WorldWideScience

Sample records for transportation dot specification

  1. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  2. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 412; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...

  3. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 407; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...

  4. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 406; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...

  5. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  6. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  7. Inspection, testing, and operating requiremens for the packaging and shipping of uranium trioxide in 55-gallon Department of Transportation (DOT) Specification 6M shipping packagings

    International Nuclear Information System (INIS)

    Toomer, D.V.

    1991-06-01

    This document identifies the inspection, testing and operating requirements for the packaging, loading, and shipping of uranium trioxide (UO 3 ) in 55-gallon DOT Specification 6M shipping packagings from the Idaho Chemical Processing Plant (ICPP). Compliance with this document assures established controls for the purchasing, packaging, loading, and shipping of DOT Specification 6M shipping packagings are maintained in strict accordance with applicable Code of Federal Regulations (CFRs) and Department of Energy (DOE) Orders. 7 refs., 3 figs., 1 tab

  8. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  9. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  10. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  11. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  12. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  13. Two path transport measurements on a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  14. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  15. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  16. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    International Nuclear Information System (INIS)

    Lue Rong; Zhang Guangming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  17. Nonequilibrium electron transport through quantum dots in the Kondo regime

    DEFF Research Database (Denmark)

    Wölfle, Peter; Paaske, Jens; Rosch, Achim

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how...

  18. Safety analysis report for packaging: the ORNL DOT specification 6M - tritium trap package

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1984-04-01

    The ORNL DOT Specification 6M--Tritium Trap Package was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B quantities of tritium as solid uranium tritide. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container, a drop test performed by the ORNL Operations Division, and International Atomic Energy Agency (IAEA) approvals on a similar tritium transport container. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities of tritium. 4 references, 8 figures

  19. Electron Transport in Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Antoniadis, D

    1998-01-01

    In the course of the investigation funded by this proposal we fabricated, modeled, and measured a variety of quantum dot structures in order to better understand how such nanostructures might be used for computation...

  20. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  1. Safety analysis report for packaging: the ORNL DOT specification 6M - special form package

    Energy Technology Data Exchange (ETDEWEB)

    Schaich, R.W.

    1982-07-01

    The ORNL DOT Specification 6M - Special Form Package was fabricated at the Oak Ridge Nation al Laboratory (ORNL) for the transport of Type B solid non-fissile radioactive materials in special form. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities in special form of non-fissile radioactive materials.

  2. Safety analysis report for packaging: the ORNL DOT specification 6M - special form package

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1982-07-01

    The ORNL DOT Specification 6M - Special Form Package was fabricated at the Oak Ridge Nation al Laboratory (ORNL) for the transport of Type B solid non-fissile radioactive materials in special form. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities in special form of non-fissile radioactive materials

  3. Transport through overlapping states in quantum dots and double dot molecules

    International Nuclear Information System (INIS)

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  4. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  5. Test and evaluation document for DOT Specification 7A Type A Packaging. Revision 3

    International Nuclear Information System (INIS)

    1996-01-01

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). The program is currently administered by the DOE, Office of Facility Safety Analysis, DOE/EH-32, at DOE-Headquarters (DOE-HQ) in Germantown, Maryland. This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program

  6. Test and evaluation document for DOT Specification 7A Type A Packaging. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-30

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). The program is currently administered by the DOE, Office of Facility Safety Analysis, DOE/EH-32, at DOE-Headquarters (DOE-HQ) in Germantown, Maryland. This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program.

  7. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  8. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  9. Majorana fermion modulated nonequilibrium transport through double quantum dots

    International Nuclear Information System (INIS)

    Deng, Ming-Xun; Wang, Rui-Qiang; Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu; Wang, Guang-Hui

    2014-01-01

    Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports

  10. Majorana fermion modulated nonequilibrium transport through double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ming-Xun [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Rui-Qiang, E-mail: rqwanggz@163.com [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Guang-Hui [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006 (China)

    2014-06-13

    Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports.

  11. Updated version of the DOT 4 one- and two-dimensional neutron/photon transport code

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.

    1982-07-01

    DOT 4 is designed to allow very large transport problems to be solved on a wide range of computers and memory arrangements. Unusual flexibilty in both space-mesh and directional-quadrature specification is allowed. For example, the radial mesh in an R-Z problem can vary with axial position. The directional quadrature can vary with both space and energy group. Several features improve performance on both deep penetration and criticality problems. The program has been checked and used extensively

  12. Quantum transport in a ring of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sena Junior, Marcone I.; Macedo, Antonio M.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica

    2012-07-01

    Full text: Quantum dots play a central role in the recent technological efforts to build efficient devices to storage, process and transmit information in the quantum regime [1]. One of the reasons for this interest is the relative simplicity with which its control parameters can be changed by experimentalists. Systems with one, two and even arrays of quantum dots have been intensively studied with respect to their efficiency in processing information carried by charge, spin and heat [1]. A particularly useful realization of a quantum dot is a ballistic electron cavity formed by electrostatic potentials in a two-dimensional electron gas. In the chaotic regime, the shape of the dot is statistically irrelevant and the ability to change its form via external gates can be used to generate members of an ensemble of identical systems. From a theoretical point of view, such quantum dots are ideal electron systems in which to study theoretical models combining phase-coherence, chaotic dynamics and Coulomb interactions. In this work, we use the Keldysh non-linear sigma model [2] with a counting field to study electron transport through a ring of four chaotic quantum dots pierced by an Aharonov-Bohm flux. This system is particularly well suited for studying ways to use the weak-localization effect to process quantum information. We derive the quantum circuit equations for this system from the saddle-point condition of the Keldysh action. The results are used to build the action of the corresponding supersymmetric (SUSY) non-linear sigma model. The connection with the random scattering matrix approach is then made via the color-flavor transformation. In the perturbative regime, where weak-localization effects appear, the Keldysh, SUSY and random scattering matrix approaches can be compared by means of independent analytical calculations. We conclude by pointing out the many advantages of our unified approach. [1] For a review, see Yu. V. Nazarov, and Ya. M. Blanter, Quantum

  13. Quantum dot transport in soil, plants, and insects

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salim, Najeh [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand); Barraclough, Emma; Burgess, Elisabeth [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Clothier, Brent, E-mail: brent.clothier@plantandfood.co.nz [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Deurer, Markus; Green, Steve [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Malone, Louise [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Weir, Graham [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: {yields} Quantum dots are transported rapidly through soil but half were retained. {yields} Intact roots of plants did not take up quantum dots. Excised plants

  14. Safety analysis report for packaging: the ORNL DOT Specification 20WC-5 - special form packaging

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1982-10-01

    The ORNL DOT Specification 20WC-5 - Special Form Package was fabricated for the transport of large quantities of solid nonfissile radioactive materials in special form. The package was evaluated on the basis of tests performed at Sandia National Laboratories, Albuquerque, New Mexico on an identical fire and impact shield and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of large quantities of nonfissile radioactive materials in special form

  15. Safety analysis report: packages. DOT specification 7A - Type A container Mark 15 sludge shipping package

    International Nuclear Information System (INIS)

    Zeh, C.W.

    1985-03-01

    Sludge or filter cake containing 1.1 wt % 235 U enriched uranium from Mark 15 fabrication will be packaged in 55-gallon containers and shipped from SRP to NLO, Fernald, Ohio for recovery of product. About 7 Metric Tons (MT) of filter cake will be produced from fabricating Mark 15 slugs each reactor charge. Packaged shipments of this material, consigned as exclusive use, will be shipped to NLO in Department of Transportation (DOT) Specification 7A - Type A packages under a DOE Certificate of Compliance for Fissile Class III shipments. ''Type A packaging'' is designed to retain containment and shielding integrity under normal conditions of transport. This report documents compliance of the package design, construction methods, material and test performance with DOT Specification 7A. This DOT 7A Type A package contains a carbon steel outer container which is a 0.060-in.-thick 55-gal, galvanized drum equipped with a gasketed closure. The outer container encloses a 0.090-in.-thick, open head, polyethylene liner with lid

  16. Single, double, and triple quantum dots in the transport; Einzel-, Doppel- und Dreifachquantenpunkte im Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian Christoph

    2008-12-03

    This thesis describes the fabrication of different lateral single, double and triple quantum dots as well as the investigation of these devices with electronic transport. Based on GaAs/AlGaAs heterostructures, the fabrication was carried out using optical lithography and lithography with a scanning electron microscope and an atomic force microscope. The latter ones were also used in combination. Aside from basic effects like Coulomb blockade the analysis of single quantum dots particularly yielded results by charge detection and magneto transport. With charge detection using quantum point contacts conclusions were attained concerning tunneling rates and the extension of wave functions. In a magnetic field the influence of the electronic spin is important aside from aspects concerning the Fock-Darwin spectrum. Analyses were performed on Zeeman effect, spin pairing, spin blockade and Kondo effect. The combination of spin blockade and Kondo effect allows statements concerning the spin configuration, which depends on the electron number. With double quantum dots of different geometries the two mechanisms of capacitive coupling and tunnel coupling were analyzed. They were found in spectra of ground and excited states. With gate voltage and magnetic field it was possible to freely vary character and strength of coupling. With capacitive coupling, spin blockade was investigated again. The analysis of coupling effects was performed using transport and charge measurements. Aside from results on tunneling rates the latter one allows to detect molecular states. Concerning triple quantum dots the three dimensional stability diagram was analyzed. The free variation of energies of all three dots was achieved. The evolution of resonances was observed with transport and charge detection. With a starlike device geometry it was possible to perform two-path measurements. They provide a new measurand, the distinguishability of double and triple dot physics. (orig.)

  17. User's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in DOT-6M specification packaging configurations

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1994-09-01

    The need for developing a user's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in a US Department of Transportation Specification 6M (DOT-6M) packaging was identified by the US Department of Energy (DOE)-Headquarters, Transportation Management Division (EM-261) because the DOT-6M packaging is widely used by DOE site contractors and the DOE receives many questions about approved packaging configuration. Currently, EM-261 has the authority to approve new DOT-6M packaging configurations for use by the DOE Operations Offices. This user's guide identifies the DOE-approved DOT-6M packaging configurations and explains how to have new configurations approved by the DOE. The packaging configurations described in this guide are approved by the DOE, and satisfy the applicable DOT requirements and the identified DOE restrictions. These packaging configurations are acceptable for transport of Type B quantities of radioactive and fissile material, including plutonium

  18. An evaluation of department of transportation specification packages

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Rawl, R.R.

    1993-01-01

    Specification packages are broad families of package designs developed and authorized by the U.S. Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC) for transport of certain Type B and fissile radioactive materials, with each specification containing a number of designs of various sizes. The specification package designs have remained essentially unchanged in a changing regulatory environment. Changes to package designs or authorized contents under the DOT system can be accomplished by rule making action, but there has been little updating of the designs over the years. Many of the individual package designs are no longer supported by reasonably current safety analyses. Since the publication of these specifications, there have been changes in regulatory requirements and improvements in methods of testing and analysis. Additionally, contemplated revisions to the DOT and NRC regulations to bring design requirements into accord with IAEA Safety Series No. 6, 1985 Edition would eliminate fissile classes and require resistance to a crush test for small Type B packages meeting certain criteria. The NRC has requested that the Oak Ridge National Laboratory (ORNL) staff review the safety documentation of the specification packages to determine the possible need for further testing and analysis, modifications to the designs, and, perhaps, elimination of any designs for which there is insufficient demonstration of compliance with current and proposed requirements. This paper will present a summary of the technical data and information concerning the use of the packages that has been received to date. (author)

  19. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    Science.gov (United States)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  20. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  1. Influences of a Side-Coupled Triple Quantum Dot on Kondo Transport Through a Quantum Dot

    International Nuclear Information System (INIS)

    Jiang Zhaotan; Yang Yannan; Qin Zhijie

    2010-01-01

    Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in the side-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.

  2. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter

    OpenAIRE

    Nagai, Hiroki; Roy, Craig R.

    2001-01-01

    Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted Do...

  3. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    So, Min-kyung; Yao Hequan; Rao Jianghong

    2008-01-01

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  4. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingli; Yin, Huancai; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Miao, Peng [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Xudong [Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 (Canada); Xu, Yingxue [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jun [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.

  5. Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes.

    Science.gov (United States)

    Dindar, Gülcin; Anger, Andreas M; Mehlhorn, Christine; Hake, Sandra B; Janzen, Christian J

    2014-11-12

    DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.

  6. Full counting statistics of level renormalization in electron transport through double quantum dots

    International Nuclear Information System (INIS)

    Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun

    2011-01-01

    We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.

  7. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  8. Certification of packagings: compliance with DOT specification 7A packaging requirements

    International Nuclear Information System (INIS)

    Edling, D.A.

    1976-01-01

    A study was conducted to determine which of the packagings currently listed in CFR 49 Section 173.395 a.1-5, meet the Specification 7A requirements (CFR 49 Section 173.350). According to DOT HM-111 the present listing of various authorized DOT specifications in Section 173.394 and Section 173.395 (Type A containers) of ICC Tariff No. 27 would be deleted with complete reliance being placed on the use of DOT 7A, Type A general packaging specification. Each user of a Specification 7A package would be required to document and maintain on file for one year a written record of his determination of compliance with the DOT Specification 7A performance requirements. All the specification packagings listed in CFR 49 Section 173.395a.1-5 were tested and shown to meet the Specification 7A criteria; however, in many cases qualifications were placed on their use. Forty-nine specification packagings were tested and shown to meet the DOT Specification 7A performance requirements and since there were several styles of some specific packagings, this amounts to greater than 80 packagings. The extensive testing generally indicated a high degree of containment integrity in the packagings tested and the documentation discussed is a valuable tool for shippers of Type A quantities of radioactive materials

  9. Transport through semiconductor nanowire quantum dots in the Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Schmaus, Stefan; Koerting, Verena; Woelfle, Peter [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)

    2008-07-01

    Recent experiments on quantum dots made of semiconductor nanowires in the Coulomb blockade regime have shown the influence of several approximately equidistant levels on the conductance. We study a model with three levels occupied by three electrons. At finite bias voltage charge energy conserving excitations into several higher lying states occur leading to features in the differential conductance. We restrict our study to the six lowest lying states by performing a Schrieffer-Wolff type projection onto this subspace. The emerging effective Kondo Hamiltonian is treated in non-equilibrium perturbation theory in the coupling to the leads. For convenience we use a pseudoparticle representation and an exact projection method. The voltage-dependence of the occupation numbers is discussed. The density matrix on the dot turns out to be off-diagonal in the dot eigenstate Hilbert space in certain parameter regimes. The dependence of the differential conductance on magnetic field and temperature is calculated in lowest order in the dot-lead coupling and the results are compared with experiment.

  10. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  11. Functional characterization and axonal transport of quantum dot labeled BDNF

    OpenAIRE

    Xie, Wenjun; Zhang, Kai; Cui, Bianxiao

    2012-01-01

    Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...

  12. Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Qu

    2015-12-01

    Full Text Available The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

  13. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Wenhan Zhu

    2011-03-01

    Full Text Available A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.

  14. I-V characteristic of electronic transport through a quantum dot chain: The role of antiresonance

    International Nuclear Information System (INIS)

    Liu Yu; Zheng Yisong; Gong Weijiang; Lue Tianquan

    2006-01-01

    The I-V spectrum of electronic transport through a quantum dot chain is calculated by means of the nonequilibrium Green function technique. In such a system, two arbitrary quantum dots are connected with two electron reservoirs through leads. When the dot-lead coupling is very weak, a series of discrete resonant peaks in electron transmission function cause staircase-like I-V characteristic. On the contrary, in the relatively strong dot-lead coupling regime, stairs in the I-V spectrum due to resonance vanish. However, when there are some dangling quantum dots in the chain outside two leads, the antiresonance which corresponds to the zero points of electron transmission function brings about novel staircase characteristic in the I-V spectrum. Moreover, two features in the I-V spectrum arising from the antiresonance are pointed out, which are significant for possible device applications. One is the multiple negative differential conductance regions, and another is regarding to create a highly spin-polarized current through the quantum dot chain by the interplay of the resonance and antiresonance. Finally, we focus on the role that the many-body effect plays on the antiresonance. Our result is that the antiresonance remains when the electron interaction is considered to the second order approximation

  15. Transport spin dependent in nanostructures: Current and geometry effect of quantum dots in presence of spin-orbit interaction

    Science.gov (United States)

    Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.

