WorldWideScience

Sample records for transportation systems design

  1. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  2. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  3. Evaluation of alternative public transportation systems in Izmit urban transportation via axiomatic design method

    Directory of Open Access Journals (Sweden)

    Gülşen AKMAN

    2016-02-01

    Full Text Available In the world and in our country, most of urban transportation is performed by public transportation. Public transportation is a system which provides transportation easiness and opportunity to people, not to vehicles. Therefore, giving priority to public transportation system is necessary in organizing urban transportation. In this study, in order to reduce traffic intensity and to facilitate passenger transportation in Izmit urban transportation, It is tried to determine appropriate public transportation system. For this, firstly, alternatives which could be used for public transportation were determined. These alternatives are metro, metrobus, tram, light rail system and monorail. Afterwards, the variables affecting decision making about public transportation were determined. These variables are cost, transportation line features, vehicle characteristics, sensitivity to environment and customer satisfaction. Lastly, most appropriate public transportation system is proposed by using the axiomatic design method. As a result, light trail system and metrobus are determined as the most appropriate alternatives for Izmit public transportation system.Keywords: Urban transportation, Multi criteria decision making, Axiomatic design

  4. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  5. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  6. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  7. Lattice design of beam transport system of FELI

    International Nuclear Information System (INIS)

    Miyauchi, Y.; Koga, A.; Morii, Y.; Sato, S.; Keishi, T.; Tomimasu, T.

    1994-01-01

    A plan of lasing wide range FEL (Free Electron Laser) is in progress at FELI. For this purpose, an S-band linac accelerator system of four output energy levels is under construction. This paper describes the lattice design of its beam transport (BT) system. (author)

  8. Conceptual design of an RTG Shipping and Receiving Facility Transportation System

    International Nuclear Information System (INIS)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-01-01

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping ampersand Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines

  9. Conceptual design of an RTG shipping and receiving facility transportation system

    International Nuclear Information System (INIS)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1995-01-01

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping ampersand Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines. copyright 1995 American Institute of Physics

  10. Design of an Autonomous Transport System for Coastal Areas

    Directory of Open Access Journals (Sweden)

    Andrzej Lebkowski

    2018-03-01

    Full Text Available The article presents a project of an autonomous transport system that can be deployed in coastal waters, bays or between islands. Presented solutions and development trends in the transport of autonomous and unmanned units (ghost ships are presented. The structure of the control system of autonomous units is discussed together with the presentation of applied solutions in the field of artificial intelligence. The paper presents the concept of a transport system consisting of autonomous electric powered vessels designed to carry passengers, bikes, mopeds, motorcycles or passenger cars. The transport task is to be implemented in an optimal way, that is, most economically and at the same time as safe as possible. For this reason, the structure of the electric propulsion system that can be found on such units is shown. The results of simulation studies of autonomous system operation using simulator of marine navigational environment are presented.

  11. Transuranic package transporter (TRUPACT) system design status and operational support equipment

    International Nuclear Information System (INIS)

    Johanson, N.W.; Meyer, R.J.; Romesberg, L.E.; Pope, R.B.

    1983-01-01

    A program was initiated in the late 1970's at Sandia National Laboratories to develop an efficient, safe, reliable, and cost-effective transportation packaging system for the carriage of contact-handled transuranic (CH-TRU) waste within the Department of Energy (DOE) complex. It is anticipated that eventually a family of TRUPACT (TRansUranic PACKage Transporter) systems having varied dimensions and weight/volume capacities will be needed by the DOE to transport different CH-TRU waste forms. Each TRUPACT system will be a Type B packaging. Large quantities of CH-TRU wastes having many different forms, isotopic contents, and contained in a variety of waste containers have been, are being, and will continue to be produced and stored for ultimate disposal. Packaging design is being closely coordinated with facility designs to ensure the rapid and economic integration of the TRUPACT system. The first packaging developed for transport by truck or rail (bimodal) is designated TRUPACT-I and will become operational in 1984. This paper provides an overview of progress on the TRUPACT-I design and details of equipment to be used for interfacing with users

  12. TRANSPORT: a computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Brown, K.L.; Rothacker, F.; Carey, D.C.; Iselin, C.

    1977-05-01

    TRANSPORT is a first- and second-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. It has been in existence in various evolutionary versions since 1963. The present version, described in the manual given, includes both first- and second-order fitting capabilities. TRANSPORT will step through the beam line, element by element, calculating the properties of the beam or other quantities, described below, where requested. Therefore one of the first elements is a specification of the phase space region occupied by the beam entering the system. Magnets and intervening spaces and other elements then follow in the sequence in which they occur in the beam line. Specifications of calculations to be done or of configurations other than normal are placed in the same sequence, at the point where their effect is to be made

  13. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-01-01

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described

  14. Third-Order Transport with MAD Input: A Computer Program for Designing Charged Particle Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Karl

    1998-10-28

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems.

  15. Sewage Solids Irradiator Transportation System (SSITS) cask: preliminary design description

    International Nuclear Information System (INIS)

    Eakes, R.G.; Kempka, S.N.; Lamoreaux, G.H.; Sutherland, S.H.

    1983-02-01

    The preliminary design of the Sewage Solids Irradiator Transportation System (SSITS) Cask is presented in this document. The SSITS cask is to be used for the transport of radioactive cesium chloride and strontium fluoride capsules which are of use in irradiators or as heat sources. The SSITS cask is approximately 1.4 m in diameter, 1.3 m high, weighs roughly 9 t, provides 33 cm of steel shielding, and can dissipate up to 5.2 kW of decay heat. The cask design criteria are identified and a description of the cask design and operation is provided. Detailed analyses of the design were performed to demonstrate licensability of the cask by the Nuclear Regulatory Commission (NRC). Results of the analyses indicate that the preliminary design is in compliance with the pertinent regulatory requirements for licensing of a radioactive material transportation container

  16. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  17. Petri Net Approach of Collision Prevention Supervisor Design in Port Transport System

    Directory of Open Access Journals (Sweden)

    Danko Kezić

    2007-09-01

    Full Text Available Modern port terminals are equipped with various localtransport systems, which have the main task to transport cargobetween local storehouses and transport resources (ships,trains, trucks in the fastest and most efficient way, and at thelowest possible cost. These local transport systems consist offully automated transport units (AGV- automatic guided vehiclewhich are controlled by the computer system. The portcomputer system controls the fully automated transport units inthe way to avoid possible deadlocks and collisions betweenthem. However, beside the fully automated local transportunits, there are human operated transport units (fork-lifttrucks, cranes etc. which cross the path oftheAGVfrom timeto time. The collision of human operated transp011 unit andA GV is possible due to human inattention. To solve this problem,it is necesswy to design a supe1vismy control system thatcoordinates and controls both human driven transport unit andA G V In other words, the human-machine interactions need tobe supen·ised. The supen•ising system can be realized in the waythat the port terminal is divided into zones. Vehicle movementsare supen•ised by a video system which detects the moving ofparticular l'ehicles as a discrete event. Based on detected events,dangerous moving of certain vehicles is blocked by the supe1visi11gsystem. The paper considers the design of collision preventionsupen•isor by using discrete event dynamic themy. The portterminal is modeled by using ordi1za1y Petri nets. The design ofcollision prevention supe1visor is cmTied out by using the P-inl'ariantmethod. The verification of the supervisor is done bycomputer simulation.

  18. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  19. Human behavior research and the design of sustainable transport systems

    Science.gov (United States)

    Schauer, James J.

    2011-09-01

    Transport currently represents approximately 19% of the global energy demand and accounts for about 23% of the global carbon dioxide emissions (IEA 2009). As the demand for mobility is expected to continue to increase in the coming decades, the stabilization of atmospheric carbon dioxide levels will require the evolution of transport, along with power generation, building design and manufacturing. The continued development of these sectors will need to include changes in energy sources, energy delivery, materials, infrastructure and human behavior. Pathways to reducing carbon from the transport sector have unique challenges and opportunities that are inherent to the human choices and behavioral patterns that mold the transportation systems and the associated energy needs. Technology, government investment, and regulatory policies have a significant impact on the formulation of transportation infrastructure; however, the role of human behavior and public acceptance on the efficiency and effectiveness of transport systems should not be underestimated. Although developed, rapidly developing, and underdeveloped nations face different challenges in the establishment of transport infrastructure that can meet transport needs while achieving sustainable carbon dioxide emissions, the constraints that establish the domain of possibilities are closely related for all nations. These constraints include capital investment, fuel supplies, power systems, and human behavior. Throughout the world, there are considerable efforts directed at advancing and optimizing the financing of sustainable infrastructures, the production of low carbon fuels, and the production of advanced power systems, but the foundational work on methods to understand human preferences and behavior within the context of transport and the valuation of reductions in carbon dioxide emissions is greatly lagging behind. These methods and the associated understanding of human behavior and the willingness to pay for

  20. Design of a robotic automation system for transportation of goods in hospitals

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Sørensen, Torben; Fan, Zhun

    2007-01-01

    Hospitals face with heavy traffic of goods everyday, where transportation tasks are mainly carried by human. Analysis of the current situation of transportation in a typical hospital showed several transportation tasks are suitable for automation. This paper presents a system, consisting of a fleet...... of robot vehicles, automatic stations and smart containers for automation of transportation of goods in hospitals. Design of semi-autonomous robot vehicles, containers and stations are presented and the overall system architecture is described. Implementing such a system in an existing hospital showed...

  1. Design analysis report for the TN-WHC cask and transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, S.A., Fluor Daniel Hanford

    1997-02-13

    This document presents the evaluation of the Spent Nuclear Fuel Cask and Transportation System. The system design was developed by Transnuclear, Inc. and its team members NAC International, Nelson Manufacturing, Precision Components Corporation, and Numatec, Inc. The cask is designated the TN-WHC cask. This report describes the design features and presents preliminary analyses performed to size critical dimensions of the system while meeting the requirements of the performance specification.

  2. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  3. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  4. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  5. Decomobil, Deliverable 3.6, Human Centred Design for Safety Critical Transport Systems

    OpenAIRE

    PAUZIE, Annie; MENDOZA, Lucile; SIMOES, Anabela; BELLET, Thierry; MOREAU, Fabien

    2014-01-01

    The scientific seminar on 'Human Centred Design for Safety Critical Transport Systems' organized in the framework of DECOMOBIL has been held the 8th of September 2014 in Lisbon, Portugal, hosted by ADI/ISG. The aims of the event were to present the scientific problematic related to the safety of the complex transport systems and the increasing importance of human-­centred design, with a specific focus on Resilience Engineering concept, a new approach to safety management in highly complex sys...

  6. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  7. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  8. Impact of more conservative cask designs of the CRWMS transportation system

    International Nuclear Information System (INIS)

    Joy, D.S.; Pope, R.B.; Johnson, P.E.

    1993-01-01

    The Office of Civilian Radioactive Waste Management has been working since the mid-1980s to develop a cask fleet, which will include legal weight truck and rail/barge casks for the transport of spent nuclear fuel (SNF) from reactors to Civilian Radioactive Waste Management System SNF receiving sites. The cask designs resulting from this effort have been identified as Initiative I casks. In order to maximize payloads, advanced technologies have been incorporated in the Initiative I cask designs, and some design margins have been reduced. Due to the wide range of the characteristics (age/burnup) of the spent fuel assemblies to be transported in the Initiative I casks, it has become apparent that a significant portion of the shipments of the Initiative I casks could not be loaded to their design capacity. Application of a more conventional cask design philosophy might result in new generation casks that would be easier to license, have more operational flexibility as to the range of age/burnup fuel that could be transported at full load, and be easier to fabricate. In general, these casks would have a lower capacity than the currently proposed Initiative I casks, thereby increasing the transportation impacts and the transportation costs

  9. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  10. Design, operation, and evaluation of the transportable vitrification system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Young, S.R.; Hansen, E.K.; Whitehouse, J.C.

    1997-01-01

    The Transportable Vitrification System (TVS) is a transportable melter system designed to demonstrate the treatment of low-level and mixed hazardous and radioactive wastes such as wastewater treatment sludges, contaminated soils and incinerator ash. The TVS is a large-scale, fully integrated vitrification system consisting of melter feed preparation, melter, offgas, service, and control modules. The TVS was tested with surrogate waste at the Clemson University Environmental Systems Engineering Department's (ESED) DOE/Industry Center for Vitrification Research prior to being shipped to the DOE Oak Ridge Reservation (ORR) K-25 site for treatment of mixed waste. This testing, along with additional testing at ORR, proved that the TVS would be able to successfully treat mixed waste. These surrogate tests consistently produced glass that met the EPA Toxicity Characteristic Leaching Procedure (TCLP). Performance of the system resulted in acceptable emissions of regulated metals from the offgas system. The TVS is scheduled to begin mixed waste operations at ORR in June 1997

  11. Conceptual design of heat transport systems and components of PFBR-NSSS

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Kale, R.D.; Rao, A.S.L.K.; Mitra, T.K.; Selvaraj, A.; Sethi, V.K.; Sundaramoorthy, T.R.; Balasubramaniyan, V.; Vaidyanathan, G.

    1996-01-01

    The production of electrical power from sodium cooled fast reactors in the present power scenario in India demands emphasis on plant economics consistent with safety. Number of heat transport systems/components and the design of principal heat transport components viz sodium pumps, IHX and steam generators play significant role in the plant capital cost and capacity factor. The paper discusses the basis of selection of 2 primary pumps, 4 IHX, 2 secondary loops, 2 secondary pumps and 8 steam generators for the 500 MWe Prototype Fast Breeder Reactor (PFBR), which is now in design stage. The principal design features of primary pump, IHX and steam generator have been selected based on design simplicity, ease of manufacture and utilization of established designs. The paper also describes the conceptual design of above mentioned three components. (author). 3 figs, 2 tabs

  12. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  13. An operational information systems architecture for assessing sustainable transportation planning: principles and design.

    Science.gov (United States)

    Borzacchiello, Maria Teresa; Torrieri, Vincenzo; Nijkamp, Peter

    2009-11-01

    This paper offers the description of an integrated information system framework for the assessment of transportation planning and management. After an introductory exposition, in the first part of the paper, a broad overview of international experiences regarding information systems on transportation is given, focusing in particular on the relationship between transportation system's performance monitoring and the decision-making process, and on the importance of this connection in the evaluation and planning process, in Italian and European cases. Next, the methodological design of an information system to support efficient and sustainable transportation planning and management aiming to integrate inputs from several different data sources is presented. The resulting framework deploys modular and integrated databases which include data stemming from different national or regional data banks and which integrate information belonging to different transportation fields. For this reason, it allows public administrations to account for many strategic elements that influence their decisions regarding transportation, both from a systemic and infrastructural point of view.

  14. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  15. Design of a transport calculation system for logging sondes simulation

    International Nuclear Information System (INIS)

    Marquez Damian, Jose Ignacio

    2005-01-01

    Analysis of available resources in earth crust is performed by different techniques, one of them is neutron logging. Design of sondes that are used to make such logging is supported by laboratory experiments as well as by numerical calculations.This work presents several calculation schemes, designed to simplify the task of whom has to planify such experiments or optimize parameters of this kind of sondes.These schemes use transport calculation codes, especially DaRT, TORT and MCNP, and cross section processing modules from SCALE system.Additionally a system for DaRT and TORT data postprocessing using OpenDX is presented.It allows scalar flux spatial distribution analysis, as wells as cross section condensation and reaction rates calculation

  16. The expert system OPTRAN (Ver 1.0) and its application to beam transportation line design

    International Nuclear Information System (INIS)

    Xiao Meiqin; Lu Hongyou; Fan Mingwu

    1994-01-01

    The expert system OPTRAN (Ver 1.0) used for beam transportation line design is introduced. The knowledge storage and reasoning principle, of which the intelligence part of OPTRAN are composed, have been described in detail. By using OPTRAN (Ver 1.0), the design of a beam transportation line for extracted ion beam of Cyclone 30 was completed

  17. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    International Nuclear Information System (INIS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-01-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  18. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  19. Intelligent transportation systems problems and perspectives

    CERN Document Server

    Pamuła, Wiesław

    2016-01-01

    This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.    .

  20. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  1. Transportation System Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower

  2. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  3. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  4. Proposed design for the new SNL air-transporter

    International Nuclear Information System (INIS)

    Hardy, A.R.; Kennedy, S.T.; Haberlin, M.M.

    1988-01-01

    The design of a prototype air-transporter suitable for remote operation in a size reduction facility is discussed. The first section describes the design concept selected for the transporter, that of a series of modular units within a simple rigid framework and the detailed design of the individual modules. The design has the following features: electrical drive units, self contained air-skates, electrical logic circuit placed outside the working area, pneumatic and electrical umbilicals and provision for specific items of ancilliary equipment. The second section describes the detailed evaluation of various cable handling systems for the umbilicals from the control console outside the facility to the transporter. It has been established that the optimum system is a single rail festoon complete with transporter mounted pivoting arm. (author)

  5. The Transportable Applications Environment - An interactive design-to-production development system

    Science.gov (United States)

    Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.

    1988-01-01

    An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.

  6. Transportation System Requirements Document

    International Nuclear Information System (INIS)

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification

  7. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  8. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    Science.gov (United States)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  9. Queueing in a spent fuel transportation system - preliminary analysis of implications for system design

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Wood, T.W.

    1985-01-01

    Compliance with the Nuclear Waste Policy Act of 1982 (PL 97-425) will require the transportation of large volumes of spent fuel to a central receiving facility (either a geologic repository or a monitored retrievable storage facility). Decisions on the transport mode and technology will evolve over the next several years, in anticipation of the deployment of a receiving facility in the late 1990s. Regardless of the particular transportation mode or modes and the details of cask technology, the transport system from many diverse sources to a single point will generate an essentially random arrival pattern. This random arrival pattern will lead to the formation of queues at the receiving facility. As is normal in any queueing system, the waiting time distribution caused by this queueing will depend on the receiving facility input processing rate and the characteristics of the traffic. Since this is a cyclic system, there is also a reverse effect in which (for a given size cask fleet) average wait time affects traffic intensity. Both effects must be accounted for to properly represent the system. This paper develops a simple analytic queueing model which accounts for both of these effects simultaneously. Since both effects are determined by receiving facility input rates and cask fleet size and characteristics, two major sets of system design parameters are linked by the queueing process. The model is used with estimated traffic and service parameters to predict the severity of queueing under plausible reference system conditions, and to establish shadow prices for the trade off between larger cask fleets and more efficient receiving facilities. Since many of the parameter values used in this estimation are quite preliminary, these results are presented primarily in the context of demonstrating the utility of the queueing model for future trade off studies

  10. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  11. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  12. Vivitron - A 35 MV Van de Graaff tandem. Design, performance, charge transport system

    International Nuclear Information System (INIS)

    Letournel, M.; Helleboid, J.M.; Bertein, H.

    1985-01-01

    This paper describes a new configuration for an electrostatic tandem accelerator. The project of the Strasbourg Nuclear Center is a 35 MV Van de Graaff tandem, in fact a new design in that field. The general features of the machine and its associated electrostatic field are described. The machine is designed to minimise energy dissipation within the accelerator column in the event of electrical breakdown. This is discussed as also insulator and conductor designs. Charge transport system is a particular field. The choice of a belt system and its design result from specific studies carried out at the C.R.N. with reference to the electrostatics of solid and gaseous insulations [fr

  13. Sensor network design for multimodal freight transportation systems.

    Science.gov (United States)

    2009-10-15

    The agricultural and manufacturing industries in the US Midwest region rely heavily on the efficiency of freight transportation systems. While the growth of freight movement far outpaces that of the transportation infrastructure, ensuring the efficie...

  14. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1992-01-01

    The design of structures and engineering systems has always been an iterative process whose complexity was dependent upon the boundary conditions, constraints and available analytical tools. Transportation packaging design is no exception with structural, thermal and radiation shielding constraints based on regulatory hypothetical accident conditions. Transportation packaging design is often accomplished by a group of specialists, each designing a single component based on one or more simple criteria, pooling results with the group, evaluating the open-quotes pooledclose quotes design, and then reiterating the entire process until a satisfactory design is reached. The manual iterative methods used by the designer/analyst can be summarized in the following steps: design the part, analyze the part, interpret the analysis results, modify the part, and re-analyze the part. The inefficiency of this design practice and the frequently conservative result suggests the need for a more structured design methodology, which can simultaneously consider all of the design constraints. Numerical optimization is a structured design methodology whose maturity in development has allowed it to become a primary design tool in many industries. The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  15. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    Science.gov (United States)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  16. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  17. Inactive trials of transport systems

    International Nuclear Information System (INIS)

    Haberlin, M.M.; Hardy, A.R.

    1985-06-01

    The design and manufacture of a mock-up of a crate handling and size reduction (CHSR) facility, an experimental programme on the evaluation of a commercial air-transporter, and the selection, manufacture and commissioning trials of an integrated conveyor system for transporting crated waste into and within the mock-up facility, are considered. The mock-up facility was used for the test programme on the air-transporter and conveyor system. The air-transporter was considered suitable for transporting waste on the metal floor in the main dismantling area of the CHSR facility because it can tolerate asymmetric loading, the exhaust air flow liberated from the air-pads is low and it has excellent manoeuvrability. Commissioning trials were carried out on a commercial conveyor system consisting of unpowered rollers in the reception area, a powered slatted conveyor in the air-lock and an unpowered roller table placed on the air-transporter in the working area. It was demonstrated that a large asymmetrically loaded wooden crate can be transported into and within the facility by this method. Further design and experimental work necessary before the system can be used for remote operation is discussed. (author)

  18. Multimodal schedule design for synchromodal freight transport systems

    NARCIS (Netherlands)

    B. Behdani (Behzad); Y. Fan (Yun); B.W. Wiegmans (Bart); R.A. Zuidwijk (Rob)

    2016-01-01

    textabstractIntermodal freight transport has been discussed for decades as an alternative to unimodal road transport. However, it still does not represent a significant portion of the total freight market. A new and promising possibility to improve the performance of freight systems is the

  19. Multimodal schedule design for synchromodal freight transport systems

    NARCIS (Netherlands)

    Behdani, Behzad; Fan, Yun; Wiegmans, Bart; Zuidwijk, Rob

    2016-01-01

    Intermodal freight transport has been discussed for decades as an alternative to unimodal road transport. However, it still does not represent a significant portion of the total freight market. A new and promising possibility to improve the performance of freight systems is the synchromodal

  20. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  1. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  2. Queueing in a spent fuel transportation system: a preliminary analysis of implications for system design

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Wood, T.W.

    1985-03-01

    Compliance with the Nuclear Waste Policy Act of 1982 (PL 97-425) will require the transportation of large volumes of spent fuel to a central receiving facility (Either a geologic repository or a monitored retrievable storage facility). Decisions on the transport mode and technology will evolve over the next several years, in anticipation of the deployment of a receiving facility in the late 1990s. Regardless of the particular transportation mode or modes and the details of cask technology, the transport system from many diverse sources to a single point will generate an essentially random arrival pattern. This random arrival pattern will lead to the formation of queues at the receiving facility. As is normal in any queueing system, the waiting time distribution caused by this queueing will depend on the receiving facility input processing rate and the characteristics of the traffic. Since this is a cyclic system, there is also a reverse effect in which (for a given size cask fleet) average wait time affects traffic intensity. Both effects must be accounted for to properly represent the system. This paper develops a simple analytic queueing model which accounts for both of these effects simultaneously. Since both effects are determined by receiving facility input and cask fleet size characteristics, two major sets of system design parameters are linked by the queueing process. The model is used with estimated traffic and service parameters to predict the severity of queueing under plausible reference system conditions, and to establish ''shadow prices'' for the trade off between larger cask fleets and more efficient receiving facilities. Since many of the parameter values used in this estimation are quite preliminary, these results are presented primarily in the context of demonstrating the utility of the queueing model for future trade off studies. 5 refs., 5 figs., 2 tabs

  3. Design and assessment of long-term sustainable transport system scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Rienstra, S.A.; Vleugel, J.M. [Systems and Control Group, Faculty of Mechanical and Marine Engineering, Delft University of Technology, Delft (Netherlands)

    1995-03-01

    Current trends in transport indicate that the system is moving away from a sustainable development because of a sky-rocketing mobility growth and a modal shift towards the most polluting modes. These trends are reinforced by several underlying factors, which may be found in the spatial, institutional, economic and social/psychological fields. It may be concluded that major changes in technology, public policy as well as in the behaviour of individuals are necessary to make the transport system more compatible with environmental sustainability. This provokes the need for assessing a set of future images for transport in relation to the environment. In this paper expert scenarios are constructed on the basis of the recently developed `spider model`. Based on a set of distinct characteristics of a transport system, represented by eight axes in the above mentioned fields, an evaluation framework is constructed, which visualizes the main discussed driving forces. Scenarios can be constructed by connecting points on the successive axes, which may lead to entirely different transport systems. An expected and desired scenario are constructed next, by means of opinions of Dutch transport experts, which have been investigated by means of a nation-wide survey. The expected scenario indicates that many current trends will continue, while the transport system is largely the same as the current one. The desired scenario on the other hand, gives a more collective system, in which also many new modes are operating. The conclusion is that expected trends may not lead to a sustainable transport system, but that the desired road will be very hard to follow. 5 figs., 2 tabs., 27 refs.

  4. Design features and operational characteristics of the PEP beam-transport and injection system

    International Nuclear Information System (INIS)

    Peterson, J.M.; Brown, K.L.; Truher, J.B.

    1981-03-01

    The PEP beam-transport system was designed to transmit 4-to-15 GeV electron and positron beams from the SLAC linac within a +- 0.8% momentum band, to have flexible tuning of the betatron and off-momentum functions for matching into the PEP storage ring, and to have convenient operating characteristics. The transport lines were brought into operation quickly and have operated well. Electron injection has been consistent and efficient and relatively easy to accomplish. Positron injection also has been satisfactory but is variable and more sensitive to ring conditions

  5. Designed technological systems: the cases of urban transportation in Copenhagen and Bogotá

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama

    accomplished in two different parts of the planet: in the city of Bogotá, in Colombia, the first mass bus rapid transit system was designed, built and put into operation becoming the most visible icon of a great urban transformation of the 7 million inhabitants metropolis; in the city of Copenhagen, in Denmark...... is that a problem that has been traditionally conceptualized in technical terms (transportation engineering, transportation economics, planning theory, traffic engineering, urban planning, etc.), has tremendous consequences in the life of cities and citizens. Thus a problem that is often outlined in technical terms...

  6. Sintering boat transport system for the SAF line

    International Nuclear Information System (INIS)

    Egli, W.; Bogart, R.L.

    1983-10-01

    The Secure Automated Fabrication (SAF) line will be a remotely operated process for the manufacture of breeder reactor fuel pins. The sintering boat transport system will service the pellet operations. Since the Boat Transport System will be the major link between several subsystem operations, reliability and ease of maintenance are prime requirements for the design. A prototypic version of the Boat Transport System was designed, built and tested to verify the operability of the selected approach. Extensive testing provided valuable input to the final design and substantiated the soundness of the concept

  7. Code of practice and design principles for portable and transportable radiological protection systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1980-10-01

    The Code of Practice and design principles for portable and transportable radiological protection systems are presented in three parts. Part 1 specifies the requirement for Radiological Protection Instrumentation (RPI) including operational characteristics and the effects of both a radiation and non-radiation environment. Part 2 satisfies the requirement for RPI equipment as regards the overall design, the availability, the reliability, the information display, the human factors, the power supplies, the manufacture and quality assurance, the testing and the cost. Part 3 deals with the supply, location and operation of the RPI equipment. (U.K.)

