WorldWideScience

Sample records for transporter gene expressed

  1. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis.

    Science.gov (United States)

    Hu, Yao Fei; Caron, Marc G; Sieber-Blum, Maya

    2009-04-08

    We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE) transport. We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis of gene expression (LongSAGE). Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP) signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-beta-hydroxylase (Dbh), tyrosine hydroxylase (Th), the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart), and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression of key genes not only in neural

  2. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    Directory of Open Access Journals (Sweden)

    Sieber-Blum Maya

    2009-04-01

    Full Text Available Abstract Background We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD. NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE transport. Results We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO mouse neural crest cells using long serial analysis of gene expression (LongSAGE. Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (Dbh, tyrosine hydroxylase (Th, the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart, and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression

  3. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  4. GeneGini: Assessment via the Gini Coefficient of Reference "Housekeeping" Genes and Diverse Human Transporter Expression Profiles.

    Science.gov (United States)

    O'Hagan, Steve; Wright Muelas, Marina; Day, Philip J; Lundberg, Emma; Kell, Douglas B

    2018-02-28

    The expression levels of SLC or ABC membrane transporter transcripts typically differ 100- to 10,000-fold between different tissues. The Gini coefficient characterizes such inequalities and here is used to describe the distribution of the expression of each transporter among different human tissues and cell lines. Many transporters exhibit extremely high Gini coefficients even for common substrates, indicating considerable specialization consistent with divergent evolution. The expression profiles of SLC transporters in different cell lines behave similarly, although Gini coefficients for ABC transporters tend to be larger in cell lines than in tissues, implying selection. Transporter genes are significantly more heterogeneously expressed than the members of most non-transporter gene classes. Transcripts with the stablest expression have a low Gini index and often differ significantly from the "housekeeping" genes commonly used for normalization in transcriptomics/qPCR studies. PCBP1 has a low Gini coefficient, is reasonably expressed, and is an excellent novel reference gene. The approach, referred to as GeneGini, provides rapid and simple characterization of expression-profile distributions and improved normalization of genome-wide expression-profiling data. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  6. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J

    2014-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. METHODS: The relationship between clinical outcomes and ABC transporter gene expression in two in...

  7. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma

    Czech Academy of Sciences Publication Activity Database

    Elsnerová, K.; Mohelniková; Duchonová, B.; Čeřovská, E.; Ehrlichová, M.; Gut, I.; Rob, L.; Skapa, P.; Hruda, M.; Bartáková, A.; Bouda, J.; Vodička, Pavel; Souček, P.; Václavíková, R.

    2016-01-01

    Roč. 35, č. 4 (2016), s. 2159-2170 ISSN 1021-335X R&D Projects: GA MZd(CZ) NT14056; GA MŠk(CZ) LD14050 Institutional support: RVO:68378041 Keywords : epithelial ovarian cancer * ABC transporters * SLC transporters * gene expression * prognosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.662, year: 2016

  8. Diverse expression of sucrose transporter gene family in Zea mays

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... Planta 225, 907–918. Lemoine R. 2000 Sucrose transporters in plants: update on function and structure. Biochem. Biophys. Acta 1465, 246–262. Lu J. M. Y. and Bush D. R. 1998 His-65 in the proton-sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases ...

  9. Diverse expression of sucrose transporter gene family in Zea mays

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... Phosphate starvation had led to an increase in the level of ZmSUT1 and ... resistance. Sugar signalling is the immediate response of Pi starvation in a plant which follows increased sucrose biosyn- thesis in source tissues (Karthikeyan et al. 2007). .... ation of several genes involved in overcoming phosphate.

  10. Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy

    International Nuclear Information System (INIS)

    Saigusa, Susumu; Toiyama, Yuji; Tanaka, Koji; Okugawa, Yoshinaga; Fujikawa, Hiroyuki; Matsushita, Kohei; Uchida, Keiichi; Inoue, Yasuhiro; Kusunoki, Masato

    2012-01-01

    Most cancer cells exhibit increased glycolysis. The elevated glucose transporter 1 (GLUT1) expression has been reported to be associated with resistance to therapeutic agents and a poor prognosis. We wondered whether GLUT1 expression was associated with the clinical outcome in rectal cancer after preoperative chemoradiotherapy (CRT), and whether glycolysis inhibition could represent a novel anticancer treatment. We obtained total RNA from residual cancer cells using microdissection from a total of 52 rectal cancer specimens from patients who underwent preoperative CRT. We performed transcriptional analyzes, and studied the association of the GLUT1 gene expression levels with the clinical outcomes. In addition, we examined each proliferative response of three selected colorectal cancer cell lines to a glycolysis inhibitor, 3-bromopyruvic acid (3-BrPA), with regard to their expression of the GLUT1 gene. An elevated GLUT1 gene expression was associated with a high postoperative stage, the presence of lymph node metastasis, and distant recurrence. Moreover, elevated GLUT1 gene expression independently predicted both the recurrence-free and overall survival. In the in vitro studies, we observed that 3-BrPA significantly suppressed the proliferation of colon cancer cells with high GLUT1 gene expression, compared with those with low expression. An elevated GLUT1 expression may be a useful predictor of distant recurrence and poor prognosis in rectal cancer patients after preoperative CRT. (author)

  11. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer.

    Science.gov (United States)

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P; Berchuck, Andrew; Goode, Ellen; Bowtell, David D; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J

    2014-07-01

    ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Associations with outcome were observed with ABC transporters of the "A" subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid

  12. Effects of Transport and Storage Conditions on Gene Expression in Blood Samples.

    Science.gov (United States)

    Malentacchi, Francesca; Pizzamiglio, Sara; Wyrich, Ralf; Verderio, Paolo; Ciniselli, Chiara; Pazzagli, Mario; Gelmini, Stefania

    2016-04-01

    Inappropriate handling of blood samples might induce or repress gene expression and/or lead to RNA degradation affecting downstream analysis. In particular, sample transport is a critical step for biobanking or multicenter studies because of uncontrolled variables (i.e., unstable temperature). We report the results of a pilot study implemented within the EC funded SPIDIA project, aimed to investigate the role of transport and storage of blood samples containing and not containing an RNA stabilizer. Blood was collected from a single donor both in EDTA and in PAXgene Blood RNA tubes. Half of the samples were sent to a second laboratory both at room temperature and at 4°C, whereas the remaining samples were stored at room temperature and at 4°C. Gene expression of selected genes (c-FOS, IL-1β, IL-8, and GAPDH) known to be induced or repressed by ex vivo blood handling and of blood-mRNA quality biomarkers identified and validated within the SPIDIA project, which allow for monitoring changes in unstabilized blood samples after collection and during transport and storage, were analyzed by RT-qPCR. If the shipment of blood in tubes not containing RNA stabilizer is not performed under a stable condition, gene profile studies can be affected by the effects of transport. Moreover, also controlled temperature shipment (4°C) can influence the expression of specific genes if blood is collected in tubes not containing a stabilizer. The use of dedicated biomarkers or time course experiments should be performed in order to verify potential bias on gene expression analysis due to sample shipment and storage conditions. Alternatively, the use of RNA stabilizer containing tubes can represent a reliable option to avoid ex vivo RNA changes.

  13. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L.

    Science.gov (United States)

    Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong

    2014-08-10

    In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Expression of a human gene for polyamine transport in Chinese-hamster ovary cells.

    Science.gov (United States)

    Byers, T L; Wechter, R; Nuttall, M E; Pegg, A E

    1989-01-01

    A molecular-genetic approach towards isolating mammalian polyamine-transport genes and their encoded proteins was devised involving the production of Chinese-hamster ovary (CHO) cells expressing a human polyamine-transport protein. CHO cells and a polyamine-transport-deficient CHO mutant cell line (CHOMG) were equally sensitive to the antiproliferative effects of alpha-difluoromethylornithine (DFMO), which blocked endogenous polyamine synthesis. Exposure to exogenous polyamines increased intracellular polyamine levels and reversed this DFMO-induced cytostasis in the CHO cells, but not in the CHOMG cells. CHOMG cells were therefore transfected with human DNA (isolated from HT-29 colon carcinoma cells) and cells expressing the human polyamine-transport system were identified by the ability of these cells to grow in a medium containing DFMO and polyamines. A number of different positive clones were identified and shown to have the capacity for polyamine uptake and an increased sensitivity to the toxic effects of the polyamine analogue methylglyoxal bis(guanylhydrazone). Differences in these properties between the clones are consistent with a multiplicity of polyamine-transport systems. Some clones also showed a change in growth characteristics, which may indicate a relationship between genes involved in the polyamine-transport system and in cell proliferation. PMID:2512913

  16. Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1

    Directory of Open Access Journals (Sweden)

    D'Souza Ursula M

    2005-01-01

    Full Text Available Abstract Background The 10-repeat allele of a variable number tandem repeat (VNTR polymorphism in the 3'-untranslated region of the dopamine transporter gene (DAT1 has been associated with a range of psychiatric phenotypes, most notably attention-deficit hyperactivity disorder. The mechanism for this association is not yet understood, although several lines of evidence implicate variation in gene expression. In this study we have characterised the genomic structure of the 9- and 10-repeat VNTR alleles, and directly examined the role of the polymorphism in mediating gene expression by measuring comparative in vitro cellular expression using a reporter-gene assay system. Results Differences in the sequence of the 9- and 10- repeat alleles were confirmed but no polymorphic differences were observed between individuals. There was no difference in expression of reporter gene constructs containing the two alleles. Conclusions Our data suggests that this VNTR polymorphism may not have a direct effect on DAT1 expression and that the associations observed with psychiatric phenotypes may be mediated via linkage disequilibrium with other functional polymorphisms.

  17. The Creatine Transporter Gene Paralogous at 16p11.2 Is Expressed in Human Brain

    Directory of Open Access Journals (Sweden)

    Nadia Bayou

    2008-01-01

    We report on the clinical, cytogenetic, and molecular findings in a boy with autism carrying a de novo translocation t(7;16(p22.1;p11.2. The chromosome 16 breakpoint disrupts the paralogous SLC6A8 gene also called SLC6A10 or CT2. Predicted translation of exons and RT-PCR analysis reveal specific expression of the creatine transporter paralogous in testis and brain. Several studies reported on the role of X-linked creatine transporter mutations in individuals with mental retardation, with or without autism. The existence of disruption in SLC6A8 paralogous gene associated with idiopathic autism suggests that this gene may be involved in the autistic phenotype in our patient.

  18. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  19. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal.

    Science.gov (United States)

    Kim, Ronald; Sepulveda-Orengo, Marian T; Healey, Kati L; Williams, Emily A; Reissner, Kathryn J

    2018-01-01

    Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    Science.gov (United States)

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  1. Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse.

    Directory of Open Access Journals (Sweden)

    Janice S Lee

    Full Text Available BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs. No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD 19, neonatal (postnatal day (PND 7, prepubescent (PND32, middle age (12 months, and old age (18 and 24 months in the C57BL/6J (C57 mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I, conjugation (Phase II and excretion (Phase III. In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7 and to a lesser extent, later life stages (18 and 24 months. A number of female-specific XMETs exhibited a spike in expression centered at PND7. CONCLUSIONS: The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs.

  2. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Motawie, Mohammed Saddik; Olsen, Carl Erik

    2016-01-01

    for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated......-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters....

  3. Heterogeneity in the expression and subcellular localization of POLYOL/MONOSACCHARIDE TRANSPORTER genes in Lotus japonicus.

    Directory of Open Access Journals (Sweden)

    Lu Tian

    Full Text Available Polyols can serve as a means for the translocation of carbon skeletons and energy between source and sink organs as well as being osmoprotective solutes and antioxidants which may be involved in the resistance of some plants to biotic and abiotic stresses. Polyol/Monosaccharide transporter (PLT proteins previously identified in plants are involved in the loading of polyols into the phloem and are reported to be located in the plasma membrane. The functions of PLT proteins in leguminous plants are not yet clear. In this study, a total of 14 putative PLT genes (LjPLT1-14 were identified in the genome of Lotus japonicus and divided into 4 clades based on phylogenetic analysis. Different patterns of expression of LjPLT genes in various tissues were validated by qRT-PCR analysis. Four genes (LjPLT3, 4, 11, and 14 from clade II were expressed at much higher levels in nodule than in other tissues. Moreover, three of these genes (LjPLT3, 4, and 14 showed significantly increased expression in roots after inoculation with Mesorhizobium loti. Three genes (LjPLT1, 3, and 9 responded when salinity and/or osmotic stresses were applied to L. japonicus. Transient expression of GFP-LjPLT fusion constructs in Arabidopsis and Nicotiana benthamiana protoplasts indicated that the LjPLT1, LjPLT6 and LjPLT7 proteins are localized to the plasma membrane, but LjPLT2 (clade IV, LjPLT3, 4, 5 (clade II and LjPLT8 (clade III proteins possibly reside in the Golgi apparatus. The results suggest that members of the LjPLT gene family may be involved in different biological processes, several of which may potentially play roles in nodulation in this nitrogen-fixing legume.

  4. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  5. Serotonin transporter gene-linked polymorphism affects detection of facial expressions.

    Directory of Open Access Journals (Sweden)

    Ai Koizumi

    Full Text Available Previous studies have demonstrated that the serotonin transporter gene-linked polymorphic region (5-HTTLPR affects the recognition of facial expressions and attention to them. However, the relationship between 5-HTTLPR and the perceptual detection of others' facial expressions, the process which takes place prior to emotional labeling (i.e., recognition, is not clear. To examine whether the perceptual detection of emotional facial expressions is influenced by the allelic variation (short/long of 5-HTTLPR, happy and sad facial expressions were presented at weak and mid intensities (25% and 50%. Ninety-eight participants, genotyped for 5-HTTLPR, judged whether emotion in images of faces was present. Participants with short alleles showed higher sensitivity (d' to happy than to sad expressions, while participants with long allele(s showed no such positivity advantage. This effect of 5-HTTLPR was found at different facial expression intensities among males and females. The results suggest that at the perceptual stage, a short allele enhances the processing of positive facial expressions rather than that of negative facial expressions.

  6. Erythropoietin Increases Myelination in Oligodendrocytes: Gene Expression Profiling Reveals Early Induction of Genes Involved in Lipid Transport and Metabolism

    Directory of Open Access Journals (Sweden)

    Georgina Gyetvai

    2017-10-01

    Full Text Available Several studies have shown that erythropoietin (EPO has neuroprotective or neuroreparative actions on diseases of the nervous system and that improves oligodendrocyte (OL differentiation and myelination in vivo and in vitro. This study aims at investigating the early molecular mechanisms for the pro-myelinating action of EPO at the gene expression level. For this purpose, we used a differentiating OL precursor cell line, rat central glia-4 cells. Cells were differentiated or not, and then treated with EPO for 1 or 20 h. RNA was extracted and changes in the gene expression profile were assessed using microarray analysis. Experiments were performed in biological replicates of n = 4. Differentiation alone changed the expression of 11% of transcripts (2,663 out of 24,272, representing 2,436 genes, half of which were upregulated and half downregulated. At 20 h of treatment, EPO significantly affected the expression of 99 genes that were already regulated by differentiation and of 150 genes that were not influenced by differentiation alone. Analysis of the transcripts most upregulated by EPO identified several genes involved in lipid transport (e.g., Cd36 and lipid metabolism (Ppargc1a/Pgc1alpha, Lpin1, Pnlip, Lpin2, Ppard, Plin2 along with Igf1 and Igf2, growth factors known for their pro-myelinating action. All these genes were only induced by EPO and not by differentiation alone, except for Pnlip which was highly induced by differentiation and augmented by EPO. Results were validated by quantitative PCR. These findings suggest that EPO might increase remyelination by inducing insulin-like growth factors and increasing lipid metabolism.

  7. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lactogenic hormones stimulate expression of lipogenic genes but not glucose transporters in bovine mammary gland.

    Science.gov (United States)

    Shao, Y; Wall, E H; McFadden, T B; Misra, Y; Qian, X; Blauwiekel, R; Kerr, D; Zhao, F-Q

    2013-02-01

    During the onset of lactation, there is a dramatic increase in the expression of glucose transporters (GLUT) and a group of enzymes involved in milk fat synthesis in the bovine mammary gland. The objective of this study was to investigate whether the lactogenic hormones mediate both of these increases. Bovine mammary explants were cultured for 48, 72, or 96 h with the following hormone treatments: no hormone (control), IGF-I, insulin (Ins), Ins + hydrocortisone + ovine prolactin (InsHPrl), or Ins + hydrocortisone + prolactin + 17β-estradiol (InsHPrlE). The relative expression of β-casein, α-lactalbumin, sterol regulatory element binding factor 1 (SREBF1), fatty acid synthase (FASN), acetyl-CoA carboxylase α (ACACA), stearyol-CoA desaturase (SCD), GLUT1, GLUT8, and GLUT12 were measured by real-time PCR. Exposure to the lactogenic hormone combinations InsHPrl and InsHPrlE for 96 h stimulated expression of β-casein and α-lactalbumin mRNA by several hundred-fold and also increased the expression of SREBF1, FASN, ACACA, and SCD genes in mammary explants (P hormone combinations had no effect on GLUT1 or GLUT8 expression and inhibited GLUT12 expression by 50% after 72 h of treatment (P hormone treatments. Moreover, treatment of dairy cows with bovine prolactin had no effect on GLUT expression in the mammary gland. In conclusion, lactogenic hormones clearly stimulate expression of milk protein and lipogenic genes, but they do not appear to mediate the marked up-regulation of GLUT expression in the mammary gland during the onset of lactation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Expression of monoamine transporters, nitric oxide synthase 3 and neurotrophin genes in antidepressant-stimulated astrocytes

    Directory of Open Access Journals (Sweden)

    Sarah eKittel-Schneider

    2012-04-01

    Full Text Available Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the mRNA expression of brain derived neurotrophic factor (Bdnf, serotonin transporter (5Htt, dopamine transporter (Dat and endothelial nitric oxide synthase (Nos3 was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, lead to a significant increase of the Bdnf mRNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 mRNA expression was detected in cultured astrocytes. Conclusions: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants.

  10. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants.

    Science.gov (United States)

    Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong

    2015-01-01

    Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.

  11. Influence of the serotonin transporter promoter gene and shyness on children's cerebral responses to facial expressions.

    Science.gov (United States)

    Battaglia, Marco; Ogliari, Anna; Zanoni, Annalisa; Citterio, Alessandra; Pozzoli, Uberto; Giorda, Roberto; Maffei, Cesare; Marino, Cecilia

    2005-01-01

    Childhood shyness can predate social anxiety disorder and may be associated with biased discrimination of facial expressions of emotions. To determine whether childhood shyness, or the serotonin transporter promoter polymorphism genotype, can predict participants' visual event-related potentials in response to expressions of children of similar ages. Study group drawn from an inception cohort of 149 subjects characterized 1 year before the present study by their degree of shyness. Third- and fourth-grade schoolchildren. Forty-nine of the inception cohort children, randomly selected. Latencies and amplitudes of the N400 waveform in response to happy, neutral, and angry expressions. Shyness predicted significantly smaller N400 amplitudes in response to anger (at Pz: P Shyness was significantly different across the 3 genotypes, the SS genotype being associated with higher shyness levels (analysis of variance: F(2,42) = 4.47, P shyness or have 1 or 2 copies of the short allele of the serotonin transporter promoter gene appear to have a different pattern of processing affective stimuli of interpersonal hostility.

  12. Expressions of ion co-transporter genes in salicylate-induced tinnitus and treatment effects of spirulina.

    Science.gov (United States)

    Hwang, Juen-Haur; Chan, Yin-Ching

    2016-09-02

    Although the activity of tinnitus-related ion co-transporter are known, their mRNA expressions has seldom been reported. We aimed to investigate the mRNA expressions of tinnitus-related ion co-transporter genes, and treatment effects of Spirulina. The mRNA expressions of K(+)-Cl(-) co-transporter (KCC2) and Na-K-2Cl co-transporter 1 (NKCC1) genes in the cochlea and brain of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The effects of spirulina water extract on these gene expressions were investigated. Compared to the control group, the tinnitus scores increased significantly, however, the salicylate-induced tinnitus could be reduced significantly by spirulina water extract. The tinnitus group had higher of borderline significance mRNA expression of KCC2 gene in the cochlear, significantly higher in the temporal lobes and in the frontal lobes. Meanwhile, compared to the tinnitus group, the spirulina group had significantly lower mRNA expression of KCC2 gene in the cochlear, temporal lobes, frontal lobes and parahippocampus/hippocampus. However, the NKCC1 mRNA expression was not significantly different between three groups in the cochlea and these brain areas. Salicylate-induced tinnitus might be associated with increased mRNA expression of KCC2 gene, but not with mRNA expressions of NKCC1 gene in the cochlear and some tinnitus-related brain areas. Spirulina reduced the expression of KCC2 genes in salicylate-induced tinnitus.

  13. Taurine Transporter Gene Expression in Mononuclear Blood Cells of Type 1 Diabetes Patients.

    Science.gov (United States)

    Napoli, Zaleida; Seghieri, Giuseppe; Bianchi, Loria; Anichini, Roberto; De Bellis, Alessandra; Campesi, Ilaria; Carru, Ciriaco; Occhioni, Stefano; Zinellu, Angelo; Franconi, Flavia

    2016-01-01

    Taurine transporter gene expression (RNA-TauT) has a role in retinal cell function and is modulated in vitro and in vivo by hyperglycemia and/or oxidative stress. This study was aimed at testing whether RNA-TauT gene expression is modified in blood mononuclear peripheral cells (MPCs) of type 1 diabetic patients, is related to plasma markers of oxidative stress or endothelial dysfunction, or, finally, is related to presence of retinopathy. RNA-TauT was measured in MPCs by real-time PCR-analysis in 35 type 1 diabetic patients and in 33 age- and sex-matched controls, additionally measuring plasma and cell taurine and markers of oxidative stress and endothelial dysfunction. RNA-TauT, expressed as 2(-ΔΔCt), was significantly higher in MPCs of type 1 diabetic patients than in controls [median (interquartile range): 1.32(0.31) versus 1.00(0.15); P = 0.01]. In diabetic patients RNA-TauT was related to HbA1c (r = 0.42; P = 0.01) and inversely to plasma homocysteine (r = -0.39; P = 0.02) being additionally significantly higher in MPCs of patients without retinopathy [(n = 22); 1.36(0.34)] compared to those with retinopathy [(n = 13); 1.16(0.20)], independently from HbA1c or diabetes duration. RNA-TauT gene expression is significantly upregulated in MPCs of type 1 diabetes patients and is related to HbA1c levels and inversely to plasma homocysteine. Finally, in diabetes patients, RNA-TauT upregulation seems to be blunted in patients with retinopathy independently of their metabolic control or longer diabetes duration.

  14. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  15. Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper.

    Science.gov (United States)

    Singh, Sudhir; Korripally, Premsagar; Vancheeswaran, Ramachandran; Eapen, Susan

    2011-10-01

    The diets of two-thirds of the world's population are deficient in one or more essential elements and one of the approaches to enhance the levels of mineral elements in food crops is by developing plants with ability to accumulate them in edible parts. Besides conventional methods, transgenic technology can be used for enhancing metal acquisition in plants. Copper is an essential element, which is often deficient in human diet. With the objective of developing plants with improved copper acquisition, a high-affinity copper transporter gene (tcu-1) was cloned from fungus Neurospora crassa and introduced into a model plant (Nicotiana tabacum). Integration of the transgene was confirmed by Southern blot hybridization. Transgenic tobacco plants (T(0) and T(1)) expressing tcu-1, when grown in hydroponic medium spiked with different concentrations of copper, showed higher acquisition of copper (up to 3.1 times) compared with control plants. Transgenic plants grown in soil spiked with copper could also take up more copper compared with wild-type plants. Supplementation of other divalent cations such as Cd(2+) and Zn(2+) did not alter uptake of Cu by transgenic plants. The present study has shown that expression of a heterologous copper transporter in tobacco could enhance acquisition of copper.

  16. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean.

    Science.gov (United States)

    Tamura, Yosuke; Kobae, Yoshihiro; Mizuno, Toyotaka; Hata, Shingo

    2012-01-01

    Soybeans, the world's leading leguminous crop, establish mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root cortical cells forming arbuscules, highly branched fungal structures. Arbuscules are enveloped by plant-derived periarbuscular membranes through which plants obtain mineral nutrients, particularly phosphate. We searched the soybean genome in silico, and found 14 Pht1 genes encoding phosphate transporters putatively localized on the plasma membranes. Time course analyses involving reverse transcription-PCR indicated that three of these were AM-inducible. GmPT10 and GmPT11 were induced on fungal colonization, while a transcript of GmPT7 appeared in the later stages. The transport activities of GmPT10 and GmPT11 were confirmed by complementation of a yeast mutant. Soybean hairy roots expressing the GmPT10-green fluorescent protein (GFP) or GmPT11-GFP fusion protein under the control of corresponding promoter showed GFP fluorescence on the branch domains of periarbuscular membranes, indicating that active phosphate transport occurred there.

  17. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Mellon Mogensen, Anne

    2008-01-01

    AIM: To measure, by a quantitative approach, the gene expression underlying the results of somatostatin receptor (sst) scintigraphy ((111)In-DTPA-octreotide) and noradrenaline transporter (NAT) scintigraphy ((123)I-MIBG) in patients with neuroendocrine (NE) tumors. METHODS: The gene expression of...... to achieve a better understanding of the link between them, which in turn could aid in planning and development of noninvasive molecular imaging of key molecular processes....

  18. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Lubelska, Joanna M.; Jonuscheit, Melanie; Schleper, Christa; Albers, Sonja-Verena; Driessen, Arnold J. M.

    2006-01-01

    Sugar uptake in Sulfolobus solfataricus, a thermoacidophilic archaeon, occurs through high-affinity binding of protein-dependent ABC transporters. We have investigated the expression patterns of two sugar transport operons, that is, the glucose and arabinose transporters. Analysis of the araS

  19. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd).