    2017-12-01

    In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.

  16. U.S. DOT roadway transportation data business plan (phase 1) : data business plan.

    Science.gov (United States)

    2013-01-01

    In 2010 the FHWA Office of Operations, Office of Transportation Management (HOTM) commissioned the development of a white paper, Data Capture and Management: Needs and Gaps in the Operation and Coordination of U.S. DOT Data Capture and Management Pro...

  17. U.S. DOT roadway transportation data business plan (phase 2) : data business plan.

    Science.gov (United States)

    2013-06-01

    In 2011, the FHWA Office of Operations, Office of Transportation Management commissioned a study to address needs and gaps related to the operation and coordination of U.S. DOT Data Capture and Management Programs. The development of the Data Busines...

  18. Nonequilibrium Transport through a Spinful Quantum Dot with Superconducting Leads

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Flensberg, Karsten; Koerting, Verena

    2011-01-01

    We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel...... coupling to source and drain electrodes. The current is found to be carried, respectively, by multiple Andreev reflections in the symmetric limit, and by spin-induced Yu-Shiba-Rusinov bound states in the strongly asymmetric limit. The interplay between these two mechanisms leads to qualitatively different...... IV characteristics in the crossover regime of intermediate symmetry, consistent with recent experimental observations of negative differential conductance and repositioned conductance peaks in subgap cotunneling spectroscopy....

  19. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  20. Solvable model of spin-dependent transport through a finite array of quantum dots

    International Nuclear Information System (INIS)

    Avdonin, S A; Dmitrieva, L A; Kuperin, Yu A; Sartan, V V

    2005-01-01

    The problem of spin-dependent transport of electrons through a finite array of quantum dots attached to a 1D quantum wire (spin gun) for various semiconductor materials is studied. The Breit-Fermi term for spin-spin interaction in the effective Hamiltonian of the device is shown to result in a dependence of transmission coefficient on the spin orientation. The difference of transmission probabilities for singlet and triplet channels can reach a few per cent for a single quantum dot. For several quantum dots in the array due to interference effects it can reach approximately 100% for some energy intervals. For the same energy intervals the conductance of the device reaches the value ∼1 in [e 2 /πℎ] units. As a result a model of the spin gun which transforms the spin-unpolarized electron beam into a completely polarized one is suggested

  1. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  2. Radioactive particulate release associated with the DOT specification 6M container under hypothetical accident conditions

    International Nuclear Information System (INIS)

    Taylor, J.M.; Raney, P.J.

    1986-02-01

    A testing program was conducted to determine the leakage of depleted uranium dioxide powder (DUO) from the inner containment components of the US Department of Transportation's (DOT) specification 6M container under hypothetical accident conditions. Depleted uranium dioxide was selected as a surrogate for plutonium oxide because of the similarities in the powder characteristics, density and particle size, and because of the special handling and special facilities required for plutonium oxide. The DUO was packaged inside food pack cans in three different configurations inside the 2R vessel of the 6M container. The amount of DUO powder leakage ranged from none detectable ( -7 g) to a high of 1 x 10 -3 g. The combination of gravity, vibration and pressure produced the highest leakage of DUO. Containers that had hermetic seals (leak rates -4 atm cc/min) did not leak any detectable amount ( -7 g) of DUO under the test conditions. Impact forces had no effect on the leakage of particles with the packaging configurations used. 23 refs., 24 figs., 3 tabs

  3. Specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Arredondo, R.; Jerez, C.A.

    1989-01-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in 125 I-labeled protein A or 125 I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 10 3 cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations

  4. Transport in a three-terminal graphene quantum dot in the multi-level regime

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Simonet, Pauline; Ensslin, Klaus; Ihn, Thomas

    2012-01-01

    We investigate transport in a three-terminal graphene quantum dot. All nine elements of the conductance matrix have been independently measured. In the Coulomb blockade regime, accurate measurements of individual conductance resonances reveal slightly different resonance energies depending on which pair of leads is used for probing. Rapid changes in the tunneling coupling between the leads and the dot due to localized states in the constrictions have been excluded by tuning the difference in resonance energies using in-plane gates which couple preferentially to individual constrictions. The interpretation of the different resonance energies is then based on the presence of a number of levels in the dot with an energy spacing of the order of the measurement temperature. In this multi-level transport regime, the three-terminal device offers the opportunity to sense if the individual levels couple with different strengths to the different leads. This in turn gives qualitative insight into the spatial profile of the corresponding quantum dot wave functions. (paper)

  5. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    Science.gov (United States)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  6. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    International Nuclear Information System (INIS)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-01-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  7. Transport through interacting quantum dots with Majorana fermions or phonons

    International Nuclear Information System (INIS)

    Huetzen, Roland

    2013-01-01

    Recent advances in the search for Majorana fermions within condensed matter systems inspired the first part of the thesis. These hypothetical particles which are their own antiparticles are predicted to arise in the form of quasi-particle excitations called Majorana bound states at the surface of engineered condensed matter systems. An experimental detection is challenging since their defining property also implies that they possess no charge, no energy and no spin. This significantly reduces the possibilities to interact with them and get a proof of their existence from a measurement. The most promising experimental results are based on transport measurements where current-voltage-characteristics play the role of a spectroscopy signal. In this thesis, we investigate a single electron transistor setup which hosts a spatially separated pair of Majorana fermions with respect to their influence on its transport characteristics. We focus on a master equation approach including sequential and cotunneling contributions. After deducing all relevant rates we solve the system numerically over a broad parameter regime. For some limits, we also elaborate analytical solutions. In comparison with collaboratively worked out other methods we provide a broad understanding of the setup and make a proposal how our results could be used as a detection scheme for Majorana fermions. The second part of the thesis investigates the spinless Anderson-Holstein model which is the minimal model for molecular transport. It models a molecule with electronic and vibronic degrees of freedom which is placed between metallic leads at different chemical potentials to investigate again its transport properties. Also here we intended to gain access to a broad parameter regime and successfully extended the numerical ''iterative summation of path-integrals'' scheme to this model. It is based on a real-time path-integral approach in combination with the nonequilibrium Keldysh

  8. Transport through interacting quantum dots with Majorana fermions or phonons

    Energy Technology Data Exchange (ETDEWEB)

    Huetzen, Roland

    2013-07-04

    Recent advances in the search for Majorana fermions within condensed matter systems inspired the first part of the thesis. These hypothetical particles which are their own antiparticles are predicted to arise in the form of quasi-particle excitations called Majorana bound states at the surface of engineered condensed matter systems. An experimental detection is challenging since their defining property also implies that they possess no charge, no energy and no spin. This significantly reduces the possibilities to interact with them and get a proof of their existence from a measurement. The most promising experimental results are based on transport measurements where current-voltage-characteristics play the role of a spectroscopy signal. In this thesis, we investigate a single electron transistor setup which hosts a spatially separated pair of Majorana fermions with respect to their influence on its transport characteristics. We focus on a master equation approach including sequential and cotunneling contributions. After deducing all relevant rates we solve the system numerically over a broad parameter regime. For some limits, we also elaborate analytical solutions. In comparison with collaboratively worked out other methods we provide a broad understanding of the setup and make a proposal how our results could be used as a detection scheme for Majorana fermions. The second part of the thesis investigates the spinless Anderson-Holstein model which is the minimal model for molecular transport. It models a molecule with electronic and vibronic degrees of freedom which is placed between metallic leads at different chemical potentials to investigate again its transport properties. Also here we intended to gain access to a broad parameter regime and successfully extended the numerical ''iterative summation of path-integrals'' scheme to this model. It is based on a real-time path-integral approach in combination with the nonequilibrium Keldysh

  9. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  10. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    International Nuclear Information System (INIS)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-01-01

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields

  11. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    International Nuclear Information System (INIS)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul

    2006-01-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  13. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2006-07-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. 77 FR 39567 - Common Law Tort Claims Concerning Design and Marking of DOT Specification 39 Compressed Gas...

    Science.gov (United States)

    2012-07-03

    ... using the cylinder in a transportation mode; he was simply using the cylinder as an end-user on the job... products being used on the job be safe for their intended use does not interfere with the DOT regulation... implicitly that the HMR applied to Mr. Elder's transportation of the cylinder from his shop to his customer's...

  15. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  16. Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization

    International Nuclear Information System (INIS)

    Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee

    2013-01-01

    The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: ► The spin polarized transport through a diluted magnetic quantum dot is studied. ► The model is based on the Green’s function and the equation of motion method.► The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. ► The system is suitable for current-induced spin-transfer torque application. ► A large tunneling current and a high TMR are possible for sensor application.

  17. Certification of ERDA contractors' packaging with respect to compliance with DOT specification 7A performance requirements

    International Nuclear Information System (INIS)

    Edling, D.A.; Griffin, J.F.

    1975-01-01

    The purpose of this study was to have one ERDA contractor: (1) compile a list of specification packagings, proposed by ERDA contractors, for shipping Type A quantities of radioactive material, and (2) analyze these packages for conformance to Specification 7A requirements. This study was divided into two phases. Phase I provides a report on those packages which could be shown, based on existing test data and engineering analyses, to conform to DOT Specification 7A packaging requirements. The results of Phase I are discussed in detail in the publication, ''Certification of AEC Contractor's Packagings With Respect to Compliance with DOT Specification 7A Performance Requirements -- Phase I Summary Report,'' D. A. Edling, H. E. Meyer and G. L. Phillabaum (Schedule 189C, May 26, 1974). The objectives of Phase II were: (1) identification of packages from Phase I for which available information was not adequate for certification. (Those specification containers used by ERDA contractors and those containers for which adequate information was available for certification are listed in the Phase I summary report.); (2) identification of specific test/engineering analysis data required; (3) generation/procurement of these data; and (4) documentation of study results for use by all ERDA contractors and private industry. The results of Phase II of the study are presented. (U.S.)

  18. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  19. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Jian; Chen, Bai-Xue; Zhang, Fang-Shuai; Yu, Hui-Juan; Ma, Shuang; Kuang, Dai-Bin; Shao, Guang; Su, Cheng-Yong

    2016-04-05

    Two new electron-rich molecules based on 3,4-phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). X-ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT-core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10(-4)  cm(2)  V(-1)  s(-1) , being higher than that of spiro-OMeTAD, 2.34×10(-5)  cm(2)  V(-1)  s(-1)). The PSC based on MeO-PheDOT as HTM exhibits a short-circuit current density (Jsc) of 18.31 mA cm(-2) , an open-circuit potential (Voc ) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high-efficiency and low-cost HTMs for PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modeling Quantum Dot Nanoparticle Fate and Transport in Saturated Porous Media under Varying Flow Conditions

    Science.gov (United States)

    Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.

    2010-12-01

    As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.

  1. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    Science.gov (United States)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  2. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    Science.gov (United States)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  3. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  4. Electron-phonon interaction in quantum transport through quantum dots and molecular systems

    Science.gov (United States)

    Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2016-12-01

    The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.

  5. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO2 Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Francis S. Maloney

    2016-10-01

    Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.

  6. Many-body effects in transport through a quantum-dot cavity system

    Science.gov (United States)

    Dinu, I. V.; Moldoveanu, V.; Gartner, P.

    2018-05-01

    We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.

  7. Spin transport in quantum dot embedded in Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Wei, J.S.; Wang, R.Z.; Yuan, R.Y.; You, J.Q.; Yan, H.

    2005-01-01

    Spin polarized transport was studied by employing non-equilibrium Green function method, for a model of quantum dot (QD) embedded in a mesoscopic Aharonov-Bohm (AB) ring with magnetic field applied on QD. In comparison with the situation without magnetic field on QD, the average spin occupations separate with the increase in applied magnetic field on QD; in addition, magnetic field on QD has profound effect on the density of states for different spins in QD; on the other hand, the amplitude and phase of transmission for up spin and down spin were found to present novel effects, such as, the additional peak in the phase of transmission. To understand the spin transport in the system of QD coupled to AB ring, the effects of the two magnetic fields imposed on the QD and penetrating the AB ring should be considered

  8. Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices

    Energy Technology Data Exchange (ETDEWEB)

    Gramich, J., E-mail: joerg.gramich@unibas.ch; Baumgartner, A.; Schönenberger, C. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-04-25

    We report thermally activated transport resonances for biases below the superconducting energy gap in a carbon nanotube quantum dot (QD) device with a superconducting Pb and a normal metal contact. These resonances are due to the superconductor's finite quasi-particle population at elevated temperatures and can only be observed when the QD life-time broadening is considerably smaller than the gap. This condition is fulfilled in our QD devices with optimized Pd/Pb/In multi-layer contacts, which result in reproducibly large and “clean” superconducting transport gaps with a strong conductance suppression for subgap biases. We show that these gaps close monotonically with increasing magnetic field and temperature. The accurate description of the subgap resonances by a simple resonant tunneling model illustrates the ideal characteristics of the reported Pb contacts and gives an alternative access to the tunnel coupling strengths in a QD.

  9. Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires

    International Nuclear Information System (INIS)

    Petrosyan, Lyudvig S

    2016-01-01

    We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)

  10. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    Directory of Open Access Journals (Sweden)

    Elza FT Belo

    Full Text Available Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic. The dot-ELISA is based on the same principles as the standard ELISA and is useful for detection of anti-N. meningitidis B antibodies in serum of patients with meningococcal infections. For the assay, outer membrane complexes (OMCs were absorbed by nitrocellulose membrane and blocked with a 5% skim milk solution. Serum samples were drawn upon hospital admission and during convalescence from patients with meningococcal septicemia, and single samples were drawn from uninfected controls. We retrospectively examined a total of 57 serum samples: 35 from patients infected with N. meningitidis B, 12 from patients infected with Haemophilus influenzae b, and 10 from health individuals. When performed at room temperature, dot-ELISA took approximately four hours to perform, and the optimum antigen concentration was 0.42 µg per dot. The specificity of IgG, IgM, and IgA demonstrates that dot-ELISA using OMCs from N. meningitidis B as a target is suitable for serologic verification of clinically suspected meningococcal disease in patients and for titer determination of antibodies produced during different phases of natural infection. Furthermore, the sensitivity of dot-ELISA was comparable to that of standard ELISA. Overall, dot-ELISA is simple to perform, rapid, and low cost. Further validation of the test as a screening tool is required.

  11. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  12. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    Science.gov (United States)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  13. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  14. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    DEFF Research Database (Denmark)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov

    2017-01-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron–electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven...

  15. Electroluminescence Caused by the Transport of Interacting Electrons through Parallel Quantum Dots in a Photon Cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-02-01

    We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.