  8. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  9. Transport system

    NARCIS (Netherlands)

    Drenth, K.F.

    1999-01-01

    The transport system comprises at least one road surface (2) and at least one vehicle (4) on wheels (6). The road surface (2) has a substantially bowl-shaped cross section and the vehicle (4) is designed so that the wheels (6) run directly on the road surface (2) while the road surface (2) acts as a

  10. Agent-Based Coordination Model for Designing Transportation Applications

    OpenAIRE

    BADEIG, F; BALBO, F; SCEMAMA, G; ZARGAYOUNA, M

    2008-01-01

    This paper presents an environment-centered approach to design multi-agent solutions to transportation problems. Based on the Property-based Coordination Principle (PbC), the objective of our approach is to solve three recurrent issues in the design of these solutions: the knowledge problem, the space-time dimension and the dynamics of the real environment. To demonstrate the benefits of our approach, two completely different applications, a demand-responsive transportation system and a simul...

  11. Development of hotcell transportation system technology for high radioactive material

    International Nuclear Information System (INIS)

    Seo, K. S.; Seo, C. S.; Lee, J. C.

    2012-04-01

    In the first stage of the research, the transportation and storage characteristics analysis of the pyroprocess materials, the development of horizontal type hot cell transportation system, and the design of interim storage system for the pyroprocess material are conducted. The optimized capacity, transportation frequency and operation period of pyroprocess facility are found using the logistics analysis program developed in this project. A new hot cell transportation system was designed. Through the safety analysis and test for the hot cell transportation system, the design license has been approved. A new type hot cell docking system with superior performance has been developed with a patented rotating lid system. We have reached to a unique concept of interim storage of pyroprocess materials and selected a system through a comparative evaluation of existing ones. In the second stage of the research, transportation/storage/sealing devices for PRIDE recovered material/wastes were developed. And test model for the devices in engineering scale facility were also developed. The design requirements for a vertical docking system were evaluated and the performance assessment using a scaled mock-up was conducted. Integrated storage management technology was evaluated for an efficient management of process materials. A heat transfer simulation and characteristics analysis for the storage system were conducted. The derivation of design requirements, design and fabrication of a canister test model, and preliminary safety assessment were conducted

  12. Safety accessibility and sustainability: The importance of micro-scale outcomes to an equitable design of transport systems

    Directory of Open Access Journals (Sweden)

    N. Tyler

    2017-07-01

    Full Text Available This paper discusses the potential conflicts that can arise when trying to design a transport system to be sustainable, safe and accessible. The paper considers first the overarching vision that drives such an aim and how that determines choices for design and implementation of such schemes. Using the example of a shared space project, Exhibition Road in London, to illustrate how these issues come to arise and how research could help to resolve them, the paper then considers how science is able to support better design and implementation. This raises questions for scientific methods that could support better consideration of such issues, learning from the small-samples analysis of transport safety research to be amplified to include the detailed research that drives accessible design.

  13. Design of a positional tracking and radiological alarm system for transportation of radioactive isotopes

    International Nuclear Information System (INIS)

    Saindane, Shashank; Pujari, R.N.; Narsaiah, M.V.R.; Chaudhury, Probal; Pradeepkumar, K.S.

    2016-01-01

    The safety aspects during the transport of radioactive material have to ensure that even in event of accident the potential of radiation exposure to public is extremely small. Continuous monitoring and online data transfer to emergency control room will strengthen the emergency preparedness to response to any such accident during transport of radioactive material. The paper presents the combined application of Geographical Information Systems (GIS), Global Positioning System (GPS), General Packet Radio Service (GPRS) and the Internet for tracking the shipment vehicle transporting radioactive isotopes for use in the medical industry. The key features of the prototype system designed are realtime radiological status update along with photo snap of the shipping flask at predefined interval along with positional coordinates, GIS platform and a web-based user interface. The system consists of a GM based radiation monitoring device (RMD) along with a LAN camera, GPS for tracking the shipment vehicle, a communications server, a web-server, a database server, and a map server. The RMD and tracking device mounted in the shipment vehicle collects location and radiological information on real-time via the GPS. This information is transferred continuously through GPRS to a central database. The users will be able to view the current location of the vehicle via a web-based application

  14. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  15. Evaluation of intelligent transport systems impact on school transport safety

    Directory of Open Access Journals (Sweden)

    Jankowska-Karpa Dagmara

    2017-01-01

    Full Text Available The integrated system of safe transport of children to school using Intelligent Transport Systems was developed and implemented in four locations across Europe under the Safeway2School (SW2S project, funded by the EU. The SW2S system evaluation included speed measurements and an eye-tracking experiment carried out among drivers who used the school bus route, where selected elements of the system were tested. The subject of the evaluation were the following system elements: pedestrian safety system at the bus stop (Intelligent Bus Stop and tags for children, Driver Support System, applications for parents’ and students’ mobile phones, bus stop inventory tool and data server. A new sign designed for buses and bus stops to inform about child transportation/children waiting at the bus stop was added to the system. Training schemes for system users were also provided. The article presents evaluation results of the impact of selected elements of the SW2S system on school transport safety in Poland.

  16. Alternative transport network designs and their implications for intermodal transhipment technologies

    OpenAIRE

    Woxenius, Johan

    2007-01-01

    Six principles for operation of the rail part of intermodal rail freight transport systems are described: direct link, corridor, hub-and-spoke, connected hubs, static routes, and dynamic routes. The first part is a theoretical discussion of the characteristics of the transport network designs. The theory is then applied to intermodal freight transport by analysing how each transport network design affects the need for terminal performance. The discussion includes a classification of existing ...

  17. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially- designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracking system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels'' (emphasis added). The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site efficiently and in the safest manner possible. Not only did the DOE feel that is was necessary to convince itself that the system was safe, but also representatives of the 20 states through which it would travel

  18. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially-designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracing system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels.'' The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site in the safest manner possible. Not only did the DOE feel that it was necessary to convince itself that the system was safe, but also representatives of the 23 states through which it traveled

  19. Lightweight Monorail Transport System

    Science.gov (United States)

    Weir, Harold F.; Wood, Kenneth E.; Strecker, Myron T.

    1987-01-01

    Report proposes monorail transportation system for zero-gravity environment. System carries materials and parts between locations on space station. Includes tubular rails instead of open channels usually found in overhead conveyor systems. Since resistance to torque of closed tube greater than that of open channel for same amount of material, tubular monorail designed for higher loads or for greater spacing between support points.

  20. Estimated routine radiation doses to transportation workers in alternative spent-fuel transportation systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.

    1988-01-01

    The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system

  1. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors

    Science.gov (United States)

    Mihuţ, N. M.

    2015-11-01

    Excavation tailings (scraping) and extracting the useful (lignite) in surface mine pits in Mining Basin Oltenia is achieved with technological lines of excavation - transport - dump of high productivity. A correlation of working capacity of the main components of technological lines (motor rotor, high capacity transport, car dumps) is necessary for economic reasons on electricity consumption. To achieve experience in the process was chosen excavator SRS 1400 from South Jilt career in the CET Turceni. The question of coal excavated volume has a great importance in the mine pits. At the excavation is desired a density estimate for each machine production tracking, cost estimation and tracking product unit profitability of each band on various sections zones. Permanent display size excavated volume snapshots in the excavator's cabin permits to track tape loading, eliminating unproductive times and information management to determine profitability. Another important requirement is closing the loop of the machine drive system of an excavator for a uniform deposition of carbon on the strip, thus achieving automatic control of the loading belt. Such equipment is important for the system dispatching in surface mine pits. Through a system of three ultrasound transducers to determine the smart instant of coal excavated section which, coupled with the tape speed, integrated over time will determine the amount of excavated coal. The basis of the system developed is a device for determining the volume and quantity of coal excavated acting on the march and optimize the system speed excavator working order. The device is designed primarily following the careers of lignite production: rotor excavators, rubber conveyor belts and dump facilities. Newly developed system aims to achieve the following determines: the optimum energy excavation depending on the nature of excavated material - lignite, shale, clay, etc., economic times to use the excavator bucket teeth rotor, energy

  2. Inactive trials of transport systems: phase II

    International Nuclear Information System (INIS)

    Haberlin, M.M.; Hardy, A.R.; Kennedy, S.T.

    1986-11-01

    Progress made during 1984-85 is reviewed in four sections: the design and installation of a stainless steel working floor in the mock-up of a crate handling and size reduction facility; the detailed evaluation of a single air pad of the type used on commercial air-transporter; an experimental programme designed to examine the problems associated with the operation of a commercial air-transporter; the design, manufacture and commissioning trials of two powered conveyor units which when combined complete a remotely operated transfer system for transporting crated waste into and within the mock-up facility. (author)

  3. Sustainable Transport in Romania vs. European Union. Analysis of Road Transport System from the Sustainable Transport Perspective

    Directory of Open Access Journals (Sweden)

    Clitan Andrei - Florin

    2014-12-01

    Full Text Available Sustainability is a term used more often lately, based on three factors: social, economic, and environmental. Sustainable transport systems increase social cohesion, reduce environmental problems and help create a more efficient economy. Sustainable transport consists in a complex system that is designed to ensure mobility needs of present generations without damaging the environment and health factors. By improving energy and material consumption, it must be capable to satisfy in optimum conditions the need for mobility for future generations. The current transportation system has not a character of sustainability.

  4. The SIMPSONS project: An integrated Mars transportation system

    Science.gov (United States)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  5. The Swedish sea transportation system for safety reasons

    International Nuclear Information System (INIS)

    Dybeck, P.

    1993-01-01

    Sweden began to design and build a sea transportation system. The ship M/S SIGYN is specially designed for transports of radioactive waste. It is a combined roll-on/roll-off and lift-on/lift-off vessel. It is built for world wide operation and with the highest requirements of two independent classification societies, Lloyds Register of Shipping and Bureau Veritas. The ship is also designed to conform to the Swedish/Finish ice class 1A. The transport cask for spent fuel, TN 17/2, and core component TN 17-CC are designed as type (B) casks and manufactured to comply with the IAEA Regulations for the Safe Transport of Radioactive Materials, 1973. (J.P.N.)

  6. National Ignition Facility system design requirements Laser System SDR002

    International Nuclear Information System (INIS)

    Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics

  7. The Exchange Value Embedded in a Transport System

    International Nuclear Information System (INIS)

    Xia Qinglan; Xu Shaofeng

    2010-01-01

    This paper shows that a well designed transport system has an embedded exchange value by serving as a market for potential exchange between consumers. Under suitable conditions, one can improve the welfare of consumers in the system simply by allowing some exchange of goods between consumers during transportation without incurring additional transportation cost. We propose an explicit valuation formula to measure this exchange value for a given compatible transport system. This value is always nonnegative and bounded from above. Criteria based on transport structures, preferences and prices are provided to determine the existence of a positive exchange value. Finally, we study a new optimal transport problem with an objective taking into account of both transportation cost and exchange value.

  8. Critical Design Factors for Sector Transport Maintenance in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, H.; Someya, Y.; Tobita, K.; Asakura, N.; Hoshino, K.; Nakamura, M., E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho (Japan)

    2012-09-15

    Full text: Maintenance is a critical issue for fusion DEMO reactor because the design conditions and requirements of DEMO maintenance scheme are different from that of ITER remote handling. The sector transport maintenance scheme has advantages to maintain blankets and divertors without the use of sophisticated remote handling devices including sensitive devices to radiation in the reactor. SlimCS designed in JAEA adopts the sector transport maintenance scheme in which every sector is pulled out horizontally through a port between TF coils. A critical design issue for the horizontal sector transport maintenance scheme is how to support an enormous turnover force of the toroidal field (TF) coils. We propose following two options; first option is the horizontal transport maintenance scheme in which every sector is pulled out through four horizontal ports connected with the corridor. Second option is the vertical sector transport maintenance scheme with small vertical maintenance ports (total: 6 ports). The new horizontal sector transport limited in the number of maintenance ports is a more realistic maintenance scheme, and the key engineering issue is the transferring mechanism of sector in the vacuum vessel. In the maintenance scenario, the key design factors are the cool down time in reactor and the cooling method in maintenance scheme for keeping components under operation temperature. By one-dimensional heat conduction analysis, the sector should be transported to hot cell within 40 hours in the case the cool down time is one month. In the horizontal sector transport maintenance, the maintenance time including removal of cooling piping, drain of cooling water and sector transport to hot cell is about 32 hours. Furthermore, the tritium release in the sector transport can be suppressed because the components temperature drops by forced-air cooling system. This paper mainly focuses on a sector transport maintenance scheme from the aspects of high plant availability

  9. Design of Intelligent Transportation Inquiry System Based on MapX in the Environment of VC++

    Directory of Open Access Journals (Sweden)

    Cheng Juan

    2016-01-01

    Full Text Available This paper applied MapInfo, the professional soft ware tool of GIS, integrated secondary exploiture combining with elctronic maps, and made use of the exploiture flat roof Visual C++ as the tool of visualize development, transferred MapX, a control of MapInfo, integrated them. The paper designed the Inquiry System in Intelligent Transportation, which including query system of road information, query system of bus information, query system of district information. It can be carried out space analysis and query function based on GIS. Adopted SQL Server manage attribute data, by data binding, attribute data in SQL Server and victor picture data were combined.

  10. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  11. Urban Transportation Systems in Bogotá and Copenhagen

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama; Jørgensen, Ulrik

    2008-01-01

    In this paper we explore the socio-technical dynamics of developing new urban transport systems. Based on the analysis of empirical material from the study of the Transmilenio in Bogotá and the Metro in Copenhagen, we propose that the design, construction and operation of urban transport systems...

  12. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    Science.gov (United States)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  13. Transportation Beyond 2000: Technologies Needed for Engineering Design

    Science.gov (United States)

    Huebner, Lawrence D. (Compiler); Asbury, Scott C. (Compiler); Lamar, John E. (Compiler); McKinley, Robert E., Jr. (Compiler); Scott, Robert C. (Compiler); Small, William J. (Compiler); Torres, Abel O. (Compiler)

    1996-01-01

    The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure.

  14. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  15. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  16. Transportation system requirements document. Revision 1 DCN01. Supplement

    International Nuclear Information System (INIS)

    1995-05-01

    The original Transportation System Requirements Document described the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of that document was to define the system-level requirements. These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presented an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. This revision of the document contains only the pages that have been modified

  17. Transoptr-a second order beam transport design code with automatic internal optimization and general constraints

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1980-07-01

    A second order beam transport design code with parametric optimization is described. The code analyzes the transport of charged particle beams through a user defined magnet system. The magnet system parameters are varied (within user defined limits) until the properties of the transported beam and/or the system transport matrix match those properties requested by the user. The code uses matrix formalism to represent the transport elements and optimization is achieved using the variable metric method. Any constraints that can be expressed algebraically may be included by the user as part of his design. Instruction in the use of the program is given. (auth)

  18. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1991-01-01

    The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  19. Assessing the 'system' in safe systems-based road designs: using cognitive work analysis to evaluate intersection designs.

    Science.gov (United States)

    Cornelissen, M; Salmon, P M; Stanton, N A; McClure, R

    2015-01-01

    While a safe systems approach has long been acknowledged as the underlying philosophy of contemporary road safety strategies, systemic applications are sparse. This article argues that systems-based methods from the discipline of Ergonomics have a key role to play in road transport design and evaluation. To demonstrate, the Cognitive Work Analysis framework was used to evaluate two road designs - a traditional Melbourne intersection and a cut-through design for future intersections based on road safety safe systems principles. The results demonstrate that, although the cut-through intersection appears different in layout from the traditional intersection, system constraints are not markedly different. Furthermore, the analyses demonstrated that redistribution of constraints in the cut-through intersection resulted in emergent behaviour, which was not anticipated and could prove problematic. Further, based on the lack of understanding of emergent behaviour, similar design induced problems are apparent across both intersections. Specifically, incompatibilities between infrastructure, vehicles and different road users were not dealt with by the proposed design changes. The importance of applying systems methods in the design and evaluation of road transport systems is discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Systemic Analysis Approaches for Air Transportation

    Science.gov (United States)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  1. LCLS-II CRYOMODULE TRANSPORT SYSTEM TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Edward F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); McGee, Michael W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2018-04-01

    The Cryomodules (CM) for the Linear Coherent Light Source II (LCLS-II) will be shipped to SLAC (Menlo Park, California) from JLab (Newport News, Virginia) and FNAL (Batavia, Illinois). A transportation system has been designed and built to safely transport the CMs over the road. It uses an array of helical isolator springs to attenuate shocks on the CM to below 1.5g in all directions. The system rides on trailers equipped with Air-Ride suspension, which attenuates vibration loads. The prototype LCLS-II CM (pCM) was driven 750 miles to test the transport system; shock loggers recorded the shock attenuation on the pCM and vacuum gauges were used to detect any compromises in beamline vacuum. Alignment measurements were taken before and after the trip to check whether cavity positions had shifted beyond the ± 0.2mm spec. Passband frequencies and cavity gradients were measured at 2K at the Cryomodule Test Facility (CMTF) at JLab to identify any degradation of CM performance after transportation. The transport system was found to have safely carried the CM and is cleared to begin shipments from JLab and FNAL to SLAC.

  2. A MULTI-AGENT SYSTEM FOR FOREST TRANSPORT ACTIVITY PLANNING

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Araújo Júnior

    2017-09-01

    Full Text Available This study aims to propose and implement a conceptual model of an intelligent system in a georeferenced environment to determine the design of forest transport fleets. For this, we used a multi-agent systems based tool, which is the subject of studies of distributed artificial intelligence. The proposed model considers the use of plantation mapping (stands and forest roads, as well as information about the different vehicle transport capacities. The system was designed to adapt itself to changes that occur during the forest transport operation process, such as the modification of demanded volume or the inclusion of route restrictions used by the vehicles. For its development, we used the Java programming language associated with the LPSolve library for the optimization calculation, the JADE platform to develop agents, and the ArcGis Runtime to determine the optimal transport routes. Five agents were modelled: the transporter, controller, router, loader and unloader agents. The model is able to determine the amount of trucks among the different vehicles available that meet the demand and availability of routes, with a focus on minimizing the total costs of timber transport. The system can also rearrange itself after the transportation routes change during the process.

  3. Research on the Special Railway Intelligence Transportation Hierarchy and System Integration Methodology

    Directory of Open Access Journals (Sweden)

    Meng-Jie WANG

    2013-05-01

    Full Text Available Following the rapid development of information technology in the field of railway transportation, the problems of establishing a digital, integrated and intelligent special railway system need to be solved immediately. This paper designs and implements the intelligent transportation information system based on the unique pattern of transportation organization, the characteristics of transportation operations and the workflow of special railway. Through the detailed analysis of system architecture and framework design, the main subsystems and the internal comprehensive integrated principle, business system from a system integration perspective of the special railway is optimized, which can be able to realize the integration of all kinds of information resources. The implementation of integration and the special railway intelligent system is a great change in terms of maximizing transportation capacity, improving efficiency and guaranteeing the safety of special railway transportation.

  4. Design evaluaion: pneumatic transport and classification

    International Nuclear Information System (INIS)

    McNair, J.M.

    1979-10-01

    This report describes the evaluation of selected design features of the cold engineering scale pneumatic transport and classification subsystems used in the development of the head-end equipment for HTGR fuel reprocessing. The report identifies areas that require further design effort and evaluation of alternatives prior to the design of the HTGR reference recycle facility (HRRF). Seven areas in the transport subsystem and three in the classification subsystem were selected for evaluation. Seventeen specific recommendations are presented for further design effort

  5. Design approaches and parameters for magnetically levitated transport systems

    International Nuclear Information System (INIS)

    Danby, G.T.; Powell, J.R.

    1988-01-01

    Mechanically levitated transport system approaches are assessed with regard to thrust power needs, track cost, suspension stability, and safety. The null flux suspension appears as the favored approach, having the least thrust power requirements, highest stability, and lowest amount of track material. Various null flux configurations are described, together with operating parameters. The Linear Synchronous Motor (LSM) propulsion system is also described for propelling the suspended vehicles. Cryogenics and superconductivity aspects are discussed and the effect of high T/sub c/ superconductors evaluated

  6. An integrated decision-making framework for transportation architectures: Application to aviation systems design

    Science.gov (United States)

    Lewe, Jung-Ho

    The National Transportation System (NTS) is undoubtedly a complex system-of-systems---a collection of diverse 'things' that evolve over time, organized at multiple levels, to achieve a range of possibly conflicting objectives, and never quite behaving as planned. The purpose of this research is to develop a virtual transportation architecture for the ultimate goal of formulating an integrated decision-making framework. The foundational endeavor begins with creating an abstraction of the NTS with the belief that a holistic frame of reference is required to properly study such a multi-disciplinary, trans-domain system. The culmination of the effort produces the Transportation Architecture Field (TAF) as a mental model of the NTS, in which the relationships between four basic entity groups are identified and articulated. This entity-centric abstraction framework underpins the construction of a virtual NTS couched in the form of an agent-based model. The transportation consumers and the service providers are identified as adaptive agents that apply a set of preprogrammed behavioral rules to achieve their respective goals. The transportation infrastructure and multitude of exogenous entities (disruptors and drivers) in the whole system can also be represented without resorting to an extremely complicated structure. The outcome is a flexible, scalable, computational model that allows for examination of numerous scenarios which involve the cascade of interrelated effects of aviation technology, infrastructure, and socioeconomic changes throughout the entire system.

  7. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  8. Computational transport phenomena of fluid-particle systems

    CERN Document Server

    Arastoopour, Hamid; Abbasi, Emad

    2017-01-01

    This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

  9. The WIPP transportation system -- ''Safer than any other''

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially designed trailer, a lightweight tractor, the DOE TRANSCOM satellite-based vehicle tracking system, and uniquely qualified and highly trained drivers. The DOE has demonstrated that this system is ready to transport the TRU waste to the WIPP site efficiently and safely. Since the system was put in place in November 1988, it has been repeatedly upgraded and enhanced to incorporate additional safety measures. In June of 1989, the National Academy of Sciences (NAS) reviewed the transportation system and concluded that ''the system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels'' (emphasis added). The NAS conclusion was made before the DOE implemented the Enhanced Driver Training Course for carrier drivers. The challenge facing the DOE was to examine the transportation system objectively and determine what additional improvements could be made to further enhance safety

  10. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  11. A validation report for the KALIMER core design computing system by the Monte Carlo transport theory code

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung

    2004-05-01

    In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy

  12. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  13. Planning a transportation system for US Defense Transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-05-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans. 9 figures, 1 table

  14. Planning a transportation system for US defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-01-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans

  15. Environmental effects of transporting radioactive materials in nuclear waste management systems

    International Nuclear Information System (INIS)

    Pope, R.B.; Yoshimura, H.R.; McClure, J.D.; Huerta, M.

    1978-01-01

    This paper discusses the environmental effects of radioactive materials transportation. The systems used or being designed for use in spent fuel and waste transportation are described. Accident rate and severity data are used to quantify risk. A test program in which subscale and full scale transportation systems were exposed to accident environments far in excess of those used in package design is used to relate package damage to accident severity levels. Analytical results and subscale and full scale test results are correlated to demonstrate that computational methods or scale modeling, or both, can be used to predict accident behavior of transportation systems. This work is used to show that the risks to the public from radioactive material transportation are low relative to other risks commonly accepted by the public

  16. Packaging and transportation system for K-Basin spent fuel-component testing

    International Nuclear Information System (INIS)

    Kee, A.T.

    1998-01-01

    This paper describes the cask/transportation system that was designed, procured and delivered to the Hanford K-Basin site at Richland, Washington. The performance requirements and design of the various components -- cask, trailer with cask tie-down system, and the cask operation equipment for the load-out pit -- will be discussed. The presentation will include the details of the factory acceptance testing and its results. The performance requirements for the cask/transportation system was dictated by the constraints imposed by the large number of high priority shipments and the spent fuel pool environment, and the complex interface requirements with other equipment and facility designs. The results of the testing form the basis for the conclusion that the system satisfies the site performance requirements. The cask/transportation system design was driven by the existing facility constraints and the limitations imposed by the large number of shipments over a short two-year period. This system may be useful information for other DOE facilities that may be or will be in a similar situation

  17. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  18. Battery Design for Successful Electrification in Public Transport

    Directory of Open Access Journals (Sweden)

    Susanne Rothgang

    2015-06-01

    Full Text Available Public transport is an especially promising sector for full electric vehicles due to the high amount of cycles and predictable workload. This leads to a high amount of different vehicle concepts ranging from large batteries, designed for a full day of operation without charging, to fast-charging systems with charging power up to a few hundred kilowatts. Hence, many different issues have to be addressed in the whole design and production process regarding high-voltage (HV batteries for buses. In this work, the design process for electric public buses is analyzed in detail, based on two systems developed by the research projects Smart Wheels/econnect and SEB eÖPNV. The complete development process starting, with the demand analysis and the operating scenario, including the charging routine, is discussed. This paper also features details on cell selection and cost estimations as well as technical details on the system layout, such as the management system and passive components as well as thermal management.

  19. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  20. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  1. Salt Repository Project transportation system interface requirements: Transportation system/repository receiving facility interface requirements

    International Nuclear Information System (INIS)

    Smith, L.A.; Insalaco, J.W.; Trainer, T.A.

    1988-01-01

    This report is a preliminary review of the interface between the transportation system and the repository receiving facility for a nuclear waste mined geologic disposal system in salt. Criteria for generic cask and facility designs are developed. These criteria are derived by examining the interfaces that occur as a result of the operations needed to receive nuclear waste at a repository. These criteria provide the basis for design of a safe, operable, practical nuclear waste receiving facility. The processing functions required to move the shipping unit from the gate into the unloading area and back to the gate for dispatch are described. Criteria for a generic receiving facility are discussed but no specific facility design is presented or evaluated. The criteria are stated in general terms to allow application to a wide variety of cask and facility designs. 9 refs., 6 figs., 4 tabs

  2. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  3. ANALYISIS OF TRANSPORTATION SYSTEMS AND TRANSPORTATION POLICIES IN TURKEY

    Directory of Open Access Journals (Sweden)

    Ali Payıdar AKGÜNGÖR

    2004-03-01

    Full Text Available Transportation systems have to be considered and analysed as a whole while transportation demand, becoming as a natural outcome of socioeconomic and socio-cultural structure, is being evaluated. It is desired that transportation system, which will be selected for both passenger and freight transport, should be rapid, economic, safe, causing least harm to environment and appropriate for the conditions of a country. However, it is difficult for a transportation system to have all these properties. Every transportation system has advantages and disadvantages over each other. Therefore, comprehensive plans for future periods have to be prepared and how the sources of the country should be reasonably distributed among transportation systems must be investigated. Also, transportation plans have to be prepared to get coordinated operations among transportation systems while great investments are instituted in the entire country. There is no doubt that it is possible with combined transportation instead of concentration on one transportation system. Transportation policies in Turkey should be questioned since the level of highway transportation usage reaches to 95 % and level of sea transportation usage drops to less than 1 % in spite of being surrounded with sea in three sides of our land. In this paper, transportation systems and transportation policies in Turkey are evaluated in general and problems are analysed. Proposals are presented for the solutions of these problems.