    Science.gov (United States)

    Li, Jia-Ming; Zheng, Dan-man; Li, Lei-ting; Qiao, Xin; Wei, Shu-wei; Bai, Bin; Zhang, Shao-ling; Wu, Jun

    2015-09-01

    The sugar transporter (ST) plays an important role in plant growth, development and fruit quality. In this study, a total of 75 ST genes were identified in the pear (Pyrus bretschneideri Rehd) genome based on systematic analysis. Furthermore, all ST genes identified were grouped into eight subfamilies according to conserved domains and phylogenetic analysis. Analysis of cis-regulatory element sequences of all ST genes identified the MYBCOREATCYCB1 promoter in sucrose transporter (SUT) and monosaccharide transporter (MST) genes of pear, while in grape it is exclusively found in SUT subfamily members, indicating divergent transcriptional regulation in different species. Gene duplication event analysis indicated that whole-genome duplication (WGD) and segmental duplication play key roles in ST gene amplification, followed by tandem duplication. Estimation of positive selection at codon sites of ST paralog pairs indicated that all plastidic glucose translocator (pGlcT) subfamily members have evolved under positive selection. In addition, the evolutionary history of ST gene duplications indicated that the ST genes have experienced significant expansion in the whole ST gene family after the second WGD, especially after apple and pear divergence. According to the global RNA sequencing results of pear fruit development, gene expression profiling showed the expression of 53 STs. Combined with quantitative real-time PCR (qRT-PCR) analysis, two polyol/monosaccharide transporter (PLT) and three tonoplast monosaccharide transporter (tMT) members were identified as candidate genes, which may play important roles in sugar accumulation during pear fruit development and ripening. Identification of highly expressed STs in fruit is important for finding novel genes contributing to enhanced levels of sugar content in pear fruit. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  20. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  1. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max.

    Science.gov (United States)

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops.

  2. Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Federspiel, Birgitte Hartnack

    2013-01-01

    Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs) and hexokinases (HKs), which can be imaged by (18)F-Fluorodeoxyglucose-positron emission tomography (FDG-PET). The aim of the present study was to investigate the expression of glycolysis......-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal...... adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0...

  3. Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato.

    Science.gov (United States)

    Di Gioia, F; Aprile, A; Sabella, E; Santamaria, P; Pardossi, A; Miceli, A; De Bellis, L; Nutricati, E

    2017-09-01

    Boron (B) is essential for plant growth, however its excess in soil and/or in irrigation water can severely compromise plant growth and yield. The goal of this work was to determine whether grafting onto 'Arnold', a commercial interspecific hybrid (Solanum lycopersicum × S. habrochaites) rootstock, which in a previous study was found to be tolerant to salt stress, could improve tomato (S. lycopersicum L. 'Ikram') tolerance to excess B, and whether this effect is associated with an exclusion mechanism. Non-grafted, self-grafted and grafted plants were hydroponically grown in a greenhouse with B concentration in the nutrient solution of 0.27 (control), 5, 10 and 15 mg·l -1 . A transcription analysis was carried out on SlNIP5 and SlBOR1 genes, which encode putative B transporters. Grafting 'Ikram' onto 'Arnold' rootstock reduced B concentration in leaf tissue of plants exposed to B concentrations of 10-15 mg·l -1 . At high B levels, SlNIP5 was down-regulated in all grafting combinations, while SlBOR1 was down-regulated only in the roots of plants grafted onto 'Arnold'. We conclude that grafting the susceptible tomato cultivar 'Ikram' onto the commercial rootstock 'Arnold' improved tolerance to excess B by reducing expression of genes encoding for B transporters at the root level, thus partially reducing the root uptake of B and its accumulation in the shoot. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Zahra Tavoosi

    2015-01-01

    Full Text Available ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75% compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05. Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.

  5. A novel bicistronic expression system composed of the intraflagellar transport protein gene ift25 and FMDV 2A sequence directs robust nuclear gene expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Dong, Bin; Hu, He-He; Li, Zhen-Fang; Cheng, Rong-Qiang; Meng, De-Mei; Wang, Junping; Fan, Zhen-Chuan

    2017-05-01

    Chlamydomonas reinhardtii offers a great promise for large-scale production of multiple recombinant proteins of pharmaceutical and industrial interest. However, the nuclear-encoding transgenes usually are expressed at a low level, which severely hampers the use of this alga in molecular farming. In this study, the promoter of the endogenous intraflagellar transport 25 (IFT25) gene of C. reinhardtii was tested for its ability to drive the expression of green fluorescent protein (GFP), which functions as a readout for target gene expression. IFT25 promoter (IFT25P) alone was not able to drive GFP expression to a detectable level. IFT25P, however, can drive robust IFT25-GFP fusion protein expression when the intron-containing IFT25 gene was inserted between IFT25P and GFP cDNA. When an extended version of foot-and-mouth virus 2A protease (2A E ) sequence was further inserted between the intron-containing IFT25 gene and the GFP cDNA, discrete GFP protein was observed to release from the IFT25-2A E -GFP polyprotein via 2A self-cleaving with a cleavage efficacy of approximately 99%. The monomer GFP was accumulated to a level of as high as 0.68% of total soluble proteins. To test whether the newly developed bicistronic IFT25P-IFT25-2A E expression system can be used to overexpress heterologous proteins of different origins and sizes, we inserted codon-optimized cDNAs encoding a Trichoderma reesei xylanase1 (25 kDa) and a Lachnospiraceae bacterium ND2006 type V CRISPR-Cas protein LbCpf1 (147 kDa) to the vector and found that the production of xylanase1 and LbCpf1 was as high as 0.69 and 0.49% of total soluble protein. Our result showed that IFT25P-IFT25-2A E system is more efficient to drive nuclear gene expression in C. reinhardtii than other conventionally used promoters, thus representing a novel efficient recombinant protein expression tool and has the potential to be scaled for commercial production of nuclear-encoded recombinant proteins of different sizes and

  6. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  7. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

    Directory of Open Access Journals (Sweden)

    van der Meijde Jolanda

    2007-08-01

    Full Text Available Abstract Background Fasting has dramatic effects on small intestinal transport function. However, little is known on expression of intestinal transport and phase I/II metabolism genes during fasting and the role the fatty acid-activated transcription factor PPARα may play herein. We therefore investigated the effects of fasting on expression of these genes using Affymetrix GeneChip MOE430A arrays and quantitative RT-PCR. Results After 24 hours of fasting, expression levels of 33 of the 253 analyzed transporter and phase I/II metabolism genes were changed. Upregulated genes were involved in transport of energy-yielding molecules in processes such as glycogenolysis (G6pt1 and mitochondrial and peroxisomal oxidation of fatty acids (Cact, Mrs3/4, Fatp2, Cyp4a10, Cyp4b1. Other induced genes were responsible for the inactivation of the neurotransmitter serotonin (Sert, Sult1d1, Dtd, Papst2, formation of eicosanoids (Cyp2j6, Cyp4a10, Cyp4b1, or for secretion of cholesterol (Abca1 and Abcg8. Cyp3a11, typically known because of its drug metabolizing capacity, was also increased. Fasting had no pronounced effect on expression of phase II metabolic enzymes, except for glutathione S-transferases which were down-regulated. Time course studies revealed that some genes were acutely regulated, whereas expression of other genes was only affected after prolonged fasting. Finally, we identified 8 genes that were PPARα-dependently upregulated upon fasting. Conclusion We have characterized the response to fasting on expression of transporters and phase I/II metabolic enzymes in murine small intestine. Differentially expressed genes are involved in a variety of processes, which functionally can be summarized as a increased oxidation of fat and xenobiotics, b increased cholesterol secretion, c increased susceptibility to electrophilic stressors, and d reduced intestinal motility. This knowledge increases our understanding of gut physiology, and may be of relevance

  8. gene structure, gene expression

    Indian Academy of Sciences (India)

    and seedling leaves were sampled at 6 h after the treatment. For cold stress, the seedlings were transferred to 4◦C growth chamber for 30 min. Control seedlings were exposed to none of these treatments. To examine the expression patterns of these predicted genes in Poplar and to further confirm their stress responsive-.

  9. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    Science.gov (United States)

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  10. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  11. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max).

    Science.gov (United States)

    Wang, Yongqin; Chai, Chenglin; Valliyodan, Babu; Maupin, Christine; Annen, Brad; Nguyen, Henry T

    2015-11-16

    The plant phytohormone auxin controls many aspects of plant growth and development, which largely depends on its uneven distribution in plant tissues. Transmembrane proteins of the PIN family are auxin efflux facilitators. They play a key role in polar auxin transport and are associated with auxin asymmetrical distribution in plants. PIN genes have been characterized in several plant species, while comprehensive analysis of this gene family in soybean has not been reported yet. In this study, twenty-three members of the PIN gene family were identified in the soybean genome through homology searches. Analysis of chromosome distribution and phylogenetic relationships of the soybean PIN genes indicated nine pairs of duplicated genes and a legume specific subfamily. Organ/tissue expression patterns and promoter activity assays of the soybean PINs suggested redundant functions for most duplicated genes and complementary and tissue-specific functions during development for non-duplicated genes. The soybean PIN genes were differentially regulated by various abiotic stresses and phytohormone stimuli, implying crosstalk between auxin and abiotic stress signaling pathways. This was further supported by the altered auxin distribution under these conditions as revealed by DR5::GUS transgenic soybean hairy root. Our data indicates that GmPIN9, a legume-specific PIN gene, which was responsive to several abiotic stresses, might play a role in auxin re-distribution in soybean root under abiotic stress conditions. This study provided the first comprehensive analysis of the soybean PIN gene family. Information on phylogenetic relationships, gene structure, protein profiles and expression profiles of the soybean PIN genes in different tissues and under various abiotic stress treatments helps to identity candidates with potential roles in specific developmental processes and/or environmental stress conditions. Our study advances our understanding of plant responses to abiotic stresses

  12. Characterization of heterologously expressed transporter genes by patch- and voltage-clamp methods: Application to cyclic nucleotide-dependent responses

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2013-09-03

    The application of patch- and voltage-clamp methods to study ion transport can be limited by many hurdles: the size of the cells to be patched and/or stabbed, the subcellular localization of the molecule of interest, and its density of expression that could be too low even in their own native environment. Functional expression of genes using recombinant DNA technology not only overcomes those hurdles but also affords additional and elegant investigations such as single-point mutation studies and subunit associations/regulations. In this chapter, we give a step-by-step description of two electrophysiological methods, patch clamp and two-electrode voltage clamp (TEVC), that are routinely used in combination with heterologous gene expression to assist researchers interested in the identification and characterization of ion transporters. We describe how to (1) obtain and maintain the cells suitable for the use with each of the above-mentioned methods (i.e., HEK-293 cells and yeast spheroplasts to use with the patch-clamp methodology and Xenopus laevis oocytes with TEVC), (2) transfect/inject them with the gene of interest, and (3) record ion transport activities. © Springer Science+Business Media New York 2013.

  13. Longitudinal monitoring of the serotonin transporter gene expression to assess major depressive episode evolution.

    Science.gov (United States)

    Belzeaux, Raoul; Loundou, Anderson; Azorin, Jean-Michel; Naudin, Jean; Ibrahim, El Chérif

    2014-01-01

    Mood disorders are frequently characterized by uncertain prognosis and studying mRNA expression variations in blood cells represents a promising avenue of identifying biomarkers for mood disorders. State-dependent gene expression variations have been described during a major depressive episode (MDE), in particular for SLC6A4 mRNA, but how this transcript varies in relation to MDE evolution remains unclear. In this study, we prospectively assessed time trends of SCL6A4 mRNA expression in responder and nonresponder patients. We examined SLC6A4 mRNA expression in blood samples from 13 patients treated for severe MDE and their matched controls by reverse transcription and quantitative PCR. All subjects were followed for 30 weeks. Patients were classified as either responders or nonresponders based on improvement of depression according to the 17-item Hamilton Depression Rating Scale. Using a longitudinal design, we ascertained mRNA expression at baseline, 2, 8, and 30 weeks and compared mRNA expression between responder and nonresponder patients, and matched controls. We observed a decrease of SLC6A4 mRNA expression in responder patients across a 30-week follow-up, while nonresponder patients exhibited up-regulated SLC6A4 mRNA. Peripheral SLC6A4 mRNA expression could serve as a biomarker for monitoring and follow-up during an MDE and may help to more appropriately select individualized treatments. © 2014 S. Karger AG, Basel.

  14. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    Science.gov (United States)

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  16. Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress.

    Science.gov (United States)

    Pudake, Ramesh Namdeo; Mehta, Chandra Mohan; Mohanta, Tapan Kumar; Sharma, Suvigya; Varma, Ajit; Sharma, Anil Kumar

    2017-05-01

    Phosphorus (P) is a vital nutrient for plant growth and development, and is absorbed in cells with the help of membrane-spanning inorganic phosphate transporter (Pht) protein. Symbiosis with arbuscular mycorrhiza (AM) also helps in transporting P from the soil to plant and Pht proteins play an important role in it. To understand this phenomenon in Finger Mille plant, we have cloned four Pht genes from Finger millet, which shares the homology with Pht1 protein family of cereals. Expression pattern analysis during the AM infection indicated that EcPT4 gene was AM specific, and its expression was higher in roots where AM colonization percentage was high. The expression level of EcPT1-4 gene under the phosphorous (Pi) stress in seedlings was found to be consistent with its role in acquisition of phosphorus. Homology study of the EcPt proteins with Pht proteins of cereals shows close relationship. The findings of the study indicate that Pht1 family genes from finger millet can serve to be an important resource for the better understanding of phosphorus use efficiency.

  17. Effect of maternal dietary energy types on placenta nutrient transporter gene expressions and intrauterine fetal growth in rats.

    Science.gov (United States)

    Lin, Yan; Zhuo, Yong; Fang, Zheng-feng; Che, Lian-qiang; Wu, De

    2012-10-01

    The objectives of this study were to investigate the effects of maternal dietary energy types on the mRNA expressions of the placental nutrient transporter and intrauterine fetal growth and to examine whether altered intrauterine fetal growth could be associated with different gene expressions relating to fetal energy metabolism and DNA methylation. Seventy-two 3-mo-old rats were allocated to one of four groups: low fat/low fiber (L-L), low fat/high fiber, high fat/low fiber (H-L), or high fat/high fiber. Rats were fed the treatment diets 4 wk before mating and continued in pregnancy until sample collections were obtained on days 13.5 and 17.5 of pregnancy. The fetal weight in the L-L group was significantly lower than that in the H-L group (P 0.05) and energy metabolism-related genes. Collectively, these results demonstrated that intrauterine fetal growth could be affected by different energy intake types through placenta nutrient transporter gene expressions, and different fetal growths were associated with altered fetal genes related to DNA methylation and energy metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia)*

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-01-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b0,+AT, EAAT3, y+LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b0,+AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y+LAT2 had positive correlations with body weight (0.71gene expressions of b0,+AT, EAAT3, LAT4, PepT1, NHE2, NHE3, and y+LAT2 showed positive correlations with intestinal weight (0.80

  19. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  20. Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression.

    Science.gov (United States)

    Zhao, Jinlei; Binns, Andrew N

    2016-02-15

    Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Transient Congenital Hypothyroidism Alters Gene Expression of Glucose Transporters and Impairs Glucose Sensing Apparatus in Young and Aged Offspring Rats

    Directory of Open Access Journals (Sweden)

    Hanieh Gholami

    2017-10-01

    Full Text Available Background/Aims: Transient congenital hypothyroidism (TCH could disturb carbohydrate metabolism in adulthood. Aging is associated with increased risk of type 2 diabetes. This study aims to address effects of TCH on mRNA expressions of glucose transporters (GLUTs and glucokinase (GcK in islets and insulin target tissues of aged offspring rats. Methods: The TCH group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Offspring from control and TCH groups (n=6 in each group were followed until month 19. Gene expressions of GLUTs and GcK were measured at months 3 and 19. Results: Compared to controls, aged TCH rats had higher GLUT4 expression in heart (4.88 fold and soleus (6.91 fold, while expression was lower in epididymal fat (12%. In TCH rats, GLUT2 and GcK expressions in islets were lower in young (12% and 10%, respectively and higher in aged (10.85 and 8.42 fold, respectively rats. In addition, liver GLUT2 and GcK expressions were higher in young (13.11 and 21.15 fold, respectively and lower in aged rats (44% and 5%, respectively. Conclusion: Thyroid hormone deficiency during fetal period impaired glucose sensing apparatus and changed glucose transporter expression in insulin-sensitive tissues of aged offspring rats. These changes may contribute to impaired carbohydrate metabolism.

  2. Transient Congenital Hypothyroidism Alters Gene Expression of Glucose Transporters and Impairs Glucose Sensing Apparatus in Young and Aged Offspring Rats.

    Science.gov (United States)

    Gholami, Hanieh; Jeddi, Sajad; Zadeh-Vakili, Azita; Farrokhfall, Khadije; Rouhollah, Fatemeh; Zarkesh, Maryam; Ghanbari, Mahboubeh; Ghasemi, Asghar

    2017-01-01

    Transient congenital hypothyroidism (TCH) could disturb carbohydrate metabolism in adulthood. Aging is associated with increased risk of type 2 diabetes. This study aims to address effects of TCH on mRNA expressions of glucose transporters (GLUTs) and glucokinase (GcK) in islets and insulin target tissues of aged offspring rats. The TCH group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Offspring from control and TCH groups (n=6 in each group) were followed until month 19. Gene expressions of GLUTs and GcK were measured at months 3 and 19. Compared to controls, aged TCH rats had higher GLUT4 expression in heart (4.88 fold) and soleus (6.91 fold), while expression was lower in epididymal fat (12%). In TCH rats, GLUT2 and GcK expressions in islets were lower in young (12% and 10%, respectively) and higher in aged (10.85 and 8.42 fold, respectively) rats. In addition, liver GLUT2 and GcK expressions were higher in young (13.11 and 21.15 fold, respectively) and lower in aged rats (44% and 5%, respectively). Thyroid hormone deficiency during fetal period impaired glucose sensing apparatus and changed glucose transporter expression in insulin-sensitive tissues of aged offspring rats. These changes may contribute to impaired carbohydrate metabolism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Mortensen, Uffe Hasbro; Workman, Mhairi

    2013-01-01

    P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous...... expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae....

  4. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane

    DEFF Research Database (Denmark)

    Rocchi, E; Khodjakov, A; Volk, E L

    2000-01-01

    The products of the ABC gene family can be generally classified as either full-transporters of half-transporters. Full-transporters are expressed in the plasma membrane, whereas half-transporters are usually found in intracellular membranes. Recently, an ABC half-transporter, the ABCG2 gene product...... by Western blot and immunohistochemistry. This protein is highly overexpressed in several drug-resistant cell lines and localizes predominantly to the plasma membrane, instead of to intracellular membranes as seen with all other known half-transporters. Therefore, BCRP/MXR is unique among the ABC half...

  5. Differential gene expression and transport functionality in the bundle sheath versus mesophyll - a potential role in leaf mineral homeostasis.

    Science.gov (United States)

    Wigoda, Noa; Pasmanik-Chor, Metsada; Yang, Tianyuan; Yu, Ling; Moshelion, Menachem; Moran, Nava

    2017-06-01

    Under fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71pigeons.

  7. Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by StimulatingrsmYZTranscription.

    Science.gov (United States)

    Chakravarty, Shubham; Melton, Cameron N; Bailin, Adam; Yahr, Timothy L; Anderson, Gregory G

    2017-12-01

    Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli. IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa , to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti- P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression. Copyright © 2017 American

  8. Quantitative trait loci mapping and gene network analysis implicate protocadherin-15 as a determinant of brain serotonin transporter expression.

    Science.gov (United States)

    Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D

    2014-03-01

    Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Interleukin-1β Suppresses the Transporter Genes Ank and Ent1 Expression in Stromal Progenitor Cells Retaining Mineralization.

    Science.gov (United States)

    Ezura, Yoichi; Lin, Xin; Hatta, Arina; Izu, Yayoi; Noda, Masaki

    2016-08-01

    Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1β during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1β suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders.

  10. The riboflavin transporter RibU in Lactococcus lactis : Molecular characterization of gene expression and the transport mechanism

    NARCIS (Netherlands)

    Burgess, CM; Slotboom, DJ; Geertsma, ER; Duurkens, Hinderika; Poolman, B; van Sinderen, D

    This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport

  11. Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb. Hook. and Expression Analysis of Candidate Phosphate Transporter Genes

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-11-01

    Full Text Available Chinese fir (Cunninghamia lanceolata (Lamb. Hook. is the most important afforestation tree species in China because of its excellent timber quality and high yield. However, the limited availability of phosphorus in forest soils is widespread and has become an important factor in the declining productivity of Chinese fir plantations. Here we used the Illumina HiSeq™ 2000 DNA sequencing platform to sequence root, stem, and leaf transcriptomes of one-year old Chinese fir clones with phosphorus treatment. Approximately 236,529,278 clean reads were obtained and generated 35.47 G of sequencing data. These reads were assembled into 413,806 unigenes with a mean length of 520 bp. In total, 109,596 unigenes were annotated in the NR (NCBI non-redundant database, 727,287 genes were assigned for GO (Gene Ontology terms, information for 92,001 classified unigenes was assigned to 26 KOG (Karyotic Orthologous Groups categories, and 57,042 unigenes were significantly matched with 132 KEGG (Kyoto Encyclopedia of Genes and Genomes predicted pathways. In total, 49 unigenes were identified as exhibiting inorganic phosphate transporter activity, and 14 positive genes’ expression patterns in different phosphorus deficiency treatments were analyzed by qRT-PCR to explore their putative functions. This study provides a basic foundation for functional genomic studies of the phosphate transporter in Chinese fir, and also presents an extensive annotated sequence resource for molecular research.

  12. Association study of polymorphism in the serotonin transporter gene promoter, methylation profiles, and expression in patients with major depressive disorder.

    Science.gov (United States)

    Iga, Jun-Ichi; Watanabe, Shin-Ya; Numata, Shusuke; Umehara, Hidehiro; Nishi, Akira; Kinoshita, Makoto; Inoshita, Masatoshi; Shimodera, Shinji; Fujita, Hirokazu; Ohmori, Tetsuro

    2016-05-01

    The serotonin transporter (5HTT) may be associated with the pathogenesis of major depressive disorder (MDD). The 5HTT-linked polymorphic region (5HTTLPR) genotype may determine how levels of 5HTT mRNA are influenced by promoter methylation. We examined the association of 5HTT gene methylation, which influences gene expression, and the 5HTTLPR genotype before antidepressant treatment and expression before and after treatment. The aims of this study were (1) to investigate the association between 5HTT methylation or expression in leukocytes and depression and (2) to investigate a possible effect of 5HTT methylation, expression, and genotype on clinical symptoms in MDD. The 5HTTLPR genotype was significantly associated with mean methylation levels in patients only (patients: r = 0.40, p = 0.035, controls: p = 0.96). The mean methylation level was significantly increased in patients compared with controls (patients: 5.30 ± 0.24, controls: 4.70 ± 0.19, unpaired t-test, p = 0.04). 5HTT expression using real-time PCR and Taqman probes was increased in unmedicated patients compared with controls and then decreased 8 weeks after antidepressant treatment. The mean 5HTT expression level was not associated with the 5HTTLPR genotype in patients or controls. Increased depressive symptoms were related to decreased levels of methylation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    International Nuclear Information System (INIS)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu; Cheng, Xing-Guo; Liu, Jie

    2014-01-01

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels

  14. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China); Cheng, Xing-Guo [Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439 (United States); Liu, Jie, E-mail: Jieliu@zmc.edu.cn [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China)

    2014-10-15

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.

  15. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    Directory of Open Access Journals (Sweden)

    Xiaoyu eWei

    2014-11-01

    Full Text Available In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of ‘Gala’ apple. Genes for sugar alcohol (including 17 sorbitol transporters, sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs. Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  17. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    Science.gov (United States)

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  18. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens

    NARCIS (Netherlands)

    Gonçalves Leite de Assunção, A.; Costa Martins, Da P.; Folter, de S.; Vooijs, R.; Aarts, M.G.M.

    2001-01-01

    Heavy metal hyperaccumulation in plants is an intriguing and poorly understood phenomenon. Transmembrane metal transporters are assumed to play a key role in this process. We describe the cloning and isolation of three zinc transporter cDNAs from the Zn hyperaccumulator Thlaspi caerulescens. The

  19. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens.

    NARCIS (Netherlands)

    Assunção, A.G.L.; Da Costa Martins, P.; de Folter, S.; Schat, H.; Vooijs, H.; Aarts, M.G.M.

    2001-01-01

    Heavy metal hyperaccumulation in plants is an intriguing and poorly understood phenomenon. Transmembrane metal transporters are assumed to play a key role in this process. We describe the cloning and isolation of three zinc transporter cDNAs from the Zn hyperaccumulator Thlaspi caerulescens. The

  20. Differential expression of genes encoding phosphate transporters contributes to arsenic accumulation in shrub willow (Salix spp.)

    Science.gov (United States)

    Emily E. Puckett; Michelle J. Serpiglia; Alyssa M. DeLeon; Stephanie Long; Rakesh Minocha; Lawrence B. Smart

    2012-01-01

    Studies of arsenate and phosphate uptake by plants in hydroponic and soil systems indicate a common transport mechanism via the phosphate transporters (PHTs) due to structural similarity of the anions. Typically, the presence of phosphate decreases plant uptake and translocation of arsenate in hydroponic solution. This study quantified arsenic (As) uptake related to...

  1. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14

    Directory of Open Access Journals (Sweden)

    Selvaraj eKrithika

    2016-04-01

    Full Text Available Zinc (Zn deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4 and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4 and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulphate application which was evident through the ZIP genes’ expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that zinc solubilizing bacteria could play a crucial role in zinc fertilization and fortification of rice.

  2. Photosynthetic control of electron transport and the regulation of gene expression

    NARCIS (Netherlands)

    Foyer, C.H.; Neukermans, J.; Queval, G.; Noctor, G.; Harbinson, J.

    2012-01-01

    The term ‘photosynthetic control’ describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these

  3. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  4. Effect of thyroid hormones on the gene expression of calcium transport systems in rat muscles

    Czech Academy of Sciences Publication Activity Database

    Hudecová, S.; Vadászová, Adriana; Soukup, Tomáš; Križanová, O.