  16. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Aparajita [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kole, Arindam, E-mail: erak@iacs.res.in [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dasgupta, Arup [Microscopy and Thermophysical Property Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chaudhuri, Partha [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-11-30

    Highlights: • Low temperature columnar growth of regular sized Si-quantum dots (Si-QDs) within a-SiC:H/μc-SiC:H multilayer structure by tuning the a-SiC:H layer thickness. • Thickness optimization of the a-SiC:H layers resulted in a sharp increase of the transverse current and a decrease of the trap concentrations. • The arrangements of the Si-QDs favor percolation paths for the transverse current. - Abstract: Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel–Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  17. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-01-01

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots

  18. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    International Nuclear Information System (INIS)

    Wang, Yi-Zhi; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2015-01-01

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL −1 with the detection limit of 44.3 nmol · mL −1 . The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  19. Electron transport due to inhomogeneous broadening and its potential impact on modulation speed in p-doped quantum dot lasers

    International Nuclear Information System (INIS)

    Deppe, D G; Freisem, S; Huang, H; Lipson, S

    2005-01-01

    Data are first presented on spontaneous and laser emission of p-doped and undoped quantum dot (QD) heterostructures to characterize the increase in optical gain in p-type modulation doped QD lasers. Because the increase in gain due to p-doping should also increase the differential gain, but does not greatly increase the modulation speed in present p-doped QD lasers, we further examine nonequilibrium electron transport effects in p-doped active material that may still limit the modulation speed. Electron transport through the dot wetting layer caused by the nonlasing QDs of the active ensemble is shown to be capable of substantially reducing the modulation speed, independent of the differential gain. This nonequilibrium limitation can be eliminated by reducing the inhomogeneous broadening in the QD ensemble

  20. Influence of spin correlations in the transport properties of a double quantum dot system

    Science.gov (United States)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2013-03-01

    In this work we study the influence of spin correlations in the transport properties of a system consisting of two quantum dots (QDs) with high Coulomb interaction U which are interconnected through a chain of N non-interacting sites and individually coupled to two metallic leads. Using both the finite U slave boson mean field approach (FUSBMFA) and the Logarithmic-discretization-embedded-cluster approximation (LDECA) we studied the system in different regions of the parameter space for which we calculate many physical quantities, namely local density of states, conductance, total spin, spin correlations, in addition to the renormalization parameters associated with the FUSBMFA. The results reveled a very rich physical scenario which is manifested by at least two different Kondo regimes, the well-known spin s = 1/2 and some other type of Kondo effect which appears as a result of the coupling between the QDs and the non-interacting central sites. We also consider the possibility of accessing some kind of Kondo box effect due to the discrete nature of the central chain and study how this regime is affected by the magnetic interaction between the local spins of the QD's and by the interaction between these spins and the spins of the conduction electros in the leads.

  1. Microwave-mediated heat transport in a quantum dot attached to leads

    International Nuclear Information System (INIS)

    Chi Feng; Dubi, Yonatan

    2012-01-01

    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)

  2. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    Science.gov (United States)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  3. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules

    DEFF Research Database (Denmark)

    Durisic, Nela; Bachir, Alexia I; Kolin, David L

    2007-01-01

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic e...

  5. Incorporating sustainability into TxDOT's transportation decision-making : interactive workshop

    Science.gov (United States)

    2010-01-01

    The workshop is intended for new and experienced technical staff in TxDOT headquarters, district, and area offices to better understand how sustainability performance measures can be used at the sketch-planning level of project consideration. The wor...

  6. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    Science.gov (United States)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  7. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Mestre, Nélia C.; Cardoso, Cátia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2015-12-15

    Highlights: • Mussel gills are the main target for oxidative stress induced by Cd-based QDs. • Antioxidants responses induced by Cd-based QDs and dissolved Cd are mediated by different mechanisms. • CdTe QDs are more pro-oxidant Cd form when compared to dissolved Cd. • Differential tissue response indicated nano-specific effects. - Abstract: In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L{sup −1} and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels’ antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent

  8. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  9. Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry

    Science.gov (United States)

    Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.

  10. Specific detection of Vibrio parahaemolyticus by fluorescence quenching immunoassay based on quantum dots.

    Science.gov (United States)

    Wang, Ling; Zhang, Junxian; Bai, Haili; Li, Xuan; Lv, Pintian; Guo, Ailing

    2014-07-01

    In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43%. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC · HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764%. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.

  11. MoDOT pavement preservation research program volume V, site-specific pavement condition assessment.

    Science.gov (United States)

    2015-11-01

    The overall objective of Task 4 was to thoroughly assess the cost-effectiveness and utility of selected non-invasive technologies as : applicable to MoDOT roadways. Non-invasive imaging technologies investigated in this project were Ultrasonic Surfac...

  12. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Xue, Zhenjie

    2014-11-14

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ E{sub g,nano-CdSe}. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs.

  13. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    International Nuclear Information System (INIS)

    Decho, Alan W; Beckman, Erin M; Chandler, G Thomas; Kawaguchi, Tomohiro

    2008-01-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae

  14. Two nucleoside transporters in Lactococcus lactis with different substrate specificities

    DEFF Research Database (Denmark)

    Martinussen, Jan; Sørensen, Claus; Jendresen, Christian Bille

    2010-01-01

    , and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of Lactococcus lactis to transport different nucleosides across the cell membrane was characterized...

  15. The 2055 freight transportation system and the impact of near term rail improvements on TxDOT planning : project management plan.

    Science.gov (United States)

    2016-03-01

    The Texas Department of Transportation (TxDOT) is the sponsor of the project. The : project goals are to: (1) produce a framework for Texas freight transportation system in : 2055 and (2) develop a set of rail planning recommendations that will be...

  16. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  17. Detection of mutations related to drug resistance in M. tuberculosis by dot blot hybridization and spoligotyping using specific radiolabelled probes

    International Nuclear Information System (INIS)

    El-Maghraby, T.K.; Abdelazeim, O.

    2002-01-01

    The present work has been conducted to determine the mutations related to drug resistance in M. tuberculosis in 63 Egyptian isolates using dot blot hybridization and spoligotyping. The PCR was done for amplification rpoB and katG genes in isolates. Dot blot hybridization were done to PCR products by using specific radiolabelled probes. Moreover, spoligotyping was done to know about the different strains found in Egypt. The results revealed that 58% from isolates had drug resistance to one or more of antituberculosis drugs. The results of spoligotyping have revealed that some Egyptian isolates are identical with the international code while the rest has not been identified yet. DNA sequencing was done to identify the mutation that not clear in dot blot hybridization. Early diagnosis of geno typing resistance to antituberculosis drugs is important as well as allow appropriate early patients management with few days of TB diagnosis. Using such strategy for early diagnosis of TB drug resistance allow and fast and potent patient's management

  18. 78 FR 26845 - Privacy Act of 1974; Department of Transportation, Office of the Secretary of Transportation; DOT...

    Science.gov (United States)

    2013-05-08

    ... for speeches and other events and meetings, and to provide information to the media and public about... with 5 U.S.C. 552a(r), DOT has provided a report of this system of records to the Office of Management.... In addition you should provide the following: An explanation of why you believe the Department would...

  19. Route-specific analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    1986-01-01

    This report addresses a methodology for route-specific analysis, of which route-selection is one aspect. Identification and mitigation of specific hazards along a chosen route is another important facet of route-specific analysis. Route-selection and route-specific mitigation are two tools to be used in minimizing the risk of radioactive materials transportation and promoting public confidence. Other tools exist to improve the safety of transportation under the Nuclear Waste Policy Act. Selection of a transportation mode and other, non-route-specific measures, such as improved driver training and improved cask designs, are additional tools to minimize transportation risk and promote public confidence. This report addresses the route-specific analysis tool and does not attempt to evaluate its relative usefulness as compared to other available tools. This report represents a preliminary attempt to develop a route-specific analysis methodlogy. The Western Interstate Energy Board High-Level Waste Committee has formed a Route-Specific Analysis Task Force which will build upon the methodology proposed in this Staff Report. As western states continue to investigate route-specific analysis issues, it is expected that the methodology will evolve into a more refined product representing the views of a larger group of interested parties in the West

  20. Charge transport and trap states in lead sulfide quantum dot field-effect transistors

    NARCIS (Netherlands)

    Nugraha, Mohamad Insan

    2017-01-01

    Lood sulfide Quantum Dots (PbS QDs) hebben grote potentie voor een breed scala aan elektronische apparaten; denk aan zonnecellen, sensors en LEDs. De kwantumopsluiting in deze materialen leidt tot discretie van energieniveaus en afstembaarheid van de bandkloof. Deze materialen zijn ook compatibel

  1. 76 FR 53999 - Safety Notice: Transportation of DOT Special Permit Packages in Commerce

    Science.gov (United States)

    2011-08-30

    ... characteristics of DOT SPs and underscore the possible consequences of failing to recognize an SP package and... authorizing the use of SPs is to allow industry to benefit from alternative technologies, materials, and/or... fails to recognize the cylinder's SP markings and apply the more stringent SP requirements, it might...

  2. All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer

    Directory of Open Access Journals (Sweden)

    Jiahui Li

    2016-10-01

    Full Text Available All-inorganic quantum dot light emitting diodes (QLEDs have gained great attention as a result of their high stability under oxygen-rich, humid and high current working conditions. In this work, we have fabricated an all-inorganic QLED device (FTO/NiO/QDs/AZO/Ag with sandwich-structure, wherein the inorganic metal oxides thin films of NiO and AZO were employed as hole and electron transport layers, respectively. The porous NiO layer with vertical lamellar nanosheets interconnected microstructure have been directly synthesized on the substrate of conductive FTO glass and increased the wettability of CdSe@ZnS QDs, which result in an enhancement of current transport performance of the QLED.

  3. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters

    Directory of Open Access Journals (Sweden)

    GEORGE eDIALLINAS

    2014-09-01

    Full Text Available Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open towards the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action.

  4. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    Science.gov (United States)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  5. Specific Space Transportation Costs to GEO - Past, Present and Future

    Science.gov (United States)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  6. Transport of uranium concentrates: low specific activity versus logistic complexity

    International Nuclear Information System (INIS)

    Dias, Pedro L.S.; Macedo, Eclesio F.; Carvalho, Leonardo B.; Carvalho, Renata R.

    2011-01-01

    This paper describes the case of radioactive material transport, according to pertinent documentation - nuclear material specifically in the form op ammonium diuranate, produced by Industrias Nucleares do Brasil S.A. - from the mine and physic-chemical processing at Caetite, Bahia, to the port of Salvador, state of Bahia, approaching the radiological protection aspects

  7. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  8. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system

    International Nuclear Information System (INIS)

    Yan Junxia; Fu Huahua

    2013-01-01

    We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.

  9. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Science.gov (United States)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  10. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Samuel M.; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Noh, Hyunwoo [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Cha, Jennifer N. [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  11. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    International Nuclear Information System (INIS)

    Goodman, Samuel M.; Singh, Vivek; Noh, Hyunwoo; Cha, Jennifer N.; Nagpal, Prashant

    2015-01-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers

  12. Incorporating sustainability into TxDOT's transportation decision making : summary of work performed, methods used, and results achieved.

    Science.gov (United States)

    2011-02-01

    This report summarizes the work performed in Fiscal Year (FY) 2009 and 2010 under TxDOT : Implementation Project 5-5541-01 Regional Workshops on Sustainability Enhancement : Tool. TxDOT Research Project 0-5541, Developing Sustainable Tra...

  13. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  14. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin

    2018-04-25

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell\\'s performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode\\'s work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  15. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin; Seitkhan, Akmaral; Han, Yang; Khim, Dongyoon; Yengel, Emre; Kirmani, Ahmad R.; Xu, Jixian; Garcí a de Arquer, F. Pelayo; Sargent, Edward H.; Amassian, Aram; Fei, Zhuping; Heeney, Martin; Anthopoulos, Thomas D.

    2018-01-01

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell's performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode's work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  16. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  17. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors*

    Science.gov (United States)

    Aurass, Philipp; Gerlach, Thomas; Becher, Dörte; Voigt, Birgit; Karste, Susanne; Bernhardt, Jörg; Riedel, Katharina; Hecker, Michael; Flieger, Antje

    2016-01-01

    Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests

  18. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  19. Real-time visualization of prion transport in single live cells using quantum dots

    International Nuclear Information System (INIS)

    Luo, Kan; Li, Shu; Xie, Min; Wu, Di; Wang, WenXi; Chen, Rui; Huang, Liqin; Huang, Tao; Pang, Daiwen; Xiao, Gengfu

    2010-01-01

    Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP C to the infectious scrapie isoform PrP Sc . It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP C to the cell membrane and in initiating PrP C endocytosis.

  20. Real-time visualization of prion transport in single live cells using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kan [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Li, Shu [AIDS Research Centre, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730 (China); Xie, Min [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Wu, Di; Wang, WenXi; Chen, Rui; Huang, Liqin; Huang, Tao [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Pang, Daiwen, E-mail: dwpang@whu.edu.cn [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2010-04-09

    Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP{sup C} to the infectious scrapie isoform PrP{sup Sc}. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP{sup C} to the cell membrane and in initiating PrP{sup C} endocytosis.

  1. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    International Nuclear Information System (INIS)

    C.A Kouts

    2006-01-01

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others

  2. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  3. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  4. 49 CFR 173.472 - Requirements for exporting DOT Specification Type B and fissile packages.

    Science.gov (United States)

    2010-10-01

    ... or (202) 366-3650, or by electronic mail (e-mail) to “[email protected]” Each request is considered in... the package identification marking indicated in the U.S. Competent Authority Certificate. (e) Before... into or through which the package will be transported, unless the offeror has documentary evidence that...

  5. Specific lysosomal transport of small neutral amino acids

    International Nuclear Information System (INIS)

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-01-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-[ 14 C]proline (50 μM) uptake by fibroblast lysosomes at 37 0 C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-[ 14 C]proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na + is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na +

  6. Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step Deposited Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-31

    Employment of thin perovskite shells and metal halides as surface-passivants for colloidal quantum dots (CQDs) have been important, recent developments in CQD optoelectronics. These have opened the route to single-step deposited high-performing CQD solar cells. These promising architectures employ a QD hole-transporting layer (HTL) whose intrinsically shallow Fermi level (EF) restricts band-bending at maximum power-point during solar cell operation limiting charge collection. Here, we demonstrate a generalized approach to effectively balance band-edge energy levels of the main CQD absorber and charge-transport layer for these high-performance solar cells. Briefly soaking the QD HTL in a solution of the metal-organic p-dopant, molybdenum tris(1-(trifluoroacetyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), effectively deepens its Fermi level, resulting in enhanced band bending at the HTL:absorber junction. This blocks the back-flow of photo-generated electrons, leading to enhanced photocurrent and fill factor compared to undoped devices. We demonstrate 9.0% perovskite-shelled and 9.5% metal-halide-passivated CQD solar cells, both achieving ca. 10% relative enhancements over undoped baselines.

  7. Mesoscopic spin-flip transport through a hybrid system with a single molecular dot system applied with ac magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qiao, E-mail: cqhy1127@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Liu Jin [Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Wang Zhiyong [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China)

    2011-01-17

    We have investigated the current for the system of vibrating quantum dot irradiated with a rotating magnetic field and an oscillating magnetic field by nonequilibrium Green's function. The rotating magnetic field rotates with the angular frequency {omega}{sub r} around the z-axis with the tilt angle {theta}, and the time-oscillating magnetic field is located in the z-axis with the angular frequency {omega}. Different behaviors have been shown in the presence of electron-phonon interaction (EPI) which plays a significant role in the transport. The current displays asymmetric behavior as the source-drain bias eV=0, novel side peaks or shoulders can be found due to the phonon absorption and emission procedure, and the negative differential resistance becomes stronger as the parameter g increases. Furthermore, the strong EPI also destroys the quasiperiodic oscillations of current in the region {mu}{sub 0}B{sub 1}>2.5{Delta}. The electron transport properties are also significantly influenced by the linewidth function {Gamma}.