  4. Complex Systems Design & Management : Proceedings of the Third International Conference on Complex Systems Design & Management

    CERN Document Server

    Caseau, Yves; Krob, Daniel; Rauzy, Antoine

    2013-01-01

    This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr)  These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net).

  5. Design aspects of plutonium air-transportable packages

    International Nuclear Information System (INIS)

    Allen, G.C.; Moya, J.L.; Pierce, J.D.; Attaway, S.W.

    1989-01-01

    Recent worldwide interest in transporting plutonium powders by air has created a need for expanding the packaging technology base as well as improving their understanding of how plutonium air transport (PAT) packagings perform during severe accident tests. Historically it has not been possible to establish design rules for individual package components because of the complex way parts interacted in forming a successful whole unit. Also, computer analyses were only considered valid for very limited portions of the design effort because of large deformations, localized tearing occurring in the package during accident testing, and extensive use of orthotropic materials. Consequently, iterative design and experimentation has historically been used to develop plutonium air-transportable packages. Full-scale prototypes have been tested since scaling of packages utilizing wood as an energy absorber and thermal insulator has not proven to be very successful. This is because the wood grain and dynamic performance of the wood during crush do not always scale. The high cost of full-scale testing of large packages has certainly hindered obtaining additional data and development new designs. The testing criteria for PAT packages, as described in the US Nuclear Regulatory Commission's Qualification Criteria to Certify a Package for Air Transport of Plutonium, NUREG-0360, 1978, are summarized. Computer modeling techniques have greatly improved over the last ten years, and there are some areas of opportunity for future applications to plutonium air-transportable package design problems. Having developed a better understanding of the performance of current packages, they have the opportunity to make major improvements in new packaging concepts. Each of these areas is explored in further depth to establish their impact on design practices for air-transportable packages

  6. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  7. Storage, transportation and disposal system for used nuclear fuel assemblies

    Science.gov (United States)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  8. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Kang, Hee Dong; Lee, Heung Young; Seo, Ki Suk; Koo, Jung Hoe; Jung, Sung Hwan; Yoon, Jung Hyun; Lee, Ju Chan; Bang, Kyung Sik; Baek, Chang Yeol

    1992-03-01

    The major goal of this project is to establish the safe transport system and obtain the necessary data for cask development by during research work for the design and safety test of shipping cask. The analysis technique using computer code for design has been studied in the field of structure, thermal and shielding analysis in this study. And also the test and measurement technology was developed for the measuring system of drop and fire test. It is expected that research activity ensured in this job will enable us to ultilize the basic data for the cask development. (Author)

  9. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  10. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  11. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  12. Public transportation systems: Comparative analysis of quality of service

    Energy Technology Data Exchange (ETDEWEB)

    Negri, L.; Florio, L. (Rome Univ. La Sapienza (Italy). Facolta' di Ingegneria, Dipt. di Idraulica, Trasporti e Strade)

    The evaluation, choice and design of public transportation systems for urban areas requires, in addition to consolidated use parameters, other dimensions essential to supply-demand qualiflcative realignment, e.g.: 'door-to-door time' which allows system differentiation in terms of commercial velocity, frequency and length of route; technical productivity expressed as 'transport power' and 'specific transport power'; and 'system/service quality'. By the means of surveys, these factors can be incorporated into suitable mathematical models representing, in a complete and reliable way, all the functions which a given system actually delivers and those functions which it is expected to deliver by its users. This paper illustrates the application of these concepts in a comparative analysis of different public transportation options - light rail rapid transit, tram and bus networks.

  13. THE PROBLEM OF INTERCEPTING PARKING SYSTEMS DESIGN IN CITIES

    Directory of Open Access Journals (Sweden)

    E. Hetsovych

    2014-10-01

    Full Text Available Consistent determination of the main problems concerning the system of intercepting parking – lot design with the purpose of transport systems improvement downtown is grounded. The given approach allows to fully satisfy the demand for parking-lots of urban transport systems in combination with the system of downtown parkings and the capacity of the highway network.

  14. Intelligent Transport Systems in the Management of Road Transportation

    Science.gov (United States)

    Kalupová, Blanka; Hlavoň, Ivan

    2016-11-01

    Extension of European Union causes increase of free transfer of people and goods. At the same time they raised the problems associated with the transport, e.g. congestion and related accidents on roads, air traffic delays and more. To increase the efficiency and safety of transport, the European Commission supports the introduction of intelligent transport systems and services in all transport sectors. Implementation of intelligent transport systems and services in the road transport reduces accident frequency, increases the capacity of existing infrastructure and reduces congestions. Use of toll systems provides resources needed for the construction and operation of a new road network, improves public transport, cycling transport and walking transport, and also their multimodal integration with individual car transport.

  15. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  16. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    Science.gov (United States)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  17. Transportation ALARA analysis for a nuclear waste management system

    International Nuclear Information System (INIS)

    McNair, G. W.; Schneider, K.; Smith, R.I.; Ross, W.; Faletti, D.

    1988-01-01

    In planning for implementation of a safe and cost-effective transportation system, the Department of Energy (DOE) commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the radiation doses, both public and occupational, that would result from operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in relatively high doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. This study contains an analysis of routine operations and estimates of the public and worker radiation doses that would occur in a postulated generic reference spent fuel transportation system using both truck and rail modes. Total risks are not estimated (i.e., consideration of nonradiological or accident risks that will be the subject of future studies in the transportation systems study plan 9TSSP) are not included). The system encompasses spent fuel loading at the reactor, transportation of the fuel to and from a receiving and handling facility and unloading of the fuel at a repository. The analysis provides cost/dose trade-offs of the postulated reference system as well as selected potential alternatives to the transportation system

  18. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    requirements with the aim of maximising accessibility in products and services. A review of ID literature has mainly developed in the arena of product design and design for assistive technology. Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design...... for accessibility or ID in this area. How is accessibility and the needs of users accounted for in rail transport design? This paper analyses interviews with rolling stock producers, operators and design consultancies. These conducted to determine if ID design methods are used explicitly and the extent to which...

  19. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  20. An integrated risk communication system for the transport of hazardous materials

    International Nuclear Information System (INIS)

    Minor, J.W. IV; Abkowitz, M.D.

    2004-01-01

    This paper describes the development and implementation of the prototype of an an internet-based, risk communication system prototype for the transport of hazardous materials. The system was designed with the objectives of: (1) incorporating functionality and features that are useful for meeting a variety of risk communication needs, and (2) demonstrating a high degree of interaction among system components, enabling customisation to meet the specific transport risk communication needs requirements of the host organisation. To demonstrate 'proof of concept', the system is applied to two scenarios: 1) building knowledge and awareness, focusing on how information can be entered, organised and disseminated to the public and other transport stakeholders, and 2) emergency management, utilising the system for securely managing information in responding to a transport incident involving hazardous materials transport incident. The effectiveness of the system in these applications is subsequently discussed. (author)

  1. Blood Sample Transportation by Pneumatic Transportation Systems

    DEFF Research Database (Denmark)

    Nybo, Mads; Lund, Merete E; Titlestad, Kjell

    2018-01-01

    BACKGROUND: Pneumatic transportation systems (PTSs) are increasingly used for transportation of blood samples to the core laboratory. Many studies have investigated the impact of these systems on different types of analyses, but to elucidate whether PTSs in general are safe for transportation...... analysis, and the hemolysis index). CONCLUSIONS: Owing to their high degree of heterogeneity, the retrieved studies were unable to supply evidence for the safety of using PTSs for blood sample transportation. In consequence, laboratories need to measure and document the actual acceleration forces...

  2. Workshop on technology issues of superconducting Maglev transportation systems

    International Nuclear Information System (INIS)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-01-01

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration

  3. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  4. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  5. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  6. ANALYISIS OF TRANSPORTATION SYSTEMS AND TRANSPORTATION POLICIES IN TURKEY

    OpenAIRE

    Ali Payıdar AKGÜNGÖR; Abdulmuttalip DEMİREL

    2004-01-01

    Transportation systems have to be considered and analysed as a whole while transportation demand, becoming as a natural outcome of socioeconomic and socio-cultural structure, is being evaluated. It is desired that transportation system, which will be selected for both passenger and freight transport, should be rapid, economic, safe, causing least harm to environment and appropriate for the conditions of a country. However, it is difficult for a transportation system to have all these properti...

  7. Designing E-learning Model to Learn About Transportation Management System to Support Supply Chain Management with Simulation Problems

    OpenAIRE

    Wiyono, Didiek Sri; Pribadi, Sidigdoyo; Permana, Ryan

    2011-01-01

    Focus of this research is designing Transportation Management System (TMS) as e-learning media for logistic education. E-learning is the use of Internet technologies to enhance knowledge and performance. E-learning technologies offer learners control over content, learning sequence, pace of learning, time, and often media, allowing them to tailor their experiences to meet their personal learning objectives. E-learning appears to be at least as effective as classical lectures. Students do not ...

  8. An approach for the design of closure bolts of spent fuel elements transportation packages

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A.J.; Fainer, Gerson

    2009-01-01

    The spent fuel elements transportation packages must be designed for severe conditions including significant fire and impact loads corresponding to hypothetical accident conditions. In general, these packages have large flat lids connected to cylindrical bodies by closure bolts that can be the weak link in the containment system. The bolted closure design depends on the geometrical characteristics of the flat lid and the cylindrical body, including their flanges, on the type of the gaskets and their dimensions, and on the number, strength, and tightness of the bolts. There are well established procedures for the closure bolts design used in pressure vessels and piping. They can not be used directly in the bolts design applied to transportation packages. Prior to the use of these procedures, it is necessary consider the differences in the main loads (pressure for the pressure vessels and piping and impact loads for the transportation packages) and in the geometry (large flat lids are not used in pressure vessels and piping). So, this paper presents an approach for the design of the closure bolts of spent fuel elements transportation packages considering the impact loads and the typical geometrical configuration of the transportation packages. (author)

  9. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  10. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    Energy Technology Data Exchange (ETDEWEB)

    Portsmouth, J.H. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  11. Operator Station Design System - A computer aided design approach to work station layout

    Science.gov (United States)

    Lewis, J. L.

    1979-01-01

    The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.

  12. Design and characterization of the DC acceleration and transport system required for the FOM 1 MW free electron maser experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab., CA (United States); Urbanus, W.H.; Geer, C. van der [FOM-Institut voor Plasma Fysica, Nieuwegein (Netherlands)] [and others

    1995-12-31

    A Free Electron Maser (FEM) has been constructed and is soon to be tested at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz. The design uses a DC beam system in a depressed collector configuration in order to make the overall wall plug efficiency 50%. The high voltage ({approximately} 2 MeV) power supply provides only the body interception current ({approximately} 30 mA) while the 12 amp beam current is supplied by the 100-200 keV collector supplies. Some of the design features to ensure low interception current, which is critical to long pulse (CW) operation are: (1) DC beam in-line transport and acceleration system, (2) emittance conserving solenoid focusing system, (3) halo suppression techniques at cathode edge, and (4) very low beam fill factor (<20%). A relativistic version of the Herman Optical theory developed for microwave tubes is used to determine current distribution functions everywhere along the beam from the electron gun, through the DC accelerator and transport system to the wiggler. This theory takes into account thermals far out on the gaussian tail which translates into beam current far outside the ideal beam edge. This theory is applied to the FOM beam line design to predict a series of beam envelope contours containing various percentages of total beam current up to 99.9%. Predictions of body interception current due to finite emittance (effective temperature) are presented and compared with measured experimental results.

  13. Management System for Regulating Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Capadona, N.M.; Barenghi, L.G.

    2011-01-01

    The objective of this paper is to describe the main characteristics of the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN) management system applied to the transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TMR from now on. ARN's management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TMR process was split into five sub processes in order to facilitate the implementation of the system. Such sub processes were defined taking into account of the main functions developed by ARN in the branch of safe transport of radioactive materials. For each of this processes were specified their objectives, inputs, activities and outputs, clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to achieve continuous improving. Simultaneously, some indexes were defined to monitor and measures sub processes as a way to show objective evidence of conformity with objectives. Finally, as conclusions of this paper, they will be showed the main obstacles and troubleshooting found in the design and implementation of management system as well as their solutions and state of advance. (authors)

  14. Decentralized control of multi-agent aerial transportation system

    KAUST Repository

    Toumi, Noureddine

    2017-04-01

    Autonomous aerial transportation has multiple potential applications including emergency cases and rescue missions where ground intervention may be difficult. In this context, the following work will address the control of multi-agent Vertical Take-off and Landing aircraft (VTOL) transportation system. We develop a decentralized method. The advantage of such a solution is that it can provide better maneuverability and lifting capabilities compared to existing systems. First, we consider a cooperative group of VTOLs transporting one payload. The main idea is that each agent perceive the interaction with other agents as a disturbance while assuming a negotiated motion model and imposing certain magnitude bounds on each agent. The theoretical model will be then validated using a numerical simulation illustrating the interesting features of the presented control method. Results show that under specified disturbances, the algorithm is able to guarantee the tracking with a minimal error. We describe a toolbox that has been developed for this purpose. Then, a system of multiple VTOLs lifting payloads will be studied. The algorithm assures that the VTOLs are coordinated with minimal communication. Additionally, a novel gripper design for ferrous objects is presented that enables the transportation of ferrous objects without a cable. Finally, we discuss potential connections to human in the loop transportation systems.

  15. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1993-01-01

    Since the design of transportation packages involves a complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design constraints, numerical optimization provides the potential for more efficient container designs. In numerical optimization, the requirements of the design problem are mathematically formulated through the use of an objective function and constraints. The objective function(s), e.g., package weight, cost, volume, or combination thereof, is the function to be minimized or maximized by altering a set of design variables that define the package's shape and dimensions. Constraints are limitations on the performance of the system, such as resisting structural and thermal accident environments. Two constraints defined for an example wire mesh composite Type B package are: 1) deformation in the containment vessel seal region remains small enough throughout the 10 CFR-71 accident conditions to meet containment criteria, and 2) the elastomeric seal region remains below its operational temperature limit to guarantee seal integrity in the fire environment. The first constraint of a minimum energy absorbing layer thickness is evaluated with finite element analyses of the proposed dynamic crush accident criteria. The second constraint is evaluated with a 1-D transient thermal finite difference code parametrized for variable composite layer thicknesses, and is integrated with the optimization process. (J.P.N.)

  16. Intelligent Freigth Transport Systems

    DEFF Research Database (Denmark)

    Overø, Helene Martine; Larsen, Allan; Røpke, Stefan

    2009-01-01

    is to enhance the efficiency and lower the environmental impact in freight transport. In this paper, a pilot project involving real-time waste collection at a Danish waste collection company is described, and a solution approach is proposed. The problem corresponds to the dynamic version of the waste collection......The Danish innovation project entitled “Intelligent Freight Transport Systems” aims at developing prototype systems integrating public intelligent transport systems (ITS) with the technology in vehicles and equipment as well as the IT-systems at various transport companies. The objective...

  17. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  18. Geographic Information Systems-Transportation ISTEA management systems server-net prototype pooled fund study: Phase B summary

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, J. Jr.; Dean, C.D.; Armstrong, H.M. [and others

    1997-06-01

    The Geographic Information System-Transportation (GIS-T) ISTEA Management Systems Server Net Prototype Pooled Fund Study represents the first national cooperative effort in the transportation industry to address the management and monitoring systems as well as the statewide and metropolitan transportation planning requirements of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The Study was initiated in November 1993 through the Alliance for Transportation Research and under the leadership of the New Mexico State Highway and Transportation Department. Sandia National Laboratories, an Alliance partner, and Geographic Paradigm Computing. Inc. provided technical leadership for the project. In 1992, the Alliance for Transportation Research, the New Mexico State Highway and Transportation Department, Sandia National Laboratories, and Geographic Paradigm Computing, Inc., proposed a comprehensive research agenda for GIS-T. That program outlined a national effort to synthesize new transportation policy initiatives (e.g., management systems and Intelligent Transportation Systems) with the GIS-T server net ideas contained in the NCHRP project {open_quotes}Adaptation of GIS to Transportation{close_quotes}. After much consultation with state, federal, and private interests, a project proposal based on this agenda was prepared and resulted in this Study. The general objective of the Study was to develop GIS-T server net prototypes supporting the ISTEA requirements for transportation planning and management and monitoring systems. This objective can be further qualified to: (1) Create integrated information system architectures and design requirements encompassing transportation planning activities and data. (2) Encourage the development of functional GIS-T server net prototypes. (3) Demonstrate multiple information systems implemented in a server net environment.

  19. Design of the BEPCII electron gun system

    International Nuclear Information System (INIS)

    Liu Bo; Gu Mengping; Chi Yunlong

    2006-01-01

    BEPCII upgrading project needs a new high current electron gun. The design stage such as physical design, mechanical design and control system design of this new electron gun is described. The emission current is designed to be higher than 10 A for the pulse width of 1 ns with repetition rate of 50 Hz. The gun will operate with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport. EGUN and DGUN codes are used to simulate the gun geometry, and the results show that the perveance is about 0.22 μA·V -3/2 , and the emittance at gun exit is about 16 π·mm·mrad. PARMELA code shows that the electron beam can be easily transported to the end of the first accelerating tube with a capture efficiency of 67% and root mean square emittance of 25 mm·mrad. New scheme of the gun control system based on EPICS is also presented. Two-bunch operation mode and 2.5 μs long pulse operation mode are available in the control system. (authors)

  20. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  1. Using simulation to design an automated underground system for transporting freight around Schiphol Airport

    NARCIS (Netherlands)

    van der Heijden, Matthijs C.; van Harten, Aart; Ebben, Mark; Saanen, Y.A.; Valentin, E.C.; Verbraeck, A.

    2002-01-01

    To avoid road congestion, we are developing a highly automated underground transport system using automatic guided vehicles (AGVs) around Schiphol Airport. It is unique in its scale, incorporating 16 to 25 km tubes connecting five to 20 terminals, and it includes 200 to 400 AGVs to transport an

  2. New concept for a compact tape transport system

    International Nuclear Information System (INIS)

    Mlekodaj, R.L.; Zganjar, E.F.; Cole, J.D.

    1980-01-01

    A new concept in tape transport systems for the collection and counting of radioactive samples from an on-line isotope separator has been developed. This new compact design was motivated by space limitations but important additional improvements over previous designs were made in cost, simplicity and vacuum quality. The system is based on a continuous loop of 6.5 millimeter wide recording tape 116 meters long with a conducting coating on one side for beam current monitoring. One small stepping motor is required for operation

  3. VDTT removal system functional design criteria

    International Nuclear Information System (INIS)

    Legare, D.E.

    1996-01-01

    Two Velocity Density Temperature Trees (H-2-815016) are to be removed from risers 14A and 1B of tank 241-SY-101. This document provides functional design criteria for the removal system. The removal system consists of a Liquid Removal Tool, Flexible Receiver (H-2-79216), Burial Container, Transport Trailers, and associated equipment

  4. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    Science.gov (United States)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  5. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    Science.gov (United States)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  6. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    International Nuclear Information System (INIS)

    Karnowski, Thomas Paul; Cunningham, Mark F.; Goddard, James Samuel Jr.; Cheriyadat, Anil M.; Hornback, Donald Eric; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, Eric Craig; Chesser, Joel B.; Marchant, William

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  7. TRANSPORTATION SYSTEM REQUIREMENTS DOCUMENT

    International Nuclear Information System (INIS)

    2004-01-01

    This document establishes the Transportation system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are derived from the Civilian Radioactive Waste Management System Requirements Document (CRD). The Transportation System Requirements Document (TSRD) was developed in accordance with LP-3.1Q-OCRWM, Preparation, Review, and Approval of Office of National Transportation Level-2 Baseline Requirements. As illustrated in Figure 1, the TSRD forms a part of the DOE Office of Civilian Radioactive Waste Management (OCRWM) Technical Baseline

  8. BubbleZERO—Design, Construction and Operation of a Transportable Research Laboratory for Low Exergy Building System Evaluation in the Tropics

    Directory of Open Access Journals (Sweden)

    Arno Schlueter

    2013-09-01

    Full Text Available We present the design, construction and operation of a novel building systems laboratory, the BubbleZERO—Zero Emission Research Operation. Our objective was to design a space to evaluate the performance of Swiss-developed low exergy building systems in the tropical climate of Singapore using an integrated design approach. The method we employed for evaluation in the tropics was to design and build a test bed out of the shipping containers that transported the prototype low exergy systems from Switzerland to Singapore. This approach resulted in a novel laboratory environment containing radiant cooling panels and decentralized air supply, along with a self-shading, inflated “bubble” skin, experimental low emissivity (LowE glazing, LED lighting, wireless sensors and distributed control. The laboratory evaluates and demonstrates for the first time in Singapore an integrated high-temperature cooling system with separate demand-controlled ventilation adapted for the tropics. It is a functional lab testing system in real tropical conditions. As such, the results showing the ability to mitigate the risk of condensation by maintaining a dew point below 18 °C by the separate decentralized ventilation are significant and necessary for potential future implementation in buildings. In addition, the control system provides new proof of concept for distributed wireless sensors and control for reliable automation of the systems. These key results are presented along with the integrated design process and real-life tropical operation of the laboratory.

  9. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  10. Wind turbines application for energy savings in Gas transportation system

    OpenAIRE

    Mingaleeva, Renata

    2014-01-01

    The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the purpose of energy supply for the objects of the Russian Gas transportation system. The methodology of the wind energy technical potential calculation is designed and the wind energy technical potential assessment for onshore and offshore zones of Russia is presented. The analysis of Russian Gas transportation system in terms of energy consumption i...

  11. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  12. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  13. Stormwater Design Return Period Standards for U.S. Transportation Infrastructure: How Are States Approaching Resilience?

    Science.gov (United States)

    Samaras, C.; Lopez, T.

    2016-12-01

    Climate change is projected to increase the frequency and intensity of precipitation in many regions, which is relevant for stormwater engineering designs and resilience in the transportation sector. Existing and future stormwater infrastructure is generally designed for historical and stationary hydrologic conditions. For example, the design return period is based on statistical analysis of past precipitation events, often over a 50-year historical timeline. The design return period translates into how much peak precipitation volume a system is designed for in a state, and provides information about the performance of a drainage structure. The higher the design period used by an engineer for a given stormwater system, the more peak stormwater volume the system can convey. Therefore, design return periods can be associated with a design's near-term and long-term resilience. However, there is a tradeoff between the choice of design return period, the total infrastructure capital cost, and the resilience of a system to heavy precipitation events. This study analyzes current stormwater infrastructure design guidelines for state departments of transportation in the contiguous United States, in order to understand how stormwater design return periods vary across states and provide insight into the resilience of current stormwater systems design. The study found that the design return period varies considerably across the United States by roadway functional class and drainage classification, as well as within climate regions. Understanding this variation will help states identify possible vulnerabilities, highlight deficiencies across states and infrastructure types, and help in updating design return periods to increase the climate resilience of stormwater infrastructure.

  14. Designing for transportation management and operations : a primer.

    Science.gov (United States)

    2013-02-01

    This primer is focused on the collaborative and systematic consideration of management and operations during transportation : project design and development. This is termed designing for operations. Effectively designing for operations involves...

  15. Fourth International Conference on Complex Systems Design & Management

    CERN Document Server

    Boulanger, Frédéric; Krob, Daniel; Marchal, Clotilde

    2014-01-01

    This book contains all refereed papers that were accepted to the fourth edition of the « Complex Systems Design & Management » (CSD&M 2013) international conference which took place in Paris (France) from December 4-6, 2013. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2013 conference is organized under the guidance of the CESAMES non-profit organization

  16. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    The automated material transport system (AMTS) was conceived for the transport of samples within the material and process control laboratory (MPCL), located in the plutonium processing building of the special isotope separation (SIS) facility. The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing glove boxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with a minimum of waiting periods and nonproductive activities. The AMTS design requirements, design verification mockup plan, and AMTS mockup procurement specification were established prior to cancellation of the SIS project. Due to the AMTS's flexibility, the need for technology development, and applicability to other US Department of Energy facilities, mockup of the AMTS continued. This paper discusses the system design features, capabilities, and results of initial testing

  17. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  18. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  19. The design of Smart Energy Systems for 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2013-01-01

    , heating and transport sectors, and on using the flexibility in demands and various short term and longer term storage in the different sectors. Such a redesign also entails that the Smart Energy System is comprised of a number of smart grid infrastructures for different sectors in the energy system, i...

  20. DESIGN AND STUDY OF DRIVE SWIVEL JOINTS FOR HYDRAULIC MANIPULATION SYSTEMS OF MOBILE TRANSPORT-TECHNOLOGICAL MACHINES

    Directory of Open Access Journals (Sweden)

    Lagerev A.V.

    2018-03-01

    Full Text Available The paper presents the design and principle of operation of a new type of articulated connection of adjacent links of manipulation systems of mobile transport and technological machines – the drive swivel joints to provide a rotary rela-tive movement of the links. Their design allows to combine the function of ensuring the continuity of the kinematic chain and the function of providing rotary movement adjacent units and without the use of additional external devices. The design of the device is protected by a patent of the Russian Federation. Drive swivel joints are an alternative to tra-ditional designs of articulated joints with external power hydraulic drives. Developed a mathematical optimization model. The model is based on the minimization of the mass of the drive swivel joints when you complete the necessary design, installation, operating and strength constraints. Based on this mathematical model the proposed method of com-puter-aided design of the drive swivel joints, which is implemented in a computer program. A study was conducted of the influence of the main technical characteristics and magnitude of the operational load at the optimal weight and the optimal constructive dimensions of the drive swivel joints. It is shown that at equal freight-altitude characteristics of mobile crane-manipulator the drive swivel joint allows you to exclude a number of operational shortcomings of the tra-ditional swivel: 1 development over time of the additional dynamic load of metal due to the increased clearances in connection; 2 lowering the volume of the working area of the crane due to the presence of external power of hydraulic drives; 3 the appearance of cracks due to fatigue failure of the elements of the attachment point of the hydraulic drives to the links of manipulation system. It is possible that the transfer of the hydraulic system for lower operating pressure, which increases the efficiency of the crane and the efficiency of the

  1. Non-contact transportation system of small objects using Ultrasonic Waveguides

    International Nuclear Information System (INIS)

    Nakamura, K; Koyama, D

    2012-01-01

    A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.

  2. Integration of packaging design and planning into transportation

    International Nuclear Information System (INIS)

    Jarrell, R.F.