    2004-01-01

    Roč. 75, č. 8 (2004), s. 923-931 ISSN 0024-3205 R&D Projects: GA ČR GA309/03/0752 Grant - others:VEGA(SK) 2/3008; NATO(XX) 979876; SAV(SK) APVT-51-013802 Institutional research plan: CEZ:AV0Z5011922 Keywords : thyroid hormones * calcium transport systems Subject RIV: ED - Physiology Impact factor: 2.158, year: 2004

  5. Screening and Expression of a Silicon Transporter Gene (Lsi1 in Wild-Type Indica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2017-01-01

    Full Text Available Silicon (Si is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  6. Multidrug resistance in fungi: regulation of transporter-encoding gene expression.

    Science.gov (United States)

    Paul, Sanjoy; Moye-Rowley, W Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.

  7. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    Science.gov (United States)

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  8. Expression systems for cloned xenobiotic transporters

    International Nuclear Information System (INIS)

    Pritchard, John B.; Miller, David S.

    2005-01-01

    One challenge of modern biology is to be able to match genes and their encoded proteins with events at the molecular, cellular, tissue, and organism levels, and thus, provide a multi-level understanding of gene function and dysfunction. How well this can be done for xenobiotic transporters depends on a knowledge of the genes expressed in the tissue, the cellular locations of the gene products (do they function for uptake or efflux?), and our ability to match substrates with transporters using information obtained from cloned transporters functioning in heterologous expression systems. Clearly, making a rational choice of expression system to use for the characterization and study of cloned xenobiotic transporters is a critical part of study design. This choice requires well-defined goals, as well as an understanding of the strengths and weaknesses of candidate expression systems

  9. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells.

    NARCIS (Netherlands)

    Tang, L.; Bergevoet, S.M.; Gilissen, C.F.H.A.; Witte, T.J.M. de; Jansen, J.H.; Reijden, B.A. van der; Raymakers, R.A.P.

    2010-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC

  10. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    JIAN Hongju

    2016-09-01

    Full Text Available Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers and SWEETs (Sugars Will Eventually be Exported Transporters play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analysed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of ‘ZS11’ and the expression of 9 BnSUC and 7 BnSWEET genes in ‘ZS11’ under various conditions, including biotic stress (Sclerotinia sclerotiorum, abiotic stresses (drought, salt and heat, and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin and salicylic acid. In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape.

  11. The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development.

    Science.gov (United States)

    Dong, X Y; Wang, Y M; Yuan, C; Zou, X T

    2012-08-01

    To better understand the digestive capacity in domestic pigeons (Columba livia), this study was conducted to evaluate nutrient transporters and digestive enzymes gene expression in small intestine and yolk sac membrane (YSM) during pre- and posthatch development. We investigated the oligopeptide transporter Pept1, sodium glucose transporter SGLT1, glucose transporter GLUT2, aminopeptidase-N (APN), and sucrase-isomaltase (SI). Intestine was collected at embryo d 12, 14, and 16, day of hatch, and d 1, 3, 5, 8, and 14 posthatch. The YSM was collected at embryo d 12, 14, 16, and day of hatch. The cDNA fragments for Pept1, SGLT1, GLUT2, APN, and SI were isolated and cloned using reverse-transcription PCR. The sequences data showed that these genes were highly identical to the gene of chicken. The mRNA expression of each gene was assayed using real-time PCR. Expression of intestinal nutrient transporters increased linearly (Ppigeons and establish a foundation for future research on the nutrients requirements for young pigeons.

  12. Transcriptome Analysis and Postprandial Expression of Amino Acid Transporter Genes in the Fast Muscles and Gut of Chinese Perch (Siniperca chuatsi)

    Science.gov (United States)

    Chen, Lin; Zeng, Ming; Wu, Yuanan; Wang, Jianhua; Zhang, Jianshe

    2016-01-01

    The characterization of the expression and regulation of growth-related genes in the muscles of Chinese perch is of great interest to aquaculturists because of the commercial value of the species. The transcriptome annotation of the skeletal muscles is a crucial step in muscle growth-related gene analysis. In this study, we generated 52 504 230 reads of mRNA sequence data from the fast muscles of the Chinese perch by using Solexa/Illumina RNA-seq. Twenty-one amino acid transporter genes were annotated by searching protein and gene ontology databases, and postprandial changes in their transcript abundance were assayed after administering a single satiating meal to Chinese perch juveniles (body mass, approximately 100 g), following fasting for 1 week. The gut content of the Chinese perch increased significantly after 1 h and remained high for 6 h following the meal and emptied within 48–96 h. Expression of eight amino acid transporter genes was assayed in the fast muscles through quantitative real-time polymerase chain reaction at 0, 1, 3, 6, 12, 24, 48, and 96 h. Among the genes, five transporter transcripts were markedly up-regulated within 1 h of refeeding, indicating that they may be potential candidate genes involved in the rapid-response signaling system regulating fish myotomal muscle growth. These genes display coordinated regulation favoring the resumption of myogenesis responding to feeding. PMID:27463683

  13. Increased gene expression of selected vesicular and glial glutamate transporters in the frontal cortex in rats exposed to voluntary wheel running.

    Science.gov (United States)

    Graban, J; Hlavacova, N; Jezova, D

    2017-10-01

    Though positive effects of exercise on mood and well being are well recognised, the central regulatory mechanisms are still not fully understood. The present study was aimed to testing the hypothesis that voluntary wheel running activates the gene expression of glutamate transporters in the brain cortex of rats. The animals were assigned to the control and voluntary wheel running groups. Voluntary wheel running rats had free access to a stainless steel activity wheel for 3 weeks. The daily running distance gradually increased to 6.21 ± 1.05 km by day 21. Vesicular glutamate transporter 3 (VGLUT3) mRNA levels in the frontal cortex were significantly elevated in the group of running animals compared to the values in sedentary controls, while the expression of other vesicular transporters were unchanged. The concentrations of mRNA coding for glial glutamate transporter 1 (GLT-1), but not glutamate aspartate transporter (GLAST) were increased by running. Voluntary wheel running resulted in an elevation of plasma corticosterone and increased expression of brain derived neurotrophic factor (BDNF) in the frontal cortex. In conclusion, chronic voluntary wheel running results in increased gene expression of VGLUT3 and GLT-1 in the brain cortex without changes in other glutamate transporter subtypes.

  14. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L.

    Science.gov (United States)

    Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping

    2017-01-01

    The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534

  15. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    is expressed at a high level, which can result in strong MHC associations with resistance to particular infectious pathogens. However, the basis for having a single dominantly expressed class I molecule has been unclear. Here we report TAP1 and TAP2 sequences from 16 chicken lines, and show that both genes......In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one...... dominantly expressed class I molecule. These results show that coevolution between class I and TAP genes can explain the presence of a single dominantly expressed class I molecule in common chicken MHC haplotypes. Moreover, such coevolution in the primordial MHC may have been responsible for the appearance...

  16. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean.

    Science.gov (United States)

    Liu, Juge; Li, Yang; Wang, Wei; Gai, Junyi; Li, Yan

    2016-03-11

    Multidrug and toxic compound extrusion (MATE) family is an important group of the multidrug efflux transporters that extrude organic compounds, transporting a broad range of substrates such as organic acids, plant hormones and secondary metabolites. However, genome-wide analysis of MATE family in plant species is limited and no such studies have been reported in soybean. A total of 117 genes encoding MATE transporters were identified from the whole genome sequence of soybean (Glycine max), which were denominated as GmMATE1 - GmMATE117. These 117 GmMATE genes were unevenly localized on soybean chromosomes 1 to 20, with both tandem and segmental duplication events detected, and most genes showed tissue-specific expression patterns. Soybean MATE family could be classified into four subfamilies comprising ten smaller subgroups, with diverse potential functions such as transport and accumulation of flavonoids or alkaloids, extrusion of plant-derived or xenobiotic compounds, regulation of disease resistance, and response to abiotic stresses. Eight soybean MATE transporters clustered together with the previously reported MATE proteins related to aluminum (Al) detoxification and iron translocation were further analyzed. Seven stress-responsive cis-elements such as ABRE, ARE, HSE, LTR, MBS, as well as a cis-element of ART1 (Al resistance transcription factor 1), GGNVS, were identified in the upstream region of these eight GmMATE genes. Differential gene expression analysis of these eight GmMATE genes in response to Al stress helps us identify GmMATE75 as the candidate gene for Al tolerance in soybean, whose relative transcript abundance increased at 6, 12 and 24 h after Al treatment, with more fold changes in Al-tolerant than Al-sensitive cultivar, which is consistent with previously reported Al-tolerance related MATE genes. A total of 117 MATE transporters were identified in soybean and their potential functions were proposed by phylogenetic analysis with known plant MATE

  17. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  18. Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle.

    Science.gov (United States)

    Lammers, Gerwen; Poelkens, Fleur; van Duijnhoven, Noortje T L; Pardoel, Elisabeth M; Hoenderop, Joost G; Thijssen, Dick H J; Hopman, Maria T E

    2012-11-15

    Physical deconditioning is associated with the development of chronic diseases, including type 2 diabetes and cardiovascular disease. Exercise training effectively counteracts these developments, but the underlying mechanisms are largely unknown. To gain more insight into these mechanisms, muscular gene expression levels were assessed after physical deconditioning and after exercise training of the lower limbs in humans by use of gene expression microarrays. To exclude systemic effects, we used human models for local physical inactivity (3 wk of unilateral limb suspension) and for local exercise training (6 wk of functional electrical stimulation exercise of the extremely deconditioned legs of individuals with a spinal cord injury). The most interesting subset of genes, those downregulated after deconditioning as well as upregulated after exercise training, contained 18 genes related to both the "insulin action" and "adipocytokine signaling" pathway. Of these genes, the three with strongest up/downregulation were the muscular fatty acid-binding protein-3 (FABP3), the fatty acid oxidizing enzyme hydroxyacyl-CoA dehydrogenase (HADH), and the mitochondrial fatty acid transporter solute carrier 25 family member A20 (SLC25A20). The expression levels of these genes were confirmed using RT-qPCR. The results of the present study indicate an important role for a decreased transport and metabolism of fatty acids, which provides a link between physical activity levels and insulin signaling.

  19. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa under Phytohormone Stimuli and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-05-01

    Full Text Available The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related gene pairs together with organ/tissue specific expression revealed possible function gaining and function losing events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments.

  20. Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation.

    Science.gov (United States)

    Binderup, Tina; Knigge, Ulrich Peter; Federspiel, Birgitte; Sommer, Peter; Hasselby, Jane Preuss; Loft, Annika; Kjaer, Andreas

    2013-10-29

    Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs) and hexokinases (HKs), which can be imaged by (18)F-Fluorodeoxyglucose-positron emission tomography (FDG-PET). The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111) and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53). There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047), but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36%) than CRAs (86%), (P = 0.04). The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  1. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Directory of Open Access Journals (Sweden)

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  2. Differential mRNA expression of seven genes involved in cholesterol metabolism and transport in the liver of atherosclerosis-susceptible and -resistant Japanese quail strains

    Directory of Open Access Journals (Sweden)

    Li Xinrui

    2012-06-01

    Full Text Available Abstract Background Two atherosclerosis-susceptible and -resistant Japanese quail (Coturnix japonica strains obtained by divergent selection are commonly used as models to study atherosclerosis, but no genetic characterization of their phenotypic differences has been reported so far. Our objective was to examine possible differences in the expression of genes involved in cholesterol metabolism and transport in the liver between these two strains and to evaluate the value of this model to analyze the gene system affecting cholesterol metabolism and transport. Methods A factorial study with both strains (atherosclerosis-susceptible versus atherosclerosis-resistant and two diets (control versus cholesterol was carried out. The mRNA concentrations of four genes involved in cholesterol biosynthesis (HMGCR, FDFT1, SQLE and DHCR7 and three genes in cholesterol transport (ABCG5, ABCG8 and APOA1 were assayed using real-time quantitative PCR. Plasma lipids were also assayed. Results Expression of ABCG5 (control diet and ABCG8 (regardless of dietary treatment and expression of HMGCR, FDFT1 and SQLE (regardless of dietary treatment were significantly higher in the atherosclerosis-resistant than in the atherosclerosis-susceptible strain. Plasma triglyceride and LDL levels, and LDL/HDL ratio were significantly higher in the atherosclerosis-susceptible than in the atherosclerosis-resistant strain fed the cholesterol diet. In the atherosclerosis-susceptible strain, ABCG5 expression regressed significantly and positively on plasma LDL level, whereas DHCR7 and SQLE expression regressed significantly and negatively on plasma triglyceride level. Conclusions Our results provide support for the hypothesis that the atherosclerosis-resistant strain metabolizes and excretes cholesterol faster than the atherosclerosis-susceptible strain. We have also demonstrated that these quail strains are a useful model to study cholesterol metabolism and transport in relation with

  3. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2.

    Science.gov (United States)

    Fatemi, Faezeh; Miri, Saba; Jahani, Samaneh

    2017-05-01

    In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe 2+ to O 2 . To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

  4. Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes.

    Science.gov (United States)

    Boudour-Boucheker, Nesrine; Boulo, Viviane; Charmantier-Daures, Mireille; Anger, Klaus; Charmantier, Guy; Lorin-Nebel, Catherine

    2016-05-01

    In this comparative study, osmoregulatory mechanisms were analyzed in two closely related species of palaemonid shrimp from Brazil, Macrobrachium pantanalense and Macrobrachium amazonicum. A previous investigation showed that all postembryonic stages of M. pantanalense from inland waters of the Pantanal are able to hyper-osmoregulate in fresh water, while this species was not able to hypo-osmoregulate at high salinities. In M. amazonicum originating from the Amazon estuary, in contrast, all stages are able to hypo-osmoregulate, but only first-stage larvae, late juveniles and adults are able to hyper-osmoregulate in fresh water. The underlying molecular mechanisms of these physiological differences have not been known. We therefore investigated the expression patterns of three ion transporters (NKA α-subunit, VHA B-subunit and NHE3) following differential salinity acclimation in different ontogenetic stages (stage-V larvae, juveniles) of both species. Larval NKAα expression was at both salinities significantly higher in M. pantanalense than in M. amazonicum, whereas no difference was noted in juveniles. VHA was also more expressed in larvae of M. pantanalense than in those of M. amazonicum. When NHE3 expression is compared between the larvae of the two species, further salinity-related differences were observed, with generally higher expression in the inland species. Overall, a high expression of ion pumps in M. pantanalense suggests an evolutionary key role of these transporters in freshwater invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Human equilibrative nucleoside transporter 1 gene expression is associated with gemcitabine efficacy in advanced leiomyosarcoma and angiosarcoma.

    Science.gov (United States)

    Vincenzi, Bruno; Stacchiotti, Silvia; Collini, Paola; Pantano, Francesco; Rabitti, Carla; Perrone, Giuseppe; Iuliani, Michele; Baldi, Alfonso; Badalamenti, Giuseppe; Sanfilippo, Roberta; Santini, Daniele; Muda, Andrea Onetti; Gronchi, Alessandro; Casali, Paolo; Dei Tos, Angelo Paolo; Tonini, Giuseppe

    2017-07-25

    The expression of human equilibrative nucleoside transporter 1 (hENT1), the major gemcitabine transporter into cells, has been thoroughly investigated as a predictive marker of response to gemcitabine in pancreatic cancer and biliary tract cancers. Since gemcitabine is widely used in the treatment of leiomyosarcoma and angiosarcoma, we investigated the correlation between hENT1 expression and gemcitabine efficacy in these sarcoma subtypes. We retrospectively identified 71 patients affected by advanced angiosarcoma (26) or leiomyosarcoma (45) treated within five Italian referral centres for sarcoma; among them, 49 patients (15 angiosarcoma, 34 leiomyosarcoma) were treated with gemcitabine. All tumour samples were analysed for hENT1 expression by real-time PCR. Median 2 -ΔCt value was used as the cutoff to dichotomise patients into 'high' expression and 'low' expression groups. Kaplan-Meier analysis was performed to estimate progression-free survival (PFS) and overall survival (OS). We found a significant association between high hENT1 expression levels and favourable outcome in terms of PFS and OS compared to cases with low hENT1 expression in leiomyosarcoma treated with gemcitabine (PFS: 6.8 vs 3.2 months, P=0.004; OS: 14.9 vs 8.5 months, P=0.007). In addition, hENT1 overexpression correlated with a significant improvement in PFS (9.3 vs 4.5 months; P=0.02) and OS (20.6 vs 10.8 months; P=0.001) in angiosarcoma patients treated with gemcitabine. Our study suggests that higher hENT1 expression are associated to gemcitabine efficacy both in patients with advanced leiomyosarcoma and angiosarcoma.

  6. Does Short-Term Dietary Omega-3 Fatty Acid Supplementation Influence Brain Hippocampus Gene Expression of Zinc Transporter-3?

    Directory of Open Access Journals (Sweden)

    Nur Farhana Ahmad Sopian

    2015-07-01

    Full Text Available Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6, standard pellet added with 10% (w/w fish oil (FO, n = 6, 10% (w/w soybean oil (SO, n = 6 and 10% (w/w butter (BT, n = 6. After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.

  7. Altered cardiac gene expression of noradrenaline enzymes, transporter and β-adrenoceptors in rat model of rheumatoid arthritis.

    Science.gov (United States)

    Dronjak, Sladjana; Stefanovic, Bojana; Jovanovic, Predrag; Spasojevic, Natasa; Jankovic, Milica; Jeremic, Ivica; Hoffmann, Markus

    2017-12-01

    Baseline sympathetic activity was found to be elevated in rheumatoid arthritis (RA) patients and it is related to increased cardiovascular risk in these patients. Although many studies have highlighted the association between RA and increased cardiac sympathetic activity, the underlying mechanistic links remain unclear. The aim of the present study was to understand how diseases-triggered changes in gene expression may result in maladaptive physiological changes. Our results suggest that the equilibrium between noradrenaline synthesis, release and reuptake was disrupted in the ventricles of arthritic rats. In the acute phase of the arthritic process, decreased gene expression of MAO-A might lead to accumulation of noradrenaline in myocardial interstitial space, whereas increased gene expression of NET protected cardiomyocytes from the deleterious effects of enhanced noradrenaline. During the chronic phase, reduced expression of β 1 -adrenoceptor and decreased efficiency of noradrenaline reuptake contribute to progressive damage of the myocardium and limits heart efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress.

    Science.gov (United States)

    Saha, Jayita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2015-02-01

    ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Induction of TRPV5 expression by small activating RNA targeting gene promoter as a novel approach to regulate cellular calcium transportation.

    Science.gov (United States)

    Yang, Bicheng; Duan, Xiaolu; Wu, Wenzheng; Ji, Weidong; Wu, Wenqi; Zhong, Wen; Zhao, Zhijian; Li, Shujue; Liu, Yang; Zeng, Guohua

    2014-10-02

    Promoter-targeted small activating RNAs (saRNAs) have been shown to be able to induce target gene expression, a mechanism known as RNA activation (RNAa). The present study tested whether saRNA can induce the overexpression of TRPV5 in human cells derived from the kidney and subsequently manipulate cell calcium uptake. Three saRNAs complementary to the TRPV5 promoter were synthesized and transfected into cells. TRPV5 expression at the RNA and protein levels was analyzed by quantitative real-time PCR and Western blotting respectively. For functional study, transcellular Ca(2+) transportation was tested by fura-2 analysis. Dihydrotestosterone (DHT), a suppressor of cellular calcium transportation, was administered to challenge the activating effect of selected saRNA. One of these synthesized saRNAs, ds-2939, significantly induced the expression of TRPV5 at both mRNA and protein levels. Fura-2 analysis revealed that the intracellular Ca(2+) concentration was elevated by ds-2939. DHT treatment reduced transmembrane Ca(2+) transport, which was partially antagonized by ds-2939. Our results suggest that a saRNA targeting TRPV5 promoter can be utilized to manipulate the transmembrane Ca(2+) transport by upregulating the expression of TRPV5 and may serve as an alternative for the treatment of Ca(2+) balance-related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  11. Survey of ABC transporter and metallothionein genes expressions in tall fescue inoculated with Funneliformis intraradices under Nickel toxicity

    Directory of Open Access Journals (Sweden)

    Massomeh Rafiei-Demneh

    2016-09-01

    Full Text Available In plants, there are complex network of transport, chelation, and sequestration processes that functions in maintaining concentrations of essential metal ions in different cellular compartments, thus minimizing the damage caused by entry of non-essential metal ions into the cytosol. In the presence of toxic ones, arbuscular mycorrhizal (AM fungi are able to alleviate metal toxicity in the plant. In this study the effect of an arbuscular mycorrhizal fungi Funneliformis intraradices on growth, Nickel tolerance, and ABC transporter and metallothionein expression in leaves and roots of tall fescue (Festuca arundinacea plants cultivated in Ni polluted soil were evaluated. The fungi infected (M+ and uninfected (M- fescue plants were cultivated in soil under different Ni concentrations (0, 30, 90 and 180 ppm for 3 months. Results demonstrated the positive effect of fungi colonization on the increase in growth and reduction in Ni uptake (90 and 180 ppm and Ni translocation from roots to shoot of tall fescue under Ni stress. The results also demonstrated that the level of ABC transporterand metallothionein transcripts accumulation in roots was considerably higher for both M- and M+ plants compared to the control. Also, M+ plants showed less ABC and MET expression compared to the M- plants. These results demonstrated the importance of mycorrhizal colonization of F. intraradices in reduction of Ni transport from root to shoot of tall fescue which alleviates Ni-induced stress.

  12. Gene Expression of Monocarboxylate Transporters and Oocyte-secreted Factors in Bovine Cumulus-oocyte Complexes Selected by Brilliant Cresyl Blue.

    Science.gov (United States)

    Lopes, E F; Marques, L S; Duranti, R G; de Oliveira, A T D; Lopes, R F F; Rodrigues, J L

    2015-10-01

    Oocyte selection based on the brilliant cresyl blue (BCB) staining test has been successfully used to differentiate between competent and incompetent bovine oocytes. Here, the expression of genes involved in transport of monocarboxylates (Mct1-4) and oogenesis specific genes (Bmp15, Gdf9 and Has2) in BCB+ and BCB- selected immature and mature bovine cumulus-oocyte complexes (COC) was evaluated. In order to find specific molecular markers to characterize successful oocyte maturation, our study was also aimed at identifying the expression of Mcts and oogenesis specific genes in denuded oocytes and cumulus cells. Immature COCs morphological appropriate were (i) stained with 26 mm BCB for 90 min before IVM, (ii) exposed to same incubation conditions as stained COCs, but without BCB (holding group) or (iii) transferred into a maturation medium immediately after morphological selection (control group). mRNA expression was investigated by RT-PCR in COCs before and after IVM. No relationship was observed in the relative expression of Has2, Gdf9, Bmp15 or Mct1, 2 and 4 transcripts between BCB+ and BCB- COCs. Transcripts analysis showed that Gdf9 and Bmp15 in BCB+, BCB- and holding groups were up-regulated (p < 0.05) before IVM, while Has2 was up-regulated (p < 0.01) after IVM in the control group. Other genes remained stable during maturation (Mct1, 2 and 4). Our results showed, for the first time, Mct1, 2 and 4 expression in bovine COCs. Mct1 and Mct4 transcripts were present in denuded oocytes and cumulus cell, while Mct2 was detected only in cumulus cells. These differences between the three isoforms in localization suggest unique roles for each in monocarboxylate transport during maturation. © 2015 Blackwell Verlag GmbH.

  13. Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization.

    Science.gov (United States)

    Parrent, Jeri Lynn; Vilgalys, Rytas

    2009-09-01

    As atmospheric carbon dioxide (CO(2)) concentrations rise, one important mechanism by which plants can gain greater access to necessary soil nutrients is through greater investment in their mycorrhizal symbionts. In this study, we tested the hypotheses that (1) plants increase C allocation to ectomycorrhizal fungi (EMF) under elevated CO(2) conditions, (2) N fertilization decreases C allocation to EMF, and (3) EMF activity at the site of symbiotic C and nutrient exchange is enhanced with CO(2) enrichment. To test these hypotheses, we examined expression levels of Pinus taeda genes encoding monosaccharide transport (MST) and ammonium transport (AMT) proteins thought to be involved in symbiotic C and N movement, respectively, from mycorrhizal root tips exposed to CO(2) and N fertilization. We also examined EMF ribosomal RNA expression (18S rRNA) to determine EMF activity. There was a trend toward lower relative MST expression with increased CO(2). AMT expression levels showed no significant differences between control and treatment plots. EMF 18S rRNA expression was increased in CO(2)-enriched plots and there was a marginally significant positive interactive effect of CO(2) and N fertilization on expression (p = 0.09 and 0.10, respectively). These results are consistent with greater C allocation to EMF and greater EMF metabolic activity under elevated CO(2) conditions, although selective allocation of C to particular EMF species and greater fungal biomass on roots are plausible alternative hypotheses.

  14. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.

    Science.gov (United States)

    Zhang, Lisha; Hua, Chenlei; Stassen, Joost H M; Chatterjee, Sayantani; Cornelissen, Maxim; van Kan, Jan A L

    2014-11-01

    The fungal plant pathogen Botrytis cinerea produces a spectrum of cell wall degrading enzymes for the decomposition of host cell wall polysaccharides and the consumption of the monosaccharides that are released. Especially pectin is an abundant cell wall component, and the decomposition of pectin by B. cinerea has been extensively studied. An effective concerted action of the appropriate pectin depolymerising enzymes, monosaccharide transporters and catabolic enzymes is important for complete d-galacturonic acid utilization by B. cinerea. In this study, we performed RNA sequencing to compare genome-wide transcriptional profiles between B. cinerea cultures grown in media containing pectate or glucose as sole carbon source. Transcript levels of 32 genes that are induced by pectate were further examined in cultures grown on six different monosaccharides, by means of quantitative RT-PCR, leading to the identification of 8 genes that are exclusively induced by d-galacturonic acid. Among these, the hexose transporter encoding genes Bchxt15 and Bchxt19 were functionally characterised. The subcellular location was studied of BcHXT15-GFP and BcHXT19-GFP fusion proteins expressed under control of their native promoter, in a B. cinerea wild-type strain. Both genes are expressed during growth on d-galacturonic acid and the fusion proteins are localized in plasma membranes and intracellular vesicles. Target gene knockout analysis revealed that BcHXT15 contributes to d-galacturonic acid uptake at pH 5∼5.6. The virulence of all B. cinerea hexose transporter mutants tested was unaltered on tomato and Nicotiana benthamiana leaves. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  16. Effect of heat stress on the gene expression of ion transporters/channels in the uterus of laying hens during eggshell formation.

    Science.gov (United States)

    Bahadoran, Shahab; Dehghani Samani, Amir; Hassanpour, Hossein

    2018-01-01

    Heat stress is a problem in laying hens as it decreases egg quality by decreasing eggshell mineralization. Heat stress alters gene expression, hence our aim was to investigate effects of heat stress on gene expression of ion transport elements involving in uterine mineralization (TRPV6, CALB1, ITPR3, SCNN1G, SLC4A4, KCNJ15, SLC4A9, and CLCN2) by real time quantitative PCR. Forty 23-week-old White Leghorn laying hens were housed in two rooms. The control group (n = 20) was maintained at 21-23 °C, and the heat stress group (n = 20) was exposed to 36-38 °C for 8 weeks. All parameters of egg quality including egg weight, surface area, volume, and eggshell weight, thickness, ash weight, and calcium content were decreased in the heat stress group compared to the control group (by 26.9%, 32.7%, 44.1%, 38.4%, 31.7%, 39.4%, and 11.1%, respectively). Total plasma calcium was decreased by 13.4%. Levels of ITPR3, SLC4A4, and SLC4A9 transcripts in the uterine lining were decreased in the heat stress group compared to the control group (by 61.4%, 66.1%, and 66.1%, respectively). CALB1 transcript level was increased (by 34.2 fold) in the heat stress group of hens compared to controls. TRPV6, SCNN1G, KCNJ15, and CLCN2 transcript levels did not significantly differ between control and heat stress groups of laying hens. It is concluded that the down-expression of ITPR3, SLC4A4, and SLC4A9 genes may impair transportation of Cl - , HCO 3 - , and Na + in eggshell mineralization during heat stress. Increased CALB1 gene expression may increase resistance of uterine cells to detrimental effects of heat stress.

  17. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    2010-09-01

    Full Text Available Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity.Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted.These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still though ATP loss occurs with activation caspase 3 and these

  18. Isolation, cloning and expression analysis of EcPMA1, a putative plasma membrane H+ -ATPase transporter gene from the biotrophic pathogenic fungus Erysiphe cichoracearum.

    Science.gov (United States)

    Fotopoulos, Vasileios; Holmes, Robert; Hall, J L; Williams, Lorraine E

    2006-01-01

    Little is known at the molecular level about the transporters involved in nutrient transfer in the plant/powdery mildew interaction. A PCR-based approach was used to identify and isolate a partial-length cDNA coding for an isoform of the plasma membrane H+ -ATPase (EcPMA1) in the biotrophic pathogenic fungus Erysiphe cichoracearum. Southern analysis suggests that EcPMA1 exists as a single-copy gene. Sequence analysis indicated a high similarity of EcPMA1 to other fungal H+ -ATPases. Expression of EcPMA1 increases in infected Arabidopsis leaves as the disease progresses, correlating with the growth of the pathogen.

  19. A long noncoding (lnc) RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flankingprtlncRNA andpho1genes.

    Science.gov (United States)

    Garg, Angad; Sanchez, Ana M; Shuman, Stewart; Schwer, Beate

    2018-02-02

    The expression of the phosphate transporter Pho84 in fission yeast Schizosaccharomyces pombe is repressed in phosphate-rich medium and induced during phosphate starvation. Two other phosphate-responsive genes in S. pombe ( pho1 and tgp1 ) had been shown to be repressed in cis by transcription of a long noncoding (lnc) RNA from the upstream flanking gene, but whether pho84 expression is regulated in this manner is unclear. Here we show that repression of pho84 is enforced by transcription of the SPBC8E4.02c locus upstream of pho84 to produce a lncRNA that we name prt2 ( pho -repressive transcript 2) We identify two essential elements of the prt2 promoter: HomolD box and TATA box, mutations of which inactivate the prt2 promoter and derepress the downstream pho84 promoter under phosphate-replete conditions. We find that prt2 promoter inactivation also elicits a cascade effect on the adjacent downstream prt (lncRNA) and pho1 (acid phosphatase) genes, whereby increased pho84 transcription down-regulates prt lncRNA transcription and thereby de-represses pho1. Our results establish a unified model for the repressive arm of fission yeast phosphate homeostasis, in which transcription of prt2 , prt , and nc-tgp1 lncRNAs interferes with the promoters of the flanking pho84 , pho1 , and tgp1 genes, respectively. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Photosynthetic gene expression in higher plants.

    Science.gov (United States)

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  1. Gene Expression in Bone

    Science.gov (United States)

    D'Ambrogio, A.

    Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:

  2. Circadian calcium feeding regime in laying hens related to zinc concentration, gene expression of circadian clock, calcium transporters and oxidative status.

    Science.gov (United States)

    Lin, Xue; Liu, Yilin; Meng, Tiantian; Xie, Chunyan; Wu, Xin; Yin, Yulong

    2018-03-08

    The study was conducted to investigate the effects of different circadian calcium feeding regimes on parameters of Zn status and gene expression of circadian clock, calcium transporters and oxidative status in laying hens. In total, 180 of 41-weeks Brown Hy-line laying hens were assigned randomly into three groups, 1-CON group (Control Ca, diets contained 3.4% Ca at both 0730 and 1530 h), 2-HL group (High-low Ca, diets contained 3.6%-3.2% Ca respectively) and 3-LH group (Low-high Ca, diets contained 3.2%-3.6% Ca respectively), which were fed a certain amount of control diet at 0730 h and 1530 h. Blood, tibia, jejunum and kidney samples were collected at 4 h intervals with initial starting at 0800 h after 10 weeks of experiment. Compared with the CON group: 1) the serum zinc in HL group increased at 2000 h, but lower at 1600 h in LH group (P clock genes including CLOCK and BMAL1 expression of HL group were down-regulated at 0000 h and 1600 h, as well as CLOCK, BMAL1, Cry2, Per3 and calcium transporter gene NCX1 in LH group at 2000 h (P CLOCK, Cry1, Cry2 and Per3 of LH group were up-regulated at 0400 h, CLOCK at 0000 h as well, while CLOCK at 2000 h were down-regulated (P clock, calcium transport and antioxidative capacity, and circadian calcium feeding regimes may therefore be considered with regard to improving the calcium usability. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (Columba livia).

    Science.gov (United States)

    Gao, C Q; Yang, J X; Chen, M X; Yan, H C; Wang, X Q

    2016-04-01

    Two experiments were conducted to fit growth curves, and determine age-related changes in carcass characteristics, organs, serum biochemical parameters, and gene expression of intestinal nutrient transporters in domestic pigeon (Columba livia). In experiment 1, body weight (BW) of 30 pigeons was respectively determined at 1, 3, 7, 14, 21, 28, and 35 days old to fit growth curves and to describe the growth of pigeons. In experiment 2, eighty-four 1-day-old squabs were grouped by weight into 7 groups. On d 1, 3, 7, 14, 21, 28, and 35, twelve birds from each group were randomly selected for slaughter and post-slaughter analysis. The results showed that BW of pigeons increased rapidly from d 1 to d 28 (a 25.7-fold increase), and then had little change until d 35. The Logistic, Gompertz, and Von Bertalanffy functions can all be well fitted with the growth curve of domestic pigeons (R2>0.90) and the Gompertz model showed the highest R2value among the models (R2=0.9997). The equation of Gompertz model was Y=507.72×e-(3.76exp(-0.17t))(Y=BW of pigeon (g); t=time (day)). In addition, breast meat yield (%) increased with age throughout the experiment, whereas the leg meat yield (%) reached to the peak on d 14. Serum total protein, albumin, globulin, and glucose concentration were increased with age, whereas serum uric acid concentration was decreased (Ppigeon were increased with age. The results of correlation analysis showed the gene expressions of B0AT1, PepT1, and NHE2 had positive correlations with BW (0.73pigeon. And the various physiological and functional properties of organs, serum profiles, and gene expression of nutrient transporters in small intestine might cause the differences in their development patterns. © 2016 Poultry Science Association Inc.

  4. Down-regulation of serotonin and dopamine transporter genes in individual rats expressing a gambling-prone profile: A possible role for epigenetic mechanisms.

    Science.gov (United States)

    Zoratto, Francesca; Romano, Emilia; Pascale, Esterina; Pucci, Mariangela; Falconi, Anastasia; Dell'Osso, Bernardo; Maccarrone, Mauro; Laviola, Giovanni; D'Addario, Claudio; Adriani, Walter

    2017-01-06

    Gambling Disorder (GD) is characterized by excessive gambling despite adverse consequences on individual functioning. In spite of some positive findings, it is difficult to draw any conclusion on the genetics of GD. Indeed, beyond DNA sequence variation, other regulatory mechanisms (like those that engage epigenetics) may explain gene alterations in this addictive disease. Wistar male rats underwent an operant task for the evaluation of individual propensity to gamble. Few rats, after having learnt to prefer nose-poking for a large over a small food reward, were sacrificed to obtain a baseline profile of gene expression at both central and peripheral levels. In the remaining rats, probability of occurrence of large-reward delivery decreased progressively to very low levels. Thus, rats were faced with temptation to "gamble", i.e. to nose-poke for a binge reward, whose delivery was omitted the majority of times. After 3weeks of testing, rats showing a clear-cut profile of either gambling proneness or aversion were selected and sacrificed after the last session. A selective down-regulation of i) serotonin transporter in prefrontal cortex, ii) tyrosine hydroxylase in ventral striatum, iii) dopamine transporter in lymphocytes was evidenced in "gambler" vs "non-gambler" rats. The exposure to such operant task (compared to home-cage alone) modulated ventrostriatal but not prefrontal genes. A consistent increase of DNA methylation, in one specific CpG site at serotonin transporter gene, was evident in prefrontal cortex of "gambler" rats. Elucidation of epigenetic changes occurring during GD progression may pave the way to the development of new therapeutic strategies through specific modulation of epigenetic factors. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Serotonin transporter gene expression predicts the worsening of suicidal ideation and suicide attempts along a long-term follow-up of a Major Depressive Episode.

    Science.gov (United States)

    Consoloni, Julia-Lou; Ibrahim, El Chérif; Lefebvre, Marie-Noëlle; Zendjidjian, Xavier; Olié, Emilie; Mazzola-Pomietto, Pascale; Desmidt, Thomas; Samalin, Ludovic; Llorca, Pierre-Michel; Abbar, Mocrane; Lopez-Castroman, Jorge; Haffen, Emmanuel; Baumstarck, Karine; Naudin, Jean; Azorin, Jean-Michel; El-Hage, Wissam; Courtet, Philippe; Belzeaux, Raoul

    2017-12-26

    The quest for biomarkers in suicidal behaviors has been elusive so far, despite their potential utility in clinical practice. One of the most robust biological findings in suicidal behaviors is the alteration of the serotonin transporter function in suicidal individuals. Our main objective was to investigate the predictive value of the serotonin transporter gene expression (SLC6A4) for suicidal ideation and as secondary, for suicide attempts in individuals with a major depressive episode (MDE). A 30-week prospective study was conducted on 148 patients with a MDE and 100 healthy controls including 4 evaluation times (0, 2, 8 and 30 weeks). Blood samples and clinical data were collected and SLC6A4 mRNA levels were measured from peripheral blood mononuclear cells using RT-qPCR. We first demonstrated the stability and reproducibility of SLC6A4 mRNA expression measures over time in healthy controls (F=0.658; p=0.579; η 2 =0.008; ICC=0.91, 95% CI [0.87-0.94]). Baseline SLC6A4 expression level (OR=0.563 [0.340-0.932], p=0.026) as well as early changes in SLC6A4 expression between baseline and the 2 nd week (β=0.200, p=0.042) predicted the worsening of suicidal ideation (WSI) in the following 8 weeks. Moreover, changes in SLC6A4 expression between the 2 nd and 8 th weeks predicted the occurrence of a suicide attempt within 30 weeks (OR=10.976 [1.438-83.768], p=0.021). Altogether, the baseline level and the changes in SLC6A4 mRNA expression during a MDE might predict the WSI and the occurrence of suicidal attempts and could be a useful biomarker in clinical practice. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  6. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    Science.gov (United States)

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  7. Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Wang, Y.; Xu, H.; Wei, X.; Chai, C.; Xiao, Y.; Zhang, Y.; Chen, B.; Xiao, G.; Ouwerkerk, P.B.F.; Wang, M.; Zhu, Z.

    2007-01-01

    Monosaccharide transporters mediate the membrane transport of a variable range of monosaccharides, which plays a crucial role in sugar distribution throughout the plant. To investigate the significance of monosaccharide transporters for rice (Oryza sativa L.) seed development, cDNA of a new putative

  8. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  9. Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Wang, Y.; Xiao, Y.; Zhang, Y.; Chai, C.; Wei, G.; Wei, X.; Xu, H.; Wang, M.; Ouwerkerk, P.B.F.; Zhu, Z.

    2008-01-01

    Monosaccharides transporters play important roles in assimilate supply for sink tissue development. In this study, a new monosaccharide transporter gene OsMST6 was identified from rice (Oryza sativa L.). The predicted OsMST6 protein shows typical features of sugar transporters and shares 79.6%

  10. Evolution of gene expression after gene amplification.

    Science.gov (United States)

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-04-24

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  12. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P pigeon embryos. © 2016 Poultry Science Association Inc.

  13. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression.

    OpenAIRE

    Ozcan, S; Dover, J; Rosenwald, A G; Wölfl, S; Johnston, M

    1996-01-01

    Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is requ...

  14. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  15. Diversity in growth and expression pattern of PoHKT1 and PoVHA transporter genes under NaCl stress in Portulaca oleracea taxa

    Directory of Open Access Journals (Sweden)

    El-Bakatoushi R.

    2016-01-01

    Full Text Available Plant growth and the expression of two transporter genes; PoHKT1 and PoVHA transcripts in root and shoot tissues were studied under salt stress of three Portulaca oleracea s.l. taxa. The study showed no significant differences in ratios between root lengths in saline and non-saline treatments of the three taxa, which was correlated with a clear down-regulation of the PoHKT1 transcripts in the root after 150mM NaCl. All measured growth parameters except root length increased in P. oleraceae, decreased in P. granulatostellulata and remain unchanged after 100mM NaCl in P. nitida compared to control under saline conditions. The result was consistent with the type of taxon which had significant effect on the shoot length, number of leaves and dry weight (P< 0.05. All measured growth parameters except root length showed a significant negative correlation with the shoot fold change of PoHKT1 transcripts (r = -0.607, -0.693 and -0.657 respectively. The regulation of PoVHA in root and shoot tissues in the three taxa are significantly different. Under salt stress, both decreased uptake of Na+ into the cytosol by decreasing the expression of PoHKT1 and increased vascular compartmentalization ability of Na+ by inducing the expression of PoVHA seem to work more efficiently in P. oleraceae and P. nitida than in P. granulato-stellulata.

  16. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    Science.gov (United States)

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  17. UDP-galactose transporter gene hUGT1 expression in tobacco plants leads to hyper-galactosylated cell wall components.

    Science.gov (United States)

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Asai, Toshihiko; Ishihara, Nami; Kitamura, Kenji; Ishida, Nobuhiro; Tanaka, Nobukazu

    2016-05-01

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Hypophagia and induction of serotonin transporter gene expression in raphe nuclei of male and female rats after short-term fluoxetine treatment.

    Science.gov (United States)

    Lauzurica, Nuria; García-García, Luis; Fuentes, José A; Delgado, Mercedes

    2013-03-01

    Serotonin (5-HT) is one of the regulators of feeding in humans. Drugs acting on the serotoninergic system are used to treat bulimia nervosa and to enhance the effect of hypocaloric diets in overweight subjects. They act rapidly to normalise feeding when used to treat eating-related problems. To explore the role of the 5-HT transporter (serotonin transporter (SERT)) in the short-term action of serotonin selective reuptake inhibitor fluoxetine, rats were i.p. given the drug for five consecutive days. Acute administration of fluoxetine in male and female rats produced a strong reduction in food intake, an effect that held up when daily treatment was maintained for five consecutive days. This reduction translated into a diminution of body weight that was statistically significant in the case of the males. As a reflection of the body weight change in rats killed after the fifth daily drug injection, retroperitoneal fat pad also decreased; a diminution that was statistically significant in the case of male rats. In these conditions, plasma leptin levels of both male and female rats were lower than in untreated animals. While acute fluoxetine administration did not modify SERT gene expression, subchronic drug treatment increased the content of SERT mRNA in the midbrain raphe complex of both rat genders. These findings may contribute to explain the role of SERT in fluoxetine action on binging and as an adjunct to hypocaloric diets.

  19. bmr3, a third multidrug transporter gene of Bacillus subtilis.

    OpenAIRE

    Ohki, R; Murata, M

    1997-01-01

    A third multidrug transporter gene named bmr3 was cloned from Bacillus subtilis. Although Bmr3 shows relatively low homology to Bmr and Blt, the substrate specificities of these three transporters overlap. Northern hybridization analysis showed that expression of the bmr3 gene was dependent on the growth phase.

  20. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...

  1. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    Science.gov (United States)

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.

  2. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each......' C, and clustered Dukes' D separately. Real-time PCR of 10 known genes and 5 ESTs demonstrated excellent reproducibility of the array-based findings. The most frequently altered genes belonged to functional categories of metabolism (22%), transcription and translation (11%), and cellular processes (9...

  3. Human Lacrimal Gland Gene Expression.

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Aakalu

    Full Text Available The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development.We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium.The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described.Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.

  4. Long-Term Effects of Ketogenic Diet on Subsequent Seizure-Induced Brain Injury During Early Adulthood: Relationship of Seizure Thresholds to Zinc Transporter-Related Gene Expressions.

    Science.gov (United States)

    Tian, Tian; Li, Li-Li; Zhang, Shu-Qi; Ni, Hong

    2016-12-01

    The divalent cation zinc is associated with cortical plasticity. However, the mechanism of zinc in the pathophysiology of cortical injury-associated neurobehavioral damage following neonatal seizures is uncertain. We have previously shown upregulated expression of ZnT-3; MT-3 in hippocampus of neonatal rats submitted to flurothyl-induced recurrent seizures, which was restored by pretreatment with ketogenic diet (KD). In this study, utilizing a novel "twist" seizure model by coupling early-life flurothyl-induced seizures with later exposure to penicillin, we further investigated the long-term effects of KD on cortical expression of zinc homeostasis-related genes in a systemic scale. Ten Sprague-Dawley rats were assigned each averagely into the non-seizure plus normal diet (NS + ND), non-seizure plus KD (NS + KD), recurrent seizures plus normal diet (RS + ND) and recurrent seizures plus KD (RS + KD) group. Recurrent seizures were induced by volatile flurothyl during P9-P21. During P23-P53, rats in NS + KD and RS + KD groups were dieted with KD. Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed at P43. At P63, we examined seizure threshold using penicillin, then the cerebral cortex were evaluated for real-time RT-PCR and western blot study. The RS + ND group showed worse performances in neurological reflex tests and reduced latencies to myoclonic seizures induced by penicillin compared with the control, which was concomitant with altered expressions of ZnT-7, MT-1, MT-2, and ZIP7. Specifically, there was long-term elevated expression of ZIP7 in RS + ND group compared with that in NS + ND that was restored by chronic ketogenic diet (KD) treatment in RS + KD group, which was quite in parallel with the above neurobehavioral changes. Taken together, these findings indicate that the long-term altered expression of the metal transporter ZIP7 in adult cerebral cortex might

  5. Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-β-1,6-N-Acetylglucosamine

    Science.gov (United States)

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H.; Nation, Roger L.; Li, Jian; Harper, Marina; Adler, Ben

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971–4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface. PMID:22024825

  6. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine.

    Science.gov (United States)

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H; Nation, Roger L; Li, Jian; Harper, Marina; Adler, Ben; Boyce, John D

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971-4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface.

  7. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  8. Remote control of gene expression.

    Science.gov (United States)

    Long, Xiaochun; Miano, Joseph M

    2007-06-01

    The elucidation of a growing number of species' genomes heralds an unprecedented opportunity to ascertain functional attributes of non-coding sequences. In particular, cis regulatory modules (CRMs) controlling gene expression constitute a rich treasure trove of data to be defined and experimentally validated. Such information will provide insight into cell lineage determination and differentiation and the genetic basis of heritable diseases as well as the development of novel tools for restricting the inactivation of genes to specific cell types or conditions. Historically, the study of CRMs and their individual transcription factor binding sites has been limited to proximal regions around gene loci. Two important by-products of the genomics revolution, artificial chromosome vectors and comparative genomics, have fueled efforts to define an increasing number of CRMs acting remotely to control gene expression. Such regulation from a distance has challenged our perspectives of gene expression control and perhaps the very definition of a gene. This review summarizes current approaches to characterize remote control of gene expression in transgenic mice and inherent limitations for accurately interpreting the essential nature of CRM activity.

  9. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.

    Science.gov (United States)

    Ruiz-Carrasco, Karina; Antognoni, Fabiana; Coulibaly, Amadou Konotie; Lizardi, Susana; Covarrubias, Adriana; Martínez, Enrique A; Molina-Montenegro, Marco A; Biondi, Stefania; Zurita-Silva, Andrés

    2011-11-01

    Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: A microarray study

    International Nuclear Information System (INIS)

    Fletcher, Nick; Wahlstroem, David; Lundberg, Rebecca; Nilsson, Charlotte B.; Nilsson, Kerstin C.; Stockling, Kenneth; Hellmold, Heike; Hakansson, Helen

    2005-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent hepatotoxin that exerts its toxicity through binding to the aryl hydrocarbon receptor (AhR) and the subsequent induction or repression of gene transcription. In order to further identify novel genes and pathways that may be associated with TCDD-induced hepatotoxicity, we investigated gene changes in rat liver following exposure to single oral doses of TCDD. Male Sprague-Dawley rats were administered single doses of 0.4 μg/kg bw or 40 μg/kg bw TCDD and killed at 6 h, 24 h, or 7 days, for global analyses of gene expression. In general, low-dose TCDD exposure resulted in greater than 2-fold induction of genes coding for a battery of phase I and phase II metabolizing enzymes including CYP1A1, CYP1A2, NADPH quinone oxidoreductase, UGT1A6/7, and metallothionein 1. However, 0.4 μg/kg bw TCDD also altered the expression of Gadd45a and Cyclin D1, suggesting that even low-dose TCDD exposure can alter the expression of genes indicative of cellular stress or DNA damage and associated with cell cycle control. At the high-dose, widespread changes were observed for genes encoding cellular signaling proteins, cellular adhesion, cytoskeletal and membrane transport proteins as well as transcripts coding for lipid, carbohydrate and nitrogen metabolism. In addition, decreased expression of cytochrome P450 7A1, short heterodimer partner (SHP; gene designation nr0b2), farnesyl X receptor (FXR), Ntcp, and Slc21a5 (oatp2) were observed and confirmed by RT-PCR analyses in independent rat liver samples. Altered expression of these genes implies major deregulation of cholesterol metabolism and bile acid synthesis and transport. We suggest that these early and novel changes have the potential to contribute significantly to TCDD induced hepatotoxicity and hypercholesterolemia

  11. Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers.

    Science.gov (United States)

    Fernandez-Alarcon, M F; Trottier, N; Steibel, J P; Lunedo, R; Campos, D M B; Santana, A M; Pizauro, J M; Furlan, R L; Furlan, L R

    2017-08-01

    The objectives of this study were to describe alterations that age and dietary inclusion of direct-fed microbial (DFM) Bacillus subtilis (BS) and a specific essential oil (EO) blend (carvacrol, cinnamaldehyde, cineol, and pepper extract) causes in the activity of digestive enzymes (maltase: MALT; aminopeptidase-N: APN; intestinal alkaline phosphate: IAP) and expression patterns of genes related to transport (oligopeptide transporter gene: SLC15A1; Na+-dependent glucose and galactose transporter gene: SLC5A1; Na+-independent glucose, galactose, and fructose transporter gene: SLC2A2; ATPase, Na+/K+ transporting gene: ATP1A1) and digestion (aminopeptidase-N gene: ANPEP; maltase-glucoamylase gene: MGAM; Sucrase-isomaltase gene: SI) of carbohydrates and proteins in the small intestine of broilers. Also, the objective was to analyze if growth performance of broilers is affected by supplementation (BS and EO blend). Day-old male broiler chicks (n = 1,320) were assigned to 5 treatments. Diets included a basal diet (BD) as a negative control (CON); experimental diets were BD + BS; BD + BS + EO; BD + EO; BD + antibiotic growth promoter (AGP) avilamycin was the positive control. Performance was evaluated between 1 to 42 d. Transcript abundance of transport-related genes and digestion-related genes were assayed by RT-qPCR and determined at d 7, 21, and 42. MALT-, APN-, and IAP-specific activities were determined at d 7, 21, and 42. Broilers fed BS had greater SLC15A1 mRNA abundance compared to CON, while EO and AGP were related to higher activities of IAP and APN. Analysis over time revealed higher abundance of MGAM, SLC2A2, SLC15A1, SLC5A1 and SI mRNA at d 42 when compared to d 7. Activity of IAP decreased after d 7 and activity of MALT increased with age. The current study suggests that age had effect over carbohydrate and protein transport and carbohydrate digestion. The supplementation of BS DFM hade evident effect over protein transport and that the use of EO in the diet

  12. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  13. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  14. Differential expression of fatty acid transporters and fatty acid synthesis-related genes in crop tissues of male and female pigeons (Columba livia domestica) during incubation and chick rearing.

    Science.gov (United States)

    Xie, Peng; Wang, Xue-Ping; Bu, Zhu; Zou, Xiao-Ting

    2017-10-01

    1. The growth performance of squabs reared solely by male or female parent pigeons was measured, and the changes of lipid content of crop milk and the expression profiles of genes potentially involved in lipid accumulation by crop tissues of parent pigeons were evaluated during incubation and chick rearing. 2. Squabs increased in body weight during 25 d of rearing, whereas both male and female pigeons lost weight after finishing rearing chicks, and the weight loss of male pigeons was significantly greater than that of female parent pigeons. Lipid content of crop milk from both parent pigeons gradually decreased to the crude fat level in the formulated diet after 10 d (R10) of chick rearing. 3. The gene expression of fatty acid translocase (FAT/CD36), fatty acid-binding protein 5 (EFABP) and acyl-CoA-binding protein (ACBP) in male pigeon crop tissue were the greatest at 17 d (I17) of incubation. In female pigeons, FAT/CD36 expression was the highest at I14, and both EFABP and ACBP expression peaked at I14 and R7. The expression of acetyl-CoA carboxylase and fatty acid synthase in male pigeons reached the maximum level at R1, while they peaked at I14 and I17, respectively in female pigeons. The gene expression of peroxisome proliferators-activated receptor-gamma (PPARγ) was the greatest at I17 in the male, while it was at I14 in the female. However, no regular changing pattern was found in PPARα gene expression in male pigeons. 4. These results indicated that male and female pigeons may make different contributions in rearing squabs. The gene expression study suggested that fatty acids used in lipid biosynthesis of crop milk probably originated from both exogenous supply and de novo synthesis. The sex of the parent pigeon affected the lipid content of crop milk and the expression profiles of genes involved in fatty acid transportation and lipogenesis.

  15. Looking on the bright side of serotonin transporter gene variation.

    NARCIS (Netherlands)

    Homberg, J.R.; Lesch, K.P.

    2011-01-01

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for

  16. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.

    LENUS (Irish Health Repository)

    Enjalbert, Brice

    2009-04-01

    Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis.

  17. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  18. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies......This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  19. Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet

    Directory of Open Access Journals (Sweden)

    Tian Hua

    2011-01-01

    Full Text Available Abstract Background Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins on atherosclerosis in mouse models are very paradoxical. In this work, we wanted to evaluate the effects of simvastatin on serum cholesterol, atherogenesis, and the expression of several factors playing important roles in reverse cholesterol transport (RCT in apoE-/- mice fed a high-fat diet. Results The atherosclerotic lesion formation displayed by oil red O staining positive area was reduced significantly by 35% or 47% in either aortic root section or aortic arch en face in simvastatin administrated apoE-/- mice compared to the control. Plasma analysis by enzymatic method or ELISA showed that high-density lipoprotein-cholesterol (HDL-C and apolipoprotein A-I (apoA-I contents were remarkably increased by treatment with simvastatin. And plasma lecithin-cholesterol acyltransferase (LCAT activity was markedly increased by simvastatin treatment. Real-time PCR detection disclosed that the expression of several transporters involved in reverse cholesterol transport, including macrophage scavenger receptor class B type I, hepatic ATP-binding cassette (ABC transporters ABCG5, and ABCB4 were induced by simvastatin treatment, the expression of hepatic ABCA1 and apoA-I, which play roles in the maturation of HDL-C, were also elevated in simvastatin treated groups. Conclusions We demonstrated the anti-atherogenesis effects of simvastatin in apoE-/- mice fed a high-fat diet. We confirmed here for the first time simvastatin increased the expression of hepatic ABCB4 and ABCG5, which involved in secretion of cholesterol and bile acids into the bile, besides upregulated ABCA1 and apoA-I. The elevated HDL-C level, increased LCAT activity and the stimulation of several transporters involved in RCT may all contribute to the anti-atherosclerotic effect of simvastatin.

  20. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  1. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  2. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2—Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Fung-Wei Chang

    2017-01-01

    Full Text Available Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2, adenosine triphosphate (ATP synthase and cytochrome c oxidase subunit VIc (COX6C were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX. The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP and reactive oxygen species (ROS expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.

  3. Gene expression profile of pulpitis

    Science.gov (United States)

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  4. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  5. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  6. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L. Heynh

    Directory of Open Access Journals (Sweden)

    Surgun Yonca

    2016-01-01

    Full Text Available Plant steroidal hormones, brassinosteroids (BRs, promote plant developmental processes and enhance tolerance to several abiotic stresses including high boron (B stress. To examine the possible role of BR in high B-induced stress at the transcriptional level, we investigated the response of B transporter genes (BOR1-4, high B-induced genes (MATE, Hsp-like, BR-induced genes (Hsp70-4, Hsp90-1 and other stress-related genes (LTI/COR78, LEA4-5 upon exogenous treatments of 24-epibrassinolide (EBL on Arabidopsis thaliana (L. Heynh exposed to high concentrations of boric acid (BA using semi-quantitative RT-PCR. BA treatments led to down regulation of BOR1 and BOR3 genes in leaf and root tissues and higher concentration of EBL further decreased expression of these genes in roots. The expression of high B-induced genes was observed to be upregulated by 1 μM EBL treatment under high B stress in both tissues of the seedlings. The upregulation of BR-induced genes were clearly evident in root tissues co-treated with 1 μM EBL and BA as compared to BA alone. Higher concentration of EBL was found to be more effective in increasing expression of LTI/COR78 gene in root and LEA4-5 gene in shoot tissues. To our knowledge, this is the first report how exogenous application of EBL modulates high B stress responses at molecular level in model plant Arabidopsis thaliana.

  7. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    a1 sodium-bicarbonate transporter, SLC9a2 sodium-hydrogen transporter, SLC12a3 thiazide-sensitive Na-Cl transporter, and SLC34a2 sodium-phosphate transporter. CONCLUSIONS: Several important ion transporters of the SLC family are expressed in the human endolymphatic sac, including Pendrin...

  8. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  9. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    Science.gov (United States)

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  10. Gene expression profiles in skeletal muscle after gene electrotransfer

    Directory of Open Access Journals (Sweden)

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  11. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  12. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  13. Cerebrovascular gene expression in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Frederiksen, Simona Denise; Edvinsson, Lars

    2017-01-01

    in the middle cerebral arteries from hypertensive compared to normotensive rats. The gene expression of 72 genes was decreased and the gene expression of 97 genes was increased. The following genes with a fold difference ≥1.40 were verified by quantitative PCR; Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1......, Mmp11, Cd34, Ptgs1 and Ptgs2. The gene expression of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Serpine1 and the protein expression of LOX1 (also known as OLR1) were significantly increased in the middle cerebral arteries from spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion...

  14. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia.

    Science.gov (United States)

    Inokuchi, Mayu; Breves, Jason P; Moriyama, Shunsuke; Watanabe, Soichi; Kaneko, Toyoji; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-11-15

    This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions. Copyright © 2015 the American Physiological Society.

  15. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  16. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  17. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  18. Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria.

    Science.gov (United States)

    Rajan, D P; Kekuda, R; Huang, W; Wang, H; Devoe, L D; Leibach, F H; Prasad, P D; Ganapathy, V

    1999-10-08

    We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.

  19. Nonlinear dimensionality reduction of gene expression data

    OpenAIRE

    Nilsson, Jens

    2006-01-01

    Using microarray measurements techniques, it is possible to measure the activity of genes simultaneously across the whole genome. Since genes influence each others activity levels through complex regulatory networks, such gene expression measurements are state samples of a dynamical system. Gene expression data has proven useful for diagnosis and definition of disease subgroups, for inference of the functional role of a given gene or for the deciphering of complex disease mechanisms. However,...

  20. Meta-analysis of differentially expressed genes in ankylosing spondylitis.

    Science.gov (United States)

    Lee, Y H; Song, G G

    2015-05-18

    The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS.

  1. Polymorphism in ABC transporter genes of Dirofilaria immitis

    Directory of Open Access Journals (Sweden)

    Thangadurai Mani

    2017-08-01

    Full Text Available Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS and four loss of efficacy (LOE pooled populations were used for single nucleotide polymorphism (SNP genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. Keywords: Dirofilaria immitis

  2. Effects of Emdogain on osteoblast gene expression.

    Science.gov (United States)

    Carinci, F; Piattelli, A; Guida, L; Perrotti, V; Laino, G; Oliva, A; Annunziata, M; Palmieri, A; Pezzetti, F

    2006-05-01

    Emdogain (EMD) is a protein extract purified from porcine enamel and has been introduced in clinical practice to obtain periodontal regeneration. EMD is composed mainly of amelogenins (90%), while the remaining 10% is composed of non-amelogenin enamel matrix proteins such as enamelins, tuftelin, amelin and ameloblastin. Enamel matrix proteins seem to be involved in root formation. EMD has been reported to promote proliferation, migration, adhesion and differentiation of cells associated with healing periodontal tissues in vivo. How this protein acts on osteoblasts is poorly understood. We therefore attempted to address this question by using a microarray technique to identify genes that are differently regulated in osteoblasts exposed to enamel matrix proteins. By using DNA microarrays containing 20,000 genes, we identified several upregulated and downregulated genes in the osteoblast-like cell line (MG-63) cultured with enamel matrix proteins (Emd). The differentially expressed genes cover a broad range of functional activities: (i) signaling transduction, (ii) transcription, (iii) translation, (iv) cell cycle regulation, proliferation and apoptosis, (v) immune system, (vi) vesicular transport and lysosome activity, and (vii) cytoskeleton, cell adhesion and extracellular matrix production. The data reported are the first genome-wide scan of the effect of enamel matrix proteins on osteoblast-like cells. These results can contribute to our understanding of the molecular mechanisms of bone regeneration and as a model for comparing other materials with similar clinical effects.

  3. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete

    2015-01-01

    of clinical importance, including body mass index, triglyceride, and insulin resistance, were inversely correlated with ZIP14. During early adipogensis an up-regulation of ZIP14 gene expression was found. PPARγ gene expression was positively correlated with the ZIP14 gene expression in both adipose tissue...... as a potential biomarker for metabolic stress....

  4. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  5. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    notably, genes involved in cell adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated. This study reveals significant gene expression alterations in key biological pathways and provides potential insights into understanding the molecular mechanism of renal cell carcinogenesis.

  6. Polymorphism in ABC transporter genes of Dirofilaria immitis.

    Science.gov (United States)

    Mani, Thangadurai; Bourguinat, Catherine; Prichard, Roger K

    2017-08-01

    Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML) endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC) transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR) by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS) and four loss of efficacy (LOE) pooled populations were used for single nucleotide polymorphism (SNP) genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. Copyright © 2017 The Authors. Published by

  7. Glucose transporters: expression, regulation and cancer

    Directory of Open Access Journals (Sweden)

    RODOLFO A. MEDINA

    2002-01-01

    Full Text Available Mammalian cells depend on glucose as a major substrate for energy production. Glucose is transported into the cell via facilitative glucose transporters (GLUT present in all cell types. Many GLUT isoforms have been described and their expression is cell-specific and subject to hormonal and environmental control. The kinetic properties and substrate specificities of the different isoforms are specifically suited to the energy requirements of the particular cell types. Due to the ubiquitousness of these transporters, their differential expression is involved in various disease states such as diabetes, ischemia and cancer. The majority of cancers and isolated cancer cell lines over-express the GLUT family members which are present in the respective tissue of origin under non-cancerous conditions. Moreover, due to the requirement of energy to feed uncontrolled proliferation, cancer cells often express GLUTs which under normal conditions would not be present in these tissues. This over-expression is predominantly associated with the likelihood of metastasis and hence poor patient prognosis. This article presents a review of the current literature on the regulation and expression of GLUT family members and has compiled clinical and research data on GLUT expression in human cancers and in isolated human cancer cell lines.

  8. Prediction of the gene expression in normal lung tissue by the gene expression in blood.

    Science.gov (United States)

    Halloran, Justin W; Zhu, Dakai; Qian, David C; Byun, Jinyoung; Gorlova, Olga Y; Amos, Christopher I; Gorlov, Ivan P

    2015-11-17

    Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene's expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression.

  9. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......, we describe the two different methods for obtaining promoter libraries and compare their applicability....

  10. Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2017-04-01

    Full Text Available This study was conducted to explore whether exposure to bisphenol A (BPA during pregnancy could change intestinal digestion and absorption function in offspring using pigs as a model, and whether methyl donor (MET could counteract the BPA-induced impacts. Fifty Landrace × Yorkshire sows were divided into four dietary groups throughout gestation: control diet (CON; control diet supplemented with BPA (50 mg/kg; control diet supplemented with MET (3 g/kg betaine, 400 mg/kg choline, 150 μg/kg vitamin B12, and 15 mg/kg folic acid; and control diet with BPA and MET supplementation (BPA + MET. Intestine samples were collected from pigs’ offspring at birth and weaning. Maternal BPA exposure during pregnancy significantly reduced the ratio of jejunum villus height to crypt depth, decreased the jejunum sucrase activity, down-regulated the mRNA expression of jejunum peptide transporter 1 (Pept1 and DNA methyl transferase 3a (DNMT3a, and decreased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05. Maternal MET supplementation significantly raised the ratio of villus height to crypt depth in jejunum and ileum, improved the jejunum lactase activity, up-regulated the mRNA expression of jejunum Pept1, lactase (LCT, DNMT1, DNMT3a, and methylenetetrahydrofolate reductase (MTHFR, and increased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05. However, the ratio of jejunum villus height to crypt depth was higher in BPA + MET treatment compared with CON and BPA treatment (p < 0.05. Meanwhile, there was no difference in the jejunum sucrase activity, the mRNA expression of jejunum Pept1 and DNMT3a, and the DNA methylation level of jejunum Pept1 between CON and BPA + MET treatment. These results indicated that maternal exposure to BPA during gestation might suppress offspring’s intestinal digestion and absorption function, whereas supplementation of MET could counteract these damages, which might be associated with DNA methylation.

  11. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  12. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  13. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  14. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  15. Differential endometrial gene expression in pregnant and nonpregnant sows

    DEFF Research Database (Denmark)

    Østrup, Esben; Bauersachs, Stefan; Blum, Helmut

    2010-01-01

    obtained from the endometrium of pregnant sows and sows inseminated with inactivated semen. Analysis of the microarray data revealed 263 genes to be significantly differentially expressed between the pregnant and nonpregnant sows. Most gene ontology terms significantly enriched at pregnancy had allocated......In an attempt to unveil molecular processes controlling the porcine placentation, we have investigated the pregnancy-induced gene expression in the endometrium using the Affymetrix GeneChip Porcine Genome Array. At Day 14 after insemination, at the time of initial placentation, samples were...... more up-regulated genes than down-regulated genes. These terms included developmental process, transporter activity, calcium ion binding, apoptosis, cell motility, enzyme-linked receptor protein signaling pathway, positive regulation of cell proliferation, ion homeostasis, and hormone activity. Only...

  16. Comparison of gene expression patterns between porcine cumulus ...

    African Journals Online (AJOL)

    UPuser

    receptor regulation, membrane trafficking, organelle transport, cellular signalling and some other cellular processes. These results suggest that the aberrant of gene expression patterns detected in the oocytes of NOs compared with COCs explains their reduced quality in terms of development and maturation. In conclusion,.

  17. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    Result: Between the diabetic rat group and the wild-type group, 1339 functional genes showed differences in expression levels (p < 0.05). ... Genes whose expression normalized were mainly those affected by the disease state and associated with glucose and lipid metabolism, cell growth, apoptosis, biosynthesis, olfactory ...

  18. Expression of conserved signalling pathway genes during

    Indian Academy of Sciences (India)

    Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently ...

  19. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  20. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  1. Gene Expression in Human Accessory Lacrimal Glands of Wolfring

    Science.gov (United States)

    Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.

    2012-01-01

    Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620

  2. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  3. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  4. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  5. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  6. Reduced excitatory amino acid transporter 1 and metabotropic glutamate receptor 5 expression in the cerebellum of fragile X mental retardation gene 1 premutation carriers with fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Pretto, Dalyir I; Kumar, Madhur; Cao, Zhengyu; Cunningham, Christopher L; Durbin-Johnson, Blythe; Qi, Lihong; Berman, Robert; Noctor, Stephen C; Hagerman, Randi J; Pessah, Isaac N; Tassone, Flora

    2014-05-01

    A premutation (PM) expansion (55-200 CGG) in the fragile X mental retardation gene 1 causes elevated messenger RNA and reduced fragile X mental retardation gene 1 protein. Young PM carriers can develop characteristic physical features and mild cognitive disabilities. In addition, individuals with PM, particularly male carriers, are at high risk to develop fragile X-associated tremor/ataxia syndrome (FXTAS) with aging. Human postmortem FXTAS brains show extensive white matter disease in the cerebellum and the presence of intranuclear inclusions throughout the brain, although their etiologic significance is unknown. In the current work, expression levels of the metabotropic glutamate (Glu) receptor 5 and the Glu transporter excitatory amino acid transporter 1, examined by reverse transcription polymerase chain reaction and western blot analyses, were found to be reduced in the postmortem cerebellum of PM carriers with FXTAS compared with age matched controls, with higher CGG repeat number having greater reductions in both proteins. These data suggests a dysregulation of Glu signaling in PM carriers, which would likely contribute to the development and severity of FXTAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  8. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  9. Development of gene expression assays measuring immune ...

    African Journals Online (AJOL)

    Using qPCR, the relative expression stability of the reference genes ACTB, GAPDH, YWHAZ and TBP in these samples was determined as well as the mean fold change in the expression of IFNG, CXCL8, CXCL9, CXCL10 and CXCL11 in M. bovis-antigen stimulated blood. The expression of YWHAZ and TBP showed ...

  10. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A panoramic view of gene expression in the human kidney

    Science.gov (United States)

    Chabardès-Garonne, Danielle; Méjean, Arnaud; Aude, Jean-Christophe; Cheval, Lydie; Di Stefano, Antonio; Gaillard, Marie-Claude; Imbert-Teboul, Martine; Wittner, Monika; Balian, Chanth; Anthouard, Véronique; Robert, Catherine; Ségurens, Béatrice; Wincker, Patrick; Weissenbach, Jean; Doucet, Alain; Elalouf, Jean-Marc

    2003-01-01

    To gain a molecular understanding of kidney functions, we established a high-resolution map of gene expression patterns in the human kidney. The glomerulus and seven different nephron segments were isolated by microdissection from fresh tissue specimens, and their transcriptome was characterized by using the serial analysis of gene expression (SAGE) method. More than 400,000 mRNA SAGE tags were sequenced, making it possible to detect in each structure transcripts present at 18 copies per cell with a 95% confidence level. Expression of genes responsible for nephron transport and permeability properties was evidenced through transcripts for 119 solute carriers, 84 channels, 43 ion-transport ATPases, and 12 claudins. Searching for differences between the transcriptomes, we found 998 transcripts greatly varying in abundance from one nephron portion to another. Clustering analysis of these transcripts evidenced different extents of similarity between the nephron portions. Approximately 75% of the differentially distributed transcripts corresponded to cDNAs of known or unknown function that are accurately mapped in the human genome. This systematic large-scale analysis of individual structures of a complex human tissue reveals sets of genes underlying the function of well-defined nephron portions. It also provides quantitative expression data for a variety of genes mutated in hereditary diseases and helps in sorting candidate genes for renal diseases that affect specific portions of the human nephron. PMID:14595018

  12. Caleydo: connecting pathways and gene expression.

    Science.gov (United States)

    Streit, Marc; Lex, Alexander; Kalkusch, Michael; Zatloukal, Kurt; Schmalstieg, Dieter

    2009-10-15

    Understanding the relationships between pathways and the altered expression of their components in disease conditions can be addressed in a visual data analysis process. Caleydo uses novel visualization techniques to support life science experts in their analysis of gene expression data in the context of pathways and functions of individual genes. Pathways and gene expression visualizations are placed in a 3D scene where selected entities (i.e. genes) are visually connected. This allows Caleydo to seamlessly integrate interactive gene expression visualization with cross-database pathway exploration. The Caleydo visualization framework is freely available on www.caleydo.org for non-commercial use. It runs on Windows and Linux and requires a 3D capable graphics card.

  13. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  15. Glucose transporter expression in the human colon.

    Science.gov (United States)

    Merigo, Flavia; Brandolese, Alessandro; Facchin, Sonia; Missaggia, Silvia; Bernardi, Paolo; Boschi, Federico; D'Incà, Renata; Savarino, Edoardo Vincenzo; Sbarbati, Andrea; Sturniolo, Giacomo Carlo

    2018-02-21

    To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease (IBD). Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or recto-sigmoidoscopy. Patients diagnosed with ulcerative colitis ( n = 18) or Crohn's disease ( n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group (CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, double-labeled confocal microscopy was used. Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive (-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and non

  16. EXPRESSION OF BACTERIOOPSIN GENES IN ESCHERICHIA COLI

    OpenAIRE

    TSUJIUCHI, Yutaka; IWASA, Tatsuo; TOKUNAGA, Fumio

    1994-01-01

    An inducible expression vector pUBO was constructed with native codons in order to express the gene of Bacteriorhodopsin (BOP) in Escherichia coli (E. coli). Vector pUBO contains lac-promoter followed by the partial structural gene of lacZ and the structural gene of BOP. The expression of this fusion protein was detected by ELISA with anti-BOP antiserum. The fusion protein obtained from E. coli trnsformed with pUBO formed approximately 0.1% of the total protein of the E. coli membrane fraction.

  17. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  18. The Serotonin Transporter Gene Polymorphisms and Risk of Ischemic Stroke.

    Science.gov (United States)

    Mortensen, Janne Kaergaard; Kraglund, Kristian Lundsgaard; Johnsen, Søren Paaske; Mors, Ole; Andersen, Grethe; Buttenschøn, Henriette N

    2018-04-03

    Serotonin is known as a neurotransmitter; however, it also plays an important role in platelet aggregation as it is released upon platelet activation. The serotonin transporter (SERT) is responsible for the uptake of serotonin into platelets. Functional polymorphisms in the SERT gene may influence platelet activity, as they result in different levels of transporters and thereby different levels of serotonin in platelets. SERT gene polymorphisms have thus been associated with the risk of myocardial infarction. A similar association may exist between SERT gene polymorphisms and stroke. However, to our knowledge, this potential association has not previously been studied. We therefore aimed to investigate the association between polymorphisms in the SERT gene and the risk of ischemic stroke/transitory ischemic attack (TIA). We conducted a case-control study including 834 consecutively admitted first-ever Caucasian ischemic stroke patients/TIA from Aarhus University Hospital, Denmark and 571 healthy controls. The control group comprised a sample from the Danish working population, who were all employees in the public sector in the Central Denmark Region. Two polymorphisms, the length variation (short = S/long = L) in the serotonin-transporter-linked polymorphic region and a single-nucleotide (A/G) polymorphism (rs25531) were studied. The genotypes were grouped according to the functional activity: SS, SLG and LGLG (low expression), SLA, LGLA (medium expression), and LALA (high expression). Data were analyzed using logistic regression and results presented as OR with 95% CI. The high-expression genotype was associated with a lower risk of ischemic stroke/TIA when compared to both the medium expression genotype (OR 0.72, 95% CI 0.56-0.93) and the low-expression genotype (OR 0.75, 95% CI 0.55-1.01) as well as the combination of the low and medium expression genotypes (OR 0.73, 95% CI 0.58-0.93). The lower OR estimates associated with the high-expression genotype were

  19. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    Science.gov (United States)

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  1. CcpA-independent regulation of expression of the Mg2+-citrate transporter gene citM by arginine metabolism in Bacillus subtilis

    NARCIS (Netherlands)

    Warner, JB; Magni, C; Lolkema, JS; Warner, Jessica B.

    Transcriptional regulation of the Mg2+ -citrate transporter, CitM, the main citrate uptake system of Bacillus subtilis, was studied during growth in rich medium. Citrate in the growth medium was required for induction under all growth conditions. In Luria-Bertani medium containing citrate, citM

  2. AGEMAP: a gene expression database for aging in mice.

    Directory of Open Access Journals (Sweden)

    Jacob M Zahn

    2007-11-01

    Full Text Available We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1 a pattern common to neural tissues, (2 a pattern for vascular tissues, and (3 a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.

  3. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  4. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The

  5. Homeobox genes expressed during echinoderm arm regeneration.

    Science.gov (United States)

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems.

  6. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  7. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    Science.gov (United States)

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

  8. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  9. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Odelta dos Santos

    Full Text Available Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR, one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  10. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  11. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  12. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  13. Gene expression during testis development in Duroc boars

    DEFF Research Database (Denmark)

    Lervik, Siri; Kristoffersen, Anja Bråthen; Conley, Lene

    2015-01-01

    and rodents, act at specific ages and developmental stages in the boar testis. The age dependency and complexity shown for development-specific testis transcripts must be considered when selecting phenotypic parameters for genetic selection for low androstenone. The results of selection based on measurement......Androstenone is a steroid pheromone occurring in the pubertal Leydig cells. Breeding against androstenone can decrease pheromone odour in swine meat but appears to cause unwanted side effects such as delayed onset of puberty. To study causality, global gene expression in developing boar testes...... with the onset of pubertal development. With elevated steroidogenesis (weeks 16 to 27), there was an increase in the expression of genes in the MAPK pathway, STAR and its analogue STARD6. A pubertal shift in genes coding for cellular cholesterol transport was observed. Increased expression of meiotic pathways...

  14. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  15. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  16. Mismatch repair gene expression in gastroesophageal cancers.

    Science.gov (United States)

    Dracea, Amelia; Angelescu, Cristina; Danciulescu, Mihaela; Ciurea, Marius; Ioana, Mihai; Burada, Florin

    2015-09-01

    Mismatch repair (MMR) genes play a critical role in maintaining genomic stability, and the impairment of MMR machinery is associated with different human cancers, mainly colorectal cancer. The purpose of our study was to analyze gene expression patterns of three MMR genes (MSH2, MHS6, and EXO1) in gastroesophageal cancers, a pathology in which the contribution of DNA repair genes remains essentially unclear. A total of 45 Romanian patients diagnosed with sporadic gastroesophageal cancers were included in this study. For each patient, MMR mRNA levels were measured in biopsied tumoral (T) and peritumoral (PT) tissues obtained by upper endoscopy. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) with specific TaqMan probes was used to measure gene expression levels for MSH2, MSH6, and EXO1 genes. A significant association was observed for the investigated MMR genes, all of which were detected to be upregulated in gastroesophageal tumor samples when compared with paired normal samples. In the stratified analysis, the association was limited to gastric adenocarcinoma samples. We found no statistically significant associations between MMR gene expression and tumor site or histological grade. In our study, MSH2, MSH6, and EXO1 genes were overexpressed in gastroesophageal cancers. Further investigations based on more samples are necessary to validate our findings.

  17. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis con- firmed difference in expression profiles of the identified genes in ...

  18. Modulation of cAMP levels by high fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression

    Science.gov (United States)

    Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr-/- mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of f...

  19. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  20. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  2. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  3. Effect of surgical procedures on prostate tumor gene expression profiles.

    Science.gov (United States)

    Li, Jie; Zhang, Zhi-Hong; Yin, Chang-Jun; Pavlovich, Christian; Luo, Jun; Getzenberg, Robert; Zhang, Wei

    2012-09-01

    Current surgical treatment of prostate cancer is typically accomplished by either open radical prostatectomy (ORP) or robotic-assisted laparoscopic radical prostatectomy (RALRP). Intra-operative procedural differences between the two surgical approaches may alter the molecular composition of resected surgical specimens, which are indispensable for molecular analysis and biomarker evaluation. The objective of this study is to investigate the effect of different surgical procedures on RNA quality and genome-wide expression signature. RNA integrity number (RIN) values were compared between total RNA samples extracted from consecutive LRP (n=11) and ORP (n=24) prostate specimens. Expression profiling was performed using the Agilent human whole-genome expression microarrays. Expression differences by surgical type were analyzed by Volcano plot analysis and gene ontology analysis. Quantitative reverse transcription (RT)-PCR was used for expression validation in an independent set of LRP (n=8) and ORP (n=8) samples. The LRP procedure did not compromise RNA integrity. Differential gene expression by surgery types was limited to a small subset of genes, the number of which was smaller than that expected by chance. Unexpectedly, this small subset of differentially expressed genes was enriched for those encoding transcription factors, oxygen transporters and other previously reported surgery-induced stress-response genes, and demonstrated unidirectional reduction in LRP specimens in comparison to ORP specimens. The effect of the LRP procedure on RNA quality and genome-wide transcript levels is negligible, supporting the suitability of LRP surgical specimens for routine molecular analysis. Blunted in vivo stress response in LRP specimens, likely mediated by CO(2) insufflation but not by longer ischemia time, is manifested in the reduced expression of stress-response genes in these specimens.

  4. A Novel Family of Magnesium Transport Genes in Arabidopsis

    Science.gov (United States)

    Li, Legong; Tutone, Ana F.; Drummond, Revel S. M.; Gardner, Richard C.; Luan, Sheng

    2001-01-01

    Magnesium (Mg2+) is the most abundant divalent cation in plant cells and plays a critical role in many physiological processes. We describe the identification of a 10-member Arabidopsis gene family (AtMGT) encoding putative Mg2+ transport proteins. Most members of the AtMGT family are expressed in a range of Arabidopsis tissues. One member of this family, AtMGT1, functionally complemented a bacterial mutant lacking Mg2+ transport capability. A second member, AtMGT10, complemented a yeast mutant defective in Mg2+ uptake and increased the cellular Mg2+ content of starved cells threefold during a 60-min uptake period. 63Ni tracer studies in bacteria showed that AtMGT1 has highest affinity for Mg2+ but may also be capable of transporting several other divalent cations, including Ni2+, Co2+, Fe2+, Mn2+, and Cu2+. However, the concentrations required for transport of these other cations are beyond normal physiological ranges. Both AtMGT1 and AtMGT10 are highly sensitive to Al3+ inhibition, providing potential molecular targets for Al3+ toxicity in plants. Using green fluorescence protein as a reporter, we localized AtMGT1 protein to the plasma membrane in Arabidopsis plants. We suggest that the AtMGT gene family encodes a Mg2+ transport system in higher plants. PMID:11752386

  5. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    Science.gov (United States)

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  6. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Human AZU-1 gene, variants thereof and expressed gene products

    Science.gov (United States)

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  8. Delayed access of low body weight-selected chicks to food at hatch is associated with up-regulated pancreatic glucagon and glucose transporter gene expression.

    Science.gov (United States)

    Parker, Grace A; Sumners, Lindsay H; Zhao, Xiaoling; Honaker, Christa F; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R

    2015-11-01

    Chickens selected for low (LWS) and high (HWS) juvenile body weight (BW) for 55 generations differ in BW by 10-fold at selection age. High (HWR) and low (LWR) body weight-relaxed lines have been random-bred since the 46th generation. Our objective was to evaluate the developmental and nutritional regulation of pancreatic mRNA abundance of pancreatic and duodenal homeobox 1 (PDX1), preproinsulin (PPI), preproglucagon (PPG), and glucose transporter 2 (GLUT2). At day of hatch (DOH) and days 1, 3, 7, and 15 (D1, 3, 7 and 15, respectively), pancreas was collected and real time PCR was performed in Experiment 1. In Experiment 2, HWS and LWS were fed or delayed access to food for 72 h post-hatch, and pancreas collected at D15. There was an interaction of line and age for GLUT2 (P=0.001), PPI (Pfood. Thus, the first two weeks is important for maturation of pancreatic endocrine function. Long-term selection for BW is associated with differences in pancreas development, and delaying access to food at hatch may have persisting effects on glucose regulatory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Requirement for digestible calcium by eleven- to twenty-five-kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells.

    Science.gov (United States)

    González-Vega, J C; Liu, Y; McCann, J C; Walk, C L; Loor, J J; Stein, H H

    2016-08-01

    Two experiments were conducted to determine the requirement for standardized total tract digestible (STTD) Ca by 11- to 25-kg pigs based on growth performance, bone ash, or Ca and P retention and to determine the effect of dietary Ca on expression of genes related to Ca transport in the jejunum and kidneys. Six diets were formulated to contain 0.36% STTD P and 0.32, 0.40, 0.48, 0.56, 0.64, or 0.72% STTD Ca by including increasing quantities of calcium carbonate in the diets at the expense of cornstarch. Two additional diets contained 0.72% STTD Ca and 0.33% or 0.40% STTD P to determine if 0.36% STTD P had negative effects on the Ca requirement. The same batch of all diets was used in both experiments. In Exp. 1, 256 pigs (11.39 ± 1.21 kg initial BW) were randomly allotted to the 8 diets with 4 pigs per pen and 8 replicate pens per diet in a randomized complete block design. On the last day of the experiment, 1 pig from each pen was euthanized and the right femur and intestine and kidney samples were collected. Results indicated that ADG and G:F started to decline (linear and quadratic, urine samples were collected using the marker-to-marker approach. Results indicated that the requirement for STTD Ca to maximize Ca and P retention (g/d) was 0.60 and 0.49%, respectively. In conclusion, the STTD Ca requirement by 11- to 25-kg pigs to maximize bone ash was 0.48%; however, ADG and G:F declined if more than 0.54 or 0.50% STTD Ca, respectively, was fed, and the minimum concentration of Ca needed to maximize ADG and G:F could not be determined under the conditions of this experiment. Increasing dietary Ca decreased the mRNA expression of several genes related to transcellular Ca transport in the jejunum and the kidneys.

  10. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  11. Gene-Expression Profiles in Generalized Aggressive Periodontitis: A Gene Network-Based Microarray Analysis.

    Science.gov (United States)

    Guzeldemir-Akcakanat, Esra; Sunnetci-Akkoyunlu, Deniz; Orucguney, Begum; Cine, Naci; Kan, Bahadır; Yılmaz, Elif Büsra; Gümüşlü, Esen; Savli, Hakan

    2016-01-01

    In this study, molecular biomarkers that play a role in the development of generalized aggressive periodontitis (GAgP) are investigated using gingival tissue samples through omics-based whole-genome transcriptomics while using healthy individuals as background controls. Gingival tissue biopsies from 23 patients with GAgP and 25 healthy individuals were analyzed using gene-expression microarrays with network and pathway analyses to identify gene-expression patterns. To substantiate the results of the microarray studies, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to assess the messenger RNA (mRNA) expression of MZB1 and DSC1. The microarrays and qRT-PCR resulted in similar gene-expression changes, confirming the reliability of the microarray results at the mRNA level. As a result of the gene-expression microarray studies, four significant gene networks were identified. The most upregulated genes were found as MZB1, TNFRSF17, PNOC, FCRL5, LAX1, BMS1P20, IGLL5, MMP7, SPAG4, and MEI1; the most downregulated genes were found as LOR, LAMB4, AADACL2, MAPT, ARG1, NPR3, AADAC, DSC1, LRRC4, and CHP2. Functions of the identified genes that were involved in gene networks were cellular development, cell growth and proliferation, cellular movement, cell-cell signaling and interaction, humoral immune response, protein synthesis, cell death and survival, cell population and organization, organismal injury and abnormalities, molecular transport, and small-molecule biochemistry. The data suggest new networks that have important functions as humoral immune response and organismal injury/abnormalities. Future analyses may facilitate proteomic profiling analyses to identify gene-expression patterns related to clinical outcome.

  12. Candidate genes for performance in horses, including monocarboxylate transporters

    Directory of Open Access Journals (Sweden)

    Inaê Cristina Regatieri

    Full Text Available ABSTRACT: Some horse breeds are highly selected for athletic activities. The athletic potential of each animal can be measured by its performance in sports. High athletic performance depends on the animal capacity to produce energy through aerobic and anaerobic metabolic pathways, among other factors. Transmembrane proteins called monocarboxylate transporters, mainly the isoform 1 (MCT1 and its ancillary protein CD147, can help the organism to adapt to physiological stress caused by physical exercise, transporting lactate and H+ ions. Horse breeds are selected for different purposes so we might expect differences in the amount of those proteins and in the genotypic frequencies for genes that play a significant role in the performance of the animals. The study of MCT1 and CD147 gene polymorphisms, which can affect the formation of the proteins and transport of lactate and H+, can provide enough information to be used for selection of athletic horses increasingly resistant to intense exercise. Two other candidate genes, the PDK4 and DMRT3, have been associated with athletic potential and indicated as possible markers for performance in horses. The oxidation of fatty acids is highly effective in generating ATP and is controlled by the expression of PDK4 (pyruvate dehydrogenase kinase, isozyme 4 in skeletal muscle during and after exercise. The doublesex and mab-3 related transcription factor 3 (DMRT3 gene encodes an important transcription factor in the setting of spinal cord circuits controlling movement in vertebrates and may be associated with gait performance in horses. This review describes how the monocarboxylate transporters work during physical exercise in athletic horses and the influence of polymorphisms in candidate genes for athletic performance in horses.

  13. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  14. Gene expression analysis of flax seed development.

    Science.gov (United States)

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  15. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    ) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...... with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...

  16. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  17. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  18. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Science.gov (United States)

    Hammoudeh, Nour; Kweider, Mahmoud; Abbady, Abdul-Qader; Soukkarieh, Chadi

    2014-01-01

    Leishmania Homologue of receptors for Activated C Kinase (LACK) antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica. The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR) technique. The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed. Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  19. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    by some, but not all AMF. Colonization by the AMF Glomus rosen, in particular, failed to strongly down-regulate these plant genes within the root. This technique may be suitable for the study of plant genes in mycorrhizal roots when Northern blotting is not possible due to low gene expression or when......The influence of arbuscular mycorrhizal fungi (AMF) on the expression of plant nutrient transporters was studied using a relative. quantitative reverse-transcription polymerase chain-reaction (RQRT-PCR) technique. Reverse-transcribed 18S rRNA was used to standardize the treatments. The technique...... had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...

  20. Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus

    NARCIS (Netherlands)

    Chaillou, S.; Postma, P.W.; Pouwels, P.H.

    1998-01-01

    The xylP gene of Lactobacillus pentosus, the first gene of the xylPQR operon, was recently found to be involved in isoprimeverose metabolism. By expression of xylP on a multicopy plasmid in Lactobacillus plantarum 80, a strain which lacks active isoprimeverose and D-xylose transport activities, it

  1. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  2. Gene expression profiling for pharmaceutical toxicology screening.

    Science.gov (United States)

    Bugelski, Peter J

    2002-01-01

    Advances in medicinal chemistry and high-throughput pharmacological screening are creating a multitude of potential lead compounds. There is also heightened concern about drug-induced toxicity, which is all too often uncovered late in development or at the post marketing stage. Together, these factors have created a need for novel approaches to screen for toxicity. There have been technological advances that enable study of changes in the gene expression profile caused by toxic insults and important steps made toward unraveling target organ toxicity at the molecular level. Thus, gene expression profile-based screens hold the promise to revolutionize the way in which compounds are selected for development. For screens focused on specific mechanisms of toxicity, reporter gene systems have proven utility, albeit modest because of our limited knowledge of which genes are true surrogate markers for toxicity. For broader forecasts of toxicity, DNA microarrays hold great promise for delivering practical gene expression profile screens (GEPS). For this promise to be realized, however, a number of technological hurdles must be cleared: (i) cost; (ii) reproducibility; (iii) throughput; and (iv) data analysis. Of equal if not greater importance, issues relating to the test systems used, the requisite number of genes to be studied and the size and scope of the database upon which forecasts will be based must be addressed. At present, the proof-of-concept for GEPS for toxicity is in hand, and we are poised to realize the goal of creating practical GEPS for application in compound prioritization.

  3. Differential testicular gene expression in seasonal fertility

    Science.gov (United States)

    Maywood, Elizabeth S.; Chahad-Ehlers, Samira; Garabette, Martine L.; Pritchard, Claire; Underhill, Phillip; Greenfield, Andrew; Ebling, Francis J. P.; Kyriacou, Charalambos P.; Hastings, Michael H.; Reddy, Akhilesh B.

    2012-01-01

    Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in our knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By utilising the reversible (seasonal) fertility of the Syrian hamster as a model system, we sought to discover genes which are specifically involved in turning off sperm production and not in tissue specification and/or maturation. Using gene expression microarrays and in situ hybridisation in hamsters and genetically infertile mice, we have identified a variety of known and novel factors involved in reversible, transcriptional, translational and post-translational control of testicular function, as well those involved in cell division and macromolecular metabolism. The novel genes uncovered could be potential targets for therapies against fertility disorders. PMID:19346449

  4. Gene expression during normal and FSHD myogenesis

    Directory of Open Access Journals (Sweden)

    Sowden Janet

    2011-09-01

    Full Text Available Abstract Background Facioscapulohumeral muscular dystrophy (FSHD is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.

  5. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice.

    Science.gov (United States)

    Drechsler, Navina; Courty, Pierre-Emmanuel; Brulé, Daphnée; Kunze, Reinhard

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) colonize up to 90% of all land plants and facilitate the acquisition of mineral nutrients by their hosts. Inorganic orthophosphate (P i ) and nitrogen (N) are the major nutrients transferred from the fungi to plants. While plant P i transporters involved in nutrient transfer at the plant-fungal interface have been well studied, the plant N transporters participating in this process are largely unknown except for some ammonium transporters (AMT) specifically assigned to arbuscule-colonized cortical cells. In plants, many nitrate transporter 1/peptide transporter family (NPF) members are involved in the translocation of nitrogenous compounds including nitrate, amino acids, peptides and plant hormones. Whether NPF members respond to AMF colonization, however, is not yet known. Here, we investigated the transcriptional regulation of 82 rice (Oryza sativa) NPF genes in response to colonization by the AMF Rhizophagus irregularis in roots of plants grown under five different nutrition regimes. Expression of the four OsNPF genes NPF2.2/PTR2, NPF1.3, NPF6.4 and NPF4.12 was strongly induced in mycorrhizal roots and depended on the composition of the fertilizer solution, nominating them as interesting candidates for nutrient signaling and exchange processes at the plant-fungal interface.

  6. Vocal fold ion transport and mucin expression following acrolein exposure.

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Sivasankar, M Preeti

    2014-05-01

    The vocal fold epithelium is exposed to inhaled particulates including pollutants during breathing in everyday environments. Yet, our understanding of the effects of pollutants on vocal fold epithelial function is extremely limited. The objective of this study was to investigate the effect of the pollutant acrolein on two vocal fold epithelial mechanisms: ion transport and mucin (MUC) synthesis. These mechanisms were chosen as each plays a critical role in vocal defense and in maintaining surface hydration which is necessary for optimal voice production. Healthy, native porcine vocal folds (N = 85) were excised and exposed to an acrolein or sham challenge. A 60-min acrolein, but not sham challenge significantly reduced ion transport and inhibited cyclic adenosine monophosphate-dependent, increases in ion transport. Decreases in ion transport were associated with reduced sodium absorption. Within the same timeline, no significant acrolein-induced changes in MUC gene or protein expression were observed. These results improve our understanding of the effects of acrolein on key vocal fold epithelial functions and inform the development of future investigations that seek to elucidate the impact of a wide range of pollutant exposures on vocal fold health.

  7. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  8. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  9. Gene expression in early stage cervical cancer

    NARCIS (Netherlands)

    Biewenga, Petra; Buist, Marrije R.; Moerland, Perry D.; van Thernaat, Emiel Ver Loren; van Kampen, Antoine H. C.; ten Kate, Fiebo J. W.; Baas, Frank

    2008-01-01

    Objective. Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage

  10. Identification of genes showing differential expression profile

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  11. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Abstract. Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus- culus longissimus muscle tissues of selected pigs with extreme ...

  12. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    diet. The rats were continuously fed for 16 months, and blood glucose monitored by a glucose meter. One wild-type rat and 4 high- fat/high-glucose rats died during ..... therapy not only changed gene expression patterns in type 2 diabetes but also improved immune activity and reduced the likelihood of cancer development.

  13. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  14. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  15. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  16. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    genome and better biocomputational techniques have substantially improved the assignment of differentially expressed SAGE "tags" to human genes. These improvements have provided us with an opportunity to re-evaluate global gene expression in pancreatic cancer using existing SAGE libraries. SAGE libraries...... generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  17. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  18. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  19. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  20. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  1. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC Transporter Gene Family in Pineapple (Ananas comosus (L. Merr. Reveal the Role of AcABCG38 in Pollen Development

    Directory of Open Access Journals (Sweden)

    Piaojuan Chen

    2017-12-01

    Full Text Available Pineapple (Ananas comosus L. cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs. Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  2. Gene expression profiling of laterally spreading tumors.

    Science.gov (United States)

    Minemura, Shoko; Tanaka, Takeshi; Arai, Makoto; Okimoto, Kenichiro; Oyamada, Arata; Saito, Keiko; Maruoka, Daisuke; Matsumura, Tomoaki; Nakagawa, Tomoo; Katsuno, Tatsuro; Kishimoto, Takashi; Yokosuka, Osamu

    2015-06-06

    Laterally spreading tumors (LSTs) are generally defined as lesions >10 mm in diameter, are characterized by lateral expansion along the luminal wall with a low vertical axis. In contrast to other forms of tumor, LSTs are generally considered to have a superficial growth pattern and the potential for malignancy. We focused on this morphological character of LSTs, and analyzed the gene expression profile of LSTs. The expression of 168 genes in 41 colorectal tumor samples (17 LST-adenoma, 12 LST-carcinoma, 12 Ip [pedunculated type of the Paris classification)-adenoma, all of which were 10 mm or more in diameter] was analyzed by PCR array. Based on the results, we investigated the expression levels of genes up-regulated in LST-adenoma, compared to Ip-adenoma, by hierarchical and K-means clustering. To confirm the results of the array analysis, using an additional 60 samples (38 LST-adenoma, 22 Ip-adenoma), we determined the localization of the gene product by immunohistochemical staining. The expression of 129 genes differed in colorectal tumors from normal mucosa by PCR array analysis. As a result of K-means clustering, the expression levels of five genes, AKT1, BCL2L1, ERBB2, MTA2 and TNFRSF25, were found to be significantly up-regulated (p < 0.05) in LST-adenoma, compared to Ip-adenoma. Immunohistochemical analysis showed that the BCL2L1 protein was significantly and meaningfully up-regulated in LST-adenoma compared to Ip-adenoma (p = 0.010). With respect to apoptosis status in LST-Adenoma, it assumes that BCL2L1 is anti-apoptotic protein, the samples such as BCL2L1 positive and TUNEL negative, or BCL2L1 negative and TUNEL positive are consistent with the assumption. 63.2 % LST-adenoma samples were consistent with the assumption. LSTs have an unusual profile of gene expression compared to other tumors and BCL2L1 might be concerned in the organization of LSTs.

  3. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    ) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant......A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  4. Global gene expression profile for swarming Bacillus cereus bacteria.

    Science.gov (United States)

    Salvetti, Sara; Faegri, Karoline; Ghelardi, Emilia; Kolstø, Anne-Brit; Senesi, Sonia

    2011-08-01

    Bacillus cereus can use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response of B. cereus ATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K(+) transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entire hbl operon during swarming. Finally, BC1435 and BC1436, orthologs of liaI-liaH that are known to be involved in the resistance of Bacillus subtilis to daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarming B. cereus cells to daptomycin, and P(spac)-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response of B. cereus to daptomycin.

  5. Symbiont modulates expression of specific gene categories in Angomonas deanei

    Directory of Open Access Journals (Sweden)

    Luciana Loureiro Penha

    Full Text Available Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.

  6. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  7. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  8. Predicting gene expression from sequence: a reexamination.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    2007-11-01

    Full Text Available Although much of the information regarding genes' expressions is encoded in the genome, deciphering such information has been very challenging. We reexamined Beer and Tavazoie's (BT approach to predict mRNA expression patterns of 2,587 genes in Saccharomyces cerevisiae from the information in their respective promoter sequences. Instead of fitting complex Bayesian network models, we trained naïve Bayes classifiers using only the sequence-motif matching scores provided by BT. Our simple models correctly predict expression patterns for 79% of the genes, based on the same criterion and the same cross-validation (CV procedure as BT, which compares favorably to the 73% accuracy of BT. The fact that our approach did not use position and orientation information of the predicted binding sites but achieved a higher prediction accuracy, motivated us to investigate a few biological predictions made by BT. We found that some of their predictions, especially those related to motif orientations and positions, are at best circumstantial. For example, the combinatorial rules suggested by BT for the PAC and RRPE motifs are not unique to the cluster of genes from which the predictive model was inferred, and there are simpler rules that are statistically more significant than BT's ones. We also show that CV procedure used by BT to estimate their method's prediction accuracy is inappropriate and may have overestimated the prediction accuracy by about 10%.

  9. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  11. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression

    Directory of Open Access Journals (Sweden)

    Ashley Ansel

    2017-11-01

    Full Text Available With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.

  12. Enhanced gene expression from retroviral vectors

    Directory of Open Access Journals (Sweden)

    Micklem David R

    2008-02-01

    Full Text Available Abstract Background Retroviruses are widely used to transfer genes to mammalian cells efficiently and stably. However, genetic elements required for high-level gene expression are incompatible with standard systems. The retroviral RNA genome is produced by cellular transcription and post-transcriptional processing within packaging cells: Introns present in the retroviral genomic transcript are removed by splicing, while polyadenylation signals lead to the production of ineffective truncated genomes. Furthermore strong enhancer/promoters within the retroviral payload lead to detrimental competition with the retroviral enhancer/promoter. Results By exploiting a new method of producing the retroviral genome in vitro it is possible to produce infectious retroviral particles carrying a high-level expression cassette that completely prohibits production of infectious retroviral particles by conventional methods. We produced an expression cassette comprising a strong enhancer/promoter, an optimised intron, the GFP open reading frame and a strong polyadenylation signal. This cassette was cloned into both a conventional MMLV retroviral vector and a vector designed to allow in vitro transcription of the retroviral genome by T7 RNA polymerase. When the conventional retroviral vector was transfected into packaging cells, the expression cassette drove strong GFP expression, but no infectious retrovirus was produced. Introduction of the in vitro produced uncapped retroviral genomic transcript into the packaging cells did not lead to any detectable GFP expression. However, infectious retrovirus was easily recovered, and when used to infect target primary human cells led to very high GFP expression – up to 3.5 times greater than conventional retroviral LTR-driven expression. Conclusion Retroviral vectors carrying an optimized high-level expression cassette do not produce infectious virions when introduced into packaging cells by transfection of DNA

  13. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  14. Gene expression in Streptococcus mutans biofilms

    OpenAIRE

    Banu, L D

    2010-01-01

    Streptococcus mutans is considered the major aetiological agent of human dental caries. It is an obligate biofilm-forming bacterium, which resides on teeth and forms, together with other species, an oral biofilm that is often designated as supragingival plaque. This thesis consists of three distinct parts. The first part describes, using microarray analysis, how S. mutans modulates gene expression when grown under different conditions in biofilms. The goal of this analysis was to identify gen...

  15. Gene expression: RNA interference in adult mice

    Science.gov (United States)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  16. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  17. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  18. Global analysis of the MATE gene family of metabolite transporters in tomato.

    Science.gov (United States)

    Santos, Adolfo Luís Dos; Chaves-Silva, Samuel; Yang, Lina; Maia, Lucas Gontijo Silva; Chalfun-Júnior, Antonio; Sinharoy, Senjuti; Zhao, Jian; Benedito, Vagner Augusto

    2017-10-30

    Species in the Solanaceae family are known for producing plethora of specialized metabolites. In addition to biosynthesis pathways, a full comprehension of secondary metabolism must also take into account the transport and subcellular compartmentalization of substances. Here, we examined the MATE (Multidrug and Toxic Compound Extrusion, or Multi-Antimicrobial Extrusion) gene family in the tomato (Solanum lycopersicum) genome with the objective of better understanding the transport of secondary metabolites in this model species. MATE membrane effluxers encompass an ancient gene family of secondary transporters present in all kingdoms of life, but with a remarkable expansion in plants. They mediate the transport of primary and secondary metabolites using the proton motive force through several membrane systems of the cell. We identified 67 genes coding for MATE transporters in the tomato genome, 33 of which are expressed constitutively whereas 34 are expressed in specific cell types or environmental conditions. Synteny analyses revealed bona fide paralogs and Arabidopsis orthologs. Co-expression analysis between MATE and regulatory genes revealed 78 positive and 8 negative strong associations (ρ≥|0.8|). We found no evidence of MATE transporters belonging to known metabolic gene clusters in tomato. Altogether, our expression data, phylogenetic analyses, and synteny study provide strong evidence of functional homologies between MATE genes of tomato and Arabidopsis thaliana. Our co-expression study revealed potential transcriptional regulators of MATE genes that warrant further investigation. This work sets the stage for genome-wide functional analyses of MATE transporters in tomato and other Solanaceae species of economic relevance.

  19. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  20. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  1. Moving Toward Integrating Gene Expression Profiling into ...

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally-diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through ChIP-Seq analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals,

  2. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  3. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  4. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  5. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  7. Differential Gene Expression in Auristatin PHE-Treated Cryptococcus neoformans

    Science.gov (United States)

    Woyke, Tanja; Berens, Michael E.; Hoelzinger, Dominique B.; Pettit, George R.; Winkelmann, Günther; Pettit, Robin K.

    2004-01-01

    The antifungal pentapeptide auristatin PHE was recently shown to interfere with microtubule dynamics and nuclear and cellular division in the opportunistic pathogen Cryptococcus neoformans. To gain a broader understanding of the cellular response of C. neoformans to auristatin PHE, mRNA differential display (DD) and reverse transcriptase PCR (RT-PCR) were applied. Examination of approximately 60% of the cell transcriptome from cells treated with 1.5 times the MIC (7.89 μM) of auristatin PHE for 90 min revealed 29 transcript expression differences between control and drug-treated populations. Differential expression of seven of the transcripts was confirmed by RT-PCR, as was drug-dependent modulation of an additional seven transcripts by RT-PCR only. Among genes found to be differentially expressed were those encoding proteins involved in transport, cell cycle regulation, signal transduction, cell stress, DNA repair, nucleotide metabolism, and capsule production. For example, RHO1 and an open reading frame (ORF) encoding a protein with 91% similarity to the Schizophyllum commune 14-3-3 protein, both involved in cell cycle regulation, were down-regulated, as was the gene encoding the multidrug efflux pump Afr1p. An ORF encoding a protein with 57% identity to the heat shock protein HSP104 in Pleurotus sajor-caju was up-regulated. Also, three transcripts of unknown function were responsive to auristatin PHE, which may eventually contribute to the elucidation of the function of their gene products. Further study of these differentially expressed genes and expression of their corresponding proteins are warranted to evaluate how they may be involved in the mechanism of action of auristatin PHE. This information may also contribute to an explanation of the selectivity of auristatin PHE for C. neoformans. This is the first report of drug action using DD in C. neoformans. PMID:14742210

  8. Structure and expression of a divergent canine class I gene

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, R.C.; Geraghty, D.E. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)

    1995-11-01

    We have isolated and characterized a canine class I MHC (dog leukocyte Ag, DLA) gene, DLA-79. The deduced protein sequence shares only 65% identity with a previously published canine class I cDNA, designated DLA-A, and exhibits 64% amino acid identity with the HLA-A, -B, -C consensus. The peptide-binding region of DLA-79 is unusual. Three of four highly conserved tyrosine residues (Tyr 7, 59, 159, and 171), proposed to interact with the N terminus of peptide-Ag, are substituted. Additionally, the long {alpha}-helix lining the peptide-binding region in the {alpha}1 domain contains one more amino acid residue than that observed in typical class I. Together, these features suggest that DLA-79 binds a distinct subset of peptides or other ligands. This gene has been expressed in a class I null human lymphoblastoid cell line, and the encoded heavy chain associated with {beta}{sub 2}-microglobulin and was transported to the cell surface. Ribonuclease protection analysis detected low levels of gene-specific mRNA in a broad variety of dog tissues. The highest levels were found in skeletal muscle, a tissue expressing relatively low levels of classical class I Ag. These data suggest that DLA-79 is functional and plays a specialized role in the immune response. Nucleotide sequence analysis of second exon sequences (encoding the {alpha}1 domain) identified only two alleles in five dogs of different breeds; a third variant was found in a coyote. The divergent structure, relatively low mRNA expression, and limited polymorphism of this gene suggest that DLA-79 is not a classical or class Ia gene, but rather, an analogue of the MHC class Ib gene of humans and rodents. 49 refs., 7 figs., 1 tab.

  9. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  10. The Nitrate Transporter (NRT) Gene Family in Poplar

    Science.gov (United States)

    Bai, Hua; Euring, Dejuan; Volmer, Katharina; Janz, Dennis; Polle, Andrea

    2013-01-01

    Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth. PMID:23977227

  11. The nitrate transporter (NRT gene family in poplar.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT, which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.

  12. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  13. Gene expression profiles predictive of cold-induced sweetening in potato.

    Science.gov (United States)

    Neilson, Jonathan; Lagüe, M; Thomson, S; Aurousseau, F; Murphy, A M; Bizimungu, B; Deveaux, V; Bègue, Y; Jacobs, J M E; Tai, H H

    2017-07-01

    Cold storage (2-4 °C) used in potato production to suppress diseases and sprouting during storage can result in cold-induced sweetening (CIS), where reducing sugars accumulate in tuber tissue leading to undesirable browning, production of bitter flavors, and increased levels of acrylamide with frying. Potato exhibits genetic and environmental variation in resistance to CIS. The current study profiles gene expression in post-harvest tubers before cold storage using transcriptome sequencing and identifies genes whose expression is predictive for CIS. A distance matrix for potato clones based on glucose levels after cold storage was constructed and compared to distance matrices constructed using RNA-seq gene expression data. Congruence between glucose and gene expression distance matrices was tested for each gene. Correlation between glucose and gene expression was also tested. Seventy-three genes were found that had significant p values in the congruence and correlation tests. Twelve genes from the list of 73 genes also had a high correlation between glucose and gene expression as measured by Nanostring nCounter. The gene annotations indicated functions in protein degradation, nematode resistance, auxin transport, and gibberellin response. These 12 genes were used to build models for prediction of CIS using multiple linear regression. Nine linear models were constructed that used different combinations of the 12 genes. An F-box protein, cellulose synthase, and a putative Lax auxin transporter gene were most frequently used. The findings of this study demonstrate the utility of gene expression profiles in predictive diagnostics for severity of CIS.

  14. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  15. Gene expression in first trimester preeclampsia placenta.

    Science.gov (United States)

    Founds, Sandra A; Terhorst, Lauren A; Conrad, Kirk P; Hogge, W Allen; Jeyabalan, Arun; Conley, Yvette P

    2011-04-01

    The goal of this study was to further validate eight candidate genes identified in a microarray analysis of first trimester placentas in preeclampsia. Surplus chorionic villus sampling (CVS) specimens of 4 women subsequently diagnosed with preeclampsia (PE) and 8 control women (C) without preeclampsia analyzed previously by microarray and 24 independent additional control samples (AS) were submitted for confirmatory studies by quantitative real-time polymerase chain reaction (qRT-PCR). Downregulation was significant in FSTL3 in PE as compared to C and AS (p = .04). PAEP was downregulated, but the difference was only significant between C and AS (p = .002) rather than between PE and either of the control groups. Expression levels for CFH, EPAS1, IGFBP1, MMP12, and SEMA3C were not statistically different among groups, but trends were consistent with microarray results; there was no anti-correlation. S100A8 was not measurable in all samples, probably because different probes and primers were needed. This study corroborates reduced FSTL3 expression in the first trimester of preeclampsia. Nonsignificant trends in the other genes may require follow-up in studies powered for medium or medium/large effect sizes. qRT-PCR verification of the prior microarray of CVS may support the placental origins of preeclampsia hypothesis. Replication is needed for the candidate genes as potential biomarkers of susceptibility, early detection, and/or individualized care of maternal-infant preeclampsia.

  16. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  17. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  18. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development.

    Science.gov (United States)

    Shipp, Lauren E; Hamdoun, Amro

    2012-06-01

    ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG "multidrug efflux" transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10-100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively. Copyright © 2012 Wiley Periodicals, Inc.

  19. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  1. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  2. A neurotransmitter transporter encoded by the Drosophila inebriated gene

    Science.gov (United States)

    Soehnge, Holly; Huang, Xi; Becker, Marie; Whitley, Penn; Conover, Diana; Stern, Michael

    1996-01-01

    Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron. PMID:8917579

  3. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    Involution of the rat ventral prostate and concomitant modulation of gene expression post-castration is a well- documented phenomenon. While the rat castration model has been extensively used to study androgen regulation of gene expression in the ventral prostate, it is not clear whether all the gene expression changes ...

  4. Expression profiling of solute carrier gene families at the blood-CSF barrier

    Directory of Open Access Journals (Sweden)

    Horace T.B. Ho

    2012-08-01

    Full Text Available The choroid plexus (CP is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid barrier (BCSFB. A main function of the CP is to secrete cerebrospinal fluid (CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.

  5. Asthenoteratozoospermia in mice lacking testis expressed gene 18 (Tex18)

    NARCIS (Netherlands)

    Jaroszynski, L.; dev, A.; Li, M.; Meinhardt, A.; de rooij, D. G.; Mueller, Christian; Böhm, Detlef; Wolf, S.; Adham, I. M.; Wulf, G.; Engel, W.; Nayernia, K.

    2007-01-01

    Testis expressed gene 18 (Tex18) is a small gene with one exon of 240 bp, which is specifically expressed in male germ cells. The gene encodes for a protein of 80 amino acids with unknown domain. To investigate the function of (Tex18) gene, we generated mice with targeted disruption of the (Tex18)

  6. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  7. Expression of Saccharomyces cerevisiae α-glucoside transporters under different growth conditions

    OpenAIRE

    S. L. Alves Jr.; J. M. Thevelein; B. U. Stambuk

    2014-01-01

    Important biotechnological processes depend on the efficient fermentation by Saccharomyces cerevisiae yeasts of starch hydrolysates rich in maltose and maltotriose. The rate-limiting step for fermentation of these α-glucosides is the transport across the plasma membrane of the cells. In order to contribute to a better understanding of maltose and maltotriose metabolism by S. cerevisiae, we analyzed the expression of the main α glucoside transporter genes in two different yeast strains grown o...

  8. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  9. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  10. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  11. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  12. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; Hong, L Elliot; Stine, O Colin; Mitchell, Braxton D; Elliott, Amie; Roberts, Rosalinda C; Conley, Robert R; McMahon, Robert P; Thaker, Gunvant K

    2009-03-05

    Smooth pursuit eye movement (SPEM) deficit is an established schizophrenia endophenotype with a similar neurocognitive construct to working memory. Frontal eye field (FEF) neurons controlling SPEM maintain firing when visual sensory information is removed, and their firing rates directly correlate with SPEM velocity. We previously demonstrated a paradoxical association between a functional polymorphism of dopamine signaling (COMT gene) and SPEM. Recent evidence implicates the dopamine transporter gene (DAT1) in modulating cortical dopamine and associated neurocognitive functions. We hypothesized that DAT1 10/10 genotype, which reduces dopamine transporter expression and increases extracellular dopamine, would affect SPEM. We examined the effects of DAT1 genotype on: Clinical diagnosis in the study sample (n = 418; 190 with schizophrenia), SPEM measures in a subgroup with completed oculomotor measures (n = 200; 87 schizophrenia), and DAT1 gene expression in FEF tissue obtained from postmortem brain samples (n = 32; 16 schizophrenia). DAT1 genotype was not associated with schizophrenia. DAT1 10/10 genotype was associated with better SPEM in healthy controls, intermediate SPEM in unaffected first-degree relatives of schizophrenia subjects, and worse SPEM in schizophrenia subjects. In the gene expression study, DAT1 10/10 genotype was associated with significantly reduced DAT1 mRNA transcript in FEF tissue from healthy control donors (P < 0.05), but higher expression in schizophrenia donors. Findings suggest regulatory effects of another gene(s) or etiological factor in schizophrenia, which modulate DAT1 gene function. 2008 Wiley-Liss, Inc.

  13. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  14. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  15. The influence of nuclear compartmentalisation on stochastic dynamics of self-repressing gene expression.

    Science.gov (United States)

    Sturrock, Marc; Li, Shiyu; Shahrezaei, Vahid

    2017-07-07

    Gene expression is an inherently noisy process. This noise is generally thought to be deleterious as precise internal regulation of biochemical reactions is essential for cell growth and survival. Self-repression of gene expression, which is the simplest form of a negative feedback loop, is commonly believed to be employed by cellular systems to decrease the stochastic fluctuations in gene expression. When there is some delay in autoregulation, it is also believed that this system can generate oscillations. In eukaryotic cells, mRNAs that are synthesised in the nucleus must be exported to the cytoplasm to function in protein synthesis, whereas proteins must be transported into the nucleus from the cytoplasm to regulate the expression levels of genes. Nuclear transport thus plays a critical role in eukaryotic gene expression and regulation. Some recent studies have suggested that nuclear retention of mRNAs can control noise in mRNA expression. However, the effect of nuclear transport on protein noise and its interplay with negative feedback regulation is not completely understood. In this paper, we systematically compare four different simple models of gene expression. By using simulations and applying the linear noise approximation to the corresponding chemical master equations, we investigate the influence of nuclear import and export on noise in gene expression in a negative autoregulatory feedback loop. We first present results consistent with the literature, i.e., that negative feedback can effectively buffer the variability in protein levels, and nuclear retention can decrease mRNA noise levels. Interestingly we find that when negative feedback is combined with nuclear retention, an amplification in gene expression noise can be observed and is dependant on nuclear translocation rates. Finally, we investigate the effect of nuclear compartmentalisation on the ability of self-repressing genes to exhibit stochastic oscillatory dynamics. Copyright © 2017 Elsevier

  16. Molecular Cloning and Functional Characterization of Factors Involved in Post-transcriptional Gene Expression

    OpenAIRE

    Jin, Shao-Bo

    2004-01-01

    Gene expression in the eukaryotic cell is a fundamental cellular process, which consists of several distinct steps but extensively coupled to each other. From site of transcription in the nucleus to the cytoplasm, both mRNA and rRNA are associated with a proper set of proteins. These proteins influence RNA processing, transport as well as ribosome maturation. We have tried to take advantage of different model systems to understand the process of eukaryotic gene expression at the post-transcri...

  17. Expression of some ATP-binding cassette transporters in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Antonella Maria Salvia

    2017-12-01

    Full Text Available Hematopoietic cells express ATP binding cassette (ABC transporters in relation to different degrees of differentiation. One of the known multidrug resistance mechanisms in acute myeloid leukemia (AML is the overexpression of efflux pumps belonging to the superfamily of ABC transporters such as ABCB1, ABCG2 and ABCC1. Although several studies were carried out to correlate ABC transporters expression with drug resistance, little is known about their role as markers of diagnosis and progression of the disease. For this purpose we investigated the expression, by real-time PCR, of some ABC genes in bone marrow samples of AML patients at diagnosis and after induction therapy. At diagnosis, ABCG2 was always down-regulated, while an up regulated trend for ABCC1 was observed. After therapy the examined genes showed a different expression trend and approached the values of healthy subjects suggesting that this event could be considered as a marker of AML regression. The expression levels of some ABC transporters such as ABCC6, seems to be related to gender, age and to the presence of FLT3/ITD gene mutation.

  18. Characterisation and expression of monosaccharide transporters in lupins, Lupinus polyphyllus and L. albus.

    Science.gov (United States)

    Szenthe, A; Schäfer, H; Hauf, J; Schwend, T; Wink, M

    2007-11-01

    Monosaccharide transporter (MST) genes of Lupinus polyphyllus and L. albus were cloned, expressed and characterised. The isolation and functional characterisation of a cDNA clone and its corresponding genomic clone of a sugar transporter from L. polyphyllus (LpSTP1) is reported. Phylogenetic comparison of the nucleic and amino acid sequences showed the highest similarity to the AtSTP1 gene from Arabidopsis thaliana, which encodes a high affinity sugar transporter. The similar topology as well as the substrate specificity and expression pattern of LpSTP1 encoded protein additionally support the high similarity to the AtSTP1 gene product. The 1,590 bp LpSTP1 cDNA clone was heterologously expressed in yeast resulting in a fully functional specific sugar transporter. This transformation restored the viability of a yeast deletion mutant, which is devoid of all intrinsic MSTs and thus unable to take up and grow on hexose-containing media. The LpSTP1 protein is postulated to be a high-affinity MST since it supported growth best on media containing 0.2% hexose. Tissue-specific expression of LaSTP1 in L. albus was assayed by real-time PCR, which revealed that the lupin STP1 is mainly expressed in flower buds, flowers and young leaves. The results suggest that the main role of LaSTP1 is to catalyse monosaccharide import in sink tissues to meet increased carbohydrate demand during plant development.

  19. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  20. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  1. The Effects of Hallucinogens on Gene Expression.

    Science.gov (United States)

    Martin, David A; Nichols, Charles D

    2018-01-01

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  2. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, Michel A.; Hijum, Sacha A.F.T. van; Lulko, Andrzej T.; Kuipers, Oscar P.; Roerdink, Jos B.T.M.; Linsen, L; Hagen, H; Hamann, B

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  3. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  4. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  5. FlyTED: the Drosophila Testis Gene Expression Database

    OpenAIRE

    Zhao, Jun; Klyne, Graham; Benson, Elizabeth; Gudmannsdottir, Elin; White-Cooper, Helen; Shotton, David

    2009-01-01

    FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digita...

  6. Sequence biases in large scale gene expression profiling data

    OpenAIRE

    Siddiqui, Asim S.; Delaney, Allen D.; Schnerch, Angelique; Griffith, Obi L.; Jones, Steven J. M.; Marra, Marco A.

    2006-01-01

    We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, ‘Classic’ Massively Parallel Signature Sequencing (MPSS) and ‘Signature’ MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content s...

  7. Comparative gene expression analysis throughout the life cycle of Leishmania braziliensis: diversity of expression profiles among clinical isolates.

    Directory of Open Access Journals (Sweden)

    Vanessa Adaui

    Full Text Available BACKGROUND: Most of the Leishmania genome is reported to be constitutively expressed during the life cycle of the parasite, with a few regulated genes. Inter-species comparative transcriptomics evidenced a low number of species-specific differences related to differentially distributed genes or the differential regulation of conserved genes. It is of uppermost importance to ensure that the observed differences are indeed species-specific and not simply specific of the strains selected for representing the species. The relevance of this concern is illustrated by current study. METHODOLOGY/PRINCIPAL FINDINGS: We selected 5 clinical isolates of L. braziliensis characterized by their diversity of clinical and in vitro phenotypes. Real-time quantitative PCR was performed on promastigote and amastigote life stages to assess gene expression profiles at seven time points covering the whole life cycle. We tested 12 genes encoding proteins with roles in transport, thiol-based redox metabolism, cellular reduction, RNA poly(A-tail metabolism, cytoskeleton function and ribosomal function. The general trend of expression profiles showed that regulation of gene expression essentially occurs around the stationary phase of promastigotes. However, the genes involved in this phenomenon appeared to vary significantly among the isolates considered. CONCLUSION/SIGNIFICANCE: Our results clearly illustrate the unique character of each isolate in terms of gene expression dynamics. Results obtained on an individual strain are not necessarily representative of a given species. Therefore, extreme care should be taken when comparing the profiles of different species and extrapolating functional differences between them.

  8. Role of vitamin D on the expression of glucose transporters in L6 myotubes

    Directory of Open Access Journals (Sweden)

    Bubblu Tamilselvan

    2013-01-01

    Full Text Available Altered expression of glucose transporters is a major characteristic of diabetes. Vitamin D has evolved widespread interest in the pathogenesis and prevention of diabetes. The present study was designed to investigate the effect of vitamin D in the overall regulation of muscle cell glucose transporter expression. L6 cells were exposed to type 1 and type 2 diabetic conditions and the effect of calcitriol (1,25, dihydroxy cholicalciferol on the expression of glucose transporters was studied by real time polymerase chain reaction (RT-PCR. There was a significant decrease in glucose transporter type 1 (GLUT1, GLUT4, vitamin D receptor (VDR, and IR expression in type 1 and 2 diabetic model compared to control group. Treatment of myoblasts with 10-7 M calcitriol for 24 h showed a significant increase in GLUT1, GLUT4, VDR, and insulin receptor (IR expression. The results indicate a potential antidiabetic function of vitamin D on GLUT1, GLUT4, VDR, and IR by improving receptor gene expression suggesting a role for vitamin D in regulation of expression of the glucose transporters in muscle cells.

  9. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  10. Effect of gene order in DNA constructs on gene expression upon integration into plant genome.

    Science.gov (United States)

    Aydın Akbudak, M; Srivastava, Vibha

    2017-06-01

    Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.

  11. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  12. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Directory of Open Access Journals (Sweden)

    Rao Ramakrishna U

    2012-02-01

    Full Text Available Abstract Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%. In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes. Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion. Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport

  13. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  14. Comparative Analysis of Predicted Gene Expression among Crenarchaeal Genomes

    Directory of Open Access Journals (Sweden)

    Shibsankar Das

    2017-03-01

    Full Text Available Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.

  15. Osteopontin upregulates the expression of glucose transporters in osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    I-Shan Hsieh

    Full Text Available Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients.

  16. Iron-dependent gene expression in Actinomyces oris

    Directory of Open Access Journals (Sweden)

    Matthew P. Mulé

    2015-12-01

    Results: When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions: The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron-limiting medium, suggesting that the sidD::Km mutant was compromised in iron uptake. The known iron regulator AmdR is well conserved in clinical isolates of A. oris. This work provides additional insight into iron metabolism in this important oral microbe.

  17. Genome polymorphism markers and stress genes expression for ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    Jun 11, 2014 ... peroxide (H2O2) and molecular oxygen in the cell (Luna et al., 2008). In this study, we investigated the levels of expression of two genes in eight turf species. The levels of expression of PAL and SOD genes varied with the type of turf. Based on the differences in band intensity as a measure of gene.

  18. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and ...

  19. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    NARCIS (Netherlands)

    Chornokur, G.; Lin, H.Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.Y.; Jim, H.S.; Chen, Z.; Chen, A.Y.; Permuth-Wey, J.; Aben, K.; Anton-Culver, H.; Antonenkova, N.; Bruinsma, F.; Bandera, E.V.; Bean, Y.T.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bunker, C.H.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Bois, A. du; Despierre, E.; Dicks, E.; Doherty, J.A.; Dork, T.; Durst, M.; Easton, D.F.; Eccles, D.M.; Edwards, R.P.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goodman, M.T.; Gronwald, J.; Harrington, P.; Harter, P.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hillemanns, P.; Hogdall, C.K.; Hogdall, E.; Hosono, S.; Jakubowska, A.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kelemen, L.E.; Kellar, M.; Kiemeney, L.A.L.M.; Krakstad, C.; Kjaer, S.K.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lim, B.K.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.A.G.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; McNeish, I.; Menon, U.; Milne, R.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Nevanlinna, H.; Eilber, U.; Odunsi, K.; Olson, S.H.; Orlow, I., et al.

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As

  20. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.

    2014-01-01

    For the classification of respiratory sensitizing chemicals, no validated in vivo nor in vitro tests are currently available. In this study, we evaluated whether respiratory sensitizers trigger specific signals in human bronchial epithelial (BEAS-2B) cells at the level of the transcriptome...... oligonucleotide arrays. A limited number of 11 transcripts could be identified as potential biomarkers to identify respiratory sensitizers. Three of these transcripts are associated to immune system processes (HSPA5, UPP1, and SEPRINEI). In addition, the transcriptome was screened for transcripts....... The cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...

  1. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  2. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  3. Cloning and expression analysis of an anthocyanidin synthase gene ...

    Indian Academy of Sciences (India)

    Expression of ANS in leaves, embryo and seed coat was analysed, which provided a ... taneously amplify the 666-bp fragment of actin gene. The. ANS gene expression in leaves, 15 days after pollination ... ANS expression with shading treatment was evaluated by semiquantitive RT-PCR using B. carinata variety 3H008-6.

  4. The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression. Gene Identification Using the Genome Sequence1

    Science.gov (United States)

    Fizames, Cécile; Muños, Stéphane; Cazettes, Céline; Nacry, Philippe; Boucherez, Jossia; Gaymard, Frédéric; Piquemal, David; Delorme, Valérie; Commes, Thérèse; Doumas, Patrick; Cooke, Richard; Marti, Jacques; Sentenac, Hervé; Gojon, Alain

    2004-01-01

    Large-scale identification of genes expressed in roots of the model plant Arabidopsis was performed by serial analysis of gene expression (SAGE), on a total of 144,083 sequenced tags, representing at least 15,964 different mRNAs. For tag to gene assignment, we developed a computational approach based on 26,620 genes annotated from the complete sequence of the genome. The procedure selected warrants the identification of the genes corresponding to the majority of the tags found experimentally, with a high level of reliability, and provides a reference database for SAGE studies in Arabidopsis. This new resource allowed us to characterize the expression of more than 3,000 genes, for which there is no expressed sequence tag (EST) or cDNA in the databases. Moreover, 85% of the tags were specific for one gene. To illustrate this advantage of SAGE for functional genomics, we show that our data allow an unambiguous analysis of most of the individual genes belonging to 12 different ion transporter multigene families. These results indicate that, compared with EST-based tag to gene assignment, the use of the annotated genome sequence greatly improves gene identification in SAGE studies. However, more than 6,000 different tags remained with no gene match, suggesting that a significant proportion of transcripts present in the roots originate from yet unknown or wrongly annotated genes. The root transcriptome characterized in this study markedly differs from those obtained in other organs, and provides a unique resource for investigating the functional specificities of the root system. As an example of the use of SAGE for transcript profiling in Arabidopsis, we report here the identification of 270 genes differentially expressed between roots of plants grown either with NO3- or NH4NO3 as N source. PMID:14730065

  5. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  6. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

    Science.gov (United States)

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe

    2011-07-01

    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed. Copyright © Physiologia Plantarum 2011.

  7. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  8. Unraveling the Influence of Arbuscular Mycorrhizal Colonization on Arsenic Tolerance in Medicago: Glomus mosseae is More Effective than G. intraradices, Associated with Lower Expression of Root Epidermal Pi Transporter Genes.

    Science.gov (United States)

    Christophersen, Helle M; Smith, F Andrew; Smith, Sally E

    2012-01-01

    We used medic (Medicago truncatula) to investigate effects of inoculation with two arbuscular mycorrhizal (AM) fungi and application of arsenate (AsV) and phosphate (Pi) on mechanisms underlying increased tolerance (in terms of growth) of AM plants to AsV. We tested the hypotheses that (1) inoculation with AM fungi results in down-regulation of MtPht1;1 and MtPht1;2 genes (encoding high-affinity Pi and AsV uptake systems in the direct root epidermal pathway) and up-regulation of the AM-induced MtPht1;4 (responsible for transfer of Pi from the arbuscular interface to cortical cells), and (2) these changes are involved in decreased As uptake relative to P uptake and hence increased As tolerance. We also measured expression of MtMT4, a Pi starvation-inducible gene, other genes encoding Pi uptake systems (MtPht 1;5 and MtPht1;6) and arsenate reductase (MtACR) and phytochelatin synthase (MtPCS), to gain insights into broader aspects of P transfers in AM plants and possible detoxification mechanisms. Medic responded slightly to AM colonization in terms of growth in the absence of As, but positively in terms of P uptake. Both growth and P responses in AM plants were positive when As was applied, indicating As tolerance relative to non-mycorrhizal (NM) plants. All AM plants showed high expression of MtPT4 and those inoculated with Glomus mosseae showed higher selectivity against As (shown by P/As molar ratios) and much lower expression of MtPht1;1 (and to some extent MtPht1;2) than Glomus intraradices-inoculated or NM plants. Results are consistent with increased P/As selectivity in AM plants (particularly those inoculated with G. mosseae) as a consequence of high P uptake but little or no As uptake via the AM pathway. However, the extent to which selectivity is dependent on down-regulation of direct Pi and AsV uptake through epidermal cells is still not clear. Marked up-regulation of a PCS gene and an ACR gene in AM plants may also be involved and requires further

  9. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  10. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    Science.gov (United States)

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  11. Mechanisms of biotin-regulated gene expression in microbes

    Directory of Open Access Journals (Sweden)

    J. Satiaputra

    2016-03-01

    Full Text Available Biotin is an essential micronutrient that acts as a co-factor for biotin-dependent metabolic enzymes. In bacteria, the supply of biotin can be achieved by de novo synthesis or import from exogenous sources. Certain bacteria are able to obtain biotin through both mechanisms while others can only fulfill their biotin requirement through de novo synthesis. Inability to fulfill their cellular demand for biotin can have detrimental consequences on cell viability and virulence. Therefore understanding the transcriptional mechanisms that regulate biotin biosynthesis and transport will extend our knowledge about bacterial survival and metabolic adaptation during pathogenesis when the supply of biotin is limited. The most extensively characterized protein that regulates biotin synthesis and uptake is BirA. In certain bacteria, such as Escherichia coli and Staphylococcus aureus, BirA is a bi-functional protein that serves as a transcriptional repressor to regulate biotin biosynthesis genes, as well as acting as a ligase to catalyze the biotinylation of biotin-dependent enzymes. Recent studies have identified two other proteins that also regulate biotin synthesis and transport, namely BioQ and BioR. This review summarizes the different transcriptional repressors and their mechanism of action. Moreover, the ability to regulate the expression of target genes through the activity of a vitamin, such as biotin, may have biotechnological applications in synthetic biology.

  12. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  13. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  14. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D

    2010-01-01

    DNA arrays have been a rich source of data for the study of genomic expression of a wide variety of biological systems. Gene clustering is one of the paradigms quite used to assess the significance of a gene (or group of genes). However, most of the gene clustering techniques are applied to cDNA...

  15. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression.

    Science.gov (United States)

    Heckel, Brynn C; Tomlinson, Amelia D; Morton, Elise R; Choi, Jeong-Hyeon; Fuqua, Clay

    2014-09-01

    Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  17. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. ...... imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes....

  18. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides

    International Nuclear Information System (INIS)

    Tully, Douglas B.; Bao Wenjun; Goetz, Amber K.; Blystone, Chad R.; Ren, Hongzu; Schmid, Judith E.; Strader, Lillian F.; Wood, Carmen R.; Best, Deborah S.; Narotsky, Michael G.; Wolf, Douglas C.; Rockett, John C.; Dix, David J.

    2006-01-01

    Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides

  19. Global differential gene expression in response to growth temperature alteration in group A Streptococcus.

    Science.gov (United States)

    Smoot, L M; Smoot, J C; Graham, M R; Somerville, G A; Sturdevant, D E; Migliaccio, C A; Sylva, G L; Musser, J M

    2001-08-28

    Pathogens are exposed to different temperatures during an infection cycle and must regulate gene expression accordingly. However, the extent to which virulent bacteria alter gene expression in response to temperatures encountered in the host is unknown. Group A Streptococcus (GAS) is a human-specific pathogen that is responsible for illnesses ranging from superficial skin infections and pharyngitis to severe invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS survives and multiplies at different temperatures during human infection. DNA microarray analysis was used to investigate the influence of temperature on global gene expression in a serotype M1 strain grown to exponential phase at 29 degrees C and 37 degrees C. Approximately 9% of genes were differentially expressed by at least 1.5-fold at 29 degrees C relative to 37 degrees C, including genes encoding transporter proteins, proteins involved in iron homeostasis, transcriptional regulators, phage-associated proteins, and proteins with no known homologue. Relatively few known virulence genes were differentially expressed at this threshold. However, transcription of 28 genes encoding proteins with predicted secretion signal sequences was altered, indicating that growth temperature substantially influences the extracellular proteome. TaqMan real-time reverse transcription-PCR assays confirmed the microarray data. We also discovered that transcription of genes encoding hemolysins, and proteins with inferred roles in iron regulation, transport, and homeostasis, was influenced by growth at 40 degrees C. Thus, GAS profoundly alters gene expression in response to temperature. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many unforeseen lines of pathogenesis investigation.

  20. Gene expression profiling of breast tumours from New Zealand patients.

    Science.gov (United States)

    Muthukaruppan, Anita; Lasham, Annette; Blenkiron, Cherie; Woad, Kathryn J; Black, Michael A; Knowlton, Nicholas; McCarthy, Nicole; Findlay, Michael P; Print, Cristin G; Shelling, Andrew N

    2017-10-27

    New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours. Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools. Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts. Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear difference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations.

  1. The Effect of Statins on Blood Gene Expression in COPD.

    Directory of Open Access Journals (Sweden)

    Ma'en Obeidat

    Full Text Available COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown.Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD.Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser.25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures.The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.

  2. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  3. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    NARCIS (Netherlands)

    Sjostedt, N.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Kidron, H.

    2017-01-01

    PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the

  4. Genes Involved in the Biosynthesis and Transport of Acinetobactin in

    Directory of Open Access Journals (Sweden)

    Tarik Hasan

    2015-03-01

    Full Text Available Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA, L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.

  5. ABC-B transporter genes in Dirofilaria immitis.

    Science.gov (United States)

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  6. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  7. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  8. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Cui, Juan; Miner, Brooke M; Eldredge, Joanna B; Warrenfeltz, Susanne W; Dam, Phuongan; Xu, Ying; Puett, David

    2011-01-01

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  10. Analysis of Porphyra Membrane Transporters Demonstrates Gene Transfer among Photosynthetic Eukaryotes and Numerous Sodium-Coupled Transport Systems1[C][W][OA

    Science.gov (United States)

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R.; Prochnik, Simon E.; Blouin, Nicolas A.; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L.; Klein, Anita S.; Lin, Senjie; Levine, Ira; Brawley, Susan H.; Bhattacharya, Debashish

    2012-01-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters. PMID:22337920

  11. Molecular cloning, expression and characterization of a bovine serotonin transporter

    DEFF Research Database (Denmark)

    Mortensen, O V; Kristensen, A S; Rudnick, G

    1999-01-01

    The serotonin transporter (SERT) is a member of a highly homologous family of sodium/chloride dependent neurotransmitter transporters responsible for reuptake of biogenic amines from the extracellular fluid. SERT constitutes the pharmacological target of several clinically important antidepressan......-methylenedioxymethamphetamine (MDMA) was mainly unchanged. RT-PCR amplification of RNA from different tissues demonstrated expression of SERT in placenta, brain stem, bone marrow, kidney, lung, heart, adrenal gland, liver, parathyroid gland, thyroid gland, small intestine and pancreas....

  12. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  13. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    Science.gov (United States)

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  15. Genetic architecture of gene expression in ovine skeletal muscle

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony

    2011-01-01

    weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing...... has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny......-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...

  16. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  17. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Science.gov (United States)

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  18. Transcriptomic analysis of gene expression in mice treated with troxerutin.

    Directory of Open Access Journals (Sweden)

    Yuerong Wang

    Full Text Available Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO, and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR.

  19. Optimization of transient gene expression system in Gerbera jemosonii petals.

    Science.gov (United States)

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  20. Profiling of sugar transporter genes in grapevine coping with water deficit.

    Science.gov (United States)

    Medici, Anna; Laloi, Maryse; Atanassova, Rossitza

    2014-11-03

    The profiling of grapevine (Vitis vinifera L.) genes under water deficit was specifically targeted to sugar transporters. Leaf water status was characterized by physiological parameters and soluble sugars content. The expression analysis provided evidence that VvHT1 hexose transporter gene was strongly down-regulated by the increased sugar content under mild water-deficit. The genes of monosaccharide transporter VvHT5, sucrose carrier VvSUC11, vacuolar invertase VvGIN2 and grape ASR (ABA, stress, ripening) were up-regulated under severe water stress. Their regulation in a drought-ABA signalling network and possible roles in complex interdependence between sugar subcellular partitioning and cell influx/efflux under Grapevine acclimation to dehydration are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  2. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  3. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps.

    Science.gov (United States)

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-11-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules make sense biologically. By inspecting the obtained clusters and the genes having the gene functions of frequent itemsets, interesting clues were discovered that provide valuable insight to biological scientists. Moreover, discovered association rules can be potentially used to predict gene functions based on similarity of gene expression maps.

  4. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2005-01-01

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  5. Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and spicule-type specific genes.

    Science.gov (United States)

    Voigt, Oliver; Adamska, Maja; Adamski, Marcin; Kittelmann, André; Wencker, Lukardis; Wörheide, Gert

    2017-04-13

    The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes in Sycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule-type specific for triactines and tetractines (ARP1 or SciTriactinin) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes.

  6. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  7. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  8. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Cerezuela, Rebeca; Meseguer, José; Esteban, M Ángeles

    2013-03-01

    The present work describes effects of dietary inulin, two microalgae (Tetraselmis chuii and Phaeodactylum tricornutum) and Bacillus subtilis (solely or combined with inulin or microalgae) on the expression of different genes in the intestine of the gilthead seabream (Sparus aurata L.) following four weeks of a feeding trial. Selected genes were grouped into five categories: genes involved in inflammation (genes encoding proinflammatory proteins), genes related to the cytoskeleton, genes encoding proteins of junction complexes, genes implicated in digestion processes and genes related to transport proteins. Regarding proinflammatory genes, interleukin-8 (IL-8) expression showed a significant increase in the fish fed all the assayed diets, except the B. subtilis + inulin diet, whereas the expression of caspase-1 (CASP-1) was also increased by the B. subtilis and B. subtilis + T. chuii diets. Cyclooxygenase-2 (COX-2) gene expression only increased in fish fed the B. subtilis diet. Among cytoskeletal and junctional genes, only β-actin and occludin were significantly affected by the assayed diets. β-actin expression was up-regulated by the inulin-containing diets (inulin and B. subtilis + inulin diets), whereas occludin expression increased in the fish fed all the assayed diets, except the P. tricornutum diet. Finally, the expression of transport protein genes demonstrated that the inulin diet and all the experimental diets containing B. subtilis significantly increased transferrin expression, whereas digestive enzymes were not affected by the experimental diets. In conclusion, our results demonstrated that inulin, B. subtilis and microalgae can modulate intestinal gene expression in the gilthead seabream. To our knowledge, this is the first study of the effects of some food additives on the intestinal expression of different genes in this species. More studies are needed to understand the role of these genes in maintaining the integrity and

  9. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  10. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplifica......The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  11. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  12. Discovery of differentially expressed genes in cashmere goat (Capra hircus) hair follicles by RNA sequencing.

    Science.gov (United States)

    Qiao, X; Wu, J H; Wu, R B; Su, R; Li, C; Zhang, Y J; Wang, R J; Zhao, Y H; Fan, Y X; Zhang, W G; Li, J Q

    2016-09-02

    The mammalian hair follicle (HF) is a unique, highly regenerative organ with a distinct developmental cycle. Cashmere goat (Capra hircus) HFs can be divided into two categories based on structure and development time: primary and secondary follicles. To identify differentially expressed genes (DEGs) in the primary and secondary HFs of cashmere goats, the RNA sequencing of six individuals from Arbas, Inner Mongolia, was performed. A total of 617 DEGs were identified; 297 were upregulated while 320 were downregulated. Gene ontology analysis revealed that the main functions of the upregulated genes were electron transport, respiratory electron transport, mitochondrial electron transport, and gene expression. The downregulated genes were mainly involved in cell autophagy, protein complexes, neutrophil aggregation, and bacterial fungal defense reactions. According to the Kyoto Encyclopedia of Genes and Genomes database, these genes are mainly involved in the metabolism of cysteine and methionine, RNA polymerization, and the MAPK signaling pathway, and were enriched in primary follicles. A microRNA-target network revealed that secondary follicles are involved in several important biological processes, such as the synthesis of keratin-associated proteins and enzymes involved in amino acid biosynthesis. In summary, these findings will increase our understanding of the complex molecular mechanisms of HF development and cycling, and provide a basis for the further study of the genes and functions of HF development.

  13. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood.

    Science.gov (United States)

    Stamova, Boryana S; Apperson, Michelle; Walker, Wynn L; Tian, Yingfang; Xu, Huichun; Adamczy, Peter; Zhan, Xinhua; Liu, Da-Zhi; Ander, Bradley P; Liao, Isaac H; Gregg, Jeffrey P; Turner, Renee J; Jickling, Glen; Lit, Lisa; Sharp, Frank R

    2009-08-05

    Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  14. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  15. Gene expression profiling in chemoresistant variants of three cell lines of different origin

    DEFF Research Database (Denmark)

    Johnsson, Anders; Vallon-Christensson, Johan; Strand, Carina

    2005-01-01

    . Several genes encoding ABC transporters were highly up-regulated, most notably ABCB1 (MDR1) and ABCB4 in several cell lines and ABCG2 (MXR) specifically in MX-resistant cell lines. A pronounced down-regulation of several histones was noted in the MCF-7-derived resistant sublines. Altered expression...

  16. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland

    Directory of Open Access Journals (Sweden)

    Jonny eSt-Amand

    2012-01-01

    Full Text Available To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the mouse hypothalamus, pituitary gland and parietal cortex using serial analysis of gene expression (SAGE. Total counts of SAGE tags for the hypothalamus, pituitary gland and parietal cortex were 165824, 126688 and 161045 tags, respectively. This represented 59244, 45151 and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis and turnover, cell differentiation, the cell cycle and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  17. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  18. Long SAGE analysis of genes differentially expressed in the midgut ...

    African Journals Online (AJOL)

    There are great differences in silk production efficiency and quality between the male and female domestic silkworm (Bombyx mori). Many genes act together but are differentially expressed between the sexes during silk biosynthesis. Two long serial analyses of gene expression (SAGE) libraries were constructed from the ...

  19. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  20. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  1. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  2. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  3. Microarray analysis of the gene expression profile in triethylene ...

    African Journals Online (AJOL)

    Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells. ... Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  4. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases.

  5. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  6. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  7. Differential expressed genes in ECV304 Endothelial-like Cells ...

    African Journals Online (AJOL)

    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.

  8. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly...

  9. Impact of Proestrus on Gene Expression in the Medial Preoptic Area of Mice

    Directory of Open Access Journals (Sweden)

    Csaba Vastagh

    2017-07-01

    Full Text Available The antero-ventral periventricular zone (AVPV and medial preoptic area (MPOA have been recognized as gonadal hormone receptive regions of the rodent brain that—via wiring to gonadotropin-releasing hormone (GnRH neurons—contribute to orchestration of the preovulatory GnRH surge. We hypothesized that neural genes regulating the induction of GnRH surge show altered expression in proestrus. Therefore, we compared the expression of 48 genes obtained from intact proestrous and metestrous mice, respectively, by quantitative real-time PCR (qPCR method. Differential expression of 24 genes reached significance (p < 0.05. Genes upregulated in proestrus encoded neuropeptides (kisspeptin (KP, galanin (GAL, neurotensin (NT, cholecystokinin (CCK, hormone receptors (growth hormone secretagogue receptor, μ-opioid receptor, gonadal steroid receptors (estrogen receptor alpha (ERα, progesterone receptor (PR, androgen receptor (AR, solute carrier family proteins (vesicular glutamate transporter 2, vesicular monoamine transporter 2, proteins of transmitter synthesis (tyrosine hydroxylase (TH and transmitter receptor subunit (AMPA4, and other proteins (uncoupling protein 2, nuclear receptor related 1 protein. Proestrus evoked a marked downregulation of genes coding for adenosine A2a receptor, vesicular gamma-aminobutyric acid (GABA transporter, 4-aminobutyrate aminotransferase, tachykinin precursor 1, NT receptor 3, arginine vasopressin receptor 1A, cannabinoid receptor 1, ephrin receptor A3 and aldehyde dehydrogenase 1 family, member L1. Immunocytochemistry was used to visualize the proteins encoded by Kiss1, Gal, Cck and Th genes in neuronal subsets of the AVPV/MPOA of the proestrous mice. The results indicate that gene expression of the AVPV/MPOA is significantly modified at late proestrus including genes that code for neuropeptides, gonadal steroid hormone receptors and synaptic vesicle transporters. These events support cellular and neuronal network

  10. Transcriptional expression analysis of ABC efflux transporters and xenobiotic-metabolizing enzymes in the Chinese rare minnow.

    Science.gov (United States)

    Yuan, Lilai; Lv, Biping; Zha, Jinmiao; Wang, Zijian

    2014-05-01

    In the present study, the cDNA fragments of five ABC transporter genes (ABCB1, ABCB11, ABCC1, ABCC2, and ABCG2) in the rare minnow were cloned, and their tissue-specific expression patterns were evaluated across eight rare minnow tissues (liver, gill, intestine, kidney, spleen, brain, skin, and muscle). Furthermore, the transcriptional effects on these ABC transporter genes and five xenobiotic-metabolizing enzyme genes (CYP1A, GSTm, GSTp1, GCLC, and UGT1a) were determined in the rare minnow liver after 12 days of pyrene exposure. Basal expression analysis showed that the tissues with high expression of the ABC transporters included the liver, kidney, and intestine. Moreover, the most highly expressed of the ABC genes were ABCB1 and ABCC2 in all eight of the tissues tested. The ABCB11 gene was almost exclusively expressed in the liver of the rare minnow, whereas ABCC1 and ABCG2 showed weak expression in all eight tissues compared to ABCB1 and ABCC2. Our results provide the first thorough examination of the expression patterns of toxicologically relevant ABC transporters in the rare minnow and serve as a necessary basis for further studies of these ABC transporters in fish. Furthermore, synergistic up-regulation of CYP1A, GSTp1, GCLC, UGT1a, and ABCC2 was observed in the rare minnow liver following pyrene exposure, while GSTm, ABCB1, ABCB11, ABCC1, and ABCG2 were not significantly affected (p ABC transporters by pyrene suggests a possible involvement and cooperation of these genes in the detoxification process in rare minnows. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  12. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  13. Moderation of antidepressant response by the serotonin transporter gene

    DEFF Research Database (Denmark)

    Huezo-Diaz, Patricia; Uher, Rudolf; Smith, Rebecca

    2009-01-01

    Background: There have been conflicting reports on whether the length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) moderates the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs). We hypothesised that the pharmacogenetic effect of 5-HTTLPR...... is modulated by gender, age and other variants in the serotonin transporter gene. Aims: To test the hypothesis that the 5-HTTLPR differently influences response to escitalopram (an SSRI) compared with nortriptyline (a noradrenaline reuptake inhibitor). Method: The 5-HTTLPR and 13 additional markers across...... the serotonin transporter gene were genotyped in 795 adults with moderate-to-severe depression treated with escitalopram or nortriptyline in the Genome Based Therapeutic Drugs for Depression (GENDEP) project. Results: The 5-HTTLPR moderated the response to escitalopram, with long-allele carriers improving more...

  14. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  15. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

    Science.gov (United States)

    Silver, Nicholas; Best, Steve; Jiang, Jie; Thein, Swee Lay

    2006-01-01

    Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulocytes. For this, a simple ΔCt approach was employed by comparing relative expression of 'pairs of genes' within each sample. On this basis, stability of the candidate housekeeping genes was ranked according to repeatability of the gene expression differences among 31 samples. Results Initial screening of the expression pattern demonstrated that 1 of the 7 genes was expressed at very low levels in reticulocytes and was excluded from further analysis. The range of expression stability of the other 6 genes was (from most stable to least stable): GAPDH (glyceraldehyde 3-phosphate dehydrogenase), SDHA (succinate dehydrogenase), HPRT1 (hypoxanthine phosphoribosyl transferase 1), HBS1L (HBS1-like protein) and AHSP (alpha haemoglobin stabilising protein), followed by B2M (beta-2-microglobulin). Conclusion Using this simple approach, GAPDH was found to be the most suitable housekeeping gene for expression studies in reticulocytes while the commonly used B2M should be avoided. PMID:17026756

  16. Gamma-Tocotrienol Modulated Gene Expression in Senescent Human Diploid Fibroblasts as Revealed by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-01-01

    Full Text Available The effect of γ-tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70 μM of γ-tocotrienol for 24 h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P<0.001 by at least 1.5 fold in response to γ-tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA, and the Normalized Enrichment Score (NES showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with γ-tocotrienol. These findings revealed that γ-tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.

  17. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  18. Local gene expression in nerve endings.

    Science.gov (United States)

    Crispino, Marianna; Chun, Jong Tai; Cefaliello, Carolina; Perrone Capano, Carla; Giuditta, Antonio

    2014-03-01

    At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems. Copyright © 2013 Wiley Periodicals, Inc.

  19. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    Science.gov (United States)

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS ...

  1. Differentially expressed genes in white egg 2 mutant of silkworm ...

    African Journals Online (AJOL)

    In order to obtain an overall view on gene expression profiles at early embryo development stages, the white egg 2 near-isogenic line was constructed and the whole-genome of silkworm microarray system containing 21375 predicted genes from the silkworm whole genome sequence was employed to investigate gene ...

  2. Gene expression profile study on osteoinductive effect of natural hydroxyapatite.

    Science.gov (United States)

    Lü, Xiaoying; Wang, Jiandan; Li, Bin; Zhang, Zhiwei; Zhao, Lifeng

    2014-08-01

    The aim of this study was to investigate the osteoinductive effect of natural hydroxyapatite (NHA). NHA was extracted from pig bones and prepared into disk-like samples. Then, proliferation of mouse bone mesenchymal stem cells (MSCs) cultured on NHA was assessed by the methylthiazoltetrazolium (MTT) assay. Furthermore, microarray technology was applied to obtain the gene expression profiles of MSCs cultured on NHA at 24, 48, and 72 h. The gene expression profile was then comprehensively analyzed by clustering, Gene Ontology (GO), Gene Microarray Pathway Profiler (GenMAPP) and Ingenuity Pathway Analysis (IPA). According to the results of microarray experiment, 8992 differentially expressed genes were obtained. 90 differential expressed genes related to HA osteogenic differentiation were determined by GO analysis. These genes included not only 6 genes related to HA osteogenic differentiation as mentioned in the literatures but also newly discovered 84 genes. Some important signaling pathways (TGF-β, MAPK, Wnt, etc.) were influenced by these genes. Gene interaction networks were obtained by IPA software, in which the scoring values of two networks were highest, and their main functions were related to cell development. The comprehensive analysis of these results indicate that NHA regulate some crucial genes (e.g., Bmp2, Spp1) and then activate some pathways such as TGF-β signaling pathway, and ultimately osteogenic differentiation was induced. © 2013 Wiley Periodicals, Inc.

  3. DNA microarray analysis of genes differentially expressed in ...

    Indian Academy of Sciences (India)

    These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes ...

  4. Differentially expressed genes in the midgut of Silkworm infected ...

    African Journals Online (AJOL)

    In this report, we employed suppression subtractive hybridization to compare differentially expressed genes in the midguts of CPV-infected and normal silkworm larvae. 36 genes and 20 novel ESTs were obtained from 2 reciprocal subtractive libraries. Three up-regulated genes (ferritin, rpL11 and alkaline nuclease) and 3 ...

  5. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  6. Identification of differentially expressed genes in seeds of two ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... the differentially expressed genes are related to metabolism and regulation. The possible role of these genes in seeds ..... genes are regulated by hormones such as insulin. (Moustaid et al., 1994), by dietary fatty .... Physiol. 99: 197-202. Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996). Developmental.

  7. Molecular characterization, expression profile of the FSHR gene and ...

    Indian Academy of Sciences (India)

    JIGUO XU

    2017-06-17

    Jun 17, 2017 ... the expression pattern of FSHR mRNA in various mus- covy duck tissues, besides, identified the polymorphism of this gene and evaluated its association with muscovy duck egg production traits, by using methods of reverse transcription, gene cloning, PCR amplification, qPCR and gene sequencing.

  8. MASISH: a database for gene expression in maize seeds.

    Science.gov (United States)

    Miquel, M; López-Ribera, I; Ràmia, M; Casillas, S; Barbadilla, A; Vicient, C M

    2011-02-01

    Grass seeds are complex organs composed by multiple tissues and cell types that develop