  8. Enhancement of sensitivity and specificity of the fluoroimmunoassay of Hepatitis B virus surface antigen through "flexible" coupling between quantum dots and antibody

    NARCIS (Netherlands)

    Zeng, Qinghui; Zhang, Youlin; Song, Kai; Kong, Xianggui; Aalders, Maurice C. G.; Zhang, Hong

    2009-01-01

    Quantum dots (QDs) are widely used in the immune detection. Yet, the sensitivity and specificity of the immune detection are not satisfactory because the binding sites of QDs onto antibody (Ab) are often arbitrary and the influence of the large surface electronic potential energy of QDs on the

  9. Refurbishment and modification of existing protective shipping packages (for 30-inch UF{sub 6} cylinders) per USDOT specification No. USA-DOT-21PF-1A

    Energy Technology Data Exchange (ETDEWEB)

    Housholder, W.R. [Nuclear Containers, Incorporated, Elizabethton, TN (United States)

    1991-12-31

    This paper addresses the refurbishment procedures for existing shipping containers for 30-inch diameter UF{sub 6} cylinders in accordance with DOT Specification 21PF-1 and the criteria used to determine rejection when such packages are unsuitable for refurbishment.

  10. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    Science.gov (United States)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  11. Transportation challenges for the new administration : perspectives of past DOT secretaries

    Science.gov (United States)

    2009-01-01

    On January 29, 2009, the RAND Corporation hosted a panel discussion with three former U.S. secretaries of transportation. This wide-ranging discussion, held the week after President : Barack Obamas inauguration and during the congressional debate ...

  12. Intelligent Transportation Systems Research Data Exchange - Minnesota DOT Mobile Observation data

    Data.gov (United States)

    Department of Transportation — Registered users can download the RDE API client application and receive a real-time data feed from the Minnesota Integrated Mobile Observation (IMO) project. Mobile...

  13. Effects of the thickness of NiO hole transport layer on the performance of all-inorganic quantum dot light emitting diode

    International Nuclear Information System (INIS)

    Zhang, Xiao Li; Dai, Hai Tao; Zhao, Jun Liang; Li, Chen; Wang, Shu Guo; Sun, Xiao Wei

    2014-01-01

    All-inorganic quantum dot light emitting diodes (QLEDs) have recently gained great attention owing to their high stability under oxygenic, humid environment and higher operating currents. In this work, we fabricated all-inorganic CdSe/ZnS core-shell QLEDs composed of ITO/NiO/QDs/ZnO/Al, in which NiO and ZnO thin film deposited via all-solution method were employed as hole and electron transport layer, respectively. To achieve high light emitting efficiency, the balance transport between electrons and holes play a key role. In this work, the effects of the thickness of NiO film on the performance of QLEDs were explored experimentally in details. NiO layers with various thicknesses were prepared with different rotation speeds. Experimental results showed that thinner NiO layer deposited at higher rotation speed had higher transmittance and larger band gap. Four typical NiO thickness based QLEDs were fabricated to optimize the hole transport layer. Thinner NiO layer based device performs bright emission with high current injection, which is ascribed to the reduced barrier height between hole transport layer and quantum dot. - Highlights: • All-inorganic quantum dot light emitting diodes (QLEDs) were fabricated. • Thinner NiO film can effectively enhance on–off properties of devices. • Improved performance of QLEDs is mainly attributed to energy barrier reduction

  14. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... removed from the motor vehicle; and (3) Is not fabricated under a specification for cylinders... determine leak tightness of the cargo tank when testing with pneumatic pressure. Internal self-closing stop...

  15. Detection of toxoplasma-specific immunoglobulin G in human sera: performance comparison of in house Dot-ELISA with ECLIA and ELISA.

    Science.gov (United States)

    Teimouri, Aref; Modarressi, Mohammad Hossein; Shojaee, Saeedeh; Mohebali, Mehdi; Zouei, Nima; Rezaian, Mostafa; Keshavarz, Hossein

    2018-05-08

    In the current study, performance of electrochemiluminescence immunoassay (ECLIA) in detection of anti-toxoplasma IgG in human sera was compared with that of enzyme-linked immunosorbent assay (ELISA). Furthermore, performance of an in house Dot-ELISA in detection of anti-toxoplasma IgG was compared with that of ECLIA and ELISA. In total, 219 human sera were tested to detect anti-toxoplasma IgG using Dynex DS2® and Roche Cobas® e411 Automated Analyzers. Discordant results rechecked using immunofluorescence assay (IFA). Then, sera were used in an in house Dot-ELISA to assess toxoplasma-specific IgG. Of the 219 samples, two samples were found undetermined using ECLIA but reactive using ELISA. Using IFA, the two sera were reported unreactive. Furthermore, two samples were found reactive using ECLIA and unreactive using ELISA. These samples were reported reactive using IFA. The overall agreement for the two former methods was 98% (rZ0.98.1; P house Dot-ELISA included sensitivity of 79.5, specificity of 78.2, and accuracy of 78.9%, compared to ECLIA and ELISA. Positive and negative predictive values included 82.9 and 74.2%, respectively. A 100% sensitivity was found in in house Dot-ELISA for highly reactive sera in ECLIA and ELISA. ECLIA is appropriate for the first-line serological screening tests and can replace ELISA due to high speed, sensitivity, and specificity, particularly in large laboratories. Dot-ELISA is a rapid, sensitive, specific, cost-effective, user-friendly, and field-portable technique and hence can be used for screening toxoplasmosis, especially in rural fields or less equipped laboratories.

  16. Phonon-affected steady-state transport through molecular quantum dots

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Fehske, H.; Loos, Jan

    T151, č. 1 (2012), 1-10 ISSN 0031-8949 Institutional research plan: CEZ:AV0Z10100521 Keywords : the ory of electron ic transport * scattering mechanisms * polarons and electron -phonon interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.032, year: 2012

  17. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    International Nuclear Information System (INIS)

    Dong, B; Ding, G H; Lei, X L

    2015-01-01

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)

  18. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qingsong; Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Lin, Yingying; Yin, Hua; Zhu, Ruiping [State Key Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xue, Zhenjie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-07

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core–shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core–shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core–shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10{sup −8} to 2 × 10{sup −3} s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space–charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  19. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Science.gov (United States)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  20. A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor

    DEFF Research Database (Denmark)

    See, A. M.; Klochan, O.; Micolich, P.

    2013-01-01

    . The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin......, and the interference effects which arise from coherent tunnelling of electrons in the quantum dot....

  1. Today's DOT and the quest for more accountable organizational structures.

    Science.gov (United States)

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  2. Non-Markovian dynamics of charge carriers in quantum dots

    International Nuclear Information System (INIS)

    Vaz, E; Kyriakidis, J

    2008-01-01

    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals

  3. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states of quantum dots at the type-II InSb/InAs heterointerface.

  4. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation.

    Science.gov (United States)

    Jatana, Samreen; Palmer, Brian C; Phelan, Sarah J; Gelein, Robert; DeLouise, Lisa A

    2017-04-14

    Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm 2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.

  5. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  6. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    Science.gov (United States)

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  7. Prototype road weather performance management (RW-PM) tool and Minnesota Department of Transportation (MnDOT) field evaluation.

    Science.gov (United States)

    2017-01-01

    FHWAs Road Weather Management Program developed : a Prototype Road Weather Management (RW-PM) Tool : to help DOTs maximize the effectiveness of their maintenance : resources and efficiently adjust deployments dynamically, : as road conditions and ...

  8. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    Science.gov (United States)

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  9. DOT-IV two-dimensional discrete ordinates transport code with space-dependent mesh and quadrature

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Simpson, D.B.; Childs, R.L.; Engle, W.W. Jr.

    1979-01-01

    DOT IV is designed to allow very large problems to be solved on a wide range of computers and memory arrangements. New flexibility in both space-mesh and directional-quadrature specification is allowed. For example, the radial mesh in an R-Z problem can vary with axial position. The directional quadrature can vary with both space and energy group. Several features improve performance on both deep penetration and criticality problems. The program has been checked and used extensively on several types of computers. All of the features have been insured operable except the following two, which must not be used: criticality searches and P/sub L/ variable by group or material. Diffusion theory problems must not use internal or external boundary sources, variable mesh, or variable quadrature. A diffusion iteration cannot produce internal boundary source output or ''angular flux tape.'' The P 1 module is very limited. The special geometries, INGEOM greater than or equal to 10, have not been completely checked and are not guaranteed. 7 figures, 1 table

  10. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  11. Specific climate impact of passenger and freight transport

    Science.gov (United States)

    2010-01-01

    Emissions of short-lived species contribute significantly to : the climate impact of transportation. The magnitude of the effects : varies over time for each transport mode. This paper compares : first the absolute climate impacts of current passenge...

  12. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

    Science.gov (United States)

    2018-01-01

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666

  13. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    International Nuclear Information System (INIS)

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements

  14. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    Science.gov (United States)

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  15. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  16. Extension of ANISN and DOT 3.5 transport computer codes to calculate heat generation by radiation and temperature distribution in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The ANISN and DOT 3.5 codes solve the transport equation using the discrete ordinate method, in one and two-dimensions, respectively. The objectives of the study were to modify these two codes, frequently used in reactor shielding problems, to include nuclear heating calculations due to the interaction of neutrons and gamma-rays with matter. In order to etermine the temperature distribution, a numerical algorithm was developed using the finite difference method to solve the heat conduction equation, in one and two-dimensions, considering the nuclear heating from neutron and gamma-rays, as the source term. (Author) [pt

  17. TxDOT administration research : tasks completed in FY2009.

    Science.gov (United States)

    2010-01-01

    Texas Department of Transportation (TxDOT) Project 0-6581-TI, TxDOT Administration : Research, encompasses multiple tasks that explore and support administrative aspects of : transportation research. : The project term began in October 2008 and has b...

  18. 78 FR 26090 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Science.gov (United States)

    2013-05-03

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0270] Content Specifications and Shielding Evaluations for...) 2013-04, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This... Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations...

  19. 49 CFR 41.119 - DOT regulated buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  20. Specific equipment for the transfer and transport of radioactive liquids

    International Nuclear Information System (INIS)

    Leblais, R.

    1983-01-01

    Safety regulations impose a system of transport high-level radioactive liquids which excludes all risk of accidental projections. Ets. LEMER have collaborated with the A.E.C. for the industrial manufacture of more than 250 pieces of equipment for FRANCE and for 13 nuclear centres abroad. This equipment can be classified in two categories: - CENDRILLON containers which must be placed in special shock-proof and fire-proof shells for transport on public roads; - containers mounted on trailors provided with their own shock-proof and fire-proof protection

  1. Usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis.

    Science.gov (United States)

    Rastawicki, Waldemar; Smietafiska, Karolina; Chrost, Anna; Wolkowicz, Tomasz; Rokosz-Chudziak, Natalia

    Proper analysis of the human immune response is crucial in the laboratory diagnosis of many bacterial infections-The current serological diagnosis of yersiniosis often is carried out using ELISA with native antigens. However, recombinant proteins increase the specificity of the serological assays, particularly in patients with chronic, non- specific infections. The aim of the present study was to evaluate the usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis. Recombinant YopD, YopB, YopE and V-Ag proteins of Y enterocolitica were expressing in E. coli BL21 (DE3) using the pET-30 Ek/LIC expression vector (Novagen). Purification was accomplished by immobilized metal (Ni2) affinity column chromatography (His-trap). The proteins were used as antigens in standard ELISA and recom-dot assay, which was performed on nitrocellulose strips. The study population, used for characterization of the humoral immune response to the recombinant proteins, consisted of 74 patients suspected for Y enterocolitica infection and 41 clinically healthy blood donors. Some of the results obtained by ELISA and recom-dot were compared with results obtained by commercial western-blot Yersinia (Virotech). In the group of patients suspected for yersiniosis in clinical investigation the most positive results were obtained in ELISA with the recombinant protein YopD (IgA respectively 25 (42.4%), IgG 41 (69.5%), IgM 24 (40.7%). The percentage ofpositive results in the group of blood donors did not exceed 10.0% in IgG and 5.0% in IgA/IgM classes of immunoglobulin. The results obtained in the recom-dot assay showed that among 74 tested serum samples obtained from individuals suspected of yersiniosis the most common IgA, IgG and IgM antibodies were found for recombinant protein YopD (respectively IgG in 60.8%, IgA in 37.8% and IgM in 33.8% of serum samples). IgG antibodies to

  2. PennDOT : fact book

    Science.gov (United States)

    2008-06-01

    PennDOT was created in 1970 when the former : Department of Highways was merged with transportation related : functions from the Departments of Revenue, : Commerce, Community Affairs and Military Affairs. With : an annual budget of about $5.4 billion...

  3. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  4. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  5. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Directory of Open Access Journals (Sweden)

    Nitish K Mishra

    Full Text Available Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task.Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset.Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide accurate predictions

  6. Low Cost Aerial and Spatial Data, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-31

    MnDOT Office of Transportation System Management (OTSM) desires to reduce the cycle time for collecting road data updates from county sources and, opportunistically, capture additional data about road and ancillary uses, e.g. bicycle access. Specific...

  7. Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters

    NARCIS (Netherlands)

    Wieczorek, Sebastian; Krause, Eberhard; Hackbarth, Steffen; Roeder, Beate; Hirsch, Anna K. H.; Boerner, Hans G.

    2013-01-01

    A generic method describes advanced tailoring of polymer drug carriers based on polymer-block-peptides. Combinatorial means are used to select suitable peptide segments to specifically complex small-molecule drugs. The resulting specific drug formulation agents render insoluble drugs water-soluble

  8. DOT-7A packaging test procedure

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  9. Security Measures and some Specific Features of the Transport Police Functioning in Russia and Abroad

    Directory of Open Access Journals (Sweden)

    Petr P. Ignatushenko

    2017-03-01

    Full Text Available In the present article specifics of the transport police work in the Russian Federation are discussed, as well as in other countries of the world (USA, Germany, Israel, etc.. Attention is drawn to the need of the role and significance of the Russian police review in the matters of railway and aviation security, as well as safety on river and sea transport. The term “transport security” is a state of security of transport and transport infrastructure, consumers of transport services (passengers from various types of threats (natural and man-made, as well as acts of unlawful interference in the activities of various modes of transport – points put the author. Transport security issues are important for the creation of the transport police system in the Russian Federation, taking into account experience of foreign countries.

  10. Modelling contaminant transport using site specific data from Vaalputs

    International Nuclear Information System (INIS)

    Botha, J.F.

    1986-01-01

    The transport of a contaminant through the upper layers of the earth's surface is a complex phenomenon. To develop a model for this, requires a good understanding of the physical nature of the phenomenon. This paper discusses two difficulties frequently encountered in developing such a model - the nature of the subsurface and the mathematical representation of the unsaturated hydraulic parameters. It is proposed that information obtained from pump- and packer tests be used to circumvent the first difficulty, and that the unsaturated flow parameters be approximated by C -∞ continuous function

  11. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.

    2011-01-01

    and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture....... Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry...

  12. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe–CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Fontana JM

    2017-12-01

    Full Text Available Jacopo M Fontana,1 Huijuan Yin,1 Yun Chen,2 Ricardo Florez,1 Hjalmar Brismar,1 Ying Fu1 1Section of Cellular Biophysics, Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, Solna, 2Department of Molecular and Clinical Medicine/Clinical Physiology, The Sahlgrenska Academy and University Hospital, University of Gothenburg, Gothenburg, Sweden Abstract: Colloidal semiconductor quantum dots (QDs have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs. Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2 adenosine 5'-triphosphate-induced [Ca2+]i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3 fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA

  13. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali

    2011-06-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  14. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo

    2011-01-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  15. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Christos Gournas

    2018-05-01

    Full Text Available In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT family. These consist of (a residues conserved across YATs that interact with the invariable part of amino acid substrates and (b variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.