    1993-01-01

    In the past, numerous programs, projects, and design concepts for packaging and materials production have taken place without all the principal participants being involved in the up-front planning process. Many major facilities and packagings have been designed without the involvement of Transportation professionals. Unfortunately, Transportation has been overlooked and in most cases is a critical element that should have been included in the Planning process. (J.P.N.)

  3. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    Science.gov (United States)

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  4. Statement of work for the immobilized high-level waste transportation system, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Mouette, P.

    1998-06-24

    The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

  5. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  6. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  7. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  8. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  9. Visualizing Mobility of Public Transportation System.

    Science.gov (United States)

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  10. Underground transportation and handling system for Pollux-casks

    International Nuclear Information System (INIS)

    Schrimpf, C.

    1988-01-01

    The concept for the underground transportation and handling system for Pollux-casks was optimized in a first phase by dividing the process in the repository up into the several transportation and manipulation steps. For each step, the possibilities were described and evaluated by means of a list of criteria (technical, safety and economical criteria). The following concept for the transportation and handling was developed: The casks are transported to the unloading area of the surface facilities by railway or truck. After removal of the transport protection, the entry control is performed. The cask is lifted from the vehicle and placed on a railbound transportation vehicle. This transport unit is transferred to the shaft and placed there ready for shaft hoisting. With the hoisting cage protruding, the transport unit is placed on the hoisting cage by means of a pushing-on device, locked, and then conveyed underground. After arrival on the emplacement level, the transport unit is pulled-off from the hoisting cage and taken over by a mine locomotive and transferred through the transportation and access drifts as far as to the emplacement site. There the locomotive pushed the rail transport vehicle into the emplacement drift, as far as to the designated emplacement position. At the emplacement position, the cask is again lifted by means of hoisting equipment. The rail transport vehicle is pulled out of the emplacement drift and returned to the surface for reloading. After deposition of the cask on the drift floor, the emplacement equipment is pulled back in order to give the operation space free for the slinger backfill truck. Within preceding tests two different backfilling techniques were investigated under realistic conditions: pneumatic backfilling and slinger backfilling. The slinger truck was found to be the most suitable for the designated purpose

  11. Canadian hydrocarbon transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This document provided an assessment of the Canadian hydrocarbon transportation system. In addition to regulating the construction and operation of Canada's 45,000 km of pipeline that cross international and provincial borders, Canada's National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. The ability of pipelines to delivery this energy is critical to the country's economic prosperity. The pipeline system includes large-diameter, cross-country, high-pressure natural gas pipelines, low-pressure crude oil and oil products pipelines and small-diameter pipelines. In order to assess the hydrocarbon transportation system, staff at the NEB collected data from pipeline companies and a range of publicly available sources. The Board also held discussions with members of the investment community regarding capital markets and emerging issues. The assessment focused largely on evaluating whether Canadians benefit from an efficient energy infrastructure and markets. The safety and environmental integrity of the pipeline system was also evaluated. The current adequacy of pipeline capacity was assessed based on price differentials compared with firm service tolls for major transportation paths; capacity utilization on pipelines; and, the degree of apportionment on major oil pipelines. The NEB concluded that the Canadian hydrocarbon transportation system is working effectively, with an adequate capacity in place on existing natural gas pipelines, but with a tight capacity on oil pipelines. It was noted that shippers continue to indicate that they are reasonably satisfied with the services provided by pipeline companies and that the NEB-regulated pipeline companies are financially stable. 14 refs, 11 tabs., 28 figs., 4 appendices

  12. The transportation issue management system: A tool for issue resolution

    International Nuclear Information System (INIS)

    Branch, K.M.; Boryczka, M.K.

    1987-01-01

    During the last decade, issue management programs have been developed and used by a number of large corporations in the United States. These systems have generally been designed to help senior program managers identify issues, develop strategic plans, and resolve issues. These systems involve scanning and abstracting literature to create a database that is then used for 1) issue identification, 2) issue analysis, 3) priority assessment, 4) development of corporate position/strategic options, and 5) action planning and implementation. Most of the existing systems rely on staff to identify trends in the computerized output, analyze the importance of the issue to the company, and assist in developing corporate responses. The Department of Energy has recently developed an issue management system for the Office of Civilian Radioactive Waste Management's (OCRWM) transportation program. This system is designed to help DOE identify institutional issues related to radioactive waste transportation, analyze the issues, and resolve them in a manner that is responsive to interested parties. The system will contain pertinent information from DOE technical reports, other federal documents, correspondence, professional journals, popular literature, newsclips, legislation and testimony. The program is designed around a number of institutional issues including: prenotification, physical protection procedures; highway, rail, and barge routing; inspections and enforcement of shipments; emergency response; liability, cask design and testing; overweight trucks; rail service; modal mix; infrastructure improvements; training standards, and operational procedures

  13. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  14. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  15. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  16. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  17. The development of a type B(U) transport container design in cast and forged stainless steel for the transport of immobilised intermediate level waste

    International Nuclear Information System (INIS)

    Sievwright, B.; Dixon, P.; Tso, C.F.

    2004-01-01

    United Kingdom Nirex Limited (Nirex) is responsible for providing the United Kingdom with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. This includes intermediate level (ILW) and some low level (LLW) wastes. As part of its role Nirex has defined standards and specifications for the conditioning and packaging of these wastes, and carries out assessments of packaging proposals to ensure compatibility with the requirements for future phases of waste management. In order to facilitate this process and to provide a basis for the production of waste package specifications, Nirex has developed the Phased Disposal Concept, and produced a suite of underpinning safety and performance assessments. It has also undertaken work to assess the compatibility of its waste packaging specifications with other waste management options. The Phased Disposal Concept continues to be developed and updated to incorporate issues arising from dialogue with stakeholders, including members of the public; future changes arising from Government policy, legislation and regulations; information from waste producers, and the results from on-going research and development. One of the documents describing the Phased Disposal Concept is the Generic Transport System Design (GTSD). The GTSD outlines the range of waste packages to be transported and disposed of, and describes the design of the transport system needed to transport wastes from their sites of production or storage to a centralised phased disposal facility site. It also describes a range of re-usable transport containers which could be used to transport those waste packages, which require Type B standards for transport, through the public domain. This paper describes the development to date of such a design of reusable transport container, known as the SWTC-285, the Standard Waste Transport Container (SWTC) with 285 mm of shielding

  18. A new type-B cask design for transporting 252Cf

    International Nuclear Information System (INIS)

    Simmons, C.M.

    2000-01-01

    plus the associated equipment is collectively called the NAC Californium Transport System (CTS) and consists of the cask, impact limiter, and transport skid, which is designed to mate with and provide tiedowns to a dedicated trailer. The Safety Analysis Report for Packaging (SARP) was presented to DOE regulators in late March of 1999. The questions raised by the DOE regulators are currently being evaluated by NAC and ORNL. After DOE approves the SARP and issues a Certificate of Compliance (CoC) for the cask design, NRC will start its evaluation. Fabrication will not begin until all certifications (DOE and NRC CoCs, as well as an International Atomic Energy Agency Certificate of Competent Authority for international transport) have been obtained. This project is extremely challenging because of the complexity of the design and the certification and fabrication processes. The certification process is complicated by the necessity to obtain CoCs from two different regulatory agencies

  19. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  20. National Ignition Facility subsystem design requirements transportation and handling, SSDR 1.1.1.3.2

    International Nuclear Information System (INIS)

    Yakuma, S.; McNairy, R.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Transportation ampersand Material Handling Systems (WBS 1.1.1.3.2) of the NIF Laser System (WBS 1.3 and 1.4). The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 5 figs

  1. Feasibility Study of Increasing Multimodal Interaction between Private and Public Transport Based on the Use of Intellectual Transport Systems and Services

    Directory of Open Access Journals (Sweden)

    Ulrich Weidmann

    2011-04-01

    Full Text Available The introduction of intellectual transport systems and services (ITS into the public and private transport sectors is closely connected with the development of multimodality in transport system (particularly, in towns and their suburbs. Taking into consideration the problems of traffic jams, the need for increasing the efficiency of power consumption and reducing the amount of burnt gases ejected into the air and the harmful effect of noise, the use of multimodal transport concept has been growing fast recently in most cities. It embraces a system of integrated tickets, the infrastructure, allowing a passenger to leave a car or a bike near a public transport station and to continue his/her travel by public transport (referred to as ‘Park&Ride’, ‘Bike&Ride’, as well as, real-time information system, universal design, and computer-aided traffic control. These concepts seem to be even more effective, when multimodal intellectual transport systems and services (ITS are introduced. In Lithuania, ITS is not widely used in passenger transportation, though its potential is great, particularly, taking into consideration the critical state of the capacity of public transport infrastructure. The paper considers the possibilities of increasing the effectiveness of public transport system ITS by increasing its interaction with private transport in the context of multimodal concept realization.Article in Lithuanian

  2. Canadian pipeline transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2009-07-01

    In addition to regulating the construction and operation of 70,000 km of oil and natural gas pipelines in Canada, the National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. This report provided an assessment of the Canadian hydrocarbon transportation system in relation to its ability to provide a robust energy infrastructure. Data was collected from NEB-regulated pipeline companies and a range of publicly available sources to determine if adequate pipeline capacity is in place to transport products to consumers. The NEB also used throughput and capacity information received from pipeline operators as well as members of the investment community. The study examined price differentials compared with firm service tolls for transportation paths, as well as capacity utilization on pipelines and the degree of apportionment on major oil pipelines. This review indicated that in general, the Canadian pipeline transportation system continues to work effectively, with adequate pipeline capacity in place to move products to consumers who need them. 9 tabs., 30 figs., 3 appendices.

  3. Vacuum system control for the Heavy Ion Transport Line

    International Nuclear Information System (INIS)

    Stattel, P.; Feigenbaum, I.; Hseuh, H.C.; Robinson, T.; Skelton, R.; Wong, V.

    1987-01-01

    The Brookhaven AGS, 807 m in circumference, and the Tandem Van de Graaff are now joined together by a transport line, 600 m in length. This now allows heavy ions from the Tandem, up to fully stripped sulfur (M = 32) to be transported into the AGS and accelerated to 15 GeV/A. With the addition of a booster between the Tandem and the AGS in the near future, heavy ions such as gold (M = 200) can be accelerated to 30 Z/A GeV/A. This paper describes the HITL (Heavy Ion Transport Line) vacuum control system design and implementation

  4. Monte-Carlo simulation of complex vapor-transport systems for RIB applications

    International Nuclear Information System (INIS)

    Zhang, Y.; Alton, G.D.

    2005-01-01

    In order to minimize decay losses of short-lived radioactive species at ISOL based RIB facilities, effusive-flow particle transit times between target and ion source must be as short as practically achievable. A Monte-Carlo code has been developed for simulating the effusive-flow of neutral particles through vapor-transport systems independent of materials of construction. The code provides average distance traveled and time information associated with the transit of individual particles through a system. It offers a cost effective and accurate means for arriving at vapor-transport system designs. In this report, the code will be described and results obtained by its use in evaluating several prototype vapor-transport systems using specular reflection, cosine and isotropic particle re-emission about the normal to the surface models following adsorption. Simulation results obtained with an isotropic distribution are in close agreement with experimental measurements of the properties of prototype vapor-transport systems fabricated at the Holifield Radioactive Ion Beam Facility

  5. About the Design of QUIC Firefox Transport Protocol

    Directory of Open Access Journals (Sweden)

    Vraj Pandya

    2017-07-01

    Full Text Available QUIC (Quick UDP Internet Connections Chrome is an experimental transport layer network protocol designed by Jim Roskind at Google, initially implemented in 2012 and announced publicly in 2013. One of the QUIC's goals is to improve performance of connection-oriented web applications that are currently using the Transmission Control Protocol (TCP. To do that, QUIC achieves a reduced latency and a better stream-multiplexing support to avoid network congestion. In 2015, Firefox Mozilla started to work on an equivalent QUIC transport protocol for their browser. This idea was motivated by the differences between Chrome and Firefox. Despite the fact that Mozilla Firefox and Google Chrome are both web browser engines, there are some significant differences between them, such as file hierarchy, open source policies (Firefox is completely, while Chrome is only partial, tabs design, continuous integration, and more. Likewise QUIC Chrome, QUIC Firefox is a new multiplexed and secure transport based on User Datagram Protocol (UDP, designed from the ground up and optimized for Hyper-Text Transfer Protocol 2 (HTTP/2 semantics. While built with HTTP/2 as the primary application protocol, QUIC builds on decades of transport and security experience, and implements mechanisms that make it attractive as a modern general-purpose transport. In addition to describing the main design of QUIC Firefox, this paper will compare Firefox with QUIC Firefox. Our preliminary experimental results support that QUIC Firefox has a faster execution time, less latency time, and a better throughput time than the traditional Firefox.  

  6. A new concept for a compact tape transport system

    International Nuclear Information System (INIS)

    Mlekodaj, R.L.; Zganjar, E.F.; Cole, J.D.

    1981-01-01

    A new concept in tape transport systems for the collection and counting of radioactive samples from an on-line isotope separator has been developed. This new compact design was motivated by space limitations but important additional improvements over previous designs were made in cost, simplicity and vacuum quality. The system is based on a continuous loop of 6.5 mm wide recording tape 116 m long with a conducting coating on one side for beam current monitoring. One small stepping motor is required for operation. (orig.)

  7. One-dimensional contaminant transport model for the design of soil-bentonite slurry walls

    International Nuclear Information System (INIS)

    Khandelwal, A.; Rabideau, A.; Su, J.

    1997-01-01

    A user oriented computer model (TRANS1D) was developed for application to the analysis and design of vertical soil-bentonite barriers. TRANS1D is a collection of analytical and numerical solutions to the one dimensional advective-dispersive-reactive (ADR) equation. The primary objective in developing TRANS1D was to enable the designer of a barrier system to evaluate the potential system performance with respect to contaminant transport, without performing difficult and time consuming field or laboratory experiments. Several issues related to model application are discussed, including identification of governing transport processes, specification of boundary conditions, and parameter estimation. Model predictions are compared with the results of laboratory column experiments conducted with soil bentonite barrier material under diffusion-dominated conditions. Good agreement between model calibrations and experimental results was noted, with calibrated diffusion coefficients for organic contaminants consistent with literature values

  8. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  9. The Place of Railway Transport in Romania’s Transport System

    OpenAIRE

    Dãneci-Pãtrãu Daniel; Coca Carmen Elena

    2012-01-01

    The transport activity in all its forms represents one of the most complex sections of an economy, but also an important factor of influence over the quality of life, that is why current preoccupations of international organisms are oriented towards measures meant to develop performing transport systems and compatible with the environment. In the article the main activities and resources of Romania’s railway transport system are presented , the place of the railway transport in the transport ...

  10. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  11. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  12. Design study of general aviation collision avoidance system

    Science.gov (United States)

    Bates, M. R.; Moore, L. D.; Scott, W. V.

    1972-01-01

    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.

  13. Ultrahigh vacuum system of the heavy ion transport line at Brookhaven

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Feigenbaum, I.; Manni, M.; Stattel, P.; Skelton, R.

    1985-01-01

    Heavy ions with an energy up to 8 MeV/A for S +16 and 1 MeV/A for Au +34 from the 16 MV Tandem will be injected into the AGS for further acceleration to less than or equal to 15 GeV/A. A 600-meter beam transport line between the Tandem and the AGS has been designed and is under construction. This paper describes the design of the vacuum system of this transport line and the performance of the prototype vacuum sectors

  14. Electrical railway transportation systems

    CERN Document Server

    Brenna, Morris; Zaninelli, Dario

    2018-01-01

    Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock. This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Systems explores the direct current systems used throughout the world for urban and suburban transport, which are also used in various countries for regional transport. It provides a study of alternating current systems, whether for power supply frequency or for special railway frequency, that are used around the world for ...

  15. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  16. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  17. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  18. SIMS prototype system 4: Design data brochure

    Science.gov (United States)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  19. Transfer tunnel transporter system for the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Petty, J.A.; Miller, S.C.; Richards, J.T.

    1981-01-01

    The detail design is complete and fabrication is approximately 75% complete on the Transfer Tunnel Transporter System. This system provides material handling capability for large, bulky equipment between two hot cells in a new Breeder Reactor Program support facility, the Fuels and Materials Examination Facility. One hot cell has an air atmosphere, the other a high purity inert gas atmosphere which must be maintained during transfer operations. System design features, operational capabilities and remote recovery provisions are described

  20. CONCEPTUAL DESIGN OF THE NSLS-II INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    SHAFTAN,T.; ROSE, T.; PINAYEV, I.; HEESE, R.; BENGTSSON, J.; SKARITKA, J.; MENG, W.; OZAKI, S.; MEIER, R.; STELMACH, C.; LITVINENKO, V.; PJEROV, S.; SHARMA, S.; GANETIS, G.; HSEUH, H.C.; JOHNSON, E.D.; TSOUPAS, N.; GUO, W.; BEEBE-WANG, J.; LUCCIO, A.U.; YU, L.H.; RAPARIA, D.; WANG, D.

    2007-06-25

    We present the conceptual design of the NSLS-II injection system [1,2]. The injection system consists of a low-energy linac, booster and transport lines. We review two different injection system configurations; a booster located in the storage ring tunnel and a booster housed in a separate building. We briefly discuss main parameters and layout of the injection system components.

  1. 49 CFR 37.33 - Airport transportation systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a) Transportation...

  2. Systems of pneumatic transportation of cement and other fine ...

    African Journals Online (AJOL)

    Therefore, the operational reliability of such equipment decreases and the process of cleaning of the exhaust air becomes complicated. The solution of the problem of ... of the air expense and pressure during the design of the systems. Keywords: pneumatic transportation, fine materials. dust removal equipment, pape line.

  3. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  4. Transportation routing analysis geographic information system -- TRAGIS, a multimodal transportation routing tool

    International Nuclear Information System (INIS)

    Johnson, P.E.

    1995-01-01

    Over 15 years ago, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Subsequent modifications have been made to enhance each of these models. Some of these changes include population density information for routes, HM-164 routing regulations for highway route controlled quantities of radioactive materials (RAM) truck shipments, and inclusion of waterway routing into INTERLINE. The AIRPORT model, developed 2 years after the HIGHWAY and INTERLINE models, serves as an emergency response tool. This model identifies the nearest airports from a designated location. Currently, the AIRPORT model is inactive. The Transportation Management Division of the US Department of Energy held a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models in April 1994 to bring together many users of these models and other experts in the transportation routing field to discuss these models and to decide on the capabilities that needed to be added. Of the many needs discussed, the primary one was to have the network databases within a geographic information system (GIS). As a result of the Baseline Requirements Session, the development of a new GIS model has been initiated. This paper will discuss the development of the new Transportation Routing Analysis GIS (TRAGIS) model at ORNL

  5. Transportable criticality alarm system

    International Nuclear Information System (INIS)

    Clem, W.E.

    1988-09-01

    The Transportable Criticality Alarm System was developed at the Hanford Site in 1982 to comply with the requirements of US Department of Energy Order DOE 5480.1, 12/18/80, and ANSI/ANS-8.3- 1979. The portable unit that it replaced failed to comply with the new requirements in that it did not provide the necessary warning of malfunctions, nor did it provide the Hanford Site standard criticality alarm signal. Modern technology allowed the Transportable Criticality Alarm System to comply with the criticality requirements cited and to incorporate other features that make it more usable, maintainable, and reliable. The Transportable Criticality Alarm System (TCAS) provides temporary criticality coverage in manned areas where the facility criticality alarm system is not operable. This gamma radiation-sensitive system has been in use for the past 6 yr at the Hanford Site. 2 refs., 4 figs., 1 tab

  6. A Functional Thinking Approach to the Design of Future Transportation Systems: Taxis as a Proxy for Personal Rapid Transit in South Korea

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Bae, Hyun Hye

    2014-01-01

    For over 50 years, personal rapid transit (PRT) has been viewed as one of the most promising ways to provide sustainable, economical, and convenient transportation while reducing reliance on personal automobiles. However, despite concerted efforts around the world, the promise of PRT has yet...... to be realized. This work demonstrates that different physical means, such as the Korean taxi system, can be used to perform the same highest-level functional requirement, satisfy the same constraints, and provide many of the benefits that are expected of a city-scale personal rapid transit system. Thus, Korean...... taxis can be used as an alternative embodiment of personal rapid transit and can serve as a test bed to support PRT-related design, research, and development. The paper then explores the transportation patterns and characteristics of cities in South Korea and the United States in order to determine...

  7. Proposal of guidelines for selecting optimum options in packagings and transportation systems of spent fuel

    International Nuclear Information System (INIS)

    Saegusa, T.; Abe, H.; Fukuda, S.

    1983-01-01

    Type and size of spent fuel shipping packagings and packaging transport ships in spent fuel transport system would have been determined separately in response to technical requirements etc. of reactor sites and reprocessing plants. However, since more and more spent fuel will be generated from world's nuclear power plants and will be transported much frequently to reprocessing plants or storage facilities, the current spent fuel transport system will have to be necessarily reexamined from the operational and economical aspects or an optimum transport system may have to be newly determined in the near future. In the literature, a variety of options are found, particularly of spent fuel packagings. This paper listed and classified options of spent fuel packagings and packaging transport ships in the transportation systems of spent fuel on the basis of literature surveys. These options were discussed from viewpoints of designers and users and compared in terms of transport efficiency. Finally, one way to determine an optimum transport system of spent fuel was indicated considering the total transport system in the light of safety, operational efficiency and economy

  8. Systems engineering requirements impacting MHTGR circulator design

    International Nuclear Information System (INIS)

    Chi, H.W.; Baccaglini, G.M.; Potter, R.C.; Shenoy, A.S.

    1988-01-01

    At the initiation of the MHTGR program, an important task involved translating the plant users' requirements into design conditions. This was particularly true in the case of the heat transport and shutdown cooling systems since these embody many components. This paper addresses the two helium circulators in these systems. An integrated approach is being used in the development of design and design documentation for the MHTGR plant. It is an organized and systematic development of plant functions and requirements, determined by top-down design, performance, and cost trade-off studies and analyses, to define the overall plant systems, subsystems, components, and human actions. These studies, that led to the identification of the major design parameters for the two circulators, are discussed in this paper. This includes the performance information, steady state and transient data, and the various interface requirements. The design of the circulators used in the MHTGR is presented. (author). 1 ref., 17 figs

  9. THE CHOICE OF A RATIONAL STRUCTURAL DESIGN OF ELECTRODYNAMIC TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. O. Radchenko

    2009-03-01

    Full Text Available The design schemes of electrodynamic maglev systems with a plane track structure are developed and the results of investigation of levitating motion of such systems along rectilinear or curvilinear tracks are presented.

  10. The transport performance evaluation system building of logistics enterprises

    Directory of Open Access Journals (Sweden)

    Xueli Wang

    2013-09-01

    Full Text Available Purpose: modern logistics has a significant role in today’s society, logistics cost accounts for 35% to 50% of total logistics costs, so it’s great significance to improve the transport performance of logistics enterprises. Design/methodology/approach: the authors select the transportation performance evaluation index of logistics enterprise, with the aid of the fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative analysis, construct the transport performance evaluation system of logistics enterprises. Findings: the choice of transport performance evaluation indicator system for Logistics enterprise is in a state of "high", which indicates the indicator selection is reasonable. Research limitations/implications: the selected indicators with experts’ subjective factors can not accurately quantify. Practical implications: it has important practical significance to promote the development of modern logistics enterprises and save social cost. Originality/value: current research methods mainly include the PDCA cycle model, key performance indicators (KPI and benchmarking method, principal component analysis method, etc. The authors for the first time with the aid of fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative research on transport performance problems.

  11. California air transportation study: A transportation system for the California Corridor of the year 2010

    Science.gov (United States)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  12. 6th International Conference on Complex Systems Design & Management

    CERN Document Server

    Bocquet, Jean-Claude; Bonjour, Eric; Krob, Daniel

    2016-01-01

    This book contains all refereed papers that were accepted to the sixth edition of the « Complex Systems Design & Management Paris » (CSD&M Paris 2015) international conference which took place in Paris (France) on November 23-25, 2015. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautics & aerospace, defense & security, electronics & robotics, energy & environment, health & welfare, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systems modeling tools) and systems types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2015 conference is organized under the guidance of the CESAMES non-profit organization, address...

  13. 49 CFR 37.25 - University transportation systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a...

  14. Development of an expert system for transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Michelhaugh, R.D.; Rawl, R.R.

    1994-01-01

    Under the sponsorship of the US Department of Energy's (DOE's) Transportation Management Division (EM-261), the Transportation Technologies Group at Oak Ridge National Laboratory (ORNL) has designed and developed an expert system prototype application of the hazardous materials transportation regulations. The objective of this task was to provide a proof-of-concept for developing a computerized expert system that will ensure straightforward, consistent, and error-free application of the hazardous materials transportation regulations. The expert system prototype entailed the analysis of what an expert in hazardous materials shipping information could/should do. From the analysis of the different features required for the expert system prototype, it was concluded that the developmental efforts should be directed to a Windows trademark 3.1 hypermedia environment. Hypermedia technology usually works as an interactive software system that gives personal computer users the ability to organize, manage, and present information in a number of formats--text, graphics, sound, and full-motion video

  15. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  16. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  17. Radioactive contamination mapping system detailed design report

    International Nuclear Information System (INIS)

    Bauer, R.G.; O'Callaghan, P.B.

    1996-08-01

    The Hanford Site's 100 Area production reactors released radioactively and chemically contaminated liquids into the soil column. The primary source of the contaminated liquids was reactor coolant and various waste waters released from planned liquid discharges, as well as pipelines, pipe junctions, and retention basins leaking into the disposal sites. Site remediation involves excavating the contaminated soils using conventional earthmoving techniques and equipment, treating as appropriate, transporting the soils, and disposing the soils at ERDF. To support remediation excavation, disposal, and documentation requirements, an automated radiological monitoring system was deemed necessary. The RCMS (Radioactive Contamination Mapping System) was designed to fulfill this need. This Detailed Design Report provides design information for the RCMS in accordance with Bechtel Hanford, Inc. Engineering Design Project Instructions

  18. Designing for sustainability - mobility systems based on electrical vehicles

    DEFF Research Database (Denmark)

    Søndergård, Bent; Hansen, Ole Erik

    in interaction with public authorities and transportation companies), configuring the electric car sharing system as an element in an alternative mobility service system, and designing the technical and organizational system The concluding discussion falls into two parts: an assessment of the design process......-design, concerned with design as meta-level processes of regime transformation and the constructive configuration of design spaces. The case study examines an attempt to integrate electric vehicles in the Danish mobility systems. It maps the framework conditions and contemporary (competing) strategies....../projects, but focuses on a specific car-sharing project (‘Cleardrive’), with the objective to examine the early and constitutive stages of the design-process. It is conducted as an intensive study tracing elements of interpretation, interaction and intervention, which have been part of the project formation process...

  19. Technical note on drainage systems:design of pipes and detention facilities for rainwater

    OpenAIRE

    Bentzen, Thomas Ruby

    2014-01-01

    This technical note will present simple but widely used methods for the design of drainage systems. The note will primarily deal with surface water (rainwater) which on a satisfactorily way should be transport into the drainage system. Traditional two types of sewer systems exist: A combined system, where rainwater and sewage is transported in the same pipe, and a separate system where the two types of water are transported in individual pipe. This note will only focus on the separate rain/st...

  20. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  1. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  2. Application of precision mechanical engineering techniques to the design of a moderate energy beam transport for the FAA explosive detection system

    International Nuclear Information System (INIS)

    Lujan, R.; Christensen, K.

    1993-01-01

    This paper discusses the application of precision mounting and alignment techniques to a moderate energy beam transport system (MEBT) used on the exit of a 1.75 MeV RFQ. While frequently found in optical systems, techniques-such-as kinematic mounting, and degree-of-freedom decoupling, are not as widely used for accelerator components. The MEBT consist of one permanent magnet quadrupole, four electro magnet quadrupole, and one debuncher cavity. Included in the paper are discussions of design and fabrication considerations as well as, installation, alignment and operations experience during the successful implementation on a working accelerator

  3. System design overview of JAXA small supersonic experimental airplane (NEXST-1)

    OpenAIRE

    Takami, Hikaru; 高見 光

    2007-01-01

    The system of JAXA small supersonic experimental airplane (NEXST-1: National EXperimental Supersonic Transport-1) has been briefly explained. Some design problems that the designers have encountered have also been briefly explained.

  4. Design of boat powered photovoltaic systems

    OpenAIRE

    Syafaruddin; Dionisius Galla; Willy A.F.A Ajami

    2014-01-01

    The solar energy has high potential applications in Indonesia since the country is located close to the equatorial region that makes the sun is almost bright along the day. In this paper, the boat power photo voltaic system is proposed. Such design may promote new innovations technically and economically in water transportation system since the country demography is almost 75% surrounded by water. The electricity energy is harvested from the sun through the PV panel then stored i...

  5. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  6. The influence of variable operating conditions on the design and exploitation of fly ash pneumatic transport systems in thermal power plants

    Directory of Open Access Journals (Sweden)

    M. Stanojević

    2008-12-01

    Full Text Available The efficiency of an air-slide pneumatic conveying system depends, first of all, on several basic elements chosen or calculated during the design of a plant: air-slide design parameters, air mover characteristics, as well as the physical and chemical properties of the material to be transported. However, during the exploitation of this type of system which is used for handling ash in thermal-power plants, either gradual and/or sudden changes in the operating conditions can arise. This may be due to changes both in the proportion of ash content, and in the flow characteristics of the porous membrane. The consequences of changes in these conditions on the performance of the ash handling system are analyzed, based upon the results of the experimental work carried out on the test rig at the Faculty of Mechanical Engineering in Belgrade, and upon the on-site measurements at the thermal-power plant "Nikola Tesla B".

  7. The influence of variable operating conditions on the design and exploitation of fly ash pneumatic transport systems in thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stanojevic, M.; Radic, D.; Jovovic, A. (and others) [University of Belgrade, Belgrade (Serbia). Dept. of Processing Engineering

    2008-10-15

    The efficiency of an air-slide pneumatic conveying system depends, first of all, on several basic elements chosen or calculated during the design of a plant: air-slide design parameters, air mover characteristics, as well as the physical and chemical properties of the material to be transported. However, during the exploitation of this type of system which is used for handling ash in thermal-power plants, either gradual and/or sudden changes in the operating conditions can arise. This may be due to changes both in the proportion of ash content and in the flow characteristics of the porous membrane. The consequences of changes in these conditions on the performance of the ash handling system are analyzed, based upon the results of the experimental work carried out on the test rig at the Faculty of Mechanical Engineering in Belgrade, and upon the on-site measurements at the thermal-power plant 'Nikola Tesla B'. 5 refs., 8 figs., 4 tabs.

  8. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  9. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  10. Modelling public transport passenger flows in the era of intelligent transport systems COST Action TU1004 (TransITs)

    CERN Document Server

    Noekel, Klaus

    2016-01-01

    This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond “traditional” models, it describes more evolved variants that can reproduce: • intermodal networks with high- and low-frequency services; • realistic behavioural hypotheses underpinning route choice; • time dependency in frequency-based models; and • assumptions about the knowledge that users have of network conditions that are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practit...

  11. Conceptual design for Japan sodium-cooled fast reactor. (1) Current status of system design for JSFR

    International Nuclear Information System (INIS)

    Uto, Nariki; Sakai, Takaaki; Mihara, Takatsugu; Kotake, Shoji; Aoto, Kazumi; Toda, Mikio

    2009-01-01

    Japan Atomic Energy Agency is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project. In the FaCT project, the system design for JSFR has been carried out along the design categories such as safety design, reactor system, heat transport system, etc., together with research and developments (R and Ds) on innovative technologies to be adopted to JSFR for achieving economic competitiveness, enhanced safety and reliability. This paper describes the system design features of JSFR and a summary of the progresses of the design and R and Ds concerned with a compact reactor vessel, an innovative containment vessel, etc. The approach for the commercialization of fast reactors including discussion on a demonstration reactor for JSFR is also briefly described. (author)

  12. Mechanical design for a large fusion laser system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1979-01-01

    The Nova Mechanical Systems Group at LLL is responsible for the design, fabrication, and installation of all laser chain components, for the stable support structure that holds them, and for the beam lines that transport the laser beam to the target system. This paper is an overview of the group's engineering effort, emphasizing new developments

  13. Panel presentation: LDC rate design and transportation issues

    International Nuclear Information System (INIS)

    Patrick, T.M.

    1992-01-01

    This paper covers four general views about local distributing company (LDC) sales rate design, transportation issues, and their implications for policy makers. LDC sales rates often hinder marketing to price sensitive customers. LDC rate design contributes to this problem, but there are other major causes such as add-on revenue taxes and pipeline take-or-pay charges that add to customer costs. State commissions, in varying degrees, are constrained in their ability to respond to a number of the barriers to improved gas marketing. Some problems are simply beyond the power of state commissions to remedy. These include federally imposed pipeline rate structures and take-or-pay costs, as well as various limits imposed by state legislatures (e.g., shut-off prohibitions, add-on taxes). Where they are feasible, LDC transportation services can mitigate marketing barriers that impede sales services. Customers select and pay for only their desired level of supply reliability and flexibility from sellers and pipeline transporters, as well as desired levels of standby service from the LDC. While it greatly benefits markets, the provision of transportation service by an LDC creates important new issues. One is fairness in allocating LDC resources between the sales and transportation functions and in pricing them, to avoid subsidies of one service by the other

  14. 5th International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Morel, Gérard; Roussel, Jean-Claude

    2015-01-01

    This book contains all refereed papers that were accepted to the fifth edition of the « Complex Systems Design & Management » (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, addres...

  15. A dynamic isotope power system for Space Exploration Initiative surface transport systems

    International Nuclear Information System (INIS)

    Hunt, M.E.; Harty, R.B.; Cataldo, R.

    1992-03-01

    The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs

  16. A National MagLev Transportation System

    Science.gov (United States)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  17. Evaluation of a prototype air transport system for use in a crate handling and size reduction facility

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1987-09-01

    This paper describes the design features and evaluation, under simulated active conditions, of a purpose designed remotely operated air transporter system. The paper concludes by recommending that an air transporter, based on this concept, is considered for the alpha active facility. (author)

  18. 7th International Conference on Complex Systems Design & Management

    CERN Document Server

    Goubault, Eric; Krob, Daniel; Stephan, François

    2017-01-01

    This book contains all refereed papers that were accepted to the seventh edition of the international conference « Complex Systems Design & Management Paris» (CSD&M Paris 2016) which took place in Paris (France) on the December 13-14, 2016 These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, defense & security, electronics & robotics, energy & environment, healthcare & welfare services, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, system is modeling tools) and system types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2016 conference is organized under the guidance of the CESAMES non-profit orga...

  19. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  20. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  1. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  2. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  3. Road Transportable Analytical Laboratory system

    International Nuclear Information System (INIS)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O'Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE's internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex

  4. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  5. Design study of low-energy beam transport for multi-charge beams at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Qiang, Ji [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Graduate School, Korea University Sejong Campus, Sejong 30019 (Korea, Republic of)

    2015-12-21

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  6. DANTSYS: a system for deterministic, neutral particle transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.

    1996-12-31

    The THREEDANT code is the latest addition to our system of codes, DANTSYS, which perform neutral particle transport computations on a given system of interest. The system of codes is distinguished by geometrical or symmetry considerations. For example, ONEDANT and TWODANT are designed for one and two dimensional geometries respectively. We have TWOHEX for hexagonal geometries, TWODANT/GQ for arbitrary quadrilaterals in XY and RZ geometry, and THREEDANT for three-dimensional geometries. The design of this system of codes is such that they share the same input and edit module and hence the input and output is uniform for all the codes (with the obvious additions needed to specify each type of geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and source driven problems. In this paper we concentrate on the THREEDANT module since there are special considerations that need to be taken into account when designing such a module. The main issues that need to be addressed in a three-dimensional transport solver are those of the computational time needed to solve a problem and the amount of storage needed to accomplish that solution. Of course both these issues are directly related to the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to the spatial discretization method chosen and the requirements of the iteration acceleration scheme employed as will be noted below. Another related consideration is the robustness of the resulting algorithms as implemented; because insistence on complete robustness has a significant impact upon the computation time. We address each of these issues in the following through which we give reasons for the choices we have made in our approach to this code. And this is useful in outlining how the code is evolving to better address the shortcomings that presently exist.

  7. Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2

    International Nuclear Information System (INIS)

    Weidert, R.S.

    1995-01-01

    As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE's Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department's safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities

  8. Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Weidert, R.S.

    1995-05-26

    As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE`s Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department`s safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities.

  9. Evaluation of a prototype air transport system for use in a crate handling and size reduction facility

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1987-01-01

    This paper describes in detail the design features and evaluation, under simulated active conditions, of a purpose designed remotely operated air transporter system. The paper concludes by recommending that an air transporter, based on this concept, is considered for the alpha active facility. (author)

  10. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    Full Text Available Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS for High-Speed Ground Transportation (HSGT almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS are hardly currently used for the High-Speed Ground Transportation (HSGT. Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT, developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG. This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS. Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an

  11. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Science.gov (United States)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-12-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  12. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Energy Technology Data Exchange (ETDEWEB)

    Tecimer, M. E-mail: tecimer@post.tau.ac.il; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J

    2001-12-21

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 {pi} mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  13. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    International Nuclear Information System (INIS)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design

  14. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  15. Medical complications of intra-hospital patient transports: implications for architectural design and research.

    Science.gov (United States)

    Ulrich, Roger S; Zhu, Xuemei

    2007-01-01

    Literature on healthcare architecture and evidence-based design has rarely considered explicitly that patient outcomes may be worsened by intra-hospital transport (IHT), which is defined as transport of patients within the hospital. The article focuses on the effects of IHTs on patient complications and outcomes, and the implications of such impacts for designing safer, better hospitals. A review of 22 scientific studies indicates that IHTs are subject to a wide range of complications, many of which occur frequently and have distinctly detrimental effects on patient stability and outcomes. The research suggests that higher patient acuity and longer transport durations are associated with more frequent and serious IHT-related complications and outcome effects. It appears no rigorous research has compared different hospital designs and layouts with respect to having possibly differential effects on transport-related complications and worsened outcomes. Nonetheless, certain design implications can be extracted from the existing research literature, including the importance of minimizing transport delays due to restricted space and congestion, and creating layouts that shorten IHT times for high-acuity patients. Limited evidence raises the possibility that elevator-dependent vertical building layouts may increase susceptibility to transport delays that worsen complications. The strong evidence indicating that IHTs trigger complications and worsen outcomes suggests a powerful justification for adopting acuity-adaptable rooms and care models that substantially reduce transports. A program of studies is outlined to address gaps in knowledge.Key WordsPatient transports, transports within hospitals, patient safety, evidence-based design, hospital design, healthcare architecture, intra-hospital transport complications, acuity-adaptable care, elevators, outcomes.

  16. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  17. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    Science.gov (United States)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  18. Development of a conceptual framework toward an integrated transportation system (continued).

    Science.gov (United States)

    2011-07-01

    As a continuing effort documented in the first phase project UMAR19-13, this research focuses : on the design of a prototype application under the framework toward an Integrated : Transportation System. More specifically, this research aims at improv...

  19. Executive summary of safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The U.S. Nuclear Regulatory Commission contracted with System Development Corporation to develop integrated system concepts for the safeguard of special strategic nuclear materials (SSNM), which include plutonium, uranium 233 and uranium 235 of at least 20 percent enrichment, against malevolent action during interfacility transport. This executive summary outlines the conduct and findings of the project. The study was divided into three major subtasks: (1) The development of adversary action sequences; (2) The assessment of the vulnerability of the transport of nuclear materials to adversary action; (3) The development of conceptual safeguards system design requirements to reduce vulnerabilities

  20. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  1. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    Science.gov (United States)

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  2. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  3. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  4. Addressing the Safety of Transportation Cyber-Physical Systems: Development and Validation of a Verbal Warning Utility Scale for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Yiqi Zhang

    2015-01-01

    Full Text Available As an important application of Cyber-Physical Systems (CPS, advances in intelligent transportation systems (ITS improve driving safety by informing drivers of hazards with warnings in advance. The evaluation of the warning effectiveness is an important issue in facilitating communication of ITS. The goal of the present study was to develop a scale to evaluate the warning utility, namely, the effectiveness of a warning in preventing accidents in general. A driving simulator study was conducted to validate the Verbal Warning Utility Scale (VWUS in a simulated driving environment. The reliability analysis indicated a good split-half reliability for the VWUS with a Spearman-Brown Coefficient of 0.873. The predictive validity of VWUS in measuring the effectiveness of the verbal warnings was verified by the significant prediction of safety benefits indicated by variables, including reduced kinetic energy and collision rate. Compared to conducting experimental studies, this scale provides a simpler way to evaluate overall utility of verbal warnings in communicating associated hazards in intelligent transportation systems. This scale can be further applied to improve the design of warnings of ITS in order to improve transportation safety. The applications of the scale in nonverbal warning situations and limitations of the current scale are also discussed.

  5. Issues related to the transport of a transportable storage cask after storage

    International Nuclear Information System (INIS)

    McConnell, P.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Sanders, T.L.; Jones, R.H.

    1991-01-01

    An evaluation was performed to assess whether the reliability of a transportable storage cask system and the risks associated with its use are comparable to those associated with existing transport cask systems and, if they are not, determine how the transportable storage cask system can be made as reliable as existing systems. Reliability and failure mode analyses of both transport-only casks and transportable storage casks and implementation options are compared. Current knowledge regarding the potential effects of a long-term dry storage environment on spent fuel and cask materials is reviewed. A summary assessment of the consideration for deploying a transportable storage cask (TSC) system with emphasis on preliminary design, validation and operational recommendations for TSC implementations is presented. The analyses conclude that a transportable storage cask can likely be shipped upopened by applying a combination of design considerations and operational constraints, including environmental monitoring and pretransport assessments of functional reliability of the cask. A proper mix of these constraints should yield risk parity with any existing transport cask

  6. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Keith, D.A.; Preston, M.K. Jr.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-05-01

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository

  7. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  8. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  9. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  10. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  11. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  12. Design and Analysis of a Shaft Seal System for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.

    1999-01-01

    This special issue of Reliability Engineering and System Safety presents a wide range of analyses pertaining to performance of the first EPA-certified nuclear waste repository, called the Waste Isolation Pilot Plant (WIPP). Licensing of the first such repository has involved unprecedented analysis accompanied by an equivalent peer review and public scmtiny. As a deep geologic repository, isolation of the repository from the biosphere requires implementation of unique seal systems. This paper describes the shall sealing system, which is designed to'mit fluid transport through the four existing shafts. The design approach applies redundancy to fictional elements and specifies multiple, common, low-permeability materials to ensure reliable performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These sophisticated calculations indicate that the design effectively limits transport of fluids within the shafts, thereby limiting transport of waste material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for seal construction combined with the use of available common materials assures that the design can be constructed

  13. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  14. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  15. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  16. Game-Aided Education for Transportation Engineering: Design, Development, and Assessment

    OpenAIRE

    Wang, Qichao

    2017-01-01

    Transportation engineering is a wide area that covers different topics including traffic planning, highway design, pavement design, traffic safety, and traffic control. Certain concepts in those topics are challenging and are hard to understand based on textbooks and lectures. In this work, we developed five web games targeting the five topics in transportation engineering education to improve students’ understanding of those hard concepts. The games are hosted in a website server. Students c...

  17. Cost optimization of a real-time GIS-based management system for hazardous waste transportation.

    Science.gov (United States)

    Zhu, Yun; Lin, Che-Jen; Zhong, Yilong; Zhou, Qing; Lin, Che-Jen; Chen, Chunyi

    2010-08-01

    In this paper, the design and cost analysis of a real-time, geographical information system (GIS) based management system for hazardous waste transportation are described. The implementation of such a system can effectively prevent illegal dumping and perform emergency responses during the transportation of hazardous wastes. A case study was conducted in Guangzhou, China to build a small-scale, real-time management system for waste transportation. Two alternatives were evaluated in terms of system capability and cost structure. Alternative I was the building of a complete real-time monitoring and management system in a governing agency; whereas alternative II was the combination of the existing management framework with a commercial Telematics service to achieve the desired level of monitoring and management. The technological framework under consideration included locating transportation vehicles using a global positioning system (GPS), exchanging vehicle location data via the Internet and Intranet, managing hazardous waste transportation using a government management system and responding to emergencies during transportation. Analysis of the cost structure showed that alternative II lowered the capital and operation cost by 38 and 56% in comparison with alternative I. It is demonstrated that efficient management can be achieved through integration of the existing technological components with additional cost benefits being achieved by streamlined software interfacing.

  18. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  19. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  20. Hydrodynamic studies in designing of fluidized bed system

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Syed Nasaruddin Syed Idris

    2002-01-01

    Fluidized bed process have been used mostly in the petroleum and paper industries, and for processing nuclear wastes, spent cook liquor, wood chips, and sewage sludge disposal. Even at MINT some of the equipment available used this principal. Before we use or purchase this equipment, it is very grateful if we could understand how the system has been designed. The hydrodynamic fluidization studies is very important in designing of fluidized bed system especially in determining the minimum fluidizing velocity, terminal velocity, flexibility of operation, slugging condition, bubble size and velocity, and transport disengaging height. They can be determined either by calculation or experimentation. This paper will highlight the hydrodynamic study that need to be performed in designing of fluidized bed system so that its can be used appropriately. (Author)

  1. The transportation operations system: A description

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Dixon, L.D.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    This paper presents a description of the system for transporting radioactive waste that may be deployed to accomplish the assigned system mission, which includes accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from waste generator sites and transporting them to the FWMS destination facilities. The system description presented here contains, in part, irradiated fuel and waste casks, ancillary equipments, truck, rail, and barge transporters, cask and vehicle traffic management organizations, maintenance facilities, and other operations elements. The description is for a fully implemented system, which is not expected to be achieved, however, until several years after initial operations. 6 figs

  2. Analysis and Design of Fuel Cell Systems for Aviation

    Directory of Open Access Journals (Sweden)

    Thomas Kadyk

    2018-02-01

    Full Text Available In this paper, the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell, general design considerations are derived. Considering different possible design objectives, the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor w P is introduced, which allows incorporating technical (e.g., system mass and efficiency as well as non-technical design objectives (e.g., operating cost, emission goals, social acceptance or technology affinity, political factors. The optimal fuel cell design is not determined by the characteristics of the fuel cell alone, but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.

  3. National Space Transportation System (NSTS) technology needs

    Science.gov (United States)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  4. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    Science.gov (United States)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  5. Containers analysis code of zero order (CACO0) - A basic design system for Type B packages

    International Nuclear Information System (INIS)

    Gaspar, C.; Benito, G.; Rey, J.C.

    1989-01-01

    Very frequently, the principal issues that have to be assessed in the design of a type B(U) package are radiation shielding and evaluation of mechanical and thermal test effects. Thermal behavior during normal transport conditions has also to be considered when the material must dissipate high thermal power. If the transported material is fissile it should be assured that it remains subcritical during transport. The containment of radioactive material must always be assured. In some cases this requires considerable effort. Usually these different design issues are very closely coupled. This coupling does not permit independent consideration. Also, some issues are competitive and generate conflicting design criteria. Given the goal of meeting pertinent transport regulations at a reasonable cost, all design-relevant issues must be balanced in order to obtain a good design. For each design-relevant issue there exists a number of methods of varying efficiency and cost, which can be used to define the key parameters of those particular issues. The overall design methodology must taken into account interactions between parameters of different issues. CACO0 is a system that integrates all design relevant issues and their interactions. The system consists of different modules, each one oriented to a different design issue. The modules are related by a control structure that enables sequentation or iteration during design in a fast and simple manner. Modules can easily be replaced or added, so the system can be updated or adapted to new design problems. The system was designed for use in factibility analysis, cost estimation, conceptual design and initial stages of basic design of type B(U) packages. To accomplish those ends, simple, fast and conservative methods are used

  6. Maternal and Fetal Recovery After Severe Respiratory Failure: A Case Report of Air Transportation of a Pregnant Woman on ECMO Using the CentriMag Transporter System.

    Science.gov (United States)

    Kaliyev, Rymbay; Kapyshev, Timur; Goncharov, Alex; Lesbekov, Timur; Pya, Yuri

    2015-01-01

    Use of extracorporeal membrane oxygenation (ECMO) for severe cardiopulmonary failure has increased because of improved outcomes. A specially designed ECMO transport system allows for safe transport of patients over long distances. We report a 28-year-old pregnant woman (26 weeks gestation) with acute respiratory distress syndrome in whom ECMO support was necessary for survival, and she was transported to another facility 1,155 km away with the aid of the portable ECMO system. Transport was uneventful, and the patient's condition remained stable. Acute respiratory distress syndrome improved gradually until the patient was discharged from the hospital with excellent maternal and fetal outcome.

  7. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  8. Integral Transportation Systems in Military Transport Aircraft Supply

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Supply of goods, equipment and soldiers by militwy transportaircraft can serve as a support to airborne landing operation,support to encircled forces, and support to forces leadinga gue1rilla war. Transport aircraft are designed in such a wayas to be able to cany containers, pallets, most of land vehiclesand helicopters. Militwy transport aircraft can be grouped intothose that were originally designed for military transp01t andthose that are modified civilian aircraft and helicopters. Supplypallets can be wooden, metal, can be airdropped in "taxiing","low-flight", and can also be fitted with a parachute or"retrorocket" for reducing the ground impact. Pallets canamong other things carry liquids, heavy combat and ca1rier vehicles,artillery and rocket weapons and valious containers.Pallets are usually pe1manently deformed at ground impact.Nowadays, high precision of airdrop has been achieved. Containersare used to carry various equipment, food, fue~ weapons,ammunition etc. It is to be expected that the containers,wmoured combat and other vehicles will be redesigned so asto provide more efficient transport and fast a!Tangement ofhigh-mobility units, whereas the form of the future militarytransport aircraft will not undergo substantial changes. By adjustingand standardising the transporlation vehicles, integraltransportation means and cwgo, the overall combat efficiencywill be increased, the a~rangement time especially shortenedand the air supply safety increased.

  9. Performances of the HL (Hyperloop) transport system

    NARCIS (Netherlands)

    van Goeverden, C.D.; Milakis, D.; Janic, M.; Konings, J.W.; Cools, M.; Limbourg, S.

    2017-01-01

    This paper deals with an analysis of performances of the HL (Hyperloop) transport system considered as an advanced transport alternative to the existing APT (Air Passenger Transport) and HSR (High Speed Rail) systems. The considered performances are operational, financial, social and environmental.

  10. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    Science.gov (United States)

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  11. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  12. A multidimensonal Examination of Prefomences of the Future advanced Transport Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System

    NARCIS (Netherlands)

    Janic, M.

    2016-01-01

    Multidimensional examination of performances of the future advanced ETT Evacuated Tube Transport) system operated by TRM (TransRapidMaglev); assessment of the ETT TRM system contribution to sustainability of the future transport sector through its completion with APT (Air Passenger Transport) system

  13. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  14. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    A predictive control scheme is designed to control a transport refrigeration system, such as a delivery truck, that includes a vapor compression cycle configured in parallel with a thermal energy storage (TES) unit. A novel approach to TES utilization is introduced and is based on the current...

  15. Eco-design of power transmissions systems

    International Nuclear Information System (INIS)

    Wang, W.

    2011-01-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in Transmission and Distribution (T and D) industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, the study 'Eco-design of Power Transmission Systems' is conducted in this thesis, with the purpose of analysing the transmission systems' environmental impacts, locating the major environmental burden sources of transmission systems, selecting and/or developing methodologies of reducing its environmental impacts. (author)

  16. Space Transportation System Availability Relationships to Life Cycle Cost

    Science.gov (United States)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that

  17. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  18. A preliminary design study of a pool-type FBR 'ARES' eliminating intermediate heat transport systems

    International Nuclear Information System (INIS)

    Ueda, N.; Nishi, Y.; Kinoshita, I.; Yoshida, K.

    2001-01-01

    An innovative reactor concept 'ARES' (Advanced Reactor Eliminating Secondary system) is proposed to aim at reducing the construction cost of a liquid metal cooled fast breeder reactor (LMFBR). This concept is developed to show the ultimate cost down potential of LMFBR's at their commercial stage. The electrical output is 1500 MW, while the thermal output is 3900 MW. Main components of the primary cooling system are four electromagnetic pumps (EMP) and eight double-wall-tube steam generators (SG). Both of them are installed in a reactor vessel like pool type LMFBR's. An intermediate heat transport system which a previous LMFBR has it eliminated, main components of which are intermediate heat exchangers (IHX), secondary pumps and secondary piping. Further, a high reliable SG could decrease the occurrence of water leak accidents and reduce the related mitigation systems. In this study, structure concept, approach to embody a high reliable SG and accidents analyses are carried out. Flow path configuration is mainly discussed in investigation of the structure concept. In case of a water leak accident in a SG, the fault SG must be isolated to prevent a reaction production from flowing into the core. The measure to cut both inlet and outlet coolant flow paths by siphon-break mechanism is adopted to be consistent with the decay heat removal operation. The safety design approach of the double-wall-tube SG is investigated to limit the accident occurrence below 10 -7 (1/ry). A tube-to-tube weld is excluded from the reference design, because the welding process is too difficult and complicated to prevent adhesion of the double-wall-tube effectively. The reliability of the tube-to-tube-sheet was evaluated as 10 -10 (1/hr) for an inner tube and 10 -9 (1/hr) for an outer tube with reference to the failure experience of previous SG's. The failure must be detected within 60 to 120 minutes. Finally, a seamless U tube type of double-wall-tube SG is adopted. Transient events due to

  19. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  20. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    Science.gov (United States)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  1. Magnetic levitation -The future transport system

    International Nuclear Information System (INIS)

    Rairan, Danilo

    2000-01-01

    The paper made a recount of the main advantages and disadvantages of the traditional systems of transport with base in electric power and it shows as the systems that use the magnetic levitation they are the future of the transport. Additionally it presents the physical principle of operation of the two main systems developed at the present time

  2. Selecting a pharmacy layout design using a weighted scoring system.

    Science.gov (United States)

    McDowell, Alissa L; Huang, Yu-Li

    2012-05-01

    A weighted scoring system was used to select a pharmacy layout redesign. Facilities layout design techniques were applied at a local hospital pharmacy using a step-by-step design process. The process involved observing and analyzing the current situation, observing the current available space, completing activity flow charts of the pharmacy processes, completing communication and material relationship charts to detail which areas in the pharmacy were related to one another and how they were related, researching applications in other pharmacies or in scholarly works that could be beneficial, numerically defining space requirements for areas within the pharmacy, measuring the available space within the pharmacy, developing a set of preliminary designs, and modifying preliminary designs so they were all acceptable to the pharmacy staff. To select a final layout that could be implemented in the pharmacy, those layouts were compared via a weighted scoring system. The weighted aspect further allowed additional emphasis on categories based on their effect on pharmacy performance. The results produced a beneficial layout design as determined through simulated models of the pharmacy operation that more effectively allocated and strategically located space to improve transportation distances and materials handling, employee utilization, and ergonomics. Facilities layout designs for a hospital pharmacy were evaluated using a weighted scoring system to identify a design that was superior to both the current layout and alternative layouts in terms of feasibility, cost, patient safety, employee safety, flexibility, robustness, transportation distance, employee utilization, objective adherence, maintainability, usability, and environmental impact.

  3. How can innovative project delivery systems improve the overall efficiency of GDOT in transportation project delivery?

    Science.gov (United States)

    2013-04-01

    The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...

  4. Approach to an Affordable and Sustainable Space Transportation System

    Science.gov (United States)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  5. Not planning a sustainable transport system

    International Nuclear Information System (INIS)

    Finnveden, Göran; Åkerman, Jonas

    2014-01-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed

  6. Not planning a sustainable transport system

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Göran, E-mail: goran.finnveden@abe.kth.se; Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  7. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion

    Science.gov (United States)

    Welstead, Jason R.; Felder, James L.

    2016-01-01

    A single-aisle commercial transport concept with a turboelectric propulsion system architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo- electric concept has an economic mission fuel burn reduction of 7%, and a design mission fuel burn reduction of 12% compared to the conventional configuration. An exploration of the design space was performed to better understand how the turboelectric architecture changes the design space, and system sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer ingesting fan.

  8. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  9. A transport logistic and cost model for use in repository design specification

    International Nuclear Information System (INIS)

    Gray, L.S.; Manville, W.D.

    1998-01-01

    UK Nirex Ltd (Nirex) is responsible for developing a deep repository for the disposal of the United Kingdom's intermediate level waste and some low level waste. It also needs to be able to predict the total cost of the transport operations, and to compute the costs attributable to different combinations of sites and types of waste packages. This paper draws on work carried out as part of the assessment of Sellafield as a potential repository site, but will also show that many aspects of the transport system are independent of the actual repository location. To analyze the effects of all these possible scenarios and proposed operating practices on the costs and logistics of radioactive waste transport, Nirex commissioned the development of a flexible computer model from a software developer with the appropriate expertise. This paper describes how the LOGCOST model has been used to provide the information required for the repository design specification, and how it can readily be adapted to different potential repository locations and to changing requirements. In conclusion, it can be said that LOGCOST is a very effective transport and logistics model based on the Excel spread-sheet. The examples given have shown how LOGCOST can provide detailed predictions of radioactive waste transport costs, and how LOGCOST can be readily adapted to a new repository site or any other focal point for a transport network. (O.M.)

  10. Design and construction of a Type B overpack container for the safe transportation of enriched uranium hexafluoride

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1976-01-01

    The Paducah Tiger is an overpack designed for the international shipment of ten-ton cylinders of uranium hexafluoride in enriched form above the level of low specific acitivity. This container is designed as a Type B Package and has undergone all the tests and analyses required for a U.S. Department of Transportation Permit No. 6553. The Paducah Tiger is currently being used to ship fuel material in the USA on both truck and rail modes of transportation. In many ways, the design resembles the Super Tigersup(R), but incorporates features such as ISO corners, quick opening fasteners, and interior shock isolators that provide a system approach to the high volume of fuel shipment required in the last half of the 20th century. (author)

  11. Revised design calculations of lift systems; Elevator no setsubi keikaku ni okeru kotsu keisan

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Komaya, K. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-07-01

    For sufficient transportation capacity and passengers comfort and convenience, it is very important to design the suitable lift systems (e.g., the appropriate number of cages, velocity, capacity etc.) using a model which describes real elevator movements. The procedure used in conventional design calculations for office buildings is to determine the transportation capacity for the up-peak traffic situation using a simple passengers arrival model. This paper presents a new design calculations using balanced traffic model, which can deal with the elevator movements considering passengers arrival rate. As some performance indexes to evaluate the quality of service can be calculated by using this model, lift system designers can determine the appropriate lift facilities as to satisfy their goals. The validity of the proposed model is also shown by comparing with the measured data in real lift systems. 6 refs., 9 figs., 2 tabs.

  12. Training in Japan: The Use of Instructional Systems Design.

    Science.gov (United States)

    Taguchi, Mina; Keller, John M.

    This study investigated the kinds of training conducted in Japanese companies and the degree to which instructional systems design (ISD) is implemented. A random sample of 12 Japanese companies in the banking, automobile manufacturing, electrical machinery, wholesale stores, insurance and securities, and transportation industries were surveyed; a…

  13. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  14. Material and fabrication considerations for the CANDU-PHWR heat transport system

    International Nuclear Information System (INIS)

    Filipovic, A.; Price, E.G.; Barber, D.; Nickerson, J.

    1987-03-01

    CANDU PHWR nuclear systems have used carbon steel material for over 25 years. The accumulated operating experience of over 200 reactor years has proven this unique AECL approach to be both technically and economically attractive. This paper discusses design, material and fabrication considerations for out-reactor heat transport system major components. The contribution of this unique choice of materials and equipment to the outstanding CANDU performance is briefly covered

  15. Design of the CERN MEDICIS Collection and Sample Extraction System

    CERN Document Server

    Brown, Alexander

    MEDICIS is a new facility at CERN ISOLDE that aims to produce radio-isotopes for medical research. Possible designs for the collection and transport system for the collection of radio-isotopes was investigated. A system using readily available equipment was devised with the the aim of keeping costs to a minimum whilst maintaining the highest safety standards. FLUKA, a Monte Carlo radiation transport code, was used to simulate the radiation from the isotopes to be collected. Of the isotopes to be collected 44Sc was found to give the largest dose by simulating the collection of all isotopes of interest to CERN’s MEDICIS facility, for medical research. The simulations helped guide the amount of shielding used in the final design. Swiss Regulations stipulating allowed activity level of individual isotopes was also considered within the body of the work.

  16. Surveillance systems for intermodal transportation

    Science.gov (United States)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  17. Crew Transportation Technical Standards and Design Evaluation Criteria

    Science.gov (United States)

    Lueders, Kathryn L.; Thomas, Rayelle E. (Compiler)

    2015-01-01

    Crew Transportation Technical Standards and Design Evaluation Criteria contains descriptions of technical, safety, and crew health medical processes and specifications, and the criteria which will be used to evaluate the acceptability of the Commercial Providers' proposed processes and specifications.

  18. 24 CFR 3280.904 - Specific requirements for designing the transportation system.

    Science.gov (United States)

    2010-04-01

    ... utilize a fabricated steel frame assembly, upon which the manufactured home structure is constructed, it.... (a) General. The entire system (frame, drawbar and coupling mechanism, running gear assembly, and lights) shall be designed and constructed as an integrated, balanced and durable unit which is safe and...

  19. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  20. Impact limiter design for a lightweight tritium hydride vessel transport container

    International Nuclear Information System (INIS)

    Harding, D.C.; Longcope, D.B.; Neilsen, M.K.

    1995-01-01

    Sandia National Laboratories (SNL) has designed an impact-limiting system for a small, lightweight radioactive material shipping container. The Westinghouse Savannah River Company (WSRC) is developing this Type B package for the shipment of tritium, replacing the outdated LP-50 shipping container. Regulatory accident resistance requirements for Type B packages, including this new tritium package, are specified in 10 CFR 71 (NRC 1983). The regulatory requirements include a 9-meter free drop onto an unyielding target, a 1-meter drop onto a mild steel punch, and a 30-minute 800 degrees C fire test. Impact limiters are used to protect the package in the free-drop accident condition in any impact orientation without hindering the package's resistance to the thermal accident condition. The overall design of the new package is based on a modular concept using separate thermal shielding and impact mitigating components in an attempt to simplify the design, analysis, test, and certification process. Performance requirements for the tritium package's limiting system are based on preliminary estimates provided by WSRC. The current tritium hydride vessel (THV) to be transported has relatively delicate valving assemblies and should not experience acceleration levels greater than approximately 200 g's. A thermal overpack and outer stainless steel shell, to be designed by WSRC, will form the inner boundary of the impact-limiting system (see Figure 1). The mass of the package, including cargo, inner container, thermal overpack, and outer stainless steel shell (not including impact limiters) should be approximately 68 kg. Consistent with the modular design philosophy, the combined thermal overpack and containment system should be considered essentially rigid, with the impact limiters incurring all deformation

  1. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    Science.gov (United States)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  2. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  3. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  4. MDOT implementation plan for global positioning systems (GPS) technology in planning, design, and construction delivery.

    Science.gov (United States)

    2010-09-13

    Global Positioning System (GPS) technology offers advantages to transportation agencies in the planning, design and construction stages of project delivery. This research study will develop a guide for Mississippi Department of Transportation (MDOT) ...

  5. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. The impact of the new IAEA transport regulations for the safe transport of radioactive materials on package design and transport

    International Nuclear Information System (INIS)

    Schneider, K.

    1989-01-01

    In April 1985 the 1985 Edition of the IAEA Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, was issued. This is a completely revised edition which shall come into force internationally in the late eighties. This edition will supersede the 1973 (As Amended, 1979) edition. A paragraph by paragraph comparison is carried through, followed by a consideration on the impact on general requirements for packaging and transport. A detailed estimate on packaging design and transport is performed for typical products of the nuclear fuel cycle. The major practical consequences likely to be encountered are presented

  7. Revised conceptual designs for the FMDP MOX fresh fuel transport package

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michelhaugh, R.D.; Shappert, L.B.; Chae, S.M.; Tang, J.S.

    1998-03-01

    The revised conceptual designs described in this document provide a foundation for the development and certification of final transport package designs that will be needed to support the disposition of surplus weapons-grade plutonium as mixed-oxide (MOX) fuel in commercial light-water reactors in the US. This document is intended to describe the revised package design concepts and summarize the results of preliminary analyses and assessments of two new concepts for fresh MOX fuel transport packages that have been developed by Oak Ridge National Laboratory during the past year in support of the Department of Energy/Office of Fissile Materials Disposition

  8. Indices system design of distribution logistics, transport logistics and materials flow as parts of controlling in enterprise´s logistics

    Directory of Open Access Journals (Sweden)

    Andrea Rosová

    2010-02-01

    Full Text Available There is necessary to think about two aspects while applying controlling in logistics. The main aim of the logistics in relationto business economics is assessing support to the invested financial capital resources – it is the first aspect. The second one is basedon the target of controlling – continuous monitoring of company’s economy. In order to make a logistics controlling successful and withrequired results it is necessary to utilize any logistics controlling tools. One of the tools in logistics controlling is a set of indicators.Important part of controlling logistics system is monitoring and evaluation of logistics markers. Logistic markers representsynthetic view to logistic performance and logistic costs by the means of interaction rate so that it can evaluate logistic activities area,cost economy and final productivity of logistics activities in company.This contribution deals with markers system proposal of distribution logistics, transport logistics and materials flow control.System of markers is designed with regard to basic facilities and specifications, who has to copy character and disposition rememberedsubsystems enterprise’s logistics system.

  9. Urban Transportation Planning Short Course: Evaluation of Alternative Transportation Systems.

    Science.gov (United States)

    Federal Highway Administration (DOT), Washington, DC.

    This urban transportation pamphlet delves into the roles of policy groups and technical staffs in evaluating alternative transportation plans, evaluation criteria, systems to evaluate, and evaluation procedures. The introduction admits the importance of subjective, but informed, judgment as an effective tool in weighing alternative transportation…

  10. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russel E.; Adams, TImothy C.

    2008-01-01

    It is essential that management and engineering understand the need for an availability requirement for the customer's space transportation system as it enables the meeting of his needs, goal, and objectives. There are three types of availability, e.g., operational availability, achieved availability, or inherent availability. The basic definition of availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. The major difference is the inclusiveness of the functions within the mean downtime and the mean uptime. This paper will address tIe inherent availability which only addresses the mean downtime as that mean time to repair or the time to determine the failed article, remove it, install a replacement article and verify the functionality of the repaired system. The definitions of operational availability include the replacement hardware supply or maintenance delays and other non-design factors in the mean downtime. Also with inherent availability the mean uptime will only consider the mean time between failures (other availability definitions consider this as mean time between maintenance - preventive and corrective maintenance) that requires the repair of the system to be functional. It is also essential that management and engineering understand all influencing attributes relationships to each other and to the resultant inherent availability requirement. This visibility will provide the decision makers with the understanding necessary to place constraints on the design definition for the major drivers that will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system provided the customer. This inherent availability requirement may be driven by the need to use a multiple launch approach to placing humans on the moon or the desire to control the number of spare parts required to support long stays in either orbit or on the surface of the moon or mars. It is

  11. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  12. Technical specification for design, fabrication, use and maintenance of tie-down system

    International Nuclear Information System (INIS)

    Curcuruto, S.; Palmieri, G.; Trivelloni, S.; Orsini, A.

    1993-01-01

    IAEA Safety Series ndeg6 states that to ensure compliance with the Regulation the programs of quality assurance must be put in practice either for design, manufacture, testing, documentation, use and maintenance and inspection of all packages or for transport and intransit storage operations. Therefore in view of a standardization coming from Q.A. criteria, the Italian Competent Authority for transport of radioactive material (ENEA-DISP) is preparing a technical guide for the design, construction, use and maintenance of tie-down system for road transport of packages containing radioactive materials. The paper shows some phases of the program started by ENEA-DISP for the redaction of the technical guide. (J.P.N.)

  13. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    Finger, S.M.

    1995-01-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  14. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  15. Improvement of urban passenger transport ticketing systems by deploying intelligent transport systems

    Directory of Open Access Journals (Sweden)

    G. Jakubauskas

    2006-12-01

    Full Text Available The main advantages and disadvantages of conventional and intelligent ticketing systems and possible positive outcomes when introducing intelligent transport solutions – namely smart cards or e‑ticketing instead of conventional ones (paper tickets and magnetic cards are analysed in the paper. Two ideas of creating an intelligent ticketing system in an urban public transport are scrutinized. The first is electronic ticket and related equipment, the second – e-ticket and functional areas of it. In the article analysis has also been made on practical outcomes related with introduction of smart cards and e-ticketing. Practical tests and trials as well as a subsequent implementation of electronic tickets have proved unchallenged advantages of contactless smart cards against the contact ones. Nevertheless, a new age of modern technologies calls even for more effective solutions – namely virtual-ticketing systems that might be achieved through introduction of mobile technologies. Therefore, the main focus in the paper is made on the analysis of e-ticket.

  16. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  17. Generalized railway tank car safety design optimization for hazardous materials transport: Addressing the trade-off between transportation efficiency and safety

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Barkan, Christopher P.L.

    2011-01-01

    North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials.

  18. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  19. OGRE, Monte-Carlo System for Gamma Transport Problems

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50

  20. Solutions to Improve Person Transport System in the Pitesti City by Analyzing Public Transport vs. Private Transport

    Science.gov (United States)

    Mihaela, Istrate; Alexandru, Boroiu; Viorel, Nicolae; Ionel, Vieru

    2017-10-01

    One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of “public transport versus private transport” reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by “transshipment buses” to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the

  1. Integrated Intermodal Passenger Transportation System

    Science.gov (United States)

    Klock, Ryan; Owens, David; Schwartz, Henry; Plencner, Robert

    2012-01-01

    Modern transportation consists of many unique modes of travel. Each of these modes and their respective industries has evolved independently over time, forming a largely incoherent and inefficient overall transportation system. Travelers today are forced to spend unnecessary time and efforts planning a trip through varying modes of travel each with their own scheduling, pricing, and services; causing many travelers to simply rely on their relatively inefficient and expensive personal automobile. This paper presents a demonstration program system to not only collect and format many different sources of trip planning information, but also combine these independent modes of travel in order to form optimal routes and itineraries of travel. The results of this system show a mean decrease in inter-city travel time of 10 percent and a 25 percent reduction in carbon dioxide emissions over personal automobiles. Additionally, a 55 percent reduction in carbon dioxide emissions is observed for intra-city travel. A conclusion is that current resources are available, if somewhat hidden, to drastically improve point to point transportation in terms of time spent traveling, the cost of travel, and the ecological impact of a trip. Finally, future concepts are considered which could dramatically improve the interoperability and efficiency of the transportation infrastructure.

  2. Effectiveness of work zone intelligent transportation systems.

    Science.gov (United States)

    2013-12-01

    In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time...

  3. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    Science.gov (United States)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  4. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  5. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  6. Contribution to the logistic evaluation system in the transportation process in Santo Domingo, Ecuador

    Directory of Open Access Journals (Sweden)

    Rodobaldo Martínez Vivar

    2018-02-01

    Full Text Available Purpose: The objective of the present research is to design and apply a methodology to evaluate the logistics system in the transportation process in a base vehicle fleet, which contributes to decrease the costs of distribution and to increase the performance of the logistics system of the organization. Design/methodology: The proposal of a holistic technology for the management of this process is carried out, which integrates indicators and tools that improve control and decision-making activities in this area. Findings: The application of the procedure developed in the selected organization contributed to the identification of deficiencies related to the availability of the equipment and the needs of the clients, the low technical availability of the automotive plant, the low utilization of the capacity of the freight vehicles, the absence of a plan of measures to diminish the empty routes of the transport and the overconsumption of fuel due to the accomplishment of extra trips. Aspects that contributed to the redesign of some of the main functions of physical distribution such as itinerary planning, selection of means of transport and analysis of operating indicators, aspects that favored the optimization of the number of trips and, consequently, the adequate use of the equipment and the loads to be transported, observing a saving of 15% in the fuel consumption per load transported. Originality: The originality of the present research lies in the combination of different theories and techniques that contribute from a holistic approach to the logistics evaluation of the transportation process, facilitating the optimization of transportation requirements, its operation and maintenance.

  7. Design and control of automated guided vehicle systems: A case study

    NARCIS (Netherlands)

    Li, Q.; Adriaansen, A.C.; Udding, J.T.; Pogromski, A.Y.

    2011-01-01

    In this paper, we study the design and control of automated guided vehicle (AGV) systems, with the focus on the quayside container transport in an automated container terminal. We first set up an event-driven model for an AGV system in the zone control framework. Then a number of layouts of the road

  8. Using geospatial techniques to develop an emergency referral transport system for suspected sepsis patients in Bangladesh

    Science.gov (United States)

    Haider, Rafiqul; Abdullah, Abu Yousuf Md; Christou, Aliki; Ali, Nabeel Ashraf; Rahman, Ahmed Ehsnaur; Iqbal, Afrin; Bari, Sanwarul; Hoque, D. M. Emdadul; Arifeen, Shams El; Kissoon, Niranjan; Larson, Charles P.

    2018-01-01

    Background A geographic information system (GIS)-based transport network within an emergency referral system can be the key to reducing health system delays and increasing the chances of survival, especially during an emergency. We employed a GIS to design an emergency transport system for the rapid transfer of pregnant or early post-partum women, newborns, and children under 5 years of age with suspected sepsis under the Interrupting Pathways to Sepsis Initiative (IPSI) project. Methods A GIS database was developed by mapping the villages, roads, and relevant physical features of the study area. A travel-time algorithm was developed to incorporate the time taken by different modes of local transport to reach the health complexes. These were used in a network analysis to identify the shortest routes to the hospitals from the villages, which were categorized into green, yellow, and red zones based on their proximity to the nearest hospitals to provide transport facilities. An emergency call-in centre established for the project managed the transport system, and its data was used to assess the uptake of this transport system amongst distant communities. Results Fifteen pre-existing and two new routes were identified as the shortest routes to the health complexes. The call-in centre personnel used this route information to direct both patients and transport drivers to the nearest transport hubs or pick-up points. Adherence with referral advice was high in areas where the IPSI transport operated. Over the study period, the utilisation of the project’s transport doubled and referral compliance from distant zones similarly increased. Conclusions The GIS system created for this study facilitated rapid referral of patients in emergency from distant zones, using locally available transport and resources. The methodology described in this study to develop and implement an emergency transport system can be applied in similar, rural, low-income country settings. PMID

  9. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  10. Rail transport systems approach

    CERN Document Server

    2017-01-01

    This book shows how the systems approach is employed by scientists in various countries to solve specific problems concerning railway transport. In particular, the book describes the experiences of scientists from Romania, Germany, the Czech Republic, the UK, Russia, Ukraine, Lithuania and Poland. For many of these countries there is a problem with the historical differences between the railways. In particular, there are railways with different rail gauges, with different signaling and communication systems, with different energy supplies and, finally, with different political systems, which are reflected in the different approaches to the management of railway economies. The book’s content is divided into two main parts, the first of which provides a systematic analysis of individual means of providing and maintaining rail transport. In turn, the second part addresses infrastructure and management development, with particular attention to security issues. Though primarily written for professionals involved...

  11. The transport system approval concept

    International Nuclear Information System (INIS)

    Pettersson, B.G.

    1991-01-01

    The needs for, and merits of, a new concept for the safety assessment and approval of shipments of radioactive materials is introduced and discussed. The purpose of the new concept is to enable and encourage integration of analysis and review of transport safety with similar safety analysis and review of the handling operations involving the radioactive material at the despatching and receiving ends of a shipment. Safety contributing elements or functions of the means of transport (the Transport System) can thus readily be taken into account in the assessment. The objective is to avoid constraints -experienced or potential - introduced by the package functional provisions contained in the transport regulations, whilst maintaining safety during transport, as well as during facility handling operations, at least at the level at the level currently established. (author)

  12. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    Ward, T.; McFadden, M.

    1993-01-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  13. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  14. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    Science.gov (United States)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  15. CERCA 01: a new safe multi-design MTR transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Faure-Geors, B.S. [Framatome ANP Nuclear Fuel, CERCA, F-26104 Romans (France); Doucet, M.E. [Framatome ANP Nuclear Fuel, F-69006 Lyon (France)

    2001-07-01

    CERCA, a subsidiary company of FRAMATOME ANP, manufactures fuel for research reactors all over the world. To comply with customer requirements, fabrication of material testing reactors elements is a mixed of various parameters. Worldwide transportation of elements requires a flexible cask, which accommodates different designs and meets international transportation regulations. To be able to deliver most of fuel elements, and to cope with non-validation of casks used previously, CERCA decided to design its own cask. All regulatory tests were successfully performed. They completely validated and qualified the safety of this new cask concept. No matter the accidental conditions are, a 5 % {delta}K subcriticality margin is always met.

  16. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  17. Intelligent Transportation Systems : critical standards

    Science.gov (United States)

    1999-06-01

    Intelligent Transportation Systems (ITS) standards are industry-consensus standards that provide the details about how different systems interconnect and communicate information to deliver the ITS user services described in the National ITS Architect...

  18. Industrial & Engineering Systems Career Cluster ITAC for Career-Focused Education: Transportation Sub-Cluster. Integrated Technical & Academic Competencies.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Designed for Ohio educators responsible for planning programs to prepare high school students for careers in transportation, this document presents an overview of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education and specific information about the transportation subcluster of the industrial and…

  19. Development of design principles for automated systems in transport control.

    Science.gov (United States)

    Balfe, Nora; Wilson, John R; Sharples, Sarah; Clarke, Theresa

    2012-01-01

    This article reports the results of a qualitative study investigating attitudes towards and opinions of an advanced automation system currently used in UK rail signalling. In-depth interviews were held with 10 users, key issues associated with automation were identified and the automation's impact on the signalling task investigated. The interview data highlighted the importance of the signallers' understanding of the automation and their (in)ability to predict its outputs. The interviews also covered the methods used by signallers to interact with and control the automation, and the perceived effects on their workload. The results indicate that despite a generally low level of understanding and ability to predict the actions of the automation system, signallers have developed largely successful coping mechanisms that enable them to use the technology effectively. These findings, along with parallel work identifying desirable attributes of automation from the literature in the area, were used to develop 12 principles of automation which can be used to help design new systems which better facilitate cooperative working. The work reported in this article was completed with the active involvement of operational rail staff who regularly use automated systems in rail signalling. The outcomes are currently being used to inform decisions on the extent and type of automation and user interfaces in future generations of rail control systems.

  20. Literature Review for Texas Department of Transportation Research Project 0-4695: Guidance for Design in Areas of Extreme Bed-Load Mobility, Edwards Plateau, Texas

    National Research Council Canada - National Science Library

    Heitmuller, Franklin T; Asquith, William H; Fang, Xing; Thompson, David B; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0-4695...

  1. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all......). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were...

  2. Performances of the HL (Hyperloop) transport system

    OpenAIRE

    van Goeverden, C.D.; Milakis, D.; Janic, M.; Konings, J.W.; Cools, M.; Limbourg, S.

    2017-01-01

    This paper deals with an analysis of performances of the HL (Hyperloop) transport system considered as an advanced transport alternative to the existing APT (Air Passenger Transport) and HSR (High Speed Rail) systems. The considered performances are operational, financial, social and environmental. The operational performance include capacity and quality of service provided to the system’s users-passengers with attributes such as door-to-door travel time consisting of the access and egress ti...

  3. Advanced public transportation systems benefits

    Science.gov (United States)

    1996-03-01

    Benefits and cost savings for various Advanced Public Transportation Systems are outlined here. Operational efficiencies are given for Transit Management Systems in different locales, as well as compliant resolution and safety. Electronic Fare Paymen...

  4. Optimal concentrations in transport systems

    Science.gov (United States)

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  5. ACS sampling system: design, implementation, and performance evaluation

    Science.gov (United States)

    Di Marcantonio, Paolo; Cirami, Roberto; Chiozzi, Gianluca

    2004-09-01

    By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Characteristic Component Property with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients (one or more Java plotting widgets, a dedicated GUI or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible. Together with the design and implementation issues we present the performance of the sampling system evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.

  6. From microsystems technology to the Saenger II space transportation system

    Science.gov (United States)

    Vogels, Hanns Arnt

    The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.

  7. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  8. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  9. Pneumatic transport system development: residuals and releases program at Westinghouse Cheswick site

    International Nuclear Information System (INIS)

    Larouere, P.J.; Shoulders, J.L.

    1979-01-01

    Plutonium oxide and uranium oxide powders are processed within glove boxes or within confinement systems during the fabrication of mixed oxide (MOX) pellets for recycle fuel. The release of these powders to the glove box or to the confinement results in some airborne material that is deposited in the enclosure or is carried in the air streams to the effluent air filtration system. Release tests on simulated leaks in pneumatic transport equipment and release tests on simulated failures with powder blending equipment were conducted. A task to develop pneumatic transport for the movement of powders within an MOX fabrication plant has been underway at the Westinghouse Research Laboratories. While testing and evaluating selected pneumatic transport components on a full scale were in progress, it was deemed necessary that final verification of the technology would have to be performed with plutonium-bearing powders because of the marked differences in certain properties of plutonium from those of uranium oxides. A smaller was designed and constructed for the planned installation in glove boxes at the Westinghouse Plutonium Fuel Development Laboratory. However, prior to use with plutonium it was agreed that this system be set up and tested with uranium oxide powder. The test program conducted at the Westinghouse Cheswick site was divided into two major parts. The first of these examined the residuals left as a result of the pneumatic transport of nuclear fuel powders and verified the operability of this one-third scale system. The second part of the program studied the amount of powder released to the air when off-standard process procedures or maintenance operations were conducted on the pneumatic transport system. Air samplers located within the walk-in box housing the transport loop were used to measure the solids concentration in the air. From this information, the total amount of airborne powder was determined

  10. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  11. Toward a community coastal sediment transport modeling system: the second workshop

    Science.gov (United States)

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  12. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    International Nuclear Information System (INIS)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-01-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  13. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    Energy Technology Data Exchange (ETDEWEB)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  14. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  15. A multi-purpose unit concept to integrate storage, transportation, and the engineered barrier system

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    The Multi-Purpose Unit (MPU) is a new concept for standardizing and integrating the waste management functions of spent fuel storage, transportation, and geologic disposal. The MPU concept would use one unit, composed of a relatively thick-walled inner canister with a multi-purpose overpack, to meet the requirements for storage in 10 CFR 72, transportation in 10 CFR 71, and the engineered barrier system in 10 CFR 60. The MPU concept differs from the recently proposed Multi-Purpose Canister (MPC) concept in that the MPU concept uses a single multi-purpose overpack for storage, transportation, and geologic disposal, while the MPC concept uses separate and unique overpacks for each of these system functions. A design concept for the MPU is presented along with an estimate of unit costs. An initial evaluation of overall system cost showed that the MPU concept could be economically competitive with the current reference system. The MPU concept provides the potential for significant reduction, simplification, and standardization of Civilian Radioactive Waste Management (CRWMS) facilities and operations, including those at the utilities, during waste acceptance and transportation, and at the Monitored Retrievable Storage (MRS) facility and the repository. The primary issues for the MPU concept relate to uncertainties with respect to licensing, and the programmatic risks associated with implementing the MPU concept before the repository design is finalized. The strong potential exhibited by the MPU concept demonstrates that this option merits additional development and should be considered in the next phase of work on multi-purpose concepts for the CRWMS

  16. The management system for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Safety Guide is to provide information to organizations that are developing, implementing or assessing a management system for activities relating to the transport of radioactive material. Such activities include, but are not limited to, design, fabrication, inspection and testing, maintenance, transport and disposal of radioactive material packaging. This publication is intended to assist those establishing or improving a management system to integrate safety, health, environmental, security, quality and economic elements to ensure that safety is properly taken into account in all activities of the organization. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix: Graded approach for management systems for the safe transport of radioactive materials; Annex I: Two examples of management systems; Annex II: Examples of management system standards; Annex III: Example of a documented management system (or quality assurance programme) for an infrequent consignor; Annex IV: Example of a documented management system (or quality assurance programme) description for an infrequent carrier; Annex V: Example of a procedure for control of records; Annex VI: Example of a procedure for handling packages containing radioactive materials, including receipt and dispatch; Annex VII: Example of a packaging maintenance procedure in a complex organization; Annex VIII: Example of an internal audit procedure in a small organization; Annex IX: Example of a corrective and preventive action procedure

  17. Transport Coefficients for dense hard-disk systems

    NARCIS (Netherlands)

    Garcia-Rojo, R.; Luding, Stefan; Brey, J. Javier; Ooms, G.; Hoogendoorn, C.J.

    2007-01-01

    A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-Einstein expressions is reported. The pressure, the viscosity, and the heat conductivity are examined for different density and system-size. While most transport coefficients agree with Enskog theory

  18. Low-Speed Cooperative Car-Following Fuzzy Controller for Cybernetic Transport Systems

    OpenAIRE

    Milanés , Vicente; Marouf , Mohamed; Pérez Rastelli , Joshué; Gonzalez Bautista , David; Nashashibi , Fawzi

    2014-01-01

    International audience; — This paper describes the development of a Coop-erative Adaptive Cruise Control (CACC) for the future urban transportation system at low-speed. The control algorithm was evaluated using two Cybecars as prototype vehicles. A longitu-dinal response model for the vehicles was developed to design the CACC system. The control algorithm was implemented on a fuzzy logic-based controller that has been tuned to minimize a cost function in order to get a trade-off between a pro...

  19. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  20. Solute carrier transporters: potential targets for digestive system neoplasms.

    Science.gov (United States)

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.

  1. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  2. Propagating fronts in reaction-transport systems with memory

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A. [Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (United States)], E-mail: ayadav1@lsu.edu; Fedotov, Sergei [School of Mathematics, University of Manchester, Manchester M60 1DQ (United Kingdom)], E-mail: sergei.fedotov@manchester.ac.uk; Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: vicenc.mendez@uab.es; Horsthemke, Werner [Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (United States)], E-mail: whorsthe@smu.edu

    2007-11-26

    In reaction-transport systems with non-standard diffusion, the memory of the transport causes a coupling of reactions and transport. We investigate the effect of this coupling for systems with Fisher-type kinetics and obtain a general analytical expression for the front speed. We apply our results to the specific case of subdiffusion.

  3. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russell E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  4. Space Transportation System Availability Requirement and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russel E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  5. Analysis and comparison of transportation security systems

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1976-05-01

    The role of modeling in the analysis of transportation security systems is described. Various modeling approaches are outlined. The conflict model developed in Sandia Laboratories' Transportation Mode Analysis for the NRC Special Safeguards Study is used to demonstrate the capability of models to determine system sensitivities and compare alternatives

  6. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  7. Shielding calculations in support of the Spallation Neutron Source (SNS) proton beam transport system

    International Nuclear Information System (INIS)

    Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina

    2002-01-01

    Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system

  8. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  9. AUTOMATION DESIGN FOR MONORAIL - BASED SYSTEM PROCESSES

    Directory of Open Access Journals (Sweden)

    Bunda BESA

    2016-12-01

    Full Text Available Currently, conventional methods of decline development put enormous cost pressure on the profitability of mining operations. This is the case with narrow vein ore bodies where current methods and mine design of decline development may be too expensive to support economic extraction of the ore. According to studies, the time it takes to drill, clean and blast an end in conventional decline development can be up to 224 minutes. This is because once an end is blasted, cleaning should first be completed before drilling can commence, resulting in low advance rates per shift. Improvements in advance rates during decline development can be achieved by application of the Electric Monorail Transport System (EMTS based drilling system. The system consists of the drilling and loading components that use monorail technology to drill and clean the face during decline development. The two systems work simultaneously at the face in such a way that as the top part of the face is being drilled the pneumatic loading system cleans the face. However, to improve the efficiency of the two systems, critical processes performed by the two systems during mining operations must be automated. Automation increases safety and productivity, reduces operator fatigue and also reduces the labour costs of the system. The aim of this paper is, therefore, to describe automation designs of the two processes performed by the monorail drilling and loading systems during operations. During automation design, critical processes performed by the two systems and control requirements necessary to allow the two systems execute such processes automatically have also been identified.

  10. Aspects of transport system management within mining complex using information and telecommunication systems

    Science.gov (United States)

    Semykina, A. S.; Zagorodniy, N. A.; Konev, A. A.; Duganova, E. V.

    2018-05-01

    The paper considers aspects of transport system management within the mining complex. It indicates information and telecommunication systems that are used to increase transportation efficiency. It also describes key advantages and disadvantages. It is found that software products of the Modular Company used in pits allow increasing transport performance, minimizing losses and ensuring efficient transportation of minerals.

  11. Geometric feasibility of flexible cask transportation system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P; Ribeiro, M I; Aparicio, P [Instituto Superior Tecnico-Instituto de Sistemas e Robotica, Lisboa (Portugal)

    1998-07-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  12. Geometric feasibility of flexible cask transportation system for ITER

    International Nuclear Information System (INIS)

    Lima, P.; Ribeiro, M.I.; Aparicio, P.

    1998-01-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  13. The beam bunching and transport system of the Argonne positive ion injector

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (β ≤ .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/ΔM > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs

  14. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  15. Design of position monitor module in radioactive material transport monitoring system

    International Nuclear Information System (INIS)

    Adi Abimanyu; Dwi Yuliansari N

    2013-01-01

    Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured so as not to harm humans. In general, monitoring is done through conversation by telephone to determine the location and rate of exposure of radioactive substances. Through the development of science and technology makes it possible to develop a system of monitoring the transport of radioactive substances in real time by combining radiation monitor module, position monitors module and sending information nir-cable. Position monitor module developed using GPS-receiver and a micro controller ATMega8 based serial interrupts communication. Testing is done by testing communication between micro controller and GPS and also testing reading position by GPS receiver. From the test results concluded that the developed modules is good in serial communication is based on serial interrupts, good position measurement to be used outdoors and is not good enough for measurements indoors because the GPS receiver used is not using an outdoor antenna. (author)

  16. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  17. Study on tracking system for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, F.; Igarashi, M.; Nomura, T. [Nuclear Emergency Assistance and Training Center, Japan Nuclear Cycle Development Inst., Ibaraki (Japan); Nakagome, Y. [Research Reactor Inst., Kyoto Univ., Osaka (Japan)

    2004-07-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on.

  18. Study on tracking system for radioactive material transport

    International Nuclear Information System (INIS)

    Watanabe, F.; Igarashi, M.; Nomura, T.; Nakagome, Y.

    2004-01-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on

  19. Design and tests of a package for the transport of radioactive sources

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2011-01-01

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  20. Application of the transport system concept to the transport of LSA waste

    International Nuclear Information System (INIS)

    Lombard, J.; Appleton, P.; Libon, H.; Sannen, H.

    1994-01-01

    The aim of this presentation is to illustrate using two examples how a particular special arrangement can be envisaged for the transport of a well defined category of waste according to the ''Transport System Concept''. (authors)

  1. Lunar Module ECS (Environmental Control System) - Design Considerations and Failure Modes. Part 1

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    Design considerations and failure modes for the Lunar Module (LM) Environmental Control System (ECS) are described. An overview of the the oxygen supply and cabin pressurization, atmosphere revitalization, water management and heat transport systems are provided. Design considerations including reliability, flight instrumentation, modularization and the change to the use of batteries instead of fuel cells are discussed. A summary is provided for the LM ECS general testing regime.

  2. Biking and Walking: The Position of Non-Motorised Transport Modes in Transport Systems

    NARCIS (Netherlands)

    Rietveld, Piet

    2001-01-01

    Long run developments such as income growth and urban sprawl lead one to expect a continuous decline of thecontribution of non-motorised transport modes to the performance of transport systems. In terms of the total number of trips, non-motorised transport modes have retained high shares, however.

  3. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  4. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  5. Cyber-physical-social System in Intelligent Transportation

    Institute of Scientific and Technical Information of China (English)

    Gang Xiong; Fenghua Zhu; Xiwei Liu; Xisong Dong; Wuling Huang; Songhang Chen; Kai Zhao

    2015-01-01

    A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliability of a physical system,such as vehicle collision avoidance and zero-net energy buildings systems.It has become a hot R&D and practical area from US to EU and other countries.In fact,most of physical systems and their cyber systems are designed,built and used by human beings in the social and natural environments.So,social systems must be of the same importance as their CPSs.The indivisible cyber,physical and social parts constitute the cyber-physical-social system(CPSS),a typical complex system and it’s a challengeable problem to control and manage it under traditional theories and methods.An artificial systems,computational experiments and parallel execution(ACP) methodology is introduced based on which data-driven models are applied to social system.Artificial systems,i.e.,cyber systems,are applied for the equivalent description of physical-social system(PSS).Computational experiments are applied for control plan validation.And parallel execution finally realizes the stepwise control and management of CPSS.Finally,a CPSS-based intelligent transportation system(ITS) is discussed as a case study,and its architecture,three parts,and application are described in detail.

  6. ANALYSIS OF THE CITY TRANSPORT SYSTEM’S DEVELOPMENT STRATEGY DESIGN PRINCIPLES WITH ACCOUNT OF RISKS AND SPECIFIC FEATURES OF SPATIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Irina MAKAROVA

    2017-04-01

    Full Text Available Transport system is the key indicator of sustainable spatial development, because if it is ineffective it can render the economy, the environment, and society vulnerable. Despite the large number of already existing research, the city transportation sys-tem’s development strategy design is still a relevant objective, because the existing ways and strategies of the transport development may not always be applicable in certain circumstances. This article presents the possible ways of improvement of sustainability of the city transportation systems adapted in accordance with the peculiarities of Russian cities. It is stated that when working out a city transportation system’s development strategy it is necessary to take into account all possible risks. According to the case study of Naberezhnye Chelny city, all vulnerabilities of the system that today are typical almost for all Russian cities were analyzed, classification of risks was made, and means of their control were suggested. Solutions proposed as a result of the SWOT-analysis can be used when developing transport strategies for other cities with similar specificity.

  7. The transnational territorial transport system of the Baltic Region

    Directory of Open Access Journals (Sweden)

    Gumenyuk Ivan

    2012-03-01

    Full Text Available In this paper we focus on the structure and territorial borders of the Baltic Sea region, and examine the key structural elements of the transnational territorial transport system. In this respect, we clarify some terms used in transport geography. For the first time the transport system gets territorially localized, which allows for a broad range of new studies of transnational transportation in the Baltic Sea area. We also identify the main principles of development and operation of international territorial transport systems and present them taking the Baltic Sea region as an example. Our findings, we hope, will have a great practical application for researchers of transport geography, especially those studying international logistics.

  8. Traffic Route Modelling and Assignment with Intelligent Transport System

    Directory of Open Access Journals (Sweden)

    Kunicina Nadezhda

    2014-12-01

    Full Text Available The development of signal transmitting environment for multimodal traffic control will enhance the integration of emergency and specialized transport routing tools in usual traffic control paradigms - it is one of the opportunities offered by modern intelligent traffic control systems. The improvement of effective electric power use in public transport system is an advantage of Intelligent Transport System (ITS. The research is connected with the improvement of on-line traffic control and adaptation of special traffic lighting alternatives by ITS. The assignment of the nearest appropriate transport will be done by passenger request, but unlike information system, the transport planning is done on demand. The task can be solved with the help of modern technical methods and equipment, as well as by applying control paradigms of the distributed systems. The problem is solved with the help of calculations hyper-graph and scheduling theory. The goal of the research is to develop methods, which support scheduling of the emergency transport, using high performance computing.

  9. Self-Organized Transport System

    Science.gov (United States)

    2009-09-28

    This report presents the findings of the simulation model for a self-organized transport system where traffic lights communicate with neighboring traffic lights and make decisions locally to adapt to traffic conditions in real time. The model is insp...

  10. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  11. An Integrated Inventory-Transportation System with Periodic Pick-Ups and Leveled Replenishment

    Directory of Open Access Journals (Sweden)

    Thomas Volling

    2013-11-01

    Full Text Available In this paper we develop a combined inventory-transportation system. The general idea is to integrate a simple replenishment policy with a routing component to derive operationally consistent standard routes as a basis for milk run design. The most interesting feature of the approach is that we combine stochastic vehicle routing with a replenishment policy which makes use of inventory to level the variability propagated into transportation operations. To evaluate the approach, we compare its performance with stochastic vehicle routing as well as sequential vehicle routing and replenishment planning. With respect to these approaches, substantial gains are achieved.

  12. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  13. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  14. An Agent-Based Approach for a Smart Transport System

    Directory of Open Access Journals (Sweden)

    Cristian PEÑARANDA

    2016-11-01

    Full Text Available This paper presents a proposal for a Smart Transport System which is an application that facilitates the interconnection between people (citizens, tourists and transport providers (Bus, metro, trains, trams, defining the services that everyone can request or offer. The system has been defined as a virtual organization where agents (representing actors of the transport system can enter or leave into the system consuming or offering services. Due to the fact that modern urban public transport is increasingly an important service used by citizens in current cities, the proposed system will improve the use of resources while also ensuring time flexible mobility solutions for citizens.

  15. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  16. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Analysis of a system containing a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Smith, R.I.; Daling, P.M.; Faletti, D.W.

    1992-04-01

    This addendum report extends the original study of the estimated radiation doses to the public and to workers resulting from transporting spent nuclear fuel from commercial nuclear power reactor stations through the federal waste management system (FWMS), to a system that contains a monitored retrievable storage (MRS) facility. The system concepts and designs utilized herein are consistent with those used in the original study (circa 1985--1987). Because the FWMS design is still evolving, the results of these analyses may no longer apply to the design for casks and cask handling systems that are currently being considered. Four system scenarios are examined and compared with the reference No-MRS scenario (all spent fuel transported directly from the reactors to the western repository in standard-capacity truck and rail casks). In Scenarios 1 and 2, an MRS facility is located in eastern United States and ships either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters. In Scenarios 3 and 4, an MRS facility is located in the western United States and ship either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters

  17. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ''WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4)

  18. Design of data transportation based on dual-port RAM in IMS system

    International Nuclear Information System (INIS)

    Zhang Guohui; Li Yongping

    2010-01-01

    Ion mobility spectroscopy (IMS) is a rugged, portable, sensitive, low cost, field instrumental technique capable of trace organic detection and monitoring for environmental pollutants, pesticides, explosives, narcotics, and other analytes, hence it is of great significance to social security and stability. High rate data transmission mechanism between DSP processor and ARM core is required in the electronic system of IMS. After careful comparison of UART and dual port RAM, a new design based on dual port RAM that can be applied to other similar systems. (authors)

  19. Intermodal transport as an integral part of logistics system

    Directory of Open Access Journals (Sweden)

    Agnieszka Bitkowska

    2016-06-01

    Full Text Available The experience of companies that are successful in the carriage of goods prove that intermodal transport is now a major factor in determining the success of logistics system. A modern approach to the transport is based on intermodal transport. The article is based on the method of external observation. It presents the essence of intermodal transport and its benefits. It specifies transportation as an integral part of logistics system.

  20. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    Science.gov (United States)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  1. Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, H.; Itoi, R.; Fujii, J. [Kyushu University, Fukuoka (Japan). Faculty of Engineering, Department of Earth Resources Engineering; Uchida, Y. [Geological Survey of Japan, Tsukuba (Japan)

    2005-06-01

    In order to predict the long-term performance of large-scale ground-coupled heat pump (GCHP) systems, it is necessary to take into consideration well-to-well interference, especially in the presence of groundwater flow. A mass and heat transport model was developed to simulate the behavior of this type of system in the Akita Plain, northern Japan. The model was used to investigate different operational schemes and to maximize the heat extraction rate from the GCHP system. (author)

  2. Microwave Scattering System Design for ρe-Scale Turbulence Measurements on NSTX

    International Nuclear Information System (INIS)

    Smith, D.R.; Mazzucato, E.; Munsat, T.; Park, H.; Johnson, D.; Lin, L.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.

    2004-01-01

    Despite suppression of ρ i -scale turbulent fluctuations, electron thermal transport remains anomalous in NSTX. For this reason, a microwave scattering system will be deployed to directly observe the w and k spectra of ρ e -scale turbulent fluctuations and characterize the effect on electron thermal transport. The scattering system will employ a Gaussian probe beam produced by a high power 280 GHz microwave source. A five-channel heterodyne detection system will measure radial turbulent spectra in the range |k r | = 0-20 cm -1 . Inboard and outboard launch configurations cover most of the normalized minor radius. Improved spatial localization of measurements is achieved with low aspect ratio and high magnetic shear configurations. This paper will address the global design of the scattering system, such as choice of frequency, size, launching system, and detection system

  3. Smart urban design to reduce transportation impact in city centers

    Science.gov (United States)

    Fezzai, Soufiane; Mazouz, Said; Ahriz, Atef

    2018-05-01

    Air pollution is one of the most serious problems facing human being; urban wastes are in first range of energy consumption and emission of greenhouse gasses. Transportation or car traffic is one of the most consumer sectors of fuel, and most pollutant. Reducing energy consumption in transportation and the emission of pollutant gasses becomes an important objective for urban designers; many solutions may be proposed to help solving this problem in future designs, but it depend on other factors in existing urban space especially in city centers characterized with high occupation density. In this paper we investigate traffic rate in the city center of the case study, looking for the causes of the high traffic using gate count method and estimating fuel consumption. We try to propose some design solutions to reduce distances so fuel consumption and emission of pollutant gasses. We use space syntax techniques to evaluate urban configuration and verify the proposed solutions.

  4. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  5. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  6. Guide to federal intelligent transportation system (ITS) research.

    Science.gov (United States)

    2013-01-01

    The U.S. Department of Transportations (USDOT) Intelligent Transportation System (ITS) Program aims to bring connectivity to transportation through the use of advanced wireless technologies powerful technologies that enable transformative chan...

  7. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS......) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  8. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  9. Installation of the product transport system and control system for the Co-60 irradiator at the Institute of Investigations of the Alimentary Industry (IIIA), La Havana, Cuba

    International Nuclear Information System (INIS)

    Tran Khac An; Le Minh Tuan; Pham Thi Thu Hong; Nguyen Thanh Cuong; Huynh Dong Phuong; Ha Thanh Viet; Truong Vu Thanh Nhan

    2016-01-01

    Under the protocol of international cooperation in science and technology between Vietnam and Cuba - “Installation of the product transport system and control system for the Cobalt-60 irradiator at the Institute of Investigations of the Alimentary Industry (IIIA)”, the renovation of the irradiator has been started since 2012 and carried out by Research and Development Center for Radiation Technology (VINAGAMMA). The renovation work comprises the installation of the tote box transport system that was designed and constructed by Isotope Institute Budapest, Hungary, the installation of the PLC based control system which were designed and constructed by VINAGAMMA, installations of technological systems and training Cuban irradiator operators. The project has been successfully implemented and the industrial Co-60 irradiator with new control system has been put into operation. (author)

  10. Road Transportable Analytical Laboratory system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  11. The IRSN experience feedback for the transport package design safety appraisals

    International Nuclear Information System (INIS)

    Sert, G.

    2007-01-01

    The activity of transportation of radioactive materials is in constant evolution; air transport of radio elements for medical use is growing rapidly as well as transport of instruments equipped with radioactive sources for inspections of buildings (controls of presence of lead in paintings) and in industry (non destructive examination of welding by gammagraphy, controls of density on building sites). Transports associated with the recycling of plutonium for the production of electricity by nuclear energy are now accomplished in routine. Globally, 900.000 packages are shipped each year in France; among them, approximately 100.000 packages belong to the category for which design approval is required. To maintain a high level of safety for this activity by limiting the probability of occurrence, the severity and consequences of the incidents and accidents, strict rules are implemented by users under the control of the Safety Authority According to the systematic approach of defence in depth, which is defined by the three principles of safety in design, of operational reliability and of effectiveness of emergency response, the robustness of the design of the package is of primary importance. It is based on regulatory requirements relating to the functions of safety (containment of radioactivity, protection against radiation and prevention of the risks of criticality) that must be ensured by the package in conditions of transport as well as in accident conditions. These rules and the way of applying them evolve with time. Indeed, on the one hand the regulation is reexamined periodically; on the other hand, the technical knowledge on the behaviour of the packages subject to the above mentioned conditions and the means of evaluation of this behaviour progress permanently

  12. Analysis of the energy efficiency of the transport system in Algeria; Analyse de l'efficacite energetique du systeme de transport en Algerie

    Energy Technology Data Exchange (ETDEWEB)

    Hamdani, Sid Ahmed

    2010-09-15

    The objective of this communication is analyze the energy efficiency of the transport system in Algeria and to show the areas of possible rationalization in this sector. Our approach is to analyze the existing configuration of the sector and its impact on energy consumption, by developing a sectional model Bottom Up, where the transport park has been modified by the means used. We have shown that the potential to improve the transport system energy efficiency is important and have recommended some options aimed at the sector organisation and aimed at increasing the relative part of transport systems to make it more energy efficient. [French] L'objectif de cette communication est d'analyser l'efficacite energetique du systeme de transport algerien et de montrer les gisements de rationalisation possibles dans ce secteur. Notre approche consiste a analyser la configuration existante du secteur et son impact sur la consommation d'energie, en elaborant un modele sectoriel Bottom Up, ou le parc de transport a ete desagrege par moyen utilise. Nous avons montre que le potentiel d'amelioration de la performance energetique du systeme de transport est important et avons recommande quelques options ciblant l'organisation du secteur et visant a augmenter la part relative de moyens de transport plus efficace energetiquement.

  13. Natural hazard impacts on transport systems: analyzing the data base of transport accidents in Russia

    Science.gov (United States)

    Petrova, Elena

    2015-04-01

    We consider a transport accident as any accident that occurs during transportation of people and goods. It comprises of accidents involving air, road, rail, water, and pipeline transport. With over 1.2 million people killed each year, road accidents are one of the world's leading causes of death; another 20-50 million people are injured each year on the world's roads while walking, cycling, or driving. Transport accidents of other types including air, rail, and water transport accidents are not as numerous as road crashes, but the relative risk of each accident is much higher because of the higher number of people killed and injured per accident. Pipeline ruptures cause large damages to the environment. That is why safety and security are of primary concern for any transport system. The transport system of the Russian Federation (RF) is one of the most extensive in the world. It includes 1,283,000 km of public roads, more than 600,000 km of airlines, more than 200,000 km of gas, oil, and product pipelines, 115,000 km of inland waterways, and 87,000 km of railways. The transport system, especially the transport infrastructure of the country is exposed to impacts of various natural hazards and weather extremes such as heavy rains, snowfalls, snowdrifts, floods, earthquakes, volcanic eruptions, landslides, snow avalanches, debris flows, rock falls, fog or icing roads, and other natural factors that additionally trigger many accidents. In June 2014, the Ministry of Transport of the RF has compiled a new version of the Transport Strategy of the RF up to 2030. Among of the key pillars of the Strategy are to increase the safety of the transport system and to reduce negative environmental impacts. Using the data base of technological accidents that was created by the author, the study investigates temporal variations and regional differences of the transport accidents' risk within the Russian federal regions and a contribution of natural factors to occurrences of different

  14. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  15. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  16. Operational analysis supporting the definition of the repository/transportation interface

    International Nuclear Information System (INIS)

    Peterson, R.W.; Smith, L.A.; Wampler, J.A.

    1985-06-01

    This report discusses progress made to date in an on-going effort to analyze operations at the repository-transportation interface of the Mined Geologic Disposal System of the Salt Repository Project (SRP). The interface is where the two systems actually are in physical contact with one another. The overall intent of the on-going effort is to to evaluate several interface design concepts for the extent to which workers are exposed to radiation, for the time required to receive and process transportation casks, and for the associated capital and operating costs. The design criteria report will outline interface functional requirements, which when incorporated into the interfacing systems (transportation-repository receiving), will ensure their physical compatibility, their optimal operation, and their compliance with performance standards. The final design criteria report will subsequently serve as an input to the receiving facility design portions of the SRP System Design Description (SDD), and System Requirements Specifications (SRS), and to the transportation cask design specifications. 6 refs., 13 figs., 6 tabs

  17. Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2010-01-01

    Uranium oxide powder is a commonly handled ceramic powder in nuclear industries. Design of the powder transfer system is an important aspect because of some of its typical characteristics. Pneumatic transport system has been widely used in transferring powder from one place to another. A pneumatic transport system using vacuum has been presented in the paper. This is used for bulk transfer of UO 3 powder. The system consists of a cyclone separator and filter cloth at the top of the cyclone separator. The pneumatic transfer system provides high efficiency with sustainable performance and it is a compact, robust, handy and moveable unit. No degradation of the powder quality has been observed during transfer. The system provides highly efficient, easy and safe transfer of radioactive powder, better working environment for the operator. (author)

  18. Final report : UAB transportation workforce development.

    Science.gov (United States)

    2014-06-01

    Transportation engineering supports safe and efficient movement of people and goods through : planning, design, operation and management of transportation systems. As needs for : transportation continue to grow, the future needs for qualified transpo...

  19. Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences.

    Science.gov (United States)

    Pratuangdejkul, J; Schneider, B; Launay, J-M; Kellermann, O; Manivet, P

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter of the central nervous and peripheral systems (CNS), plays a critical role in a wide variety of physiological and behavioral processes. In the serotonergic system, deregulation of the tightly controlled extracellular concentration of 5-HT appears to be at the origin of a host of metabolic and psychiatric disorders. A key step that regulates 5-HT external level is the re-uptake of 5-HT into cells by the 5-HT transporter (SERT), which is besides the target of numerous drugs interacting with the serotonergic system. Therapeutic strategies have mainly focused on the development of compounds that block the activity of SERT, for instance reuptake inhibitors (e.g. tricyclics, "selective" serotonin reuptake inhibitors) and in the past, specific substrate-type releasers (e.g. amphetamine and cocaine derivatives). Today, generation of new drugs targetting SERT with enhanced selectivity and reduced toxicity is one of the most challenging tasks in drug design. In this context, studies aiming at characterizing the physicochemical properties of 5-HT as well as the biological active conformation of SERT are a prerequisite to the design of new leads. However, the absence of a high-resolution 3D-structure for SERT has hampered the design of new transporter inhibitors. Using computational approaches, numerous efforts were made to shed light on the structure of 5-HT and its transporter. In this review, we compared several in silico methods dedicated to the modeling of 5-HT and SERT with an emphasis on i) quantum chemistry for study of 5-HT conformation and ii) ligand-based (QSAR and pharmacophore models) and transporter-based (homology models) approaches for studying SERT molecule. In addition, we discuss some methodological aspects of the computational work in connection with the construction of putative but reliable 3D structural models of SERT that may help to predict the mechanisms of neurotransmitter transport.

  20. Designing information systems

    CERN Document Server

    Blethyn, Stanley G

    2014-01-01

    Designing Information Systems focuses on the processes, methodologies, and approaches involved in designing information systems. The book first describes systems, management and control, and how to design information systems. Discussions focus on documents produced from the functional construction function, users, operators, analysts, programmers and others, process management and control, levels of management, open systems, design of management information systems, and business system description, partitioning, and leveling. The text then takes a look at functional specification and functiona

  1. Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Editor)

    2004-01-01

    The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.

  2. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    Science.gov (United States)

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  3. Research on the Design of Visually Impaired Interactive Accessibility in Large Urban Public Transport System

    Science.gov (United States)

    Zhang, Weiru

    2017-12-01

    In medieval times, due to people’s reliance on belief, public space of Christianity came into being. With the rise of secularization, religion gradually turned into private belief, and accordingly public space returned to private space. In the 21st century, due to people’s reliance on intelligent devices, information-interactive public space emerges, and as information interaction is constantly constraining the visually impaired, public space regressed to the exclusive space of limited people[1]. Modernity is marked by technical rationality, but an ensuing basic problem lies in the separation between human action, ethics and public space. When technology fails to overcome obstacles for a particular group, the gap between the burgeoning intelligent phenomena and the increasing ratio of visually impaired is also expanding, ultimately resulting in a growing number of “blind spots” in information-interactive space. Technological innovation not only promotes the development of the information industry, but also promotes the rapid development of the transportation industry. Traffic patterns are diversifying and diverging nowadays, but it’s a fatal blow for people with visually disabilities, Because they still can only experience the most traditional mode of transportation, sometimes even not go out. How to guarantee their interactive accessibility in large urban public transport system right, currently, is a very important research direction.

  4. Driverless operation for public passenger transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Kehl, R. [Siemens AG, Erlangen (Germany). Bereich Verkehrstechnik

    2001-07-01

    The author presents the automation of new and existing lines as a possible solution to the twin problems of the growing need for public transport and the threat of collapse facing many public transport systems in the big conurbations as they wrestle against overloading. It emerges that automatic, driverless operation is a suitable approach to making systems more flexible and more attractive. Automation can increase the capacities of existing systems significantly and thus help them gain more passengers. (orig.)

  5. Operating control techniques for maglev transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, K H; Schnieder, E

    1984-06-01

    The technical and operational possibilities of magnetic levitation transport systems can only be fully exploited by introducing 'intelligent' control systems which ensure automatic and trouble-free train running. The solution of exacting requirements in the fields of traction dynamics, security and control as well as information gathering transmission and processing is an important prior condition in that respect. The authors report here on the present state of research and development in operating control techniques applicable to maglev transport systems.

  6. Decarbonizing Sweden’s energy and transportation system by 2050

    Directory of Open Access Journals (Sweden)

    Rasmus Bramstoft

    2017-01-01

    Full Text Available Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS and the other with high biofuel and biomethane utilization (BIOS. The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road transportation yields the least systems cost. However, in the least-cost scenario (EVS, bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative analysis of the scenarios.

  7. SEAFP cooling system design. Task M8 - water coolant option (final report)

    International Nuclear Information System (INIS)

    Stubley, P.; Natalizio, A.

    1994-01-01

    This report contains the ex-vessel portions of the outline designs for first wall, blanket and divertor cooling using water as the heat transport fluid. Equipment layout, key components and main system parameters are also described. (author). 7 tabs., 14 figs

  8. Does Pneumatic Tube System Transport Contribute to Hemolysis in ED Blood Samples?

    Science.gov (United States)

    Phelan, Michael P; Reineks, Edmunds Z; Hustey, Fredric M; Berriochoa, Jacob P; Podolsky, Seth R; Meldon, Stephen; Schold, Jesse D; Chamberlin, Janelle; Procop, Gary W

    2016-09-01

    Our goal was to determine if the hemolysis among blood samples obtained in an emergency department and then sent to the laboratory in a pneumatic tube system was different from those in samples that were hand-carried. The hemolysis index is measured on all samples submitted for potassium analysis. We queried our hospital laboratory database system (SunQuest(®)) for potassium results for specimens obtained between January 2014 and July 2014. From facility maintenance records, we identified periods of system downtime, during which specimens were hand-carried to the laboratory. During the study period, 15,851 blood specimens were transported via our pneumatic tube system and 92 samples were hand delivered. The proportions of hemolyzed specimens in the two groups were not significantly different (13.6% vs. 13.1% [p=0.90]). Results were consistent when the criterion was limited to gross (3.3% vs 3.3% [p=0.99]) or mild (10.3% vs 9.8% [p=0.88]) hemolysis. The hemolysis rate showed minimal variation during the study period (12.6%-14.6%). We found no statistical difference in the percentages of hemolyzed specimens transported by a pneumatic tube system or hand delivered to the laboratory. Certain features of pneumatic tube systems might contribute to hemolysis (e.g., speed, distance, packing material). Since each system is unique in design, we encourage medical facilities to consider whether their method of transport might contribute to hemolysis in samples obtained in the emergency department.

  9. Tuning the electronic transport anisotropy in α-phase phosphorene through superlattice design

    Science.gov (United States)

    He, Yuanyuan; Xiong, Shiyun; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong

    2018-02-01

    Rational tuning the anisotropic electronic properties of monolayer phosphorene is essential to their applications in electronic and optoelectronic devices. By combining the density functional theory and the nonequilibrium Green's function method, we developed a strategy to tune the anisotropic transport properties of phosphorene by designing stable arsenic-phosphorene (A sxP1 -x ) superlattice (SL). It was found that, with a careful design of As:P ratio and atomic arrangement, the anisotropic transport properties could be tuned in a wide range. The transport current along the zigzag direction, which is very low in pristine phosphorene, was gradually enhanced by increasing the As:P ratio, and even became larger than that along armchair direction when the As:P ratio achieved 1:1 under a given arrangement of As atoms in A sxP1 -x SL. The tunable anisotropic transport properties of A sxP1 -x SL are attributed to the interplay between the different scattering rates related to the number and orientation of As-P interfaces. This finding demonstrates that the A sxP1 -x SL design could be an effective approach to tune the anisotropic electronic properties of monolayer phosphorene, which is important for the development of high-performance electronic and optoelectronic devices based on phosphorene.

  10. Assateague Island National Seashore alternative transportation systems planning study and business plan for alternative transportation

    Science.gov (United States)

    2012-08-31

    The purpose of this study was to (1) study the potential expansion of existing alternative transportation systems (bicycle facilities) and development of new alternative transportation systems in and around the Maryland District of Assateague Island ...

  11. System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System. [Implications as to the Identification of Enabling Technologies and Reference Designs for Extreme Short Haul VTOL Vehicles With Electric Propulsion

    Science.gov (United States)

    Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.

    2017-01-01

    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.

  12. A Freight Transport Model for Integrated Network, Service, and Policy Design

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    “The goal of the European Transport Policy is to establish a sustainable transport system that meets society’s economic, social and environmental needs…” (ECE, 2009). This statement indicates the challenges that the European transport policy makers are faced with when facilitating an increasing

  13. Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China

    International Nuclear Information System (INIS)

    Ouyang, Min; Pan, ZheZhe; Hong, Liu; He, Yue

    2015-01-01

    Most of existing studies on vulnerability analysis of multiple infrastructure systems mainly focus on negative effects of interdependencies, which mean that failures in one system can propagate to other systems and aggravate the initial damage. In reality, there also exist positive effects of interdependencies, which are shown in complementary systems and mean that if one system fails another system can provide alternative services to satisfy customers' demands. Different types of transportation systems in a city or country are typical complementary systems. Taking railway and airline systems in China as an example, this paper proposes a network-based approach to model the vulnerability of complementary transportation systems, and based on this model, this paper further introduces a dynamic complementary strength metric, which can help decision makers design or select better complementary topologies from the vulnerability perspective. Also, based on a simple genetic algorithm, this paper analyzes whether critical components for single systems are still important when taking two systems as a whole for analysis. Results show that a protection strategy of hardening a few critical components is also good strategy for the combined system. In addition, the findings and several assumptions are further discussed to close the gap between theory and practice. - Highlights: • We propose a method to model and analyze complementary system vulnerability. • We study vulnerability of complementary railway and airline systems in China. • We propose an approach to quantify dynamic complementary strength. • A few critical components for single systems are important for combined system

  14. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  15. Radioactive waste transportation systems analysis and program plan

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report

  16. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  17. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  18. Conceptual design of a crewed reusable space transportation system aimed at parabolic flights: stakeholder analysis, mission concept selection, and spacecraft architecture definition

    Science.gov (United States)

    Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco

    2017-03-01

    This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.

  19. Public transport traffic management systems simulation in Craiova city

    Energy Technology Data Exchange (ETDEWEB)

    Racila, L.

    2016-07-01

    Urban transport is a comprehensive and dynamic mechanism. Therefore, all the problems for improving and reorganization of the system can be examined only in the light of a systemic approach. Currently, public passenger transport is one of the most important branches of the urban development in cities and metropolis. Public passenger transport activity and all the steps taken to improve that activity are considered to be of great social importance. In the current stage of city development, one of the main tasks is to create a public passenger transportation system that is safe, affordable, economical, reliable and environmentally friendly. The important role of passenger transport in the city's economy and achieving important social services to the population, dictates the need to introduce measures in the system that are harmonious, balanced and effective. This can only be done, in the context of current development, only after the system as a whole is tested extensively through special traffic and management software. (Author)

  20. A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II

    Science.gov (United States)

    Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki

    The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.

  1. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    Science.gov (United States)

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-05-03

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  3. US Department of Energy Automated Transportation Management System

    International Nuclear Information System (INIS)

    Portsmouth, J.H.

    1994-01-01

    The U.S. Department of Energy (DOE) Transportation Management Division (TMD) is responsible for managing its various programs via a diverse combination of Government-Owned/Contractor-Operated facilities. TMD is seeking to update it automation capabilities in capturing and processing DOE transportation information. TMD's Transportation Information Network (TIN) is an attempt to bring together transportation management, shipment tracking, research activities and software products in various stages of development. The TMD's Automated Transportation Management System (ATMS) proposes to assist the DOE and its contractors in performing their daily transportation management activities and to assist the DOE Environmental Management Division in its waste management responsibilities throughout the DOE complex. The ATMS system will center about the storage, handling and documentation involved in the environmental clean-up of DOE sites. Waste shipments will be moved to approved Treatment, Storage and Disposal (TSD) facilities and/or nuclear material repositories. An additional investment in shipping samples to analytical laboratories also involves packaging and documentation according to all applicable U.S. Department of Transportation (DOT) or International Air Transport Association (IATA) regulations. The most immediate goal of effectively managing DOE transportation management functions during the 1990's is an increase in automation capabilities of the DOE and its contractors. Subject-matter experts from various DOE site locations will be brought together to develop and refine these capabilities through the maximum use of computer applications. A major part of this effort will be the identification of the most economical modes of transportation and enhanced management reporting capabilities for transportation analysis. The ATMS system will also provide for increased strategic and shipment analysis during the 1990's and beyond in support of the DOE environmental mission

  4. The need and necessity for the M/S Sigyns advanced communication and navigation systems, adapted for marine transport of radioactive materials

    International Nuclear Information System (INIS)

    Josefson, J.; Gustafsson, B.; Dybeck, P.

    1989-01-01

    As far back as 1978, the Swedish Nuclear Fuel and Waste Management Co., SKB, decided to design and develop an integrated marine transport system, ISTS, a system that would meet the transportation needs of the Swedish nuclear power plants for the present and for the future, a system that would satisfy all the requirements and expectations that the principals, public authorities and the general public could have in respect of SKB. The system as conceived was at that time, and is still today, unique. Despite the fact that the highest safety standards were applied, it was completed, though not entirely finalized, in 1982. Pending completion of the central interim storage facility for spent fuel, CLAB, some shipments were sent during the years 1983-1984 to the reprocessing plant at La Hague in France, but from the summer of 1985, when CLAB was ready for operation, the fuel shipments have mainly been to Swedish facilities. Since the final repository for low- and intermediate-level waste was commissioned in the spring of 1988, the entire transportation system has been finished and operation. The ISTS consists of a specially designed ship, M/S SIgyn, ten transport casks for spent fuel, two casks for core components and five terminal vehicles for local transport at CLAB, reactor sites and SFR. Specially designed containers are used for the transport of reactor waste from the reactor sites to SFR. The ISTS is now in routine operation with about 30 trips with M/S Sigyn every year. On the average, 15 of these are used for fuel and the rest for ILW container shipments

  5. Optimal transport of particle beams

    International Nuclear Information System (INIS)

    Allen, C.K.; Reiser, M.

    1997-01-01

    The transport and matching problem for a low energy transport system is approached from a control theoretical viewpoint. We develop a model for a beam transport and matching section based on a multistage control network. To this model we apply the principles of optimal control to formulate techniques aiding in the design of the transport and matching section. Both nonlinear programming and dynamic programming techniques are used in the optimization. These techniques are implemented in a computer-aided design program called SPOT. Examples are presented to demonstrate the procedure and outline the results. (orig.)

  6. Storage/transport cask design and challenges

    International Nuclear Information System (INIS)

    Houston, J.V.; Viebrock, J.M.

    1989-01-01

    The concept of spent-fuel casks that could be used for both storage and for transport has been around for some years, but was only seriously evaluated when utilities started becoming concerned about adequate fuel storage. In the early 1980s, the U.S. Department of Energy proposed to solve the problem with their away-from-reactor storage facility concept. This was superceded by passage of the Nuclear Waste Policy Act of 1982, which directed the development of one or more waste repositories, the first of which was to be in operation by 1998. Delays in this program now indicate an opening data of 2003 or later. This, together with the lack of significant progress on a monitored retrievable storage facility, leaves the utility companies to solve their storage problems individually. One alternative is to use dual-purpose casks. The use of such a cask should eliminate the need to move the cask and fuel back into the spent-fuel pool for transfer to a transport cask. However, a dual-purpose cask must be licensed for use under both 10CFR71 and 10CFR72 of the U.S. Code of Federal Regulations. The purpose of this paper is to examine the differences between the requirements of 10CFR71 and 10CFR72, to note the changes over the past several years in the NRC's interpretation of 10CFR71 requirements, and to review the design modifications that the Nuclear Assurance Corporation (NAC) believes are required to make a licensed storage cask acceptable for transport under 10CFR71

  7. Hydrogenic Species Transport Assessments in Ceramic Aluminas Used in ITER ICRH H and CD and Diagnostic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.; Sedano, L. A.

    2007-09-27

    Ceramic insulators will be used in the ITER Heating and Current Drive and Diagnostics (H and CD/D) systems as opto-electronic vacuum windows or as feed-troughs. Their performance as materials could come modified by the intake of deuterium-tritium which amounts might be enhanced by ionising radiation effects. Such vacuum windows have a primary safety role as tritium confinement barriers. Tritium transport analyses have major implications on the design and safety assessments of ITER RF H and CD systems. As it is shown, refined tritium transport release-rate models together with detailed parametric studies can precise such assessments. In addition such modeling serves as conceptual framework to quantify precise impact of underlying phenomena (ex. radiation-enhanced diffusion or potential effects of radiation damage on tritium transport through the Vacuum Window) and its fi nal impact on main transport parameters of interest for VW design: permeation flux and D/T inventories. In the present work it has been shown how, for electric implantation of ionized D,T in the VW being the major source for isotopes intake, an hybrid recombination/radiation enhanced diffusion regime determine H-isotopes transport kinetics in the window. Precise values for permeation fluxes and inventories are provided from solution of mass transport equations. Near and medium term work planning is advanced. (Author) 16 refs.

  8. Hydrogenic Species Transport Assessments in Ceramic Aluminas Used in ITER ICRH H and CD and Diagnostic Systems

    International Nuclear Information System (INIS)

    Moreno, C.; Sedano, L. A.

    2007-01-01

    Ceramic insulators will be used in the ITER Heating and Current Drive and Diagnostics (H and CD/D) systems as opto-electronic vacuum windows or as feed-troughs. Their performance as materials could come modified by the intake of deuterium-tritium which amounts might be enhanced by ionising radiation effects. Such vacuum windows have a primary safety role as tritium confinement barriers. Tritium transport analyses have major implications on the design and safety assessments of ITER RF H and CD systems. As it is shown, refined tritium transport release-rate models together with detailed parametric studies can precise such assessments. In addition such modeling serves as conceptual framework to quantify precise impact of underlying phenomena (ex. radiation-enhanced diffusion or potential effects of radiation damage on tritium transport through the Vacuum Window) and its fi nal impact on main transport parameters of interest for VW design: permeation flux and D/T inventories. In the present work it has been shown how, for electric implantation of ionized D,T in the VW being the major source for isotopes intake, an hybrid recombination/radiation enhanced diffusion regime determine H-isotopes transport kinetics in the window. Precise values for permeation fluxes and inventories are provided from solution of mass transport equations. Near and medium term work planning is advanced. (Author) 16 refs

  9. Investments and Operation in an Integrated Power and Transport System

    DEFF Research Database (Denmark)

    Juul, Nina; Boomsma, Trine Krogh

    2013-01-01

    This chapter analyses an integrated power and road transport system. For analysing the influences of including passenger road transport in the energy system, a road transport model is developed. Based on this model, the benefits of integration of the two systems and using electric-drive vehicles ...

  10. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  11. A Privacy-Preserving NFC Mobile Pass for Transport Systems

    Directory of Open Access Journals (Sweden)

    Ghada Arfaoui

    2014-12-01

    Full Text Available The emergence of the NFC (Near Field Communication technology brings new capacities to the next generation of smartphones, but also new security and privacy challenges. Indeed through its contactless interactions with external entities, the smartphone of an individual will become an essential authentication tool for service providers such as transport operators. However, from the point of view of the user, carrying a part of the service through his smartphone could be a threat for his privacy. Indeed, an external attacker or the service provider himself could be tempted to track the actions of the user. In this paper, we propose a privacy-preserving contactless mobile service, in which a user’s identity cannot be linked to his actions when using the transport system. The security of our proposition relies on the combination of a secure element in the smartphone and on a privacy-enhancing cryptographic protocol based on a variant of group signatures. In addition, although a user should remain anonymous and his actions unlinkable in his daily journeys, we designed a technique for lifting his anonymity in extreme circumstances. In order to guarantee the usability of our solution, we implemented a prototype demonstrating that our solution meets the major functional requirements for real transport systems: namely that the mobile pass can be validated at a gate in less than 300 ms, and this even if the battery of the smartphone is exhausted.

  12. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    Science.gov (United States)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  13. Public acceptance of radioactive waste transportation systems

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1978-01-01

    As the thoughts of the country concentrate on the problems of transportation of waste through high traffic urban areas, the problem of how to deal directly and honestly with the public takes on greater significance in the nuclear industry. Non-technical aspects of the methods of transportation, especially by railroad and highway, enter into the total scheme of moving radioactive waste from both weapon and nuclear power plant sources to final processing and disposal. Factors such as shape, color, size, familiarity, and industrial designing are necessary ingredients that take on equal or more significance that the designing of containers to survive the hypothetical accident conditions of the present, or even of the future. Protective Packaging, Inc. has been a leader in the presentation of containers to the private and public sector of the nuclear industry. The products have undergone very open testing, in public, with both invited and uninvited witnesses. In those experiences, dating back to 1969, the problems of public acceptance will be related between the technical problems and the associated social and political problems that relate to container acceptance by the public in today's world. Proven experience data, relative to the safety of the present day systems will be discussed, as well as methods of improving the image in the future. Review will also be given to the effort by industry to discuss the proven record with parties outside the nuclear industry, i.e., individuals and pressure groups that are diametrically opposed to review the facts relative to safety as opposed to other, but more traditional industries

  14. Non destructive testing of medium and high voltage cables with a transportable radiography system

    Directory of Open Access Journals (Sweden)

    D. V. Bandekas

    2010-01-01

    Full Text Available A power cable is the most important part in a power transmission system. The cables must be total quality dedicated andcertified for development, manufacturing and installation, however are exposed to a corrosive environment. The purpose ofthis paper is to show that the fast neutron radiography with a transportable system is a solution to find defects in the cablesand reduce the cost of inspection. The design, regarding the materials considered, was compatible with the European UnionDirective on “Restriction of Hazardous Substances” (RoHS 2002/95/EC, hence excluding the use of cadmium and lead.Wide width values for the collimator ratio were calculated. With suitable collimator design it was possibly to optimize theneutron radiography parameters. Finally the shielding design was examined closely. The proposed system has been simulatedusing the MCNPX code.

  15. Neoclassical transport in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1992-01-01

    The neoclassical theory of general toroidal equilibria is reformulated. The toroidal equilibrium of tokamaks and stellarators are described in Hamada coordinates. The relevant geometrical parameters are identified and it is shown how the reduction of Pfirsch-Schluter currents affects neoclassical transport and bootstrap effects. General flux-friction relations between thermodynamic forces and fluxes are derived. In drift-kinetic approximation the neoclassical transport coefficients are Onsager symmetric. Since a toroidal loop voltage is included, the theory is valid for all toroidal systems. (Author)

  16. Capacity analysis of an automated kit transportation system

    NARCIS (Netherlands)

    Zijm, W.H.M.; Adan, I.J.B.F.; Buitenhek, R.; Houtum, van G.J.J.A.N.

    2000-01-01

    In this paper, we present a capacity analysis of an automated transportation system in a flexible assembly factory. The transportation system, together with the workstations, is modeled as a network of queues with multiple job classes. Due to its complex nature, the steadystate behavior of this

  17. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  18. Development of transportation operations requirements

    International Nuclear Information System (INIS)

    Grady, S.T.; Best, R.E.; Danese, F.L.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    Transport conditions at various utility sties vary dramatically in terms of characteristics at and near the site, requirements, administrative procedures, and other factors. Continuation of design efforts for the OCRWM transportation operations system requires that the operating requirements for the transportation system -- quantity of fuel per unit time per site -- be identified so that the effect the variations have on the system can be accommodated. The approach outlined in this paper provides for an identification of specific sites, evaluation of shipment capabilities at each site, and integration of the sites into multi-site shipping campaigns to scope the logistics management problem for the transportation operations system. 1 fig., 1 tab

  19. Nonlinear transport properties of non-ideal systems

    International Nuclear Information System (INIS)

    Pavlov, G A

    2009-01-01

    The theory of nonlinear transport is elaborated to determine the Burnett transport properties of non-ideal multi-element plasma and neutral systems. The procedure for the comparison of the phenomenological conservation equations of a continuous dense medium and the microscopic equations for dynamical variable operators is used for the definition of these properties. The Mori algorithm is developed to derive the equations of motion of dynamical value operators of a non-ideal system in the form of the generalized nonlinear Langevin equations. In consequence, the microscopic expressions of transport coefficients corresponding to second-order thermal disturbances (temperature, mass velocity, etc) have been found in the long wavelength and low frequency limits

  20. Optimization model for school transportation design based on economic and social efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Heddebaut, O.; Ciommo, F. di

    2016-07-01

    The purpose of this paper is to design a model that allows to suggest new planning proposals on school transport, so that greater efficiency operational will be achieved. It is a multi-objective optimization problem including the minimization of the cost of busing and minimizes the total travel time of all students. The foundation of the model is the planning routes made by bus due to changes in the starting time in schools, so the buses are able to perform more than one route. The methodology is based on the School Bus Routing Problem, so that routes from different schools within a given time window are connected, and within the restrictions of the problem, the system costs are minimized. The proposed model is programmed to be applied in any generic case. This is a multi-objective problem, in which there will be several possible solutions, depending on the weight to be assigned to each of the variables involved, economic point of view versus social point of view. Therefore, the proposed model is helpful for policy planning school transportation, supporting the decision making under conditions of economic and social efficiency. The model has been applied in some schools located in an area of Cantabria (Spain), resulting in 71 possible optimal options that minimize the cost of school transport between 2,7% and 35,1% regarding to the current routes of school transport, with different school start time and minimum travel time for students. (Author)