    We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.

  13. Shear assessment of reinforced concrete slab bridges

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.; De Boer, A.


    The capacity of reinforced concrete solid slab bridges in shear is assessed by comparing the design beam shear resistance to the design value of the applied shear force due to the permanent actions and live loads. Results from experiments on half-scale continuous slab bridges are used to develop a

  14. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore (United States)

    Melia, S.; Hall, R.


    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  15. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.


    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  16. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose


    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...

  17. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuncai [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)], E-mail:; Starink, Marco J.; Gao Nong; Qiao Xiaoguang [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Xu Cheng [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Langdon, Terence G. [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)


    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {l_brace}1 1 1{r_brace}<1 1 0> and {l_brace}0 0 1{r_brace}<1 1 0> shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss.

  18. Shear viscosity of nuclear matter (United States)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.; Plujko, V. A.


    Shear viscosity η is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density n through the mean-field parameter a , which describes attractive forces in the VDW equation. In the temperature region T =15 -40 MeV, a ratio of the shear viscosity to the entropy density s is smaller than 1 at the nucleon number density n =(0.5 -1.5 ) n0 , where n0=0.16 fm-3 is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the η /s ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of η /s ≫1 are, however, found in both the low-density, n ≪n0 , and high-density, n >2 n0 , regions. This makes the ideal hydrodynamic approach inapplicable for these densities.

  19. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange (United States)

    Webber, Sam; Ellis, Susan; Fagereng, Åke


    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  20. Shear localization in a mature mylonitic rock analog during fast slip (United States)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.


    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  1. Simulations of Granular Particles Under Cyclic Shear (United States)

    Royer, John; Chaikin, Paul


    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  2. The Role of Shear Failure on Stress Characterization (United States)

    Chan, A. W.; Hauser, M.; Couzens-Schultz, B. A.; Gray, G.


    Leak-off pressure and lost circulation data are generally thought to be reflective of minimum stress. We propose an alternative interpretation should be considered where the data may reflect a shear failure along zones of pre-existing weakness rather than opening of tensile fractures against the minimum stress. This mechanism has been discussed in a small number of borehole stability and hydraulic fracture papers, but has not been widely applied to leak-off test or lost circulation interpretation. In this paper, we will revisit and expand the concept introduced recently by Couzens-Schultz and Chan (J Struct Geol, doi: 10.1016/j.jsg.2010.06.013, 2010) based on abnormally low leak-off tests in an active thrust belt to the analysis of lost circulation observations in modern-day deltaic environments. In the Gulf of Mexico, lost circulations historically are interpreted as a representation of the minimum horizontal stress due to initiating or reopening of a fracture in tensile mode. However, shear failure or fault reactivation can occur at pressures well below the minimum far-field stress that is typically considered a safe upper bound for mud pressure if pre-existing planes of weakness such as faults or fracture networks exist. We demonstrated a mud loss event is shown to be inconsistent with the tensile failure mode in a normal stress environment, but in good agreement with expectations for shear failure along pre-existing faults.

  3. Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump. (United States)

    Michels, Michiel H A; van der Goot, Atze Jan; Vermuë, Marian H; Wijffels, René H


    The tolerance to shear stress of Tetraselmis suecica , Isochrysis galbana , Skeletonema costatum , and Chaetoceros muelleri was determined in shear cylinders. The shear tolerance of the microalgae species strongly depends on the strain. I. galbana , S. costatum , and C. muelleri exposed to shear stress between 1.2 and 5.4 Pa resulted in severe cell damage. T. suecica is not sensitive to stresses up to 80 Pa. The possibility to grow these algae in a tubular photobioreactor (PBR) using a centrifugal pump for recirculation of the algae suspension was studied. The shear stresses imposed on the algae in the circulation tubes and at the pressure side of the pump were 0.57 and 1.82 Pa, respectively. The shear stress tolerant T. suecica was successfully cultivated in the PBR. Growth of I. galbana , S. costatum , and C. muelleri in the tubular PBR was not observed, not even at the lowest pumping speed. For the latter shear sensitive strains, the encountered shear stress levels were in the order of magnitude of the determined maximum shear tolerance of the algae. An equation was used to simulate the effect of possible damage of microalgae caused by passages through local high shear zones in centrifugal pumps on the total algae culture in the PBR. This simulation shows that a culture of shear stress sensitive species is bound to collapse after only limited number of passages, confirming the importance of considering shear stress as a process parameter in future design of closed PBRs for microalgal cultivation.

  4. Nucleation in Sheared Granular Matter (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias


    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  5. Nucleation in Sheared Granular Matter. (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, Matthias


    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  6. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh


    model developed by Jin-Ping Zhang. The model takes into account the resistance against formation of cracks due to prestressing as well as the variation of the prestressing force in the transfer zone.Due to the fact that the anchorage of the reinforcement takes place by bond, a rotation failure, which...

  7. DEM Simulation of Direct Shear: 2. Grain Boundary and Mineral Grain Strength Component Influence on Shear Rupture (United States)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.


    The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress ( σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios 0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.

  8. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)


    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  9. Anomalous uranium concentration in Archaean basement Shear at Dhani Basri and its significance on Southern Margin of Alwar sub-basin, Rajasthan

    International Nuclear Information System (INIS)

    Panigrahi, B.; Shaji, T.S.; Sharma, G.S.; Yadav, O.P.; Nanda, L.K.


    Prominent shear zones cutting through the basement and cover rocks of Delhi Supergroup have been recognized in Dhani Basri - Ramewala sector of Dausa district, Rajasthan. One such shear zone traversing the granite gneiss (Archaean basement) has been observed at Dhani Basri. The sheared rock is exposed in the form of a small hump and gives appearance of quartzite due to intense silicification. Grab samples collected from the shear zone rock analysed upto 93 ppm U 3 O 8 and <10 ppm ThO 2 , which is anomalous in comparison to unsheared rock which analysed 51 ppm eU 3 O 8 , upto 5 ppm U 3 O 8 and 80 ppm ThO 2 . Gamma-ray logging of boreholes drilled by GSI across this shear zone indicated uranium mineralization of the order of 0.030% eU 3 O 8 x 5.40 m and the primary radioactive mineral has been identified as uraninite. The extension of Dhani Basri shear zone inside the cover rocks of Meso-Proterozoic Delhi Supergroup of rocks of Alwar sub-basin is of paramount importance in locating unconformity related as well as hydrothermal vein type uranium mineralization. (author)

  10. Late Cretaceous evolution of the northern Sistan suture zone ...

    Indian Academy of Sciences (India)

    and stocks that are surrounded by steeply SW-dipping Neh shear zone (NSZ). The magmatic fabrics ... as strain markers. Plutons record structural ele- ments that are related to their emplacement dur- ing the cooling of magma as a short time interval allowing an accurate reconstitution of the tectonic evolution of orogenic ...

  11. Microstructural description of shear-thickening suspensions

    Directory of Open Access Journals (Sweden)

    Singh Abhinendra


    Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  12. Brittle to ductile transition in a model of sheared granular materials (United States)

    Ma, X.; Elbanna, A. E.


    Understanding the fundamental mechanisms of deformation and failure in sheared fault gouge is critical for the development of physics-based earthquake rupture simulations that are becoming an essential ingredient in next generation hazard and risk models. To that end, we use the shear transformation zone (STZ) theory, a non-equilibrium statistical thermodynamics framework to describe viscoplastic deformation and localization in gouge materials as a first step towards developing multiscale models for earthquake source processes that are informed by high-resolution fault zone physics. The primary ingredient of the STZ theory is that inelastic deformation occurs at rare and local non-interacting soft zones known as the shear transformation zones. The larger the number of these STZs the more disordered (the more loose) the layer is. We will describe an implementation of this theory in a 2D/3D finite element framework, accounting for finite deformation, under both axial and shear loading and for dry and saturated conditions. We examine conditions under which a localized shear band may form and show that the initial value of disorder (or the initial porosity) plays an important role. In particular, our simulations suggest that if the material is more compact initially, the behavior is more brittle and the plastic deformation localizes with generating large strength drop. On the other hand, an initially loose material will show a more ductile response and the plastic deformations will be distributed more broadly. We will further show that incorporation of pore fluids alters the localization pattern and changes the stress slip response due to coupling between gouge volume changes (compaction and dilation) and pore pressure build up. We validate the model predictions by comparing them to available experimental observations on strain localization and fault gouge strength evolution. Finally, we discuss the implications of our model for gouge friction and dynamic weakening.

  13. Developments in Plasticity Approach to Shear

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter


    The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...... into account the mechanism of crack formation followed by crack sliding. Comparisons between the model and test results are carried out. Good agreement has been found over a wide range of cases....

  14. Dead Zone Accretion Flows in Protostellar Disks (United States)

    Turner, Neal; Sano, T.


    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  15. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties (United States)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre


    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  16. Instability of periodic MHD shear flows

    International Nuclear Information System (INIS)

    Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.


    The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations

  17. Shear flow generation due to electromagnetic instabilities

    International Nuclear Information System (INIS)

    Wakatani, M.; Sato, M.; Hamaguchi, S.; Miyato, N.


    Shear flow is the most important ingredient governing nonlinear behavior of many types of plasma instability. Electromagnetic effects on shear flow generation have been studied for an electro- magnetic drift wave called resistive drift-Alfven mode (RDAM) and a global MHD mode called resistive wall mode (RWM). For RDAM it is found that the generated shear flow stabilizes the dominant modes; however, other modes are destabilized. For RWM Maxwell stress due to magnetic fluctuations has a tendency to suppress the poloidal flow near the plasma surface, which gives almost same saturation level, since the shear flow stabilization disappears. (author)

  18. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.


    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  19. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H. [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H.; Brie, A.


    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  20. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.


    transtensional NE-striking fault zones, that have major importance for geothermal energy resource potential.

  1. A biaxial method for inplane shear testing. [shear strain in composite materials (United States)

    Bush, H. G.; Weller, T.


    A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.

  2. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites (United States)


    14 Fig. 9 Load vs. deflection curves from short beam shear experiments ..........17 Fig. 10 Short beam shear specimens cracking in tension on...Walter et al.17 Fig. 10 Short beam shear specimens cracking in tension on the bottom of the specimen Approved for public release; distribution is...unlimited. 19 Fig. 11 Short beam shear specimens cracking as viewed from the side While the 2-D base composite produced a widespread

  3. Shear thinning behaviors in magmas (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.


    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) ( The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  4. Punching shear capacity of reinforced concrete slabs with headed shear studs

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Pop, Anamaria


    . To design shear reinforcement in slabs, on the other hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation as for beam shear design...

  5. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán


    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  6. Solvable groups and a shear construction

    DEFF Research Database (Denmark)

    Freibert, Marco; Swann, Andrew Francis

    The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss...... other examples of geometric structures that may be obtained from the shear construction....

  7. Rating precast prestressed concrete bridges for shear (United States)


    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  8. Behaviour of Corroded Single Stud Shear Connectors

    Directory of Open Access Journals (Sweden)

    Wen Xue


    Full Text Available In this study, the effect of corrosion on the static behavior of stud shear connectors was investigated. An innovative test setup for single stud shear connectors was designed and established. Two series of specimens having different stud diameters were fabricated and tested. The test specimens were firstly corroded to different corrosion rates by the electronic accelerating method. Static loading tests were then performed to obtain the load-slip curves and ultimate strengths of the corroded test specimens. The actual corrosion rates were measured from the studs obtained from the tested specimens. The test results were compared with the push out test specimens having similar corrosion rates. It is shown that the test results obtained from the single stud shear connectors are conservative compared with the corroded push test specimens, which prove the validation of the single stud shear connector test method. The effect of corrosion on the behavior of stud shear connectors was also presented.

  9. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.


    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  10. Imaging Shear Strength Along Subduction Faults (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.


    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  11. Simple shear of deformable square objects (United States)

    Treagus, Susan H.; Lan, Labao


    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  12. Imaging shear strength along subduction faults (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.


    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  13. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang


    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  14. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin


    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  15. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity (United States)

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.


    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  16. Porosity reduction within shear deformation bands in unconsolidated Pleistocene sediments (United States)

    Brandes, Christian; Tanner, David


    Deformation bands are important structural elements that occur in the upper crust and develop in porous sandstones and even in unconsolidated sands. In contrast to discrete surfaces such as faults, deformation bands represent tabular zones of continuous displacement over several centimeters (Fossen et al., 2007). We present an outcrop-based study on the internal fabric of shear deformation bands that developed in Pleistocene unconsolidated sands in northern Germany. The deformation bands formed in an extensional stress regime, have a normal sense of displacement in a range of centimeters to decimeters, and form conjugate sets that intersect at angles between 70° and 90° (Brandes & Tanner, 2012). Due to their near-surface position, they are a perfect target for the study of deformation band formation prior to burial and diagenesis. Thin section analysis show a significant pore space reduction from the host sediment to the shear deformation band. The boundary between the host sediment and the shear deformation bands can be very sharp. The grains within the deformation band are of the same grain size as the host sediment. Grain shape varies from angular to well-rounded. Many elliptic grains have a long-axis orientation parallel to the trend of the deformation band. The grains in the analysed thin sections are all intact, i.e., there is no evidence for cataclasis. We believe the shear deformation bands are created by a grain-sliding process that decreases the porosity and leads to a denser packing of the sand. This is a porosity reduction mechanism in sandstone that occurs prior to burial without cataclasis. This can have an impact on fluid-flow in unconsolidated sediments in the near-surface. References: Brandes, C. & Tanner, D.C. (2012) Three-dimensional geometry and fabric of shear deformation bands in unconsolidated Pleistocene sediments. Tectonophysics, 518-521, 84-92. Fossen, H., Schultz, R.A., Shipton, Z.K., & Mair, K. (2007) Deformation bands in sandstone: a

  17. Behaviour of reinforced concrete beams with confined concrete related to ultimate bending and shear strength (United States)

    Tee, Horng Hean; Al-Sanjery, Kousay; Chiang, Jeffrey Choong Luin


    This research is to investigate the behaviour of over-balanced High Strength Reinforced Concrete Beams with the compression zone confined with spiral / helical steel reinforcements. The study covered beam behaviour with respect to flexural strength, shear strength, deflection and cracking related to confined concrete. Six 200mm (width) X 300mm (depth) X 3000mm (length) Reinforced Concrete (RC) Beams, the first three beams incorporating steel ratio of 1.42ρb and the remaining 1.64ρb were tested under a four point static load test. The confinement of the concrete was carried out using spiral reinforcements of diameter 6mm and yield stress of 406N/mm2 with pitches of 50mm and 100mm. Measurements of deflection, cracking, and strains on both main reinforcements and concrete of the beams were taken. At the same level of stress, beams with confined concrete strained less than control beams without confinement for both tensile strain at the main steel reinforcement and compressive strain across the compression zone of concrete. Deflections of beams with helical confinement were less than the control beams. All beams failed in shear / flexural mode and gave fair warning against failure, more specifically beams with 1.42ρb, which is not normally associated with shear-type failure of beams which are over reinforced. The early shear failure prevented the beams from achieving its full utilisation of the ultimate strength. It is recommended that for over-reinforced confined concrete beams, the shear strength of beams should be based on using the diagonal compressive strut angle (θ) of more than 22 degrees recommended in Eurocode 2 (EC2), hence giving the beam higher safety factor against shear failure. All samples exhibited flexure and shear cracks in a manner which gave a good warning against failure. The ratio of the failure load to the theoretical ultimate load for shear ranged between 0.98 and 1.25 while the ratio of the failure load to the ultimate flexural load ranged

  18. Providing plastic zone extrusion (United States)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen


    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  19. Shear-induced APAP de-agglomeration. (United States)

    Llusa, Marcos; Levin, Michael; Snee, Ronald D; Muzzio, Fernando J


    Active pharmaceutical ingredient agglomerates can generate many solid product regulatory compliance issues. To study the effects of shear rate, strain, type of excipient, and grade of acetaminophen (APAP) on the process of APAP de-agglomeration. A shear-controlled environment is used to expose six different blends that consist of one of three APAP grades and one of two possible types of excipient to 10 different combinations of shear rate and strain. APAP agglomerates are sifted and weighed. Finer APAP grades lead to blends with more APAP agglomerates and type of excipient only affects the de-agglomeration process for the finest APAP grade. De-agglomeration proceeds mainly as a function of strain with a minor contribution toward further de-agglomeration when larger shear rates are used. When mechanical stress (which us proportional to shear rate) overcomes interparticle forces, de-agglomeration occurs. Higher shear rates (and stress) contribute slightly to further APAP de-agglomeration. Extended exposure to stress (strain) reduces the size and the number of agglomerates. Blends with finer APAP present more agglomerates, particularly after low strain exposure. This article presents a useful method for formulation and process development. Exposing blends to higher shear rates and especially to strain mitigates APAP agglomeration in blends. Finer APAP presents more agglomerates and the type of excipient used affects the degree of APAP agglomeration.

  20. Surface shear inviscidity of soluble surfactants. (United States)

    Zell, Zachary A; Nowbahar, Arash; Mansard, Vincent; Leal, L Gary; Deshmukh, Suraj S; Mecca, Jodi M; Tucker, Christopher J; Squires, Todd M


    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 10(3)-10(4) times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants.


    Directory of Open Access Journals (Sweden)

    Philippe Lopez


    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  2. Shear rheology of molten crumb chocolate. (United States)

    Taylor, J E; Van Damme, I; Johns, M L; Routh, A F; Wilson, D I


    The shear rheology of fresh molten chocolate produced from crumb was studied over 5 decades of shear rate using controlled stress devices. The Carreau model was found to be a more accurate description than the traditional Casson model, especially at shear rates between 0.1 and 1 s(-1). At shear rates around 0.1 s(-1) (shear stress approximately 7 Pa) the material exhibited a transition to a solid regime, similar to the behavior reported by Coussot (2005) for other granular suspensions. The nature of the suspension was explored by investigating the effect of solids concentration (0.20 chocolate was then compared with the rheology of (1) a synthetic chocolate, which contained sunflower oil in place of cocoa butter, and (2) a suspension of sugar of a similar size distribution (volume mean 15 mum) in cocoa butter and emulsifier. The chocolate and synthetic chocolate showed very similar rheological profiles under both steady shear and oscillatory shear. The chocolate and the sugar suspension showed similar Krieger-Dougherty dependency on volume fraction, and a noticeable transition to a stiff state at solids volume fractions above approximately 0.5. Similar behavior has been reported by Citerne and others (2001) for a smooth peanut butter, which had a similar particle size distribution and solids loading to chocolate. The results indicate that the melt rheology of the chocolate is dominated by hydrodynamic interactions, although at high solids volume fractions the emulsifier may contribute to the departure of the apparent viscosity from the predicted trend.

  3. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas


    combinations of reinforcement and for variable slenderness ratios. Theoretical approaches will be evaluated and compared with the test results of several test series. The load bearing capacity of shear reinforced aircrete is highly dependent on the anchorage and bond behaviour of the shear reinforcement......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  4. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R


    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  5. Problems pilots face involving wind shear (United States)

    Melvin, W. W.


    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  6. Frictional Sliding Along Coulombic Shear Faults in Ice (United States)

    Fortt, A. L.; Schulson, E. M.


    There is increasing evidence that the processes underlying the deformation of the arctic sea ice cover are independent of spatial scale. Among them, and possibly the dominant one during winter, is frictional sliding. With the objective of characterizing and then understanding this process, we performed a series of sliding experiments along Coulombic shear faults that were created in the laboratory in both S2 freshwater ice and S2 first-year arctic sea ice. The principal variables were sliding velocity (4 × 10-3 m s-1 to 8 × 10-7 m s-1, temperature (-3 °C, -10 °C and -40 °C) and confinement (up to 2 MPa). The results show that in both materials Coulomb's failure criterion describes the relationship between the shear stress along the fault and the normal stress across it. The friction coefficient reaches a maximum at an intermediate velocity, at ~ 10-5 m s-1 for the fresh-water material and at ~ 10-4 s-1 for the sea ice, and it increases with decreasing temperature. We propose that at lower velocities where velocity-strengthening is observed, frictional resistance is governed by creep deformation within the damage zone that constitutes the fault, while at higher velocities additional fracture and frictional melting are at play.

  7. Histoscanning and shear wave ultrasound elastography for prostate cancer diagnosis

    Directory of Open Access Journals (Sweden)

    A. V. Amosov


    Full Text Available Introduction. The shear wave ultrasound elastography is a recently developed ultrasound-based method in the clinical practice, which allows the qualitative visual and quantitative measurements of tissue stiffness. In the 2010 this technology of the shear wave was called Shear Wave Elastograhpy. Due to the front of the shear waves the qualitative and quantitative assessment of the tissue stiffness is possible.Objective is to examine the efficacy of the shear wave ultrasound elastography in the evaluation of the prevalence of the oncological disease in patients with the prostate cancer and to compare the obtained results with the routine method X-ray diagnostics.Materials and methods. From the april 2015 in the I.M. Sechenov First Moscow State Medical University Urology Clinic there were conducted 314 shear wave ultrasound elastography examinations of the prostate. The ultrasound system Aixplorer® by SuperSonic Imagine was used. This system provides information provided by B-mode and shear wave ultrasound elastography mode. The transrectal echograms were made in 6 dimensions, so called Q-boxes (3 demensions in the every lobe on the segments from the base to the apex, according to the biopsy zone. The unit of measurement was the mean value in the kilopaskals (kPa. All the patients were randomized into 3 groups. There were 146 men with the possible prostate cancer in the first group (prospective study, 120 men with the certain diagnosis of the prostate cancer in the second group (retrospective study and 48 healthy men in the third group (control study. In all the patients of the first and the second groups the routine complete examination, including the prostate specific antigen (PSA level examination, digital rectal examination (DRE, doppler transrectal ultrasonography (TRUS, histoscanning and ultrasound shear wave elastography (SWE, was conducted. In the 229 patients of the first and the second groups the prostatectomy with the

  8. Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation (United States)

    Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi


    Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.

  9. Turbulent shear layers in confining channels (United States)

    Benham, Graham; Castrejon-Pita, Alfonso; Hewitt, Ian; Please, Colin; Style, Rob; Bird, Paul


    The development of shear layers are ubiquitous in a wide range of situations, from diffusers, nozzles, turbines and ducts to urban air flow and geophysical flows. In this talk we present a simple model for the development of shear layers between flows that mix in confining channels. The model, comprising two plug flow regions separated by a linear shear layer, shows good agreement with both laboratory experiments and computational turbulence modelling (at a fraction of the computation time). Such efficient models, capable of capturing and exhibiting the main characteristics of the turbulent shear layers, are expected to be useful for both modelling and design purposes. We demonstrate the latter by showing how the model can be utilised to optimise pressure recovery in diffusers with non-uniform inflows. EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling, VerdErg Renewable Energy Limited, John Fell Fund (Oxford University Press).

  10. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros


    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  11. Electrostatic ion cyclotron velocity shear instability (United States)

    Lemons, D. S.; Winske, D.; Gary, S. P.


    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  12. Recent progress in shear punch testing

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.


    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys

  13. Shear strength of clay and silt embankments. (United States)


    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  14. Immiscible blend morphology after shear and elongation (United States)

    Batch, Gibson L.; Trifkovic, Milana; Hedegaard, Aaron; Macosko, Christopher W.


    This work examines the role of shear and extensional strain on immiscible blend morphology, namely domain size, orientation, and co-continuity. The domain size reduces with surface tension similar to what is observed with isolated droplets. The domain size is shown to increase with shear strain due to coalescence. Hence the best mixing is found with low shear strains, i.e. low rates of shear and short durations of time. Extensional strain (extrusion draw ratio DR) reduces phase width and thickness with a DR-0.5 dependence, suggesting the transformation to a fibrilar morphology. The critical draw ratio for morphology transformation is approximately 7, in agreement with observations by Grace for droplet breakup in elongation. Fibrilar morphology is also consistent with a large increase in strain-to-break in the drawn film and with observed creep and optical scattering behavior.

  15. Recent progress in shear punch testing

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Toloczko, M.B.; Lucas, G.E. [Univ. of California, Santa Barbara, CA (United States)


    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys.

  16. Thermodynamics of dilute gases in shear flow (United States)

    Jou, D.; Criado-Sancho, M.


    We consider the effect of shear and normal viscous pressures on the non-equilibrium entropy of ideal gases in Couette flow. These results extend the previous ones (Bidar et al., Physica A 233 (1996) 163), where normal pressure effects were ignored. Furthermore, we analyze the non-equilibrium contributions to the chemical potential, which may be useful in the analysis of shear-induced effects on colligative properties and chemical equilibrium.

  17. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.


    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  18. Modeling and implementation of wind shear data (United States)

    Frost, Walter


    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  19. Speckle Shearing Interferometry And Its Application (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang


    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  20. Experimental study of shear rate dependence in perpetually sheared granular matter (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai


    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  1. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang


    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  2. A new look on blood shear thinning (United States)

    Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana


    Blood is a shear-thinning fluid. At shear rates γ˙ cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.

  3. Cosmology with cosmic shear observations: a review. (United States)

    Kilbinger, Martin


    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  4. Shear induced structures in crystallizing cocoa butter (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.


    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  5. Shear thinning in non-Brownian suspensions. (United States)

    Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie


    We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.

  6. Turbulent Sediment Suspension and Induced Ripple Dynamics Absent Mean Shear (United States)

    Johnson, B. A.; Cowen, E.


    The uprush and backwash phases in the swash zone, the region of the beach that is alternately covered and uncovered by wave run-up, are fundamentally different events. Backwash is dominated by a growing boundary layer where the turbulence is set by the bed shear stress. In this phase traditional boundary layer turbulence models and Shields-type critical stress pickup functions work well. However, the uprush phase, while often viewed in the context of traditional boundary layer turbulence models, has little in common with the backwash phase. During uprush, the entire water column is turbulent, as it rapidly advects well-stirred highly turbulent flow generated offshore from breaking waves or collapsing bores. Turbulence levels in the uprush are several times higher than turbulent boundary layer theory would predict and hence the use of a boundary layer model to predict turbulence levels during uprush grossly under predicts the turbulence and subsequent sediment suspension in the swash zone. To study the importance of this advected turbulence to sediment suspension we conduct experiments in a water tank designed to generate horizontally homogeneous isotropic turbulence absent mean shear using randomly actuated synthetic jet arrays suspended above both a solid glass plate and a narrowly graded sediment bed. Using jet arrays with different jet spacings allows the generation of high Reynolds number turbulence with variable integral length scales, which we hypothesize control the characteristic length scales in the induced ripple field. Particle image velocimetry and acoustic Doppler velocimetry measurements are used to characterize the near-bed flow and this unique turbulent boundary layer. Metrics include the mean flow and turbulence intensities and stresses, temporal and spatial spectra, dissipation of turbulent kinetic energy, and integral length scales of the turbulence. We leverage our unique dataset to compare the flows over impermeable fixed and permeable mobile

  7. Shear localization in the shallow part of megathrusts: understanding active megathrusts trough the study of fossil analogues. (United States)

    Cerchiari, Anna; MIttempergher, Silvia; Remitti, Francesca; Festa, Andrea


    The shallowest part of active megathrusts has an intriguing behaviour, characterized by the coexistence of coseismic slips and aseismic creep, slow slip events, low and very low frequency earthquakes. Origins and interplays of these phenomena are actually little known. In this respect, the study of exhumed shallow parts of fossil megathrusts is an advantageous approach in terms of accessibility, costs and resolution. The Sestola-Vidiciatico tectonic Unit in the Northern Apennines has been interpreted as a possible analogue of a shallow, hectometer scale megathrust shear zone, which accommodated subduction of the Adria plate under the Ligurian prism during early-middle Miocene by involving sediments from the seafloor to burial depth corresponding to 150° C maximum temperature. Performing detailed microstructural analysis on samples through optical, cathodoluminescence and scanning electron microscopy, we studied a 5 m thick fault zone marking the base of the SVU. Here, more or less competent marls make up a heterogeneous fault zone assemblage, with a strongly deformed tectonic fabric characterized by mesoscopic cleavage, boudinage, faults and low-angle thrusts coated by calcite veins. At the top of the shear zone, a sharp and continuous shear vein, 20 cm thick cuts all other structures. At the microscale, we identified a primary sedimentary layering, consisting of alternating fine and coarse marly or shaly laminae that are crosscut by "soft-sediment"-type deformation bands derived from the reorientation of mineral grains without fracturing. Parallel to the sedimentary laminae, oriented phyllosilicates define a pervasive foliation in clay-rich domains. More competent calcareous portions are strongly boudinaged and cut by calcite shear veins displaying crack-and-seal texture and locally implosion breccias. Multiple mutually crosscutting generations of extensional veins are recognizable, with dispersed orientations and complex relations with shear veins. Calcite veins


    International Nuclear Information System (INIS)



    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties


    Energy Technology Data Exchange (ETDEWEB)



    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V{sub s}), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V{sub s} values compared to samples from lithophysal zones. Some samples have V{sub s} values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V{sub s} data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.

  10. A new model for the formation of a spaced crenulation (shear band) cleavage in the Dalradian rocks of the Tay Nappe, SW Highlands, Scotland (United States)

    Geoff Tanner, P. W.


    The main conclusion of this study is that non-coaxial strain acting parallel to a flat-lying D1 spaced cleavage was responsible for the formation of the D2 spaced crenulation (shear band) cleavage in Dalradian rocks of Neoproterozoic-Lower Ordovician age in the SW Highlands, Scotland. The cm-dm-scale D2 microlithons are asymmetric; have a geometrically distinctive nose and tail; and show a thickened central portion resulting from back-rotation of the constituent D1 microlithons. The current terminology used to describe crenulation cleavages is reviewed and updated. Aided by exceptional 3D exposures, it is shown how embryonic D2 flexural-slip folds developed into a spaced cleavage comprising fold-pair domains wrapped by anastomosing cleavage seams. The bulk strain was partitioned into low-strain domains separated by zones of high non-coaxial strain. This new model provides a template for determining the sense of shear in both low-strain situations and in ductile, higher strain zones where other indicators, such as shear folds, give ambiguous results. Analogous structures include tectonic lozenges in shear zones, and flexural-slip duplexes. Disputes over the sense and direction of shear during emplacement of the Tay Nappe, and the apparently intractable conflict between minor fold asymmetry and shear sense, appear to be resolved.

  11. Fan-head shear rupture mechanism as a source of off-fault tensile cracking (United States)

    Tarasov, Boris


    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone

  12. Panel and planar experimental shear behavior of wood panels ...

    African Journals Online (AJOL)

    Panel and planar experimental shear behavior of wood panels laminated softwood oriented OSB conditioned at different environments. ... to that measured in the case of panel shear for different environments. Keywords : oriented strand board – panel shear strength- planar shear strength - environment – moisture content ...

  13. Evaluation of size dependent design shear strength of reinforced ...

    Indian Academy of Sciences (India)

    mate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength ... percentage of flexural reinforcement and depth of the beam constant) as (i) deep beams with 0. < a/d ≤ 1, (ii) ... the shear strength of deep beams when the shear span-to-depth ratio was 1.0 (Tan & Lu 1999;. Walraven ...

  14. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    Directory of Open Access Journals (Sweden)

    L. Le Pourhiet


    Full Text Available We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr–Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes

  15. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.


    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  16. The protogine zone. Geology and mobility during the last 1.5 Ga

    International Nuclear Information System (INIS)

    Andreasson, P.G.; Rodhe, A.


    This report treats the Protogine Zone (PZ) as the western boundary of the Southeastern Megablock (SEM), and summarizes scientific aspects of different geological and geophysical functions of the zone. A systematic inventory and a technical description of shear zones and faults in the type area of the 'Schistosity Zone' are presented. The report then reviews observed and infrared activity of the zone during the last 1500 million years. This calendar includes at least eight different periods of compression or extension, tilting, uplift, magmatism etc. along the zone, in harmony with the common experience that old zones of weakness in the crust seldom heal. The network of major structures of southern Sweden is described, and the function of the PZ within this network is discussed with particular attention to east-west running lineaments within the SEM, like the Noemmen-Oskarshamn and Hoernebo-Hoegsby fault and shear zones. Future work should inter alia investigate if these two zones are connected with the PZ, and if movements along the PZ can reactivate the zones. A bibliography comprising c. 100 titles is included as an appendix. (au)

  17. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang


    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  18. Fluid chemistry and evolution of hydrothermal fluids in an Archaean transcrustal fault zone network: The case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada (United States)

    Neumayr, P.; Hagemann, S.G.; Banks, D.A.; Yardley, B.W.D.; Couture, J.-F.; Landis, G.P.; Rye, R.


    Detailed fluid geochemistry studies on hydrothermal quartz veins from the Rouyn-Noranda and Val-d'Or areas along the transcrustal Cadillac Tectonic Zone (CTZ) indicate that unmineralized (with respect to gold) sections of the CTZ contained a distinct CO2-dominated, H2S-poor hydrothermal fluid. In contrast, both gold mineralized sections of the CTZ (e.g., at Orenada #2) and associated higher order shear zones have a H2O-CO2 ?? CH4-NaCl hydrothermal fluid. Their CO2/H2S ratios indicate H2S-rich compositions. The Br/Cl compositions in fluid inclusions trapped in these veins indicate that hydrothermal fluids have been equilibrated with the crust. Oxygen isotope ratios from hydrothermal quartz veins in the CTZ are consistently 2??? more enriched than those of associated higher order shear zones, which are interpreted to be a function of greater fluid/rock ratios in the CTZ and lower fluid/rock ratios, and more efficient equilibration of the hydrothermal fluid with the wall rock, in higher order shear zones. An implication from this study is that the lower metal endowment of the transcrustal CTZ, when compared with the higher metal endowment in higher order shear zones (ratio of about 1 : 1000), may be the result of the lack of significant amounts of H2O-H2S rich fluids in most of the CTZ. In contrast, gold mineralization in the higher order shear zones appear to be controlled by the high H2S activity of the aqueous fluids, because gold was likely transported in a bisulfide complex and was deposited during sulfidation reactions in the wall rock and phase separation in the quartz veins. ?? 2007 NRC Canada.

  19. Extreme model reduction of shear layers (United States)

    Qawasmeh, Bashar Rafee

    The aim of this research is to develop nonlinear low-dimensional models (LDMs) to describe vortex dynamics in shear layers. A modified Proper Orthogonal Decomposition (POD)/Galerkin projection method is developed to obtain models at extremely low dimension for shear layers. The idea is to dynamically scale the shear layer along y direction to factor out the shear layer growth and capture the dynamics by only a couple of modes. The models are developed for two flows, incompressible spatially developing and weakly compressible temporally developing shear layers, respectively. To capture basic dynamics, the low-dimensional models require only two POD modes for each wavenumber/frequency. Thus, a two-mode model is capable of representing single-wavenumber/frequency dynamics such as vortex roll-up, and a four-mode model is capable of representing the nonlinear dynamics involving a fundamental wavenumber/frequency and its subharmonic, such as vortex pairing/merging. Most of the energy is captured by the first mode of each wavenumber/frequency, the second POD mode, however, plays a critical role and needs to be included. In the thesis, we first apply the approach on temporally developing weakly compressible shear layers. In compressible flows, the thermodynamic variables are dynamically important, and must be considered. We choose isentropic Navier-Stokes equations for simplicity, and choose a proper inner product to present both kinetic energy and thermal energy. Two cases of convective Mach numbers are studied for low compressibility and moderate compressibility. Moreover, we study the sensitivity of the compressible four-mode model to several flow parameters: Mach number, the strength of initial perturbations of the fundamental and its subharmonic, and Reynolds number. Secondly we apply the approach on spatially developing incompressible shear layers with periodicity in time. We consider a streamwise parabolic form of the Navier-Stokes equations. When we add arbitrary

  20. Stochastic parametric resonance in shear flows

    Directory of Open Access Journals (Sweden)

    F. J. Poulin


    Full Text Available Time-periodic shear flows can give rise to Parametric Instability (PI, as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995. This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b explain that PI occurs because the snap-shots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003 studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003, but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.

  1. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A


    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  2. Evaluation of shear mounted elastomeric damper (United States)

    Zorzi, E.; Walton, J.


    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  3. Electrostatic ion cyclotron velocity shear instability

    International Nuclear Information System (INIS)

    Lemons, D.S.; Winske, D.; Gary, S.P.


    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, κρ i ∼ 0.5, and one at short wavelength, κρ i > 1.5 (κρ i is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit

  4. Colloidal Aggregate Structure under Shear by USANS (United States)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.


    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  5. Pressure-shear experiments on granular materials.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)


    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  6. Electrical conductivity images of active and fossil fault zones


    Oliver Ritter; A. Hoffmann-Rothe; P. A. Bedrosian; Ute Weckmann; V. Haak;  ;  


    We compare recent magnetotelluric investigations of four large fault systems: (i) the actively deforming, ocean-continent interplate San Andreas Fault (SAF), (ii) the actively deforming, continent-continent interplate Dead Sea Transform (DST), (iii) the currently inactive, trench-linked intraplate West Fault (WF) in northern Chile, and (iv) the Waterberg Fault/Omaruru Lineament (WF/OL) in Namibia, a fossilized intraplate shear zone formed during early Proterozoic continental collision. These ...

  7. Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins (United States)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.


    inversion carried out by specifying the appropriate ray path. Once the data set had been fully interpreted, correction of the traveltimes to effective symmetric ray paths enabled us to apply a regularized grid inversion. Such inversions are less subjective than the layer-based approach and yield more robust minimum structure results with quantifiable errors, except in the vicinity of a known subbasalt low-velocity zone encountered on the Faroes margin. Monte Carlo analyses were performed for this approach; the average model from multiple inversions using randomized starting models and traveltimes shows the structure required by the traveltimes and the model standard deviation gives an estimate of uncertainty. Model and inversion parametrizations were fully tested and optimum parameters chosen for compressional and shear wave inversions. This allows, after appropriate model smoothing, an estimate to be made of the spatial variation of the Vp/Vs ratio within the crust. There are marked gradients in Vp, Vs and Vp/Vs ratio across the continent-ocean transition, which may result from intrusion of high magnesium mafic igneous material into the crystalline continental crust. The Vp/Vs ratio, used in conjunction with Vp, also provides constraints on the subbasalt lithologies forming the low-velocity zone. We conclude from such an analysis that this zone is unlikely to be composed entirely of igneous hyaloclastite material; some proportion of clastic sedimentary rocks is likely to be present. The Vp/Vs and Vp properties of the units underlying the low-velocity zone are inconsistent with crystalline continental basement and this unit is likely to represent a sill-intruded Mesozoic sedimentary sequence from a pre-breakup sedimentary basin.

  8. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg


    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...

  9. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)


    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali


    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  11. The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates (United States)

    Rempe, Marieke; Smith, Steven; Mitchell, Thomas; Hirose, Takehiro; Di Toro, Giulio


    Strain localization during coseismic slip in fault gouges is a critical mechanical process that has implications for understanding frictional heating, the earthquake energy budget and the evolution of fault rock microstructure. To assess the nature of strain localization during shearing of calcite fault gouges, high-velocity (vmax = 1m /s) rotary-shear experiments at normal stresses of 3-20 MPa were conducted under room-dry and wet conditions on synthetic calcite gouges containing dolomite gouge strain markers. When sheared at 1 m/s, the room-dry gouges showed a prolonged strengthening phase prior to dynamic weakening, whereas the wet gouges weakened nearly instantaneously. Microstructural analysis revealed that a thin (PSS) developed after several centimeters of slip in both dry and wet gouges, and that strain localization at 1 m/s occurred progressively and rapidly. The strain accommodated in the bulk gouge layer did not change significantly with increasing displacement indicating that, once formed, the high-strain layer and PSS accommodated most of the displacement. Thus, a substantial strain gradient is present in the gouge layer. In water-dampened gouges, localization likely occurs during and after dynamic weakening. Our results suggest that natural fault zones in limestone are more prone to rapid dynamic weakening if water is present in the granular slipping zones.

  12. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.


    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  13. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas


    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  14. Shear viscosity coefficient of liquid lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H. P., E-mail:; Thakor, P. B., E-mail:; Prajapati, A. V., E-mail: [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A., E-mail: [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)


    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  15. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong


    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  16. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.


    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  17. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria) (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard


    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  18. Possibility of submarine landslide triggering due to dissociation of hydrates - an approach through ring shear tests (United States)

    Fukuoka, Hiroshi; Dok, Atitkagna


    possible dissociation of the hydrates due to heating in the shear zone. Temperature was continuously rising although the tests and finally all the hydrates were melted. Unfortunately, no excess pore pressure generation was observed possibly because of low saturation degree of the sample and apparatus. As for rate effect, cyclic shear rate test clearly showed that the negative rate effect in other word, velocity-weakening was obvious for shear speed exceeding 0.5 cm/s. Cyclic loading test applying step-up shear stress amplitude showed that "Sliding surface liquefaction" can take place under certain lower frequency seismic condition for the tested TBAB - silica sand mixture sample. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade, and Industry (METI), Japan.

  19. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. (United States)

    Ji, Shichen; Jiang, Run; Winkler, Roland G; Gompper, Gerhard


    In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple mesoscopic model of the solvent is required. We propose to extend the multiparticle collision dynamics (MPC) technique--a particle-based simulation method, which has been successfully applied to study the hydrodynamic behavior of many complex fluids with Newtonian solvent--to shear-thinning viscoelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under simple shear flow with shear rate ̇γ. The stress tensor is calculated, and the viscosity η and the first normal-stress coefficient Ψ(1) are obtained. Shear-thinning behavior is found for reduced shear rates Γ= ̇γτ>1, where τ is a characteristic dumbbell relaxation time. Here, both η and Ψ(1) display power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC collisions provides a good description of viscoelastic fluids. As a first application, we study the flow behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement with recent numerical calculations and experimental results. © 2011 American Institute of Physics

  20. Shear thinning and shear thickening of a confined suspension of vesicles (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.


    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  1. Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays

    International Nuclear Information System (INIS)

    Fuhrmann, Alexander; Engler, Adam J


    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)

  2. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure. (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil


    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  3. Inhomogeneities in sheared ultrathin lubricating films

    NARCIS (Netherlands)

    Manias, E; Hadziioannou, G; ten Brinke, G.


    Nonequilibrium molecular dynamics computer simulations have been used to study nanoscopically confined oligomer films under shear. Beyond the well-known density layering across such films, other structural and dynamical inhomogeneities exist across such films and are discussed here. When these films

  4. Red blood cell in simple shear flow (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long


    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  5. Vane shear test for cohesionless soils (United States)

    Park, Sung-Sik; An, Zhou; Ye, Sung-Ryol; Lee, Sae-Byeok; Chae, Kyung-Hyeon


    The vane shear test (VST) is a simple and rapid testing method for determining the undrained shear strength of cohesive soils. It has not been applied for granular soils because the failure surface was irregular and hardly determined due to their cohesionless property. In this study, the VST was used to determine the shear strength of cohesionless soils such as sand. A small laboratory vane with 5 cm in diameter and 10 cm in height was inserted into sand within pressurized cell. When the vane rotates within sand, a failure surface can be assumed to be cylindrical shape because the sand is pressurized with loading frame. Dry Nakdong River sand was prepared for loose and dense conditions in the cell and the axial pressure of 50, 100, and 200 kPa was applied on the surface of sand. The relationship between measured torque and resistant force along cylindrical shape due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. It was possible for the VST to determine the shear strength of sand under confined condition.

  6. Lightweight concrete modification factor for shear friction. (United States)


    This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...

  7. Size Segregation in Sheared Jammed Colloids (United States)

    Mbi, Armstrong; Blair, Daniel


    It is well known that granular materials can spontaneously size segregate when continuously driven. However, in jammed colloidal suspensions, this phenomenon is not well understood. Colloidal dispersions provide a unique system to study the structure and dynamics of jammed matter. In this talk, we present results of size segregation of a continuously sheared binary colloidal suspension well above point J. Our colloidal system is comprised of indexed-matched bi-disperse silica particles with diameters a = { 2 . 3 μm and 3 . 2 μm } and at ϕ 61 % , well above the colloidal glass transition. We apply a highly controlled shear at a constant shear rate through the use of a rheometer. By coupling our rheometer with a high-speed laser scanning confocal microscope, we directly image the structure and flow profiles of the suspension as it un-jams. We observe migration of the small and large species; large particles move to the top while the small particles move toward the bottom conserving the total volume fraction in all regions. Moreover, we find that an associating feature of segregation is a sustained shear band. Our results are consistent with a recently proposed void filling and squeeze expulsion mechanism. Funding is provided by NSF DMR #0847490.

  8. Shear-wave splitting and moonquakes (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.


    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  9. Shearing DNA for genomic library construction. (United States)

    Hengen, P N


    Methods and reagents is a unique monthly column that highlights current discussion in the newsgroup bionet.molibio.methds-reagnts, available on the internet. This month's column discusses the pros and cons of various techniques used to shear DNA for shotgun cloning. For details on how to partake in the newsgroup, see the accompanying box.


    African Journals Online (AJOL)

    This research work seeks to develop models for predicting the shear strength parameters (cohesion and angle of friction) of lateritic soils in central and southern areas of Delta State using artificial neural network modeling technique. The application of these models will help reduce cost and time in acquiring geotechnical ...

  11. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil


    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  12. Measurement of cavitation induced wall shear stress

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.


    The wall shear stress from cavitation bubbles collapsing close to a rigid boundary is measured with a constant temperature anemometer. The bubble is created with focused laser light, and its dynamics is observed with high-speed photography. By correlating the frames, a hydrophone signal, and the

  13. Longitudinal shear vibrations of composite poroelastic cylinders ...

    African Journals Online (AJOL)

    Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...

  14. About the Possibility Of Transformation Of Shear Deformation Modes. (United States)

    Ostapchuk, Aleksey; Kocharyan, Gevorg; Pavlov, Dmitriy; Markov, Vadim


    In this study we present the results of laboratory experiments aimed to investigate the effect of material properties, filling a discontinuity, on transformation of deformation modes from stable creep to regular stick-slip. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical 'slider model' statement. A small granite block slid under shear load on a bigger granite block. The contact between rough surfaces of the blocks was filled with a discrete material, which simulated the fault zone. Quartz sand, granite crumb, glass balls and rock salt were used as the filling material. The normal load was applied to the sliding block through a special device excluding origination of tangential forces. Shear load was applied to the block through a spring. The sliding block position was controlled by laser sensors that recorded relative displacement of blocks at the frequency up to 4 kHz with the accuracy of 0.1 micron. A full spectrum of possible deformation regimes was obtained in experiments - from stable slip to low-velocity motion and to regular stick-slip, with various seismic moments realized per one act of instability. The deformation regime can transform into another one due to a slight change of the filling material structure and humidity. Experimental data can be divided into three groups, which, speaking in terms of seismology, correspond to aseismic creep, slow earthquakes and normal earthquakes with various magnitudes. Laboratory experiments allowed to determine the main factor that controlls realization of deformation regime of the model fault and to develop the phenomenological model of the process based on assumption that some force mesostructures were forming across the model fault in shearing. The mode of deformation regime is completely controlled by the length and amount of these mesostructures. At the same time narrow particle-size distribution, high degree of order of

  15. A new tribological experimental setup to study confined and sheared monolayers. (United States)

    Fu, L; Favier, D; Charitat, T; Gauthier, C; Rubin, A


    We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.

  16. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures (United States)

    Helou, S. H.; Touqan, A. R.


    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended.

  17. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    International Nuclear Information System (INIS)

    Helou, S. H.; Touqan, A. R.


    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended

  18. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)


    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  19. Microstructure and Tensile-Shear Properties of Resistance Spot Welded 22MnMoB Hot-Stamping Annealed Steel (United States)

    Li, Yang; Cui, Xuetuan; Luo, Zhen; Ao, Sansan


    The present paper deals with the joining of 22MnMoB hot-stamping annealed steel carried out by the spot welding process. Microstructural characterization, microhardness testing and tensile-shear testing were conducted. The effects of the welding parameters, including the electrode tip diameter, welding current, welding time and electrode force upon the tensile-shear properties of the welded joints, were investigated. The results showed that a weld size of 9.6 mm was required to ensure pullout failure for the 1.8 -mm-thick hot-stamping annealed steel sheet. The welding current had the largest influence upon the tensile-shear properties of the 22MnMoB steel welded joint. The bulk resistance should play an important role in the nugget formation. In pullout failure mode, failure was initiated at the heat-affected zone, where softening occurs owing to the tempering of martensite.

  20. Dynamics of microcapsules in oscillating shear flow (United States)

    Zhao, Mengye; Bagchi, Prosenjit


    We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.

  1. Investigating Aquatic Dead Zones (United States)

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael


    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  2. Work zone safety analysis. (United States)


    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  3. Iowa Work Zone Fatalities (United States)


    From March through November, the Iowa DOT may have up to 500 road construction work zones, and each of the department's maintenance garages may establish one or more short-term work zones per day. Couple that with the work of cities and counties, and...

  4. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain


    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  5. The effect of shearing rate and slope angle on the simple shear response of marine clays (United States)

    Biscontin, G.; Rutherford, C.


    The response of submarine slopes to seismic or storm loading has become an important element in the risk assessment for offshore structures and local tsunami hazard. Evaluation of submarine slope stability requires characterization of soil behavior and relies on the selection of appropriate parameter values. Although the traditional simple shear device has been used to investigate cyclic loading effects on marine clay, it does not allow for complex loading conditions which often contribute to the failure on submarine slopes. Understanding the interaction between the initial shear stress, the slope angle, and the multi-directional shaking due to earthquakes or storm loading is an important aspect to understanding the failure mechanisms of submarine slope failures. The initial static driving force on the slope is combined with the dynamic loading by storms and earthquakes to create complex loading paths. Therefore, the ability to apply complex stress or strain paths is important to fully study the shear response of marine clays on submarine slopes. A new multi-directional simple shear device developed at Texas A&M University allows loading along three independent axes, two perpendicular horizontal directions to allow any stress or strain paths in the horizontal plane, and a third in the vertical direction. This device is used to investigate the response of Gulf of Mexico marine deposits to different loading conditions. To study the effect of slope angle on the shear response of the soil, samples are subjected to a shear stress during consolidation, Kα consolidation. One-dimensional monotonic and cyclic shearing of Ko consolidated specimens is used to simulate level ground conditions, whereas sloping surfaces were simulated using Kα consolidation for both monotonic and cyclic tests. The effects of shearing rate on the soil response are investigated using strain controlled tests at varying frequencies.

  6. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde


    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  7. Fault zone processes in mechanically layered mudrock and chalk (United States)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach


    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  8. Validation of a Perturbed-Continuum Model for Shear Localization

    National Research Council Canada - National Science Library

    Iyer, K; Schoenfeld, S; Casem, D; Wright, T


    .... Experiments and continuum analysis (Wright, 2002) have shown sudden stress collapse via shear localization may be related to velocity or strain rate perturbations in the vicinity of shear band initiation...

  9. Robust Kalman filter design for predictive wind shear detection (United States)

    Stratton, Alexander D.; Stengel, Robert F.


    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  10. Heat Treatment of Al 7075 for Ejection Seat Shear Wire

    National Research Council Canada - National Science Library

    Wong, Catherine


    .... Current lots of Al 6061 could not duplicate the double shear breaking load values and so it was attempted to achieve the required double shear breaking load in the Al 7075 alloy with a stable microstructure...

  11. Measurement and modelling of bed shear induced by solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.

    horizontal continental shelf. Measurements of bed shear stress, surface elevation and flow velocities were carried out. Periodic waves were also generated and the bed shear stresses measured over a horizontal bed were found to be comparable with the earlier...

  12. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation. (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J


    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  13. Flexible Micropost Arrays for Shear Stress Measurement (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.


    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  14. Relaxation of jammed colloidal suspensions after shear cessation. (United States)

    Ianni, Francesca; Lasne, David; Sarcia, Régis; Hébraud, Pascal


    The dynamics of heterogeneities in a shear thickening, concentrated colloidal suspension is investigated through speckle visibility spectroscopy, a dynamic light scattering technique recently introduced [P. K. Dixon and D. J. Durian, Phys. Rev. Lett. 90, 184302 (2003)]. Formation of shear-induced heterogeneities is observed in the jamming regime, and their relaxation after shear cessation is monitored as a function of the applied shear stress. The relaxation time of these heterogeneities increases when a higher stress is applied.

  15. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan


    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  16. Shear strength characteristics and activation of the Asato landslide, Okinawa, Japan (United States)

    Nakamura, S.; Kimura, S.


    The Asato landslide is located in the Shimajiri-mudstone area, which is very much prone to the occurrence of landslides. The landslide that occurred on June 10, 2006 was of fairly large proportions and the trigger for the slide was due to the rise of soil pore water pressures, which was directly related to the antecedent rainfall of 423 mm (May 11 - June 9) and the heavy down pour of 86 mm on the following day (June 10). The shear strength parameters of the landslide, which is a representation of a quasi-first activated slide, has been investigated using triaxial and ring shear tests. The results of the riaxial test carried out under constant net confining stresses of 50, 100, 200, 300 and 400 kN/m2. The stress-strain curves of the fractured-mudstone samples rose to a peak at an axial strain of 1-6%, which decreased to a low value there after. The variations of peak and strain curves are effected by the degree of fracture and the condition of intrinsic fissures of the soil sample. The peak strengths for cohesion intercept (cf') and shear angle (φf') obtained in the triaxial tests were 12.1-52.8 kN/m2 and 29.9-33.0°, respectively. The peak strengths of the tested samples have fallen in the range of strongly weathered/fractured and moderately/slightly weathered strength zones of the shear strength diagram of Shimajiri-mudstone. In the results of the ring test, the friction coefficient, τ/σn'against the shear displacement, D, under the effective normal stresses of 50, 100, 200 and 300 kN/m2. The friction coefficient decreased sharply after reaching the fully softened value of τsf /σn'= 0.516 at friction coefficient of D = 10 mm under constant effective normal stress of 300 kN/m2 and the residual τr /σn'= 0.184 was attained at a displacement of around 200 mm. The parameters of fully softened strength (φsf ) and residual strength (φr ) were estimated to be 27.8° and 10.8°, respectively. The residual and fully softened strengths have found their respective

  17. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.


    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  18. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    International Nuclear Information System (INIS)

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.


    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding

  19. Modified bond model for shear in slabs under concentrated loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.


    Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.

  20. [Biomechanic shear stress in carotid arteries and atherosclerosis development]. (United States)

    Kaźmierski, Radosław


    One of the major hemodynamic forces acting on blood vessels is shear stress, which is, the friction force between the endothelial cell surface and flowing blood. Arterial shear stress within physiologic range (15-70 dyne/cm2) induces endothelial quiescence and an atheroprotective gene expression profile. Low shear stress ( 70 dyne/cm2) induce prothrombotic state.

  1. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping


    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  2. A yield criterion based on mean shear stress

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.


    This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are con-

  3. Plasticity Approach to HSC Shear Wall Design

    DEFF Research Database (Denmark)

    Liu, Lunying; Nielsen, Mogens Peter


    The paper describes a simple theory for determining the ultimate strength of shear walls. It is based on application of the theory of perfectly plastic materials. When applied to concrete the theoretical solutions must be modified by inserting into the solutions a reduced compressive strength...... to 140 MPa and reinforcement yield strengths up to 1420 MPa. The work was carried out as a Ph.D. study by the first author, the second author supervising the study.Keywords: shear wall, plasticity, strut and tie, load-carrying capacity, concrete, reinforcement....... of concrete. The reduced strength is named the effective strength. The paper describes simple lower bound solutions. They consist of pure strut action or strut action combined with diagonal compression fields outside the struts. Near moment maximum and near supports the stress fields are modified to save...

  4. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf


    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... set of test cases regardless the amount of pre-strain derived from previous upsetting under near frictionless conditions. The new proposed criterion can be easily implemented in existing finite element programs and its scope of application allows extending previous work on the opening modes in surface...

  5. Shear-dependant toroidal vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)


    Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.

  6. Direct measurement of shear properties of microfibers

    Energy Technology Data Exchange (ETDEWEB)

    Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Skove, M. J.; Rao, A. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Oliveira, L. [School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Serkiz, S. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)


    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar{sup ®} 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  7. Implications of Orientation in Sheared Cocoa Butter (United States)

    Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.


    We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).

  8. Shear Stress Sensing with Elastic Microfence Structures (United States)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide


    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  9. Structural evidence for strike-slip deformation in the Izmir-Balikesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey)

    NARCIS (Netherlands)

    Uzel, B.; Sözbilir, H.; Özkaymak, T.; Kaymakci, N.; Langereis, C.G.


    The Izmir-Balikesir transfer zone (IBTZ) is a recently recognized strike-slip dominated shear zone that accommodates the differential deformation between the Cycladic and Menderes core complexes within the Aegean Extensional System. Here, we present new structural and kinematic data obtained from

  10. [Study of shear rate in modified airlift nitrifying bioreactor]. (United States)

    Jin, Ren-cun; Zheng, Ping


    The characteristics of shear rate in an airlift nitrifying bioreactor and its influencing factors were studied. The results showed that the shear rate was different in different sections of the bioreactor. With inlet gas flowrate at 430 approximately 2700 L x h(-1), the overall shear rate was (0.702 approximately 3.13) x 10(5) s(-1), shear rate in riser was (1.07 approximately 31.3) x 10(5) s(-1) and in gas-liquid separator was (1.12 approximately 25.0) x 10(5) s(-1), respectively. It indicates that the highest shear rates prevailed in the riser part of bioreactor. The operational variables and the bioreactor configurations exerted a significant influence on the shear level of the bioreactor. When inlet gas flowrate was raised from 1300 to 2700 L x h(-1), shear rate in riser and separator ascended first and then descended subsequently. The diameter of draft tube (d) was negatively correlated with shear rate. When the draft tube with diameter of 5.5 cm was installed, the shear rates in riser, separator and overall shear rate were 85.5%, 82.3% and 80.6%, respectively less as compared with that with diameter of 4.0 cm. The number of static mixers (N) was positively correlated with the shear rate. When d was set at 4.0 cm, with N of 10 and 39, the shear rates in riser were 6.14 and 7.97 times higher respectively, than that of conventional bioreactor. The ratio of maximum local shear rate to overall shear rate was 3.68 approximately 7.66, and the homogeneity of the shear field in airlift bioreactors could be improved if d and N were set at 5.5 cm and 10 approximately 13, respectively.

  11. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  12. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter


    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...... both weakly nonlinear analysis and full numerical simulations that closely reproduce the experimental observations. Varying the Reynolds number leads to bifurcation sequences accompanied by topological changes in the distribution of the coherent structures as well as clear transitions in the total...

  13. Understanding Transition to Turbulence in Shear Layers. (United States)


    state of shear-layer systems by state variables appropriate for phase- space approach. (See Section A.19 for illustration of simple two-dimensional and...three-dimensional phase spaces .) The broad learning process concludes in Chapter 3 with otherwise * inaccessible conceptualization of disturbances in...scales, they represent a plausible model for the occurrence of fine- scale intermittency which led Kolmogoroff to reconsider his universal similarity

  14. Shear rheological characterization of motor oils (United States)

    Bair, Scott; Winer, Ward O.


    Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.

  15. Surface shear rheology of saponin adsorption layers. (United States)

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Edward; Stoyanov, Simeon D


    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers.

  16. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.


    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  17. Supercritical Mixing in a Shear Coaxial Injector (United States)


    the literature [19]. This method is implemented by Saunders and Kennelly and is available as an open source utility [20]. The details of the method...computationally expensive and yields insignificant benefit in comparison to the straight line assumption. The procedure by Saunders and Kennelly thus...dark core, outer injector flow and outer shear layer are marked on the experimental image by the dashed, closely dotted and sparsely dotted lines

  18. Magnetic field reconnexion in a sheared field

    International Nuclear Information System (INIS)

    Ugai, M.


    A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)


    NARCIS (Netherlands)



    In this study, human umbilical vein and human saphenous vein endothelial cells ware seeded on glass and exposed to fluid shear in a parallel-plate flow chamber. cell retention, morphology and migration were studied as a function of shear stress and of adhesion time prior to exposure to shear.

  20. VT Data - Zoning 20081203, Norwich (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  1. VT Data - Zoning 20170710, Woodstock (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  2. VT Data - Zoning 20170227, Fairlee (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  3. VT Data - Zoning 20120709, Huntington (United States)

    Vermont Center for Geographic Information — Zoning district data for the Town of Huntington, Vermont. For details regarding each zoning district refer to the current zoning regulations on town of Huntington's...

  4. VT Data - Zoning 20170727, Westford (United States)

    Vermont Center for Geographic Information — Zoning District data for Westford, Vermont. Data corresponds to the zoning regulations adopted by the Town of Westford. For details and descriptions of all zoning...

  5. Cosmic Shear With ACS Pure Parallels (United States)

    Rhodes, Jason


    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  6. Shear Stress Sensing using Elastomer Micropillar Arrays (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.


    The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.

  7. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten


    Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...

  8. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten


    Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...

  9. Wave anisotropy of shear viscosity and elasticity (United States)

    Rudenko, O. V.; Sarvazyan, A. P.


    The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

  10. Structural Origin of Shear Viscosity of Liquid Water. (United States)

    Yamaguchi, Tsuyoshi


    The relation between the microscopic structure and shear viscosity of liquid water was analyzed by calculating the cross-correlation between the shear stress and the two-body density using the molecular dynamics simulation. The slow viscoelastic relaxation that dominates the steady-state shear viscosity was ascribed to the destruction of the hydrogen-bonding network structure along the compression axis of the shear distortion, which resembles the structural change under isotropic hydrostatic compression. It means that the shear viscosity of liquid water reflects the anisotropic destruction-formation dynamics of the hydrogen-bonding network.

  11. Speeds in school zones. (United States)


    School speed zones are frequently requested traffic controls for school areas, based on the common belief : that if the transportation agency would only install a reduced speed limit, then drivers would no longer : speed through the area. This resear...

  12. Promise Zones for Applicants (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  13. Buffer Zone Fact Sheets (United States)

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  14. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh


    Full Text Available This research describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. In order to arrive at out objective, we provide a plausible answer to the following question: "Which...

  15. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping


    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation

  16. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping [School of Technology, Beijing Forestry University, Beijing (China)


    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation.

  17. Dilatancy of Shear Transformations in a Colloidal Glass (United States)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.


    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  18. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density. (United States)

    Furukawa, Akira


    We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.

  19. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  20. Atomic structure of amorphous shear bands in boron carbide. (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W


    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  1. Edge-Induced Shear Banding in Entangled Polymeric Fluids (United States)

    Hemingway, Ewan J.; Fielding, Suzanne M.


    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  2. Cohesive zone modelling of interface fracture near flaws in adhesive joints

    DEFF Research Database (Denmark)

    Hansen, Peter Feraren; Jensen, Henrik Myhre


    A cohesive zone model is suggested for modelling of interface fracture near flaws in adhesive joints. A shear-loaded adhesive joint bonded with a planar circular bond region is modelled using both the cohesive zone model and a fracture mechanical model. Results from the models show good agreement...... of crack propagation on the location and shape of the crack front and on the initial joint strength. Subsequently, the cohesive zone model is used to model interface fracture through a planar adhesive layer containing a periodic array of elliptical flaws. The effects of flaw shape are investigated, as well...

  3. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.


    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  4. Radially converging tracer test in a low-angle fracture zone at the Finnsjoen site, central Sweden. The fracture zone project - phase 3

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.


    The performance and results of a radially converging tracer test in a low-angle major fracture zone in crystalline rock are described. The extensive, about 100 m thick, zone 2 was encountered by means of borehole investigations at depths ranging from 100 to 250 metres at the Finnsjon site, central eastern Sweden. The zone studied (zone 2) consists of highly conductive, metre thick interconnected minor shear and fracture zones (sub-zones) with low conductive rock in between. The objective of the tracer test was primarily to determine flow and transport characteristics in a major fracture zone. Secondly new equipment, experimental design and methods of interpretation were developed, tested and improved. The converging flow field was created by pumping in a central borehole from a packed-off interval enclosing the whole thickness of zone 2. Tracer breakthrough was registered from all nine injection points, with first arrivals ranging from 24 to 3200 hours. Evaluated flow and transport parameters included; flow porosity, dispersivity, flow wetted surface, fracture aperture and hydraulic conductivity in fracture flow paths. Directional variations were found in the flow and transport parameters determined, which is concluded to be due to heterogeneity and/or anisotropy. This conditions is more pronounced at depth in zone 2. The results from the tracer test also clearly show that the upper boundary of zone 2 is highly conductive and consistent over hundreds of metres. Within zone 2, and between upper and lower margins, interconnected discrete minor shear and fracture zones (sub-zones) constitute flow paths of considerable variable residence times. The dispersion within the sub-zones of zone 2, expressed as Peclet numbers ranged from 16 to 40. Flow porosity was determined to be 0.001-0.05 in the upper sub-zone and 0.01-0.1 in the intermediate and lower ones and flow wetted surface area per volume of rock was calculated to be within 1-92 m 2 /m 3 . 68 refs, 61 figs, 40 tabs

  5. Crystallographically controlled crystal-plastic deformation of zircon in shear zones (United States)

    Kovaleva, Elizaveta; Klötzli, Urs


    Plastically-deformed zircons from various types of strained natural metamorphic rocks have been investigated in-situ by electron backscatter diffraction analysis (EBSD), allowing crystallographic orientation mapping at high spatial resolution. Plastic deformation often forms under the control of grain-internal heterogeneities. At the crystal structure scale deformation is controlled by the physical anisotropy of the lattice. Three most common slip systems in zircon are [100]{010}, [010]{001} and [001]{010} (Leroux et. al., 1999; Reddy et. al., 2007). They are genetically connected with the main zircon crystallographic directions: [001] (c-axis), [100] and [010] (a and b axes). Atomic models show weak planes normal to these directions that preferably evolve to glide planes in the deforming crystal. The visualization of seismic (elastic) properties of zircon with the MATLAB toolbox MTEX shows a similar pattern. The slowest S-wave velocities are observed in directions parallel to [100], [010] and [001] crystallographic directions. The highest Young's modulus values lie in the same directions. In natural zircon grains, the common slip systems are preferably activated when zircon is hosted by rheologically comparatively weaker phases or a fine-grained matrix. In these cases zircon behaves as a rigid clast. During progressive deformation high deviatoric stresses together with high strain rates concentrate at crystal tips, as shown by numerical modeling. Softer host phases allow more degrees of freedom for zircon to be deformed according to its crystallographic and internal properties. These conclusions are supported by the misorientation axes density distribution maps, derived with MTEX. Deformed zircon hosted by a relatively soft phase (mostly biotite) develops a crystallographic preferred orientation (CPO), which has not been documented for zircon before. At the same time deformation of zircon hosted by a rheologically stronger matrix causes the activation of less common slip systems, screw dislocations or the development of brittle deformation. In this case the internal deformation is mainly controlled by the host phase microstructural arrangement. Crystal lattice distortions of zircon such as plastic deformation features may facilitate intragranular material transport. Enhanced mobility of trace elements or radiogenic isotopes influences isotopic systems used for geochronology. In-situ microstructural study of plastically deformed accessory zircon grains allows linking different stages of high-grade regional metamorphism and deformation. Understanding of zircon deformation mechanisms and their effects on the distribution of trace elements and isotopic systems is important for deriving the age of deformation events. References: Leroux, H., Reimold, W.U., Koeberl, C., Hornemann, U., Doukhan, J.C., 1999. Experimental shock deformation in zircon: a transmission electron microscopic study. Earth and Planetary Science Letters, 169, 291-301. Reddy, S.M., Timms, N.E., Pantleon, W., Trimby, T., 2007. Quantitative characterization of plastic deformation of zircon and geological implications. Contributions to Mineralogy and Petrology 153, 625-645.

  6. Microstructures and rheology of the shear zones in granite Marmarajá, Lavalleja Province, Uruguay

    International Nuclear Information System (INIS)

    Scaglia, F.; Paris, A.


    The study area (coordinates x : 567 , x : 577.7 , y: 6216 : and ' : 6225 km ) is located near the town of Marschallin (Department of Lavalleja). It is represented mostly by granite, deformed granites and quartzite mylonites , whereas amphibolites and volcanic breccias are of small size . The Marmarajá (biotite - monzogranite) batholith, considered to post- orogenic tardi occupies about 80% of the study area , and is fragmented into three sectors per kilometer mylonitic belts by the SW- NE direction. The deformed granite is located west and east of the study area forming an extensive parallel on both sides of the mylonite belt. The mylonites are in topographic low along which the major waterways of the narrow belts direction N50E and dips 40 ° -50 ° to the area SE with thicknesses of up to 1km and lengths of tens of kilometers continuously , north and south of the area study. These belts have similar directions mylonitic the Sierra megatranscurrencia whale and may be contemporaneous to it. In turn, the kinematic indicators suggest sinistral sense justifying further similarity to the previous one. Major fractures have three orientations: N15E ; Vertical to subvertical N64E and N45W ( approx. 80 °). Based on studies of the lithologies petrographic areas of low deformation and is relieved areas of moderate to high strain, each having typical microstructures of ductile deformation (greater than 400 ° C )

  7. Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin? (United States)

    Tauzin, B.; Kim, S.; Kennett, B. L. N.


    We exploit conversions between P and S waves for large-scale, high-resolution imaging of the mantle transition zone beneath Northwest Pacific and the margin of Eastern Asia. We find pervasive reflectivity concentrated in two bands with apparent wave-speed reduction of -2% to -4% about 50 km thick at the top of the transition zone and 100 km thick at the bottom. This negative reflectivity associated with the scattered-waves at depth is interpreted jointly with larger-scale mantle tomographic images, and is shown to delineate the stagnant portions of the subducted Pacific plate in the transition zone, with largely positive shear-wave velocity contrasts. The upper reflectivity zone connects to broad low-velocity regions below major intra-plate volcanoes, whereas the lower zone coincides locally with the occurrence of deep-focus earthquakes along the East Asia margin. Similar reflectivity is found in Pacific Northwest of the USA. We demonstrate that the thermal signature of plates alone is not sufficient to explain such features. Alternative explanations for these reflective zones include kinetic effects on olivine phase transitions (meta-stability), compositional heterogeneities within and above stagnant plates, complex wave-propagation effects in the heterogeneous slab structure, or a combination of such factors. We speculate that part of the negative reflectivity is the signature of compositional heterogeneities, as revealed by numerous other studies of seismic scattering throughout the mantle, and that such features could be widespread across the globe.

  8. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco


    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in˜nori/channel/

  9. Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. (United States)

    Jaishankar, Aditya; Wee, May; Matia-Merino, Lara; Goh, Kelvin K T; McKinley, Gareth H


    Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in New Zealand. The cooked pith has traditionally been used for various medicinal purposes and as a food source by the Maori people of New Zealand. It has potential applications as a thickener in the food industry and as a palliative for patients with dysphagia. Studies on the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening at a critical shear rate due to a transition from intra- to inter-molecular chain interactions upon shear-induced chain elongation. In this paper, we demonstrate that these interactions are primarily due to hydrogen bonding. We perform extensional rheology on mixtures of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as ∼10(4), showing that the viscoelasticity of the gum in uniaxial elongation is much higher than in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon increasing urea concentration. Furthermore, the relaxation time decreases exponentially with increasing urea concentration. This exponential relationship is independent of the Mamaku concentration, and is identical to the relationships between urea concentration and characteristic timescales measured in nonlinear shear rheology. We show using the sticky reptation model for polymers with multiple sticker groups along the backbone how such a relationship is consistent with a linear decrease in the free energy for hydrogen bond dissociation. We then demonstrate that a time-concentration superposition principle can be used to collapse the viscoelastic properties of the Mamaku-gum/urea mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels (United States)

    Kornuta, Jeffrey A.; Nepiyushchikh, Zhanna; Gasheva, Olga Y.; Mukherjee, Anish; Zawieja, David C.


    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. PMID:26333787

  11. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography (United States)

    Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick


    Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.

  12. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.


    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  13. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.


    the coupled equations for potential and pressure exhibit special tripolar vortex-like structures. For the general case, however, parallel ion dynamics is included and the equation describing the stationary ITG vortex has the structure of a nonlinear Poisson-type equation. Analytical as well as numerical...... solutions of this equation are presented for various possible cases. It is shown that, for a critical value of the velocity shear asymmetric dipolar vortices can arise which are strongly modified as a localized vortex chain at resonance. For strong velocity shear these structures are destroyed...

  14. The zone of tundra

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Taskaev, A.I.


    Peculiarities of radionuclide migration in the zone of tundra are considered. High 232 Th content, high 232 Th/ 238 U values at low 238 U and 226 Ra concentrations in rocks are shown to be characteristic for the chosen zone. Data on methods of 238 U and 232 Th determination in natural waters, as well as content of radionuclides in water and bottom sediments are presented. Formation of soils under the conditions of mountain tundra is shown to result in noticeable redistribution of radioactive elements as well as all their isotopes. Data on U, Th, Ra isotope content in different plants and certain organs of plants are presented. Principal statistical parameters both of content of certain U, Th, Ra isotopes and their isotope relations on the whole by soil and vegetation of the investigated region are presented. When characterizing storage of isotopes of different elements in vegetation of the zone of tundra it is necessary to note that the dependence 226 Ra( 228 Ra)> 228 Th> 227 Th> 230 Th> 232 Th> 238 U> 234 U is typical for it. Intensity of radionuclide inclusion in the biogenic migration cycle in the zone of tundra is higher than in the zone of taiga

  15. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y


    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  16. Evaluation of composite shear walls behavior (parametric study

    Directory of Open Access Journals (Sweden)

    Ali Nikkhoo


    Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.

  17. Freeway work zone lane capacity. (United States)


    The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 : tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. : Work Zone throughput was analyz...

  18. The rotational shear in pre-collapse cores of massive stars (United States)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam


    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  19. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest (United States)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio


    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  20. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.


    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... is made of tungsten. All processes and materials comply with MIL-STD-11268. The mounted resonance frequency exceeds 40kHz. The sensitivity is 10mV/g ±5%. During the design process, the new design is evaluated and sufficiently optimized by using the Finite Element (FE) simulation before making actual...

  1. Behaviour of voids in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo


    to a plane connecting the ends of the micro-crack is used as an approximate representation of contact stresses during frictionless sliding. In a previous study of the same problem the author applied hydrostatic pressure inside the nearly closed micro-crack to approximate contact conditions. The transverse...... surface loads used in the present analyses avoid the tendency to unrealistically elongate the voids. It is found that even though the model applied here gives significantly later occurrence of a maximum overall shear stress than that found by using hydrostatic pressure, the present model does predict...

  2. Homotopy Shear Band Solutions in Gradient Plasticity (United States)

    Raees, Ammarah; Xu, Hang; Aifantis, Elias C.


    Analytical shear band type solutions for finite domains are derived within the framework of gradient plasticity theory by employing the homotopy analysis method (HAM). Such types of solutions were available in the literature only for infinite domains in the nonlinear material softening regime and steady-state conditions, as well as for finite domains in the material hardening regime. HAM allows for solutions to be obtained for both hardening and softening material models, as well as for unsteady conditions periodic solutions are also derived. The HAM results are verified with numerical simulations, which show excellent agreement. Moreover, an error analysis is provided which guarantees the convergence of our series solution.

  3. Granular convection driven by shearing inertial forces. (United States)

    Rodríguez-Liñán, G M; Nahmad-Molinari, Y


    Convection velocity measurements in vertically vibrated granular materials are presented. The convection velocity close to the walls grows quadratically with the difference between the maximum and critical, or excess, amplitude (proposed as a dynamic parameter to describe related problems) and it is shown numerically that the average bed-bottom relative velocity during the distancing between them, grows linearly with the squared as well. This is interpreted as the signature of an inertial shearing force or momentum transfer proportional to the bed-container relative velocity, acting mainly during the bed-plate distancing part of each cycle which leads to the formation of the convective flux.

  4. Orientational ordering in sheared inelastic dumbbells. (United States)

    Reddy, K Anki; Kumaran, V; Talbot, J


    Using even driven simulations, we show that homogeneously sheared inelastic dumbbells in two dimensions are randomly orientated in the limit of low density. As the packing fraction is increased, particles first tend to orient along the extensional axis, and then as the packing fraction is further increased, the alignment shifts closer to the flow axis. The orientational order parameter displays a continuous increase with packing fraction and does not appear to exhibit a universal scaling with elongation. Except at the highest packing fractions, the orientational distribution function can be reconstructed with only the first coefficient of the Fourier expansion.

  5. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L


    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  6. Influence of strain rate on the beginning of instable deformation and failure behavior from shear to multiaxial loading for a DP1000 (United States)

    Klitschke, S.; Huberth, F.


    The influence of strain rate on the beginning of instable deformation and failure behavior of a DP1000 steel is investigated for a wide range of stress states with experimental methods. Therefore quasistatic and high speed tests have been performed for four different loading situations, shear loading, uniaxial tension loading, plane strain loading and equi-biaxial tension loading. The deformation of the specimens up to fracture in the highly deformed zones has been captured with high speed video recording and evaluated with digital image correlation (DIC). The beginning of instable local deformation behavior designated as beginning of instability has been detected with one uniform procedure. For tensile dominated loading situations the development of the local thinning rate in the necking zone on the surface of the specimen has been analyzed. For the determination of the beginning of shear instability, the development of the major and minor strain rate in the shear zone has been investigated. The difference between strain at beginning of instability and failure strain, determined as the largest strain at the location of failure prior to fracture, gives hints to the material’s crash performance under the investigated stress state. The largest difference has been observed for uniaxial tension loading and increases with increasing strain rate. However, under dynamic shear loading, fracture occurs without previous instability and at significant lower strains than under quasistatic shear loading. The proposed evaluation procedure to determine the beginning of instability for a wide range of stress states including shear loading is applied to the investigated DP1000 and strain rate effects are discussed.

  7. Post-Nevadan deformation along the Bear Mountains fault zone: Implications for the Foothills terrane, central Sierra Nevada, California (United States)

    Paterson, Scott R.; Tobisch, Othmar T.; Radloff, Judith K.


    Southern parts of the Foothills terrane, Sierra Nevada, California, consist of western and eastern sequences of volcanic rocks and overlying slate-gray wacke units separated by a multiply deformed and lithologically chaotic central belt. Structural and strain studies suggest that the intensity of regional ductile deformation decreased from greater than 50% shortening in the western belt to less than 30% shortening in the eastern belt and that much of this ductile deformation is younger than the timing usually assumed for the Nevadan orogeny. These structures are in turn deformed by a large ductile shear zone representing the southern continuation of the Bear Mountains fault zone. This shear zone separates the western and central belts, has an oblique east-over-west sense of movement, and deforms the western margin of the Guadalupe igneous complex. These observations suggest that the eastern and western volcanic sequences are pieces of arcs amalgamated along the Bear Mountains fault zone during and after Nevadan deformation.

  8. Zones of emotional labour

    DEFF Research Database (Denmark)

    Strøbæk, Pernille Solveig


    is put forth among 25 Danish public family law caseworkers. The study points to personal, professional, and social zones of emotional labour through which the caseworkers carry out their work. Emotional labour zones mark emotion structures that may be challenging due to complex emotional intersections......The paper suggests that due to the difficult nature of their work public family law caseworkers are to be included in the definition of emotional labour even though they are omitted by Hochschild. Based upon a review of the structures involved in emotional labour an explorative qualitative study...

  9. Nuclear free zone

    International Nuclear Information System (INIS)

    Christoffel, T.


    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used? The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system

  10. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik


    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... for the ventilation equipment. To   overcome a shortcoming in Simulink to solve algebraic equations and matrix inversions, we have developed the library inspired by the so called dynamic node technique. We present simulation results using the presented library, and concludes with visions for further...

  11. Test and lower bound modeling of keyed shear connections in RC shear walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Herfelt, Morten Andersen; Hoang, Linh Cao


    This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear connections. The influence of the key depth on the failure mode and ductility of the connection has been studied by push-off tests. The tests showed that connections with larger key inde...

  12. Distribution functions of a simple fluid under shear: Low shear rates

    International Nuclear Information System (INIS)

    Kalyuzhnyi, Y.V.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.


    Anisotropic pair distribution functions for a simple, soft sphere fluid at moderate and high density under shear have been calculated by nonequilibrium molecular dynamics, by equilibrium molecular dynamics with a nonequilibrium potential, and by a nonequilibrium distribution function theory [H. H. Gan and B. C. Eu, Phys. Rev. A 45, 3670 (1992)] and some variants. The nonequilibrium distribution function theory consists of a nonequilibrium Ornstein-Zernike relation, a closure relation, and a nonequilibrium potential and is solved in spherical harmonics. The distortion of the fluid structure due to shear is presented as the difference between the nonequilibrium and equilibrium pair distribution functions. From comparison of the results of theory against results of equilibrium molecular dynamics with the nonequilibrium potential at low shear rates, it is concluded that, for a given nonequilibrium potential, the theory is reasonably accurate, especially with the modified hypernetted chain closure. The equilibrium molecular-dynamics results with the nonequilibrium potential are also compared against the results of nonequilibrium molecular dynamics and suggest that the nonequilibrium potential used is not very accurate. In continuing work, a nonequilibrium potential better suited to high shear rates [H. H. Gan and B. C. Eu, Phys. Rev. A 46, 6344 (1992)] is being tested. copyright 1999 The American Physical Society

  13. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.


    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  14. Finite frequency tomography of D″ shear velocity heterogeneity beneath the Caribbean (United States)

    Hung, Shu-Huei; Garnero, Edward J.; Chiao, Ling-Yun; Kuo, Ban-Yuan; Lay, Thorne


    The shear velocity structure in the lowermost 500 km of the mantle beneath the Caribbean and surrounding areas is determined by seismic tomography applied to a suite of Sd-SKS, ScS-S, (Scd + Sbc)-S, and ScS-(Scd + Sbc) differential times, where (Scd + Sbc) is a pair of overlapping triplication arrivals produced by shear wave interaction with an abrupt velocity increase at the top of the D″ region. The inclusion of the triplication arrivals in the inversion, a first for a deep mantle tomographic model, is possible because of the widespread presence of a D″ velocity discontinuity in the region. The improved ray path sampling provided by the triplication arrivals yields improved vertical resolution of velocity heterogeneity within and above the D″ region. The reference velocity model, taken from a prior study of waveforms in the region, has a 2.9% shear velocity discontinuity 250 km above the core-mantle boundary (CMB). Effects of aspherical structure in the mantle at shallower depths than the inversion volume are suppressed by applying corrections for several different long-wavelength shear velocity tomography models. Born-Fréchet kernels are used to characterize how the finite frequency data sample the structure for all of the differential arrival time combinations; inversions are performed with and without the kernels. The use of three-dimensional kernels stabilizes the tomographic inversion relative to a ray theory parameterization, and a final model with 60- and 50-km correlation lengths in the lateral and radial dimensions, respectively, is retrieved. The resolution of the model is higher than that of prior inversions, with 3-4% velocity fluctuations being resolved within what is commonly described as a circum-Pacific ring of high velocities. A broad zone of relatively high shear velocity material extends throughout the lower mantle volume beneath the Gulf of Mexico, with several percent lower shear velocities being found beneath northern South America

  15. Finite-Frequency Tomography of D'' Shear Velocity Heterogeneity beneath the Caribbean (United States)

    Hung, S.; Garnero, E. J.; Chiao, L.; Kuo, B.; Lay, T.


    The shear velocity structure in the lowermost 500 km of the mantle beneath the Caribbean and surrounding areas is determined by seismic tomography applied to a suite of Sdiff-SKS, ScS-S, (Scd+Sbc)-S, and ScS-(Scd+Sbc) differential times, where (Scd+Sbc) is a pair of overlapping triplication arrivals produced by shear wave interaction with an abrupt velocity increase at the top of the D'' region. The inclusion of the triplication arrivals in the inversion, a first for a deep mantle tomographic model, is possible because of the widespread presence of a D'' velocity discontinuity in the region. The additional raypath sampling provided by the triplication arrivals yields improved vertical resolution of velocity heterogeneity within and above the D'' region. The reference velocity model, taken from a prior study of waveforms in the region, has a 2.9% shear velocity discontinuity 250 km above the CMB. Effects of aspherical structure in the mantle at shallower depths than the inversion volume are suppressed by applying corrections for several different long-wavelength shear velocity tomography models. Born-Fréchet kernels are used to characterize how the finite-frequency data sample the structure for all of the differential arrival time combinations; inversions are performed with and without the kernels. The use of 3-D kernels stabilizes the tomographic inversion relative to a ray theory parameterization, and a final model with 60 and 50 km correlation lengths in the the lateral and radial dimensions, respectively, is retrieved. The resolution of the model is higher than that of prior inversions, with 3 to 4% velocity fluctuations being resolved within what is commonly described as a circum-Pacific ring of high velocities. A broad zone of relatively high shear velocity material extends throughout the lower mantle volume beneath the Gulf of Mexico, with several percent lower shear velocities being found beneath northern South America. Concentrated low velocity regions

  16. Shear rheology of lipid monolayers and insights on membrane fluidity (United States)

    Espinosa, Gabriel; López-Montero, Iván; Monroy, Francisco; Langevin, Dominique


    The concept of membrane fluidity usually refers to a high molecular mobility inside the lipid bilayer which enables lateral diffusion of embedded proteins. Fluids have the ability to flow under an applied shear stress whereas solids resist shear deformations. Biological membranes require both properties for their function: high lateral fluidity and structural rigidity. Consequently, an adequate account must include, in addition to viscosity, the possibility for a nonzero shear modulus. This knowledge is still lacking as measurements of membrane shear properties have remained incomplete so far. In the present contribution we report a surface shear rheology study of different lipid monolayers that model distinct biologically relevant situations. The results evidence a large variety of mechanical behavior under lateral shear flow. PMID:21444777

  17. Microalga propels along vorticity direction in a shear flow (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian


    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  18. Flexure of thick orthotropic plates by exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    A. S. Sayyad

    Full Text Available In the present paper, a variationally consistent exponential shear deformation theory taking into account transverse shear deformation effect is presented for the flexural analysis of thick orthotropic plates. The inplane displacement field uses exponential function in terms of thickness coordinate to include the shear deformation effect. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for static flexure of simply supported orthotropic plates are compared with those of other refined theories and elasticity solution wherever applicable. The results obtained by present theory are in excellent agreement with those of exact results and other higher order theories. Thus the efficacy of the present refined theory is established.

  19. Shear stress induced stimulation of mammalian cell metabolism (United States)

    Mcintire, L. V.; Frangos, J. A.; Eskin, S. G.


    A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under wel