  16. Geographic specificity and positionality of public input in transportation: a rural transportation planning case from Central Texas

    Directory of Open Access Journals (Sweden)

    Greg P. Griffin

    2014-01-01

    Full Text Available Current transportation planning processes often incorporate public input, but the types of engagement techniques can affect the ability of practitioners to meaningfully include local ideas. This study incorporates literature integrating communicative rationality with participatory mapping, supported by a case study focusing on two public engagement techniques. A transportation planning process in Central Texas is evaluated in terms of the geographic specificity and positionality of comments received from open-ended responses on a questionnaire and a facilitated mapping session, and reviews this input for relevance to developing a transportation plan. Although all input received from the public can be valuable in the process, location-based comments may be more actionable by transportation planners. Participants’ perceived roles likely affect their level of engagement, which planners can facilitate to maximize the quality of involvement. Planners are advised to understand the positionality of project stakeholders and professionals, designing involvement methods considering geographic specificity appropriate for each project.

  17. DOT-7A Type A packaging design guide

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    The purpose of this Design Guide is to provide instruction for designing a U.S. Department of Transportation Specification 7A (DOT-7A) Type A packaging. Another purpose for this Design Guide is to support the evaluation and testing activities that are performed on new designs by a U.S. Department of Energy (DOE) test facility. This evaluation and testing program is called the DOT-7A Program. When an applicant has determined that a DOT-7A packaging is needed and not commercially available, a design may be created according to this document. The design should include a packaging drawing, specifications, analysis report, operating instructions, and a Packaging Qualification Checklist; all of which should be forwarded to a DOE/HQ approved test facility for evaluation and testing. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  18. The evolving DOT enterprise : today toward tomorrow.

    Science.gov (United States)

    2013-04-01

    Departments of transportation (DOTs) today are being shaped by a wide range of : factors some of which are directly managed and controlled within the transportation : industry while others are external factors shaping the demand for transportatio...

  19. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    Science.gov (United States)

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  20. Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers

    International Nuclear Information System (INIS)

    Wei, Xiao; Zhou, Zhiping; Hao, Tongfan; Lu, Kai; Dai, Jiangdong; Xu, Yeqing; Li, Hongji; Zheng, Xudong; Gao, Lin; Wang, Jixiang; Yan, Yongsheng; Zhu, Yanzhuo

    2015-01-01

    A molecularly imprinted polymer (MIP) was deposited on the surface of CdTe quantum dots (QDs) to act as a recognition element for aspirin. The MIP was synthesized from 3-aminopropyltriethoxysilane as the functional monomer, aspirin as the template, and tetraethoxysilane as the cross-linker via a sol–gel process that leads to surface imprinting. It is shown that the fraction of QDs and the polymerization process affect size and morphology of the MIP-coated QDs. The optical stability, effects of pH, detection time and selective determination of aspirin were optimized. The fluorescence intensity of the particles (photoexcited at 400 nm and measured at 628 nm) decreases linearly with increasing concentration of aspirin in the 2.0–50 μmol L −1 range. The limit of detection (at an S/N of 3) is 0.25 μmol L −1 . The method was successfully applied to the determination of aspirin in human urine and saliva. (author)

  1. Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shingo; Itoh, Kyoko; Yaoi, Takeshi; Tozawa, Takenori; Fushiki, Shinji [Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yoshikawa, Yutaka; Yasui, Hiroyuki [Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Kanamura, Narisato [Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Hoshino, Akiyoshi; Manabe, Noriyoshi; Yamamoto, Kenji, E-mail: sfushiki@koto.kpu-m.ac.jp [The International Clinical Research Center, Research Institute, International Medical Center of Japan, Tokyo (Japan)

    2010-08-20

    Quantum dots (QDs) are well known for their potential application in biosensing, ex vivo live-cell imaging and in vivo animal targeting. The brain is a challenging organ for drug delivery, because the blood brain barrier (BBB) functions as a gatekeeper guarding the body from exogenous substances. Here, we evaluated the distribution of bioconjugated QDs, i.e., captopril-conjugated QDs (QDs-cap) following intraperitoneal injection into male ICR mice as a model system for determining the tissue localization of QDs, employing ICP-MS and confocal microscopy coupled with spectrometric analysis. We have demonstrated that intraperitoneally administered QDs-cap were delivered via systemic blood circulation into liver, spleen, kidney and brain at 6 h after injection. QDs-cap were located predominantly inside the blood vessels in the liver, kidney and brain, but a few were distributed in the parenchyma, especially noteworthy in the brain. Careful studies on acute as well as chronic toxicity of QDs in the brain are required prior to clinical application to humans.

  2. Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain

    International Nuclear Information System (INIS)

    Kato, Shingo; Itoh, Kyoko; Yaoi, Takeshi; Tozawa, Takenori; Fushiki, Shinji; Yoshikawa, Yutaka; Yasui, Hiroyuki; Kanamura, Narisato; Hoshino, Akiyoshi; Manabe, Noriyoshi; Yamamoto, Kenji

    2010-01-01

    Quantum dots (QDs) are well known for their potential application in biosensing, ex vivo live-cell imaging and in vivo animal targeting. The brain is a challenging organ for drug delivery, because the blood brain barrier (BBB) functions as a gatekeeper guarding the body from exogenous substances. Here, we evaluated the distribution of bioconjugated QDs, i.e., captopril-conjugated QDs (QDs-cap) following intraperitoneal injection into male ICR mice as a model system for determining the tissue localization of QDs, employing ICP-MS and confocal microscopy coupled with spectrometric analysis. We have demonstrated that intraperitoneally administered QDs-cap were delivered via systemic blood circulation into liver, spleen, kidney and brain at 6 h after injection. QDs-cap were located predominantly inside the blood vessels in the liver, kidney and brain, but a few were distributed in the parenchyma, especially noteworthy in the brain. Careful studies on acute as well as chronic toxicity of QDs in the brain are required prior to clinical application to humans.

  3. Glycoproteins of axonal transport: affinity chromatography on fucose-specific lectins

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, S.; Ohlson, C.; Karlsson, J.O.

    1982-03-01

    Rapidly transported fucose-labeled glycoproteins from axons of rabbit retinal ganglion cells were solubilized with nonionic detergents. The solubilized components were subjected to affinity chromatography on three different fucose-specific lectins. A recently characterized fucose-specific lectin from Aleuria aurantia bound reversibly approximately 60% of the applied protein-bound radioactivity. The lectins from Lotus tetragonolobus and Ulex europaeus bound are very small proportions of the labeled rapidly transported glycoproteins.

  4. Do overarching mitigation objectives dominate transport-specific targets in the EU?

    OpenAIRE

    GHERSI , Frédéric; Mcdonnell , Simon; Sassi , Olivier

    2013-01-01

    International audience; This research investigates if the stringent 2020 and 2050 overarching CO2 mitigation objectives set out by the European Union dominate its 2010 to 2020 targets specific to the transportation arena, specifically its biofuel penetration objectives and gram CO2 per kilometre emission caps. Using a dynamic recursive general equilibrium model, IMACLIM-R, we demonstrate that these overarching targets do not dominate the interim transportation targets when the carbon policy t...

  5. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  6. Evaluation of the Texas tier system for seal coat binder specification.

    Science.gov (United States)

    2012-09-01

    The Texas Department of Transportation (TxDOT) instituted a change in their seal coat binder specification in 2010 which allowed districts to select multiple binders within specified traffic levels or tiers for the purposes of allowing contractors to...

  7. Do overarching mitigation objectives dominate transport-specific targets in the EU?

    International Nuclear Information System (INIS)

    Ghersi, Frédéric; McDonnell, Simon; Sassi, Olivier

    2013-01-01

    This research investigates if the stringent 2020 and 2050 overarching CO 2 mitigation objectives set out by the European Union dominate its 2010 to 2020 targets specific to the transportation arena, specifically its biofuel penetration objectives and gram CO 2 per kilometre emission caps. Using a dynamic recursive general equilibrium model, IMACLIM-R, we demonstrate that these overarching targets do not dominate the interim transportation targets when the carbon policy triggering compliance with the mitigation objectives boils down to the theoretical least-cost option of uniform carbon pricing. Ground transportation is confirmed as quite insensitive to high carbon prices, even when such prices are applied over a long term. It is tempting to conclude that pursuing the mitigation objectives specific to transportation will impose unnecessary costs. However, because of the second best conditions prevailing in actual economies, and of the risk of lock-in in carbon intensive trajectories, we conclude with the urgent need for some ambitious transport-specific policy design research agenda. - Highlights: ► We review the European Union’s climate and transportation policy. ► We describe the IMACLIM-R model and how it represents transport. ► We develop an EU carbon pricing scenario that meets its aggregate CO 2 targets. ► This does not require meeting biofuel nor g/km 2010 to 2020 objectives. ► We conclude on the policy implications of this apparent inefficiency

  8. Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step Deposited Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.; Garcia de Arquer, F. Pelayo; Fan, James Z.; Khan, Jafar Iqbal; Walters, Grant; Hoogland, Sjoerd; Wehbe, Nimer; Said, Marcel M.; Barlow, Stephen; Laquai, Fré dé ric; Marder, Seth R.; Sargent, Edward H.; Amassian, Aram

    2017-01-01

    solar cells. These promising architectures employ a QD hole-transporting layer (HTL) whose intrinsically shallow Fermi level (EF) restricts band-bending at maximum power-point during solar cell operation limiting charge collection. Here, we demonstrate a

  9. UDOT research peer exchange, October 12-13, 2016 : implementation, state DOT library, national committees, and state transportation innovation council.

    Science.gov (United States)

    2017-02-01

    The Utah Department of Transportation (UDOT) held a Research Peer Exchange on October 12-13, 2016, in downtown Salt Lake City. The focus topics or themes for the peer exchange included the following: : Supporting Implementation During and A...

  10. Development of risk management strategies for state DOTs to effectively deal with volatile prices of transportation construction materials.

    Science.gov (United States)

    2014-06-01

    Volatility in price of critical materials used in transportation projects, such as asphalt cement, leads to : considerable uncertainty about project cost. This uncertainty may lead to price speculation and inflated : bid prices submitted by highway c...

  11. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport requirements for low specific activity... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.427 Transport requirements for low specific... must be transported in accordance with the following conditions: (1) The external dose rate may not...

  12. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal

    Science.gov (United States)

    Pratap Singh, Dharmendra; Boussoualem, Yahia; Duponchel, Benoit; Sahraoui, Abdelhak Hadj; Kumar, Sandeep; Manohar, Rajiv; Daoudi, Abdelylah

    2017-08-01

    Octadecylamine capped CdSe quantum dots (QDs) dispersed 4-(1-methyl-heptyloxy)-benzoic acid 4‧-octyloxy-biphenyl-4-yl ester ferroelectric liquid crystal (FLC) were deposited over gold coated quartz substrate using dip-coating. The topographical investigation discloses that the homogeneously dispersed QDs adopt face-on to edge-on assembly in FLC matrix owing to their concentration. Current-voltage (I-V) measurement was performed using conductive atomic force microscopy (CAFM) which yields ohmic to critical diode like I-V curves depending upon the concentration of QDs in FLC. The recorded pico-ampere (pA) current sensitivity in FLC-QDs composites is attributed to micro-second drift time of electron due to weak electronic coupling between the π-electrons on the FLC and s-electrons on the metal surface. The observed pico-ampere sensitivity is the least current sensitivity recorded so far. For FLC-QDs composites, almost 24% faster electro-optic response was observed in comparison to pure FLC. The pico-ampere current sensitivity can be utilized in touch screen displays whereas the change in polarization for low applied electric field ameliorates the increased electrical susceptibility counteracting the internal electric field and its use in electronic data storage and faster electro-optical devices.

  13. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  14. Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae.

    Science.gov (United States)

    Larimore, F S; Roon, R J

    1978-02-07

    The general amino acid transport system of Saccharomyces cerevisiae functions in the uptake of neutral, basic, and acidic amino acids. The amino acid analogue N-delta-chloroacetyl-L-ornithine (NCAO) has been tested as potential site specific reagent for this system. L-Tryptophan, which is transported exclusively by the general transport system, was used as a substrate. In the presence of glucose as an energy source, NCAO inhibited tryptophan transport competitively (Ki = 80 micrometer) during short time intervals (1-2 min), but adding 100 micrometer NCAO to a yeast cell suspension resulted in a time-dependent activation of tryptophan transport during the first 15 min of treatment. Following the activation a time-dependent decay of tryptophan transport activity occurred. Approximately 80% inactivation of the system was observed after 90 min. When a yeast cell suspension was treated with NCAO in the absence of an energy source, an 80% inactivation of tryptophan transport occurred in 90 min. The inactivation was noncompetitive (Ki congruent to 60 micrometer) and could not be reversed by the removal of the NCAO. Addition of a five-fold excess of L-lysine during NCAO treatment or prevented inactivation of tryptophan transport. Under parallel conditions of incubation, other closely related transport systems were not inhibited by NCAO.

  15. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    OpenAIRE

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  16. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  17. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  18. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  19. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer

    KAUST Repository

    Cao, Sheng

    2017-04-19

    Colloidal ZnO nanoparticle (NP) films are recognized as efficient electron transport layers (ETLs) for quantum dot light-emitting diodes (QD-LEDs) with good stability and high efficiency. However, because of the inherently high work function of such films, spontaneous charge transfer occurs at the QD/ZnO interface in such a QD-LED, thus leading to reduced performance. Here, to improve the QD-LED performance, we prepared Ga-doped ZnO NPs with low work functions and tailored band structures via a room-temperature (RT) solution process without the use of bulky organic ligands. We found that the charge transfer at the interface between the CdSe/ZnS QDs and the doped ZnO NPs was significantly weakened because of the incorporated Ga dopants. Remarkably, the as-assembled QD-LEDs, with Ga-doped ZnO NPs as the ETLs, exhibited superior luminances of up to 44 000 cd/m2 and efficiencies of up to 15 cd/A, placing them among the most efficient red-light QD-LEDs ever reported. This discovery provides a new strategy for fabricating high-performance QD-LEDs by using RT-processed Ga-doped ZnO NPs as the ETLs, which could be generalized to improve the efficiency of other optoelectronic devices.

  20. Analysis of time-of-flight experiment on lithium-oxide assemblies by a two-dimensional transport code DOT3.5

    International Nuclear Information System (INIS)

    Oyama, Yukio; Yamaguchi, Seiya; Maekawa, Hiroshi

    1985-03-01

    Calculational analyses were made on the time-of-flight experiment of neutron leakage spectra from lithium-oxide slabs. The uncertainties in the calculation due to modelling were examined and it was estimated to be 1-2 %. The calculational results were compared with the experimental ones. The calculations were carried out by a two-dimensional transport code DOT3.5 using ENDF/B-4 nuclear data file. The comparison of energy-integrated fluxes in C/E from made it clear that the tendency of discrepancy between both results depended on the thickness of assembly and leaking angle. The discrepancy of C/E was about 40 % at the maximum. The effect due to the cross section change to a new data of 7 Li(n,n't) 4 He was also examined. This type of comparison is useful for the systematic assesments. From the comparison, it was suggested that the angular distribution of secondary neutron should be improved in the calculation, and the correct differential data of cross section are required. (author)

  1. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation

    International Nuclear Information System (INIS)

    Jaramillo-Quintero, O A; Rincon, M E; Triana, M A

    2017-01-01

    Surface trap states hinder charge transfer and transport properties in TiO 2 nanorods (NRs), limiting its application on optoelectronic devices. Here, we study the interfacial processes between rutile TiO 2 NR and CdSe quantum dots (QDs) using TiO 2 interlayer passivation treatments. Anatase or rutile TiO 2 thin layers were deposited on an NR surface by two wet-chemical deposition treatments. Reduced interfacial charge recombination between NRs and CdSe QDs was observed by electrochemical impedance spectroscopy with the introduction of TiO 2 thin film interlayers compared to bare TiO 2 NRs. These results can be ascribed to in-gap trap state passivation of the TiO 2 NR surface, which led to an increase in open circuit voltage. Moreover, the rutile thin layer was more efficient than anatase to promote a higher photo-excited electron transfer from CdSe QDs to TiO 2 NRs due to a large driving force for charge injection, as confirmed by surface photovoltage spectroscopy. (paper)

  2. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  3. A route-specific system for risk assessment of radioactive materials transportation accidents

    International Nuclear Information System (INIS)

    Moore, J.E.; Sandquist, G.M.; Slaughter, D.M.

    1995-01-01

    A low-cost, powerful geographic information system (GIS) that operates on a personal computer was integrated into a software system to provide route specific assessment of the risks associated with the atmospheric release of radioactive and hazardous materials in transportation accidents. The highway transportation risk assessment (HITRA) software system described here combines a commercially available GIS (TransCAD) with appropriate models and data files for route- and accident-specific factors, such as meteorology, dispersion, demography, and health effects to permit detailed analysis of transportation risk assessment. The HITRA system allows a user to interactively select a highway or railroad route from a GIS database of major US transportation routes. A route-specific risk assessment is then performed to estimate downwind release concentrations and the resulting potential health effects imposed on the exposed population under local environmental and temporal conditions. The integration of GIS technology with current risk assessment methodology permits detailed analysis coupled with enhanced user interaction. Furthermore, HITRA provides flexibility and documentation for route planning, updating and improving the databases required for evaluating specific transportation routes, changing meteorological and environmental conditions, and local demographics

  4. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  5. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  6. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  7. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  8. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  9. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  10. Transportation impact analysis for the shipment of Low Specific Activity Nitric Acid

    International Nuclear Information System (INIS)

    Green, J.R.

    1994-01-01

    This document was written in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes the potential toxicological and radiological risks associated with the transportation of PUREX Facility LSA Nitric Acid from the Hanford Site in Washington State to three Eastern ports

  11. MoDOT research peer exchange.

    Science.gov (United States)

    2011-04-01

    The Missouri Department of Transportation hosted a peer exchange on April 11-12, 2011 in Jefferson City, Missouri. Participants included representatives from four state DOTs, The National Academies, USDOT-RITA, FHWA, and both public and private resea...

  12. Bases for DOT exemption uranyl nitrate solution shipments

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1982-07-01

    Uranyl nitrate solutions from a Savannah River Plant reprocessing facility have been transported in cargo tank trailers for more than 20 years without incident during transit. The solution is shipped to Oak Ridge for further processing and returned to SRP in a solid metal form for recycle. This solution, called uranyl nitrate hexahydrate (UNH) solution in Department of Transportation (DOT) regulations, is currently diluted about 2-fold to comply with DOT concentration limits (10% of low specific activity levels) specified for bulk low specific activity (LSA) liquid shipments. Dilution of the process solution increases the number of shipments, the cost of transportation, the cost of shipper preparations, the cost of further reprocessing in the receiving facility to first evaporate the added water, and the total risk to the population along the route of travel. However, the radiological risk remains about the same. Therefore, obtaining an exemption from DOT regulations to permit shipment of undiluted UNH solution, which is normally about two times the present limit, is prudent and more economical. The radiological and nonradiological risks from shipping a unit load of undiluted solution are summarized for the probable route. Data and calculations are presented on a per load or per shipment basis throughout this memorandum to keep it unclassified

  13. 49 CFR 41.110 - New DOT owned buildings and additions to buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false New DOT owned buildings and additions to buildings....110 New DOT owned buildings and additions to buildings. (a) DOT Operating Administrations responsible for the design and construction of new DOT Federally owned buildings will ensure that each building is...

  14. The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein.

    Science.gov (United States)

    Silberg, D G; Wang, W; Moseley, R H; Traber, P G

    1995-05-19

    A gene has been described, Down Regulated in Adenoma (dra), which is expressed in normal colon but is absent in the majority of colon adenomas and adenocarcinomas. However, the function of this protein is unknown. Because of sequence similarity to a recently cloned membrane sulfate transporter in rat liver, the transport function of Dra was examined. We established that dra encodes for a Na(+)-independent transporter for both sulfate and oxalate using microinjected Xenopus oocytes as an assay system. Sulfate transport was sensitive to the anion exchange inhibitor DIDS (4,4'-diisothiocyano-2,2' disulfonic acid stilbene). Using an RNase protection assay, we found that dra mRNA expression is limited to the small intestine and colon in mouse, therefore identifying Dra as an intestine-specific sulfate transporter. dra also had a unique pattern of expression during intestinal development. Northern blot analysis revealed a low level of expression in colon at birth with a marked increase in the first 2 postnatal weeks. In contrast, there was a lower, constant level of expression in small intestine in the postnatal period. Caco-2 cells, a colon carcinoma cell line that differentiates over time in culture, demonstrated a marked induction of dra mRNA as cells progressed from the preconfluent (undifferentiated) to the postconfluent (differentiated) state. These results show that Dra is an intestine-specific Na(+)-independent sulfate transporter that has differential expression during colonic development. This functional characterization provides the foundation for investigation of the role of Dra in intestinal sulfate transport and in the malignant phenotype.

  15. The target-specific transporter and current status of diuretics as antihypertensive.

    Science.gov (United States)

    Ali, Syed Salman; Sharma, Pramod Kumar; Garg, Vipin Kumar; Singh, Avnesh Kumar; Mondal, Sambhu Charan

    2012-04-01

    The currently available diuretics increase the urinary excretion of sodium chloride by selective inhibition of specific sodium transporters in the loop of Henle and distal nephron. In recent years, the molecular cloning of the diuretic-sensitive sodium transporters at distal convoluted tubule has improved our understanding of the cellular mechanisms of action of each class of diuretics. Diuretics are tools of considerable therapeutic importance. First, they effectively reduce blood pressure. Loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 and exert their diuretic action by binding to the Na(+)-K(+)-2Cl(-) co-transporter type 2 in the thick ascending limb and the Na(+)-Cl(-) co-transporter in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. The WHO/ISH guidelines point out that diuretics enhance the efficacy of antihypertensive drugs and will most often be a component of combination therapy. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  16. A transport logistic and cost model for use in repository design specification

    International Nuclear Information System (INIS)

    Gray, L.S.; Manville, W.D.

    1998-01-01

    UK Nirex Ltd (Nirex) is responsible for developing a deep repository for the disposal of the United Kingdom's intermediate level waste and some low level waste. It also needs to be able to predict the total cost of the transport operations, and to compute the costs attributable to different combinations of sites and types of waste packages. This paper draws on work carried out as part of the assessment of Sellafield as a potential repository site, but will also show that many aspects of the transport system are independent of the actual repository location. To analyze the effects of all these possible scenarios and proposed operating practices on the costs and logistics of radioactive waste transport, Nirex commissioned the development of a flexible computer model from a software developer with the appropriate expertise. This paper describes how the LOGCOST model has been used to provide the information required for the repository design specification, and how it can readily be adapted to different potential repository locations and to changing requirements. In conclusion, it can be said that LOGCOST is a very effective transport and logistics model based on the Excel spread-sheet. The examples given have shown how LOGCOST can provide detailed predictions of radioactive waste transport costs, and how LOGCOST can be readily adapted to a new repository site or any other focal point for a transport network. (O.M.)

  17. A suggested revision to the specific activity limit for tritiated water transported as LSA-II

    International Nuclear Information System (INIS)

    Nandakumar, A.N.

    2003-01-01

    Tritiated water of specific activity not greater than 0.8 TBq L -1 is classified as LSA-II. This paper demonstrates by some simple calculations that the dose that may result from an accident involving tritiated water of this specific activity is very low and suggests that even if the specific activity limit of tritiated water which may be transported as LSA-II is raised above 0.8 TBq kg -1 , the resulting dose in accident conditions would not be unacceptable. (author)

  18. Specific character of sustainable innovative development of transport construction in self-regulation conditions

    Science.gov (United States)

    Gumba, Khuta; Belyaeva, Svetlana

    2017-10-01

    The providing of sustainable development is impossible without activating the innovative activity of backbone economical sectors, in particular of transport construction. The system of self-regulation of activities is a specific feature of the transport industry development. The authors carried out the correlation analysis of innovative activity of construction enterprises, which proved the necessity of improving the normative and technical documents. The authors proposed and calculated the index of the legislation stability in the industry. The article suggests recommendations on the activation of innovative development in construction industry basing on the results of the modeling.

  19. DOT's CAFE rulemaking analysis.

    Science.gov (United States)

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  20. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    Science.gov (United States)

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. © The Author(s) 2015.

  1. Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Zhen, J; Karpowich, N; Law, C; Reith, M; Wang, D

    2009-01-01

    Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.

  2. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells

    Science.gov (United States)

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-Riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with Km and Vmax values of 19 ± 3 µM and 0.235 ± 0.012 picomoles/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca++/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-Riboflavin. Apical and baso-lateral uptake of [3H]-Riboflavin clearly indicate that riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. Blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. PMID:22683359

  3. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  4. Changes of the Specific Infectivity of Tracer Phages during Transport in Porous Media.

    Science.gov (United States)

    Ghanem, Nawras; Trost, Manuel; Sánchez Fontanet, Laura; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y

    2018-03-20

    Phages (i.e., viruses infecting bacteria) are considered to be good indicators and tracers for fecal pollution, hydraulic flow, or colloidal transport in the subsurface. They are typically quantified as total virus particles (VLP) or plaque forming units (PFU) of infectious phages. As transport may lead to phage deactivation, VLP quantification can overestimate the number of infectious phages. In contrast, PFU counts may underestimate the transport of total virus particles. Using PFU and tunable resistive pulse sensing-based counting for active and total phages, respectively, we quantified the effect of transport through laboratory percolation columns on the specific infectivity (SI). The SI is defined by the ratio of total VLP to PFU and is a measure for the minimum particle numbers needed to create a single infection. Transport of three marine tracer phages and the coli-phage (T4) was described by colloidal filtration theory. We found that apparent collision efficiencies of active and total phages differed. Depending on the phage properties (e.g., morphology or hydrophobicity), passage through a porous medium led to either an increasing or decreasing SI of effluent phages. Our data suggest that both phage mass recovery and the SI should be considered in quantitative phage tracer experiments.

  5. Comparable Measures of Accessibility to Public Transport Using the General Transit Feed Specification

    Directory of Open Access Journals (Sweden)

    Jinjoo Bok

    2016-03-01

    Full Text Available Public transport plays a critical role in the sustainability of urban settings. The mass mobility and quality of urban lives can be improved by establishing public transport networks that are accessible to pedestrians within a reasonable walking distance. Accessibility to public transport is characterized by the ease with which inhabitants can reach means of transportation such as buses or metros. By measuring the degree of accessibility to public transport networks using a common data format, a comparative study can be conducted between different cities or metropolitan areas with different public transit systems. The General Transit Feed Specification (GTFS by Google Developers allows this by offering a common format based on text files and sharing the data set voluntarily produced and contributed by the public transit agencies of many participating cities around the world. This paper suggests a method to assess and compare public transit accessibility in different urban areas using the GTFS feed and demographic data. To demonstrate the value of the new method, six examples of metropolitan areas and their public transit accessibility are presented and compared.

  6. Resonance energy transfer between ZnCdHgSe quantum dots and gold nanorods enhancing photoelectrochemical immunosensing of prostate specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanying [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Xiangyang; Ye, Xiaoxue [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Wu, Kangbing [Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099 (United States); Li, Chunya, E-mail: lichychem@163.com [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-11-02

    Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logc{sub PSA}) in the range from 1.0 pg mL{sup −1} to 50.0 ng mL{sup −1}. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL{sup −1} (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method. - Highlights: • Nanocomposites based on AuNRs integration with ZnCdHgSe QDs were synthesized. • The photocurrent response of ZnCdHgSe QDs was improved by resonance energy transfer. • A photoelectrochemical

  7. Resonance energy transfer between ZnCdHgSe quantum dots and gold nanorods enhancing photoelectrochemical immunosensing of prostate specific antigen

    International Nuclear Information System (INIS)

    Wang, Yanying; Yu, Xiangyang; Ye, Xiaoxue; Wu, Kangbing; Wu, Tsunghsueh; Li, Chunya

    2016-01-01

    Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logc_P_S_A) in the range from 1.0 pg mL"−"1 to 50.0 ng mL"−"1. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL"−"1 (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method. - Highlights: • Nanocomposites based on AuNRs integration with ZnCdHgSe QDs were synthesized. • The photocurrent response of ZnCdHgSe QDs was improved by resonance energy transfer. • A photoelectrochemical immunosensor was

  8. State Transportation Statistics 2010

    Science.gov (United States)

    2011-09-14

    The Bureau of Transportation Statistics (BTS), a part of DOTs Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2010, a statistical profile of transportation in the 50 states and the District of Col...

  9. State transportation statistics 2009

    Science.gov (United States)

    2009-01-01

    The Bureau of Transportation Statistics (BTS), a part of DOTs Research and : Innovative Technology Administration (RITA), presents State Transportation : Statistics 2009, a statistical profile of transportation in the 50 states and the : District ...

  10. State Transportation Statistics 2011

    Science.gov (United States)

    2012-08-08

    The Bureau of Transportation Statistics (BTS), a part of DOTs Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2011, a statistical profile of transportation in the 50 states and the District of Col...

  11. Electronic properties of assemblies of zno quantum dots

    NARCIS (Netherlands)

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  12. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    Directory of Open Access Journals (Sweden)

    S. Illera

    2015-01-01

    Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  13. WisDOT statewide customer satisfaction survey : [project brief].

    Science.gov (United States)

    2013-03-01

    The Wisconsin Department of Transportation (WisDOT) is a major public agency with numerous customers utilizing a variety of services and programs to support the entire statewide multimodal transportation system. The department also houses the Divisio...

  14. 2013 Iowa DOT engineering intern development and management program.

    Science.gov (United States)

    2013-11-01

    The Institute for Transportation (InTrans) at Iowa State University (ISU) developed an internship mentoring program in collaboration : with the Iowa Department of Transportation (DOT) to provide additional mentorship to both student interns and Iowa ...

  15. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  16. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  17. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM

    Science.gov (United States)

    Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.

    2016-04-01

    Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.

  19. Aviation and Airports, Transportation & Public Facilities, State of Alaska

    Science.gov (United States)

    State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Aviation and Airports Search DOT&PF State of pages view official DOT&PF Flickr pages Department of Transportation & Public Facilities PO Box

  20. Tubule urate and PAH transport: sensitivity and specificity of serum protein inhibition

    International Nuclear Information System (INIS)

    Grantham, J.J.; Kennedy, J.; Cowley, B.

    1987-01-01

    Macromolecules in rabbit serum inhibit the cellular uptake and transepithelial secretion of [ 14 C]urate and p-[ 3 H]aminohippurate ([ 3 H]PAH) in rabbit S 2 proximal tubule segments. To understand better the potential role these inhibitors may have in the regulation of renal organic anion excretion, the authors examined the specificity and relative inhibitory effects on tubule urate and PAH transport of albumin and γ-globulin, the major inhibitory proteins in rabbit serum. Native rabbit serum markedly inhibited the cellular accumulation or urate and PAH by isolated nonperfused segments. Urate and PAH transport was also inhibited by bovine serum, human serum, Cohn-fractionated rabbit albumin, and rabbit γ-globulin, but not by Cohn-fractionated bovine serum albumin. α-Lactalbumin and β-lactoglobulin, derived from milk, also inhibited urate and PAH transport, but to a lesser extent than albumin and γ-globulin. The transport inhibitory effects of proteins were independent of their binding to urate and PAH. Unidirectional influx and the steady-state intracellular accumulation of urate and PAH in suspensions of proximal tubules were decreased by rabbit serum proteins, suggesting that these inhibitors act on the external face of the cells to diminish the uptake of the organic anions. These studies indicate that the principal plasma proteins (albumin and γ-globulin) significantly inhibit urate and PAH transporters in the basolateral membranes of S 2 proximal tubules. They suggest that circulating plasma proteins that can penetrate the basement membrane of proximal tubules may directly modulate the renal excretion of urate and PAH

  1. Management of national research programs : WisDOT 2013 research peer exchange.

    Science.gov (United States)

    2014-03-01

    The Wisconsin Department of Transportation (WisDOT) Research Program hosted a peer exchange on : October 15-16, 2013 in Madison, Wisconsin. : Representatives from five states (Florida, Michigan, Pennsylvania, Utah and Washington) joined WisDOT staff ...

  2. MN/DOT research peer exchange : pooled fund financial management, August 20 - 23, 2007 : final report.

    Science.gov (United States)

    2007-08-01

    The Minnesota Department of Transportation Research Services Section hosted a peer exchange : on August 20-23, 2007 in Bloomington, Minnesota. Representatives from five state DOTs and : FHWA-Headquarters joined representatives from Mn/DOT and FHWA-Mi...

  3. 75 FR 41923 - Public Meeting on Draft Recommendations for Safely Transporting Children in Specific Situations...

    Science.gov (United States)

    2010-07-19

    ... an e-mail message indicating this to [email protected] by no later than 5 p.m. ET, on July 26, 2010 with ``Webinar Attendance'' in the e-mail ``Subject'' line. Instructions for written comments: If..., DOT, 1200 New Jersey Avenue, SE., Washington, DC 20590. E-mail: [email protected] . SUPPLEMENTARY...

  4. Dot gain compensation in the blue noise mask

    Science.gov (United States)

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  5. The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System.

    Science.gov (United States)

    Lloyd, Chelsea R; Park, Seongjin; Fei, Jingyi; Vanderpool, Carin K

    2017-06-01

    The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria. IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic

  6. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  7. Theoretical and Numerical Modeling of Transport of Land Use-Specific Fecal Source Identifiers

    Science.gov (United States)

    Bombardelli, F. A.; Sirikanchana, K. J.; Bae, S.; Wuertz, S.

    2008-12-01

    Microbial contamination in coastal and estuarine waters is of particular concern to public health officials. In this work, we advocate that well-formulated and developed mathematical and numerical transport models can be combined with modern molecular techniques in order to predict continuous concentrations of microbial indicators under diverse scenarios of interest, and that they can help in source identification of fecal pollution. As a proof of concept, we present initially the theory, numerical implementation and validation of one- and two-dimensional numerical models aimed at computing the distribution of fecal source identifiers in water bodies (based on Bacteroidales marker DNA sequences) coming from different land uses such as wildlife, livestock, humans, dogs or cats. These models have been developed to allow for source identification of fecal contamination in large bodies of water. We test the model predictions using diverse velocity fields and boundary conditions. Then, we present some preliminary results of an application of a three-dimensional water quality model to address the source of fecal contamination in the San Pablo Bay (SPB), United States, which constitutes an important sub-embayment of the San Francisco Bay. The transport equations for Bacteroidales include the processes of advection, diffusion, and decay of Bacteroidales. We discuss the validation of the developed models through comparisons of numerical results with field campaigns developed in the SPB. We determine the extent and importance of the contamination in the bay for two decay rates obtained from field observations, corresponding to total host-specific Bacteroidales DNA and host-specific viable Bacteroidales cells, respectively. Finally, we infer transport conditions in the SPB based on the numerical results, characterizing the fate of outflows coming from the Napa, Petaluma and Sonoma rivers.

  8. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  9. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  10. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter

    Directory of Open Access Journals (Sweden)

    C. Massart

    2014-01-01

    Full Text Available NADPH oxidases (NOXes and dual oxidases (DUOXes generate O2.− and H2O2. Diphenyleneiodonium (DPI inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog 99mTcO4− nor of the K+ cation mimic 86Rb+ in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.

  12. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    International Nuclear Information System (INIS)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  13. Database for radionuclide transport in the biosphere: nuclide specific and geographic data for northern Switzerland

    International Nuclear Information System (INIS)

    Jiskra, J.

    1985-01-01

    The biosphere model is the final link in the chain of radionuclide transport models, used for radiation dose calculations from high-level waste repositories. This report presents the data needed for biosphere calculations and discusses them where necessary. The first part is dedicated to the nuclide specific parameters like distribution coefficients (water -soil), concentration ratios (soil - plant) and distribution factors (for milk, meat, etc.) which are reported in the literature. The second part contains the choice of regions, their division into compartments and the discussion of nutritional habits for man and animals. At the end a theoretical human population for each region is estimated based on the consumption rates and on the yield of agricultural products, assuming an autonomous nutrition. (author)

  14. Carbon Dots/NiCo2 O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors.

    Science.gov (United States)

    Wei, Ji-Shi; Ding, Hui; Zhang, Peng; Song, Yan-Fang; Chen, Jie; Wang, Yong-Gang; Xiong, Huan-Ming

    2016-11-01

    A series of carbon dots/NiCo 2 O 4 composites with various morphologies are prepared and tested for supercapacitors. These samples have good electrical conductivities and efficient ions transport paths, so they exhibit high specific capacitances, superior rate performances, and high cycling stabilities. The optimal composite for hybrid supercapacitor exhibits a high energy density up to 62.0 Wh kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Department of Transportation

    Science.gov (United States)

    ... of Drone Integration Pilot Program MEET THE SECRETARY TRANSPORTATION TUESDAY FEATURED NEWS The Briefing Room Connect With ... Carriers - Get a DOT Number Find Your State Transportation Department 5 Star Automobile Crash Test Ratings Office ...

  16. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  17. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    Science.gov (United States)

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  18. Review and assessment of package requirements (yellowcake) and emergency response to transportation accidents

    International Nuclear Information System (INIS)

    1978-10-01

    As a consequence of an accident involving a truck shipment of yellowcake, a joint NRC--DOT study was undertaken to review and assess the regulations and practices related to package integrity and to emergency response to transportation accidents involving low specific activity radioactive materials. Recommendations are made regarding the responsibilities of state and local agencies, carriers, and shippers, and the DOT and NRC regulations

  19. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  20. TxDOT can help pave the way for distribution centers.

    Science.gov (United States)

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  1. Origin and evolution of transporter substrate specificity within the NPF family

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang; Xu, Deyang; Crocoll, Christoph

    2017-01-01

    evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found...

  2. Study of a conceptual nuclear-energy center at Green River, Utah: site-specific transportation

    International Nuclear Information System (INIS)

    1981-10-01

    The objective of the following report is to assess the adequacy of the local and regional transportation network for handling traffic, logistics, and the transport of major power plant components to the Utah Nuclear Energy Center (UNEC) Horse Bench site. The discussion is divided into four parts: (1) system requirements; (2) description of the existing transportation network; (3) evaluation; (4) summary and conclusions

  3. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  4. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  5. Transport of uranium concentrates: low specific activity versus logistic complexity; Transporte de concentrado de uranio: baixa atividade especifica versus complexidade logistica

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Pedro L.S.; Macedo, Eclesio F; Carvalho, Leonardo B; Carvalho, Renata R., E-mail: pedroluis@inb.gov.b, E-mail: eclesio@inb.gov.b, E-mail: leonardobernadino@inb.gov.b, E-mail: renatarangel@inb.gov.b [Industrias Nucleares do Brasil S.A., Caetite, BA (Brazil)

    2011-10-26

    This paper describes the case of radioactive material transport, according to pertinent documentation - nuclear material specifically in the form op ammonium diuranate, produced by Industrias Nucleares do Brasil S.A. - from the mine and physic-chemical processing at Caetite, Bahia, to the port of Salvador, state of Bahia, approaching the radiological protection aspects

  6. Arterial intelligent transportation systems : infrastructure elements and traveler information requirements.

    Science.gov (United States)

    2009-08-01

    Applying Intelligent Transportation Systems (ITS) to arterial systems allows TxDOT to significantly enhance : transportation system operation efficiency and improve traffic mobility. However, no guidelines are available to : assist TxDOT staff in sel...

  7. Rules specific to nuclear incidence occurring in installations or during transport of nuclear substances

    International Nuclear Information System (INIS)

    Rocamora, P.

    1976-01-01

    International nuclear third party liability conventions deal in depth with the liability system governing the transport of nuclear substances. Without appropriate legislation, international transport would be likely to meet very serious legal difficulties. The rule of nuclear conventions apply the same system to transport as to nuclear installations and mainly enable a determination of the operator liable. They also allow the person responsible for transport to assume liability therefor in place of the operator who whould normally have been liable. These nuclear conventions do not affect application of international transport conventions and this provision has been the cause of serious difficulties regarding maritime transport. This resulted in the adoption in 1971 in Brussels of a convention relating to civil liability in the field of maritime carriage of nuclear material. The purpose of this convention is to establish in the field of maritime transport, the priority of the system of absolute, exclusive and limited liability in the nuclear conventions. (NEA) [fr

  8. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  9. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  10. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    Science.gov (United States)

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, François M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  11. A working group`s conclusion on site specific flow and transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J. [Golder Associates AB (Sweden); Ahokas, H. [Fintact Oy, Helsinki (Finland); Koskinen, L.; Poteri, A. [VTT Energy, Espoo (Finland); Niemi, A. [Royal Inst. of Technology, Stockholm (Sweden). Hydraulic Engineering; Hautojaervi, A. [Posiva Oy, Helsinki (Finland)

    1998-03-01

    This document suggests a strategy plan for groundwater flow and transport modelling to be used in the site specific performance assessment analysis of spent nuclear fuel disposal to be used for the site selection planned by the year 2000. Considering suggested general regulations in Finland, as well as suggested regulations in Sweden and the approach taken in recent safety assessment exercises conducted in these countries, it is clear that in such an analysis, in addition to showing that the proposed repository is safe, there exist needs to strengthen the link between field data, groundwater flow modelling and derivation of safety assessment parameters, and needs to assess uncertainty and variability. The suggested strategy plan builds on an evaluation of different approaches to modelling the groundwater flow in crystalline basement rock, the abundance of data collected in the site investigation programme in Finland, and the modelling methodology developed in the programme so far. It is suggested to model the whole system using nested models, where larger scale models provide the boundary conditions for the smaller ones 62 refs.

  12. Sensitivity analysis of specific activity model parameters for environmental transport of 3H and dose assessment

    International Nuclear Information System (INIS)

    Rout, S.; Mishra, D.G.; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Tritium is one of the radionuclides likely to get released to the environment from Pressurized Heavy Water Reactors. Environmental models are extensively used to quantify the complex environmental transport processes of radionuclides and also to assess the impact to the environment. Model parameters exerting the significant influence on model results are identified through a sensitivity analysis (SA). SA is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input parameters. This study was designed to identify the sensitive model parameters of specific activity model (TRS 1616, IAEA) for environmental transfer of 3 H following release to air and then to vegetation and animal products. Model includes parameters such as air to soil transfer factor (CRs), Tissue Free Water 3 H to Organically Bound 3 H ratio (Rp), Relative humidity (RH), WCP (fractional water content) and WEQp (water equivalent factor) any change in these parameters leads to change in 3 H level in vegetation and animal products consequently change in dose due to ingestion. All these parameters are function of climate and/or plant which change with time, space and species. Estimation of these parameters at every time is a time consuming and also required sophisticated instrumentation. Therefore it is necessary to identify the sensitive parameters and freeze the values of least sensitive parameters at constant values for more accurate estimation of 3 H dose in short time for routine assessment

  13. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters

    Science.gov (United States)

    Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.

    2015-01-01

    Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917

  14. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Liu, Mengxia; Yuan, Mingjian; Ip, Alexander H.; Ahmed, Osman S.; Levina, Larissa; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport

  15. Rethinking I-94: Minnesota DOT: A TPCB Peer Exchange

    Science.gov (United States)

    2017-12-01

    This report highlights key recommendations and noteworthy practices identified at Rethinking I-94: MnDOT Peer Exchange held on August 15-16, 2017 in St. Paul, Minnesota. This event was sponsored by the Transportation Planning Capacity Building ...

  16. Florida DOT Orlando ITS World Congress Vehicle Awareness Device

    Data.gov (United States)

    Department of Transportation — Florida DOT (FDOT) installed Vehicle Awareness Devices (VADs) on a set of Lynx transit buses as part of a demonstration for the ITS World Congress held in Orlando in...

  17. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  18. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  19. Sensitive and specific fluorescent probes for functional analysis of the three major types of mammalian ABC transporters.

    Science.gov (United States)

    Lebedeva, Irina V; Pande, Praveen; Patton, Wayne F

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.

  20. From DOT to Dotty

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  1. Specifications for refrigerating transport. More rigid temperature specifications for cooling transport; Anforderungen im Transportkaeltebereich. Erhoehte Anforderungen beim Kuehltransport wegen verschaerfter Temperaturvorschriften

    Energy Technology Data Exchange (ETDEWEB)

    Grosskopf, P [Frigoblock Grosskopf GmbH, Essen (Germany)

    2002-09-01

    The recommendations of the Federal Institute of Consumer Health Protection and Veterinary Medicine (Bundesinstitut fuer gesundheitlichen Verbraucherschutz und Veterinaermedizin, BgVV), which sums up all German and European temperature specifications for fresh and refrigerated products, as well as the new Ordinance on Refrigerated food (Verordnung ueber tiefgefrorene Lebensmittel, TLMV) and the new German Ordinance on Food Hygiene (Lebensmittelhygieneverordnjung,LMHV) including temperature monitoring specifications according to HACCP, induced these associations to draw up practical recommendations and guidelines for their members. [German] Die Temperaturempfehlungen des Bundesinstituts fuer gesundheitlichen Verbraucherschutz und Veterinaermedizin (BgVV), die alle deutschen und europaeischen Temperaturvorschriften fuer Frisch- und Tiefkuehlprodukte zusammenfassen sowie die Neufassung der Verordnung ueber tiefgefrorene Lebensmittel (TLMV) und die neue bundeseinheitliche Lebensmittelhygiene-Verordnung (LMHV) inkl. der Temperaturueberwachungsvorschriften gemaess HACCP, haben die betroffenen Verbaende veranlasst, entsprechende Praxisempfehlungen und Leitlinien fuer ihre Mitglieder zu erarbeiten. (orig.)

  2. Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA

    NARCIS (Netherlands)

    Mahmood, N. A. B. Nik; Biemans-Oldehinkel, Esther; Patzlaff, Jason S.; Schuurman-Wolters, Gea K.; Poolman, Bert

    2006-01-01

    The ATPase subunit of the osmoregulatory ATP- binding cassette transporterOpuAfrom Lactococcus lactis has a C- terminal extension, the tandem cystathionine beta- synthase ( CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress ( Biemans-

  3. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations

    DEFF Research Database (Denmark)

    Camargo, Simone M R; Singer, Dustin; Makrides, Victoria

    2008-01-01

    BACKGROUND & AIMS: Hartnup amino acid transporter B(0)AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B(0)AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27...

  4. 49 CFR 173.8 - Exceptions for non-specification packagings used in intrastate transportation.

    Science.gov (United States)

    2010-10-01

    ... used to transport a flammable cryogenic liquid, hazardous substance, hazardous waste, or a marine... be used by an intrastate motor carrier for transportation of a flammable liquid petroleum product in... flammable liquid petroleum product in accordance with the provisions of paragraph (d) of this section. (d...

  5. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    Science.gov (United States)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  6. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  7. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  8. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  9. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  10. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  11. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  12. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  13. Lecture 3: the methods and applications of discrete ordinates in low energy neutron-photon transport (ANISN, DOT). Part I. Methods

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.

    1978-01-01

    A rather complete description of the derivation of the finite difference form of the transport equation can be found in earlier work; therefore that derivation is discussed here. Attention is focused on the additional equations required to solve the transport equation which are often referred to as flux models and on the iteration process and efforts to accelerate the convergence of the iteration process. All equations discussed here are limited to the one-dimensional, time-independent case, but they may be extended in a straightforward manner to multidimensional, time-dependent geometries

  14. Central dot sign in entities other than Caroli disease

    International Nuclear Information System (INIS)

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  15. Central dot sign in entities other than Caroli disease

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  16. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  17. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  18. 49 CFR 40.341 - Must service agents comply with DOT drug and alcohol testing requirements?

    Science.gov (United States)

    2010-10-01

    ... Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Roles and Responsibilities of Service Agents § 40.341 Must service agents comply with DOT drug and alcohol testing... requirements of this part and the DOT agency drug and alcohol testing regulations. (b) If you do not comply...

  19. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (Pegg yolk powder) and 30% (Pegg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases. © 2015 Poultry Science Association Inc.

  20. Urban regeneration and transportation

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2011-01-01

    Full Text Available -density development, progressively reducing in density as it moves out from the centre. Transit-Oriented Development includes design features such as (Morris 1996; Renne 2009): A neighbourhood designed for cycling and walking and having sufficient facilities...://transport.dot.gov.za/communication_centre_sub.aspx? DOT 2009. ?DOT Secretary Ray LaHood, HUD Secretary Shaun Donovan and EPA Administrator Lisa Jackson Announce Interagency Partnership for Sustainable Communities?, Press release, Tuesday June 16, 2009, http://www.dot-gov/affairs/2009 DTI 2010...

  1. Specification of test criteria and probabilistic approach: the case of plutonium air transport

    International Nuclear Information System (INIS)

    Hubert, P.; Pages, P.; Ringot, C.; Tomachewsky, E.

    1989-03-01

    The safety of international transportation relies on compliance with IAEA regulations which specify a serie of test which the package is supposed to withstand. For Plutonium air transport some national regulations are more stringent than the IAEA one, namely the US one. For example the drop test is to be performed at 129 m.s -1 instead of 13.4 m.s -1 . The development of international Plutonium exchanges has raised the question of the adequacy of both those standards. The purpose of this paper is to show how a probabilistic approach helps in assessing the efficiency of a move towards more stringent tests

  2. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  3. 2013 CEO leadership forum, leading the 21st century DOT : a summary report.

    Science.gov (United States)

    2013-04-01

    This report summarizes the 2013 CEO Leadership Forum : for state departments of transportation (DOTs). Over : three days, transportation leaders from across the nation : explored a range of issues and developed action plans to : support CEOs and thei...

  4. State-specific transport properties of electronically excited Ar and C

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  5. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport.

    Science.gov (United States)

    Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Furukawa, Takahisa

    2014-06-02

    Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia. © 2014 The Authors.

  6. Preliminary Estimates of Specific Discharge and Transport Velocities near Borehole NC-EWDP-24PB

    International Nuclear Information System (INIS)

    Freifeld, Barry; Doughty, Christine; Finsterle, Stefan

    2006-01-01

    This report summarizes fluid electrical conductivity (FEC) and thermal logging data collected in Borehole NC-EWDP-24PB, located approximately 15 km south of the proposed repository at Yucca Mountain. Preliminary analyses of a small fraction of the FEC and temperature data indicate that relatively large, localized fluid fluxes are likely to exist at this location. The implication that considerable flow is induced by small gradients, and that flow is highly localized, is significant for the estimation of groundwater transport velocities and radionuclide travel times. The sensitivity of the data to potential perturbations during testing (i.e., internal wellbore flow in the case of FEC data, and buoyancy effects in the case of thermal logging data) make it difficult to conclusively derive fluid fluxes and transport velocities without a detailed analysis of all data and processes involved. Such a comprehensive analysis has not yet been performed. However, the preliminary results suggest that the ambient component of the estimated flow rates is significant and on the order of liters per minute, yielding groundwater transport velocities in the range of kilometers per year. One particular zone in the Bullfrog tuff exhibits estimated velocities on the order of 10 km/yr. Given that the preliminary estimates of ambient flow rates and transport velocities are relatively high, and considering the potential impact of high rates and velocities on saturated-zone flow and transport behavior, we recommend that a comprehensive analysis of all the available data be performed. Moreover, additional data sets at other locations should be collected to examine whether the current data set is representative of the regional flow system near Yucca Mountain

  7. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.; Hile, S. J.; Asshoff, P.; Simmons, M. Y.; Rogge, S. [Centre for Quantum Computation and Communication Technology, University of New South Wales, Sydney 2052 New South Wales (Australia); Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vinet, M. [Université Grenoble-Alpes and CEA, LETI, MINATEC, 38000 Grenoble (France)

    2016-04-11

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  8. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Quantum dot systems: artificial atoms with tunable properties

    International Nuclear Information System (INIS)

    Weis, J.

    2005-01-01

    Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)

  10. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  11. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  12. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  13. Developing a mixture design specification for flexible base construction.

    Science.gov (United States)

    2012-06-01

    In the Texas Department of Transportation (TxDOT), flexible base producers typically generate large stockpiles of material exclusively for TxDOT projects. This large state-only inventory often maintained by producers, along with time requiremen...

  14. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  15. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve

    International Nuclear Information System (INIS)

    Benowitz, L.I.; Shashoua, V.E.; Yoon, M.G.

    1981-01-01

    Double labeling methods were used to identify changes in the complement of proteins synthesized in the retinal ganglion cells and transported down the optic nerve during the process of axonal regeneration. Eight to 62 days after goldfish underwent a unilateral optic nerve crush, one eye was labeled with [3H]-, the other with [14C]proline. Control and regenerating optic nerves were dissected out and homogenized together after 5 hr, a time which allowed us to examine selectively membrane-bound components which migrate in the rapid phase of axoplasmic transport. Proteins from the two sides were so-purified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the 3H and 14C incorporation patterns along the gels revealed a radical shift away from the normal labeling spectrum during regeneration, with selective changes in labeling at particular molecular weights varying over a 3-fold range. Eight days after crushing the optic nerve, the greatest increases in labeling were seen for material with apparent molecular weights of 24,000 to 27,000, 44,000, and 210,000 daltons. These peaks declined thereafter, and on days 29 to 39, the most prominent increases were at 110,000 to 140,000 daltons. These studies indicate a continuously changing pattern in the synthesis and/or degradation of proteins that are rapidly transported down the optic nerve during regeneration and point to molecular species potential significance in the establishment of the visual map upon the brain

  16. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  17. All-Cause and Cause-Specific Risk of Emergency Transport Attributable to Temperature

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-01-01

    Abstract Although several studies have estimated the associations between mortality or morbidity and extreme temperatures in terms of relative risk, few studies have investigated the risk of emergency transport attributable to the whole temperature range nationwide. We acquired data on daily emergency ambulance dispatches in all 47 prefectures of Japan from 2007 to 2010. We examined the relationship between emergency transport and temperature for each prefecture using a Poisson regression model in a distributed lag nonlinear model with adjustment for time trends. A random-effect multivariate meta-analysis was then applied to pool the estimates at the national level. Attributable morbidity was calculated for high and low temperatures, which were defined as those above or below the optimum temperature (ie, the minimum morbidity temperature) and for moderate and also extreme temperatures, which were defined using cutoffs at the 2.5th and 97.5th temperature percentiles. A total of 15,868,086 cases of emergency transport met the inclusion criteria. The emergency transport was attributable to nonoptimal temperature. The median minimum morbidity percentile was in the 79th percentile for all causes, the 96th percentile for cardiovascular disease, and the 92th percentile for respiratory disease. The fraction attributable to low temperature was 6.94% (95% eCI: 5.93–7.70) for all causes, 17.93% (95% eCI: 16.10–19.25) for cardiovascular disease, and 12.19% (95% eCI: 9.90–13.66) for respiratory disease, whereas the fraction attributable to high temperature was small (all causes = 1.01%, 95% eCI: 0.90–1.11; cardiovascular disease = 0.10%, 95% eCI: 0.04–0.14; respiratory disease = 0.29%, 95% eCI: 0.07–0.50). The all-cause morbidity risk that was attributable to temperature was related to moderate cold, with an overall estimate of 6.41% (95% eCI: 5.47–7.20). Extreme temperatures were responsible for a small fraction, which corresponded to 0.57% (95% e

  18. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  19. 77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Science.gov (United States)

    2012-11-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0270] Content Specifications and Shielding Evaluations for... Commission) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2012-XX, ``Content... Material,'' for the review of content specifications and shielding evaluations included in the Certificates...

  20. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  1. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    Directory of Open Access Journals (Sweden)

    Anja S Strauss

    Full Text Available Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi.In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp. RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration.We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and

  2. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  3. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  4. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  5. Nuclear Waste Transportation Safety Act of 1979. Hearings before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Sixth Congress, first session on S. 535, July 18-20, 1979

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Nuclear Waste Transportation Safety Act of 1979 provides for the safe transportation of nuclear waste and nuclear fuel. The issues evaluated during the hearing included: (1) The Energy Reorganization Act of 1974 conveyed to the NRC the prior existing authority of the former Atomic Energy Commission to regulate transportation of radioactive nuclear fuel and nuclear waste. The Hazardous Material Transportation Act of 1974 consolidated within the Department of Transportation the regulatory authority for safety and transportation of all hazardous substances, including radioactive materials; should consultation and coordination between these regulating authorities continue to be used. (2) The specific areas of transportation regulation involved in this combination; (3) Should the Department of Transportation (DOT) become a separate office; (4) Is security against theft and sabotage necessary and realistically attainable; (5) Should DOT be responsible for assuring a coordinated Federal-State emergency response plan for possible nuclear related transportation emergencies; and (6) Is the Federal grant program of S. 535 necessary and adequate

  6. Development and teaching of a graduate course in multimodal transportation safety and risk.

    Science.gov (United States)

    2014-03-01

    One of the U.S. Department of Transportation (DOT)s strategic goals is to enhance public health and : safety by working toward the elimination of transportation-related deaths and injuries. Near term : targets include reducing highway fatalities, ...

  7. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Liping eSun

    2016-02-01

    Full Text Available Sucrose-specific porin (ScrY is a transmembrane protein that allows for the uptake of sucrose under growth-limiting conditions. The crystal structure of ScrY was resolved before by X-ray crystallography, both in its uncomplexed form and with bound sucrose. However, little is known about the molecular characteristics of the transport mechanism of ScrY. To date, there has not yet been any clear demonstration for sucrose transport through the ScrY.Here, the dynamics of the ScrY trimer embedded in a phospholipid bilayer as well as the characteristics of sucrose translocation were investigated by means of atomistic molecular dynamics (MD simulations. The potential of mean force (PMF for sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Energy decomposition allowed to pinpoint three aspartic acids as key residues opposing the passage of sucrose, all located within the L3 loop. Mutation of two aspartic acids to uncharged residues resulted in an accordingly modified electrostatics and decreased PMF barrier. The chosen methodology and results will aid in the design of porins with modified transport specificities.

  9. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  10. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  11. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Tagi, Solmaz; Solhi, Elham; Mokhtarzadeh, Ahad; Shadjou, Nasrin; Eftekhari, Aziz; Mahboob, Soltanali

    2018-04-03

    The accurate quantification of the level of breast cancer specific protein CA 15-3 in serum is crucial for cancer prognosis. This work, a novel and sensitive label-free immunoassay based on gold nanospear (Au NSs) electrochemically assembled onto thiolated graphene quantum dots (CysA/GQDs) for the detection of CA 15-3 antibodies. The CysA/Au NSs/GQDs hybrid interface provides a large surface area for the effective immobilization of CA 15-3 antigens, as well as it ascertains the bioactivity and stability of immobilized CA 15-3 antigens. Field emission scanning electron microscope (FE-SEM), and EDS photoelectron spectroscopies were used to monitor the sensor fabrication. Also, cyclic voltammetry was used to quantify the extent of Au NSs' surface coverage by CA 15-3 antigens. Square wave voltammetry (SWV) was employed to investigate the immunosensor fabrication and to monitor the binding events between CA 15-3 antigens-antibodies. Under optimized experimental conditions, the immunosensor displayed good sensitivity and specificity. The CA 15-3 were detected in a concentration as low as 0.11U/mL with a linear range from 0.16-125U/mL. The high sensitivity of the immunosensor may derive from the high loading of CA 15-3 antibodies on CysA/Au NSs/GQDs hybrid interface which increases the number of binding events. The method was successfully applied assay of the CA 15-3 in unprocessed human plasma samples. Also, proposed immunosensor was applied to the assay of CA 15-3 malignant cell line lysates (human breast adenocarcinoma cell line-MCF-7). Copyright © 2018. Published by Elsevier B.V.

  12. Sign Life-Cycle Policies and Practices : Transportation Research Synthesis

    Science.gov (United States)

    2017-10-01

    MnDOT Metro District Traffic Engineering is interested in the practices that other state departments of transportation (DOTs) use to determine traffic sign life expectancy and replacement. Of particular interest is the state of the practice regarding...

  13. TEST and EVALUATION REPORT FOR THE HEDGEHOG-II PACKAGING SYSTEMS DOT-7A TYPE A CONTAINER

    International Nuclear Information System (INIS)

    KELLY, D.L.

    2003-01-01

    This report documents the US. Department of Transportation Specification 7A (DOT-7A) Type A compliance test and evaluation results for the Hedgehog-II packaging systems. The approved Hedgehog-II packaging configurations provide primary and secondary containment. The approved packaging configurations described within this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids transported in the approved 1 L glass bottle assembly shall have a specific gravity of less than or equal to 1.6. Liquids transported in all other approved configurations shall have a specific gravity of less than or equal to 2.0. The solid contents, including packaging, are limited in weight to the gross weight of the as-tested liquids and bottles. The approved Hedgehog-II packaging configurations described in this report may be transported by air, and have been evaluated as meeting the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT requirements

  14. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter.

    Science.gov (United States)

    Lang, Shenhui; Cressatti, Marisa; Mendoza, Kris E; Coumoundouros, Chelsea N; Plater, Samantha M; Culham, Doreen E; Kimber, Matthew S; Wood, Janet M

    2015-09-22

    Transporter-mediated osmolyte accumulation stimulates the growth of Escherichia coli in high-osmolality environments. YehZYXW was predicted to be an osmoregulatory transporter because (1) osmotic and stationary phase induction of yehZYXW is mediated by RpoS, (2) the Yeh proteins are homologous to the components of known osmoregulatory ABC transporters (e.g., ProU of E. coli), and (3) YehZ models based on the structures of periplasmic betaine-binding proteins suggested that YehZ retains key betaine-binding residues. The betaines choline-O-sulfate, glycine betaine, and dimethylsulfoniopropionate bound YehZ and ProX with millimolar and micromolar affinities, respectively, as determined by equilibrium dialysis and isothermal titration calorimetry. The crystal structure of the YehZ apoprotein, determined at 1.5 Å resolution (PDB ID: 4WEP ), confirmed its similarity to other betaine-binding proteins. Small and nonpolar residues in the hinge region of YehZ (e.g., Gly223) pack more closely than the corresponding residues in ProX, stabilizing the apoprotein. Betaines bound YehZ-Gly223Ser an order of magnitude more tightly than YehZ, suggesting that weak substrate binding in YehZ is at least partially due to apo state stabilization. Neither ProX nor YehZ bound proline. Assays based on osmoprotection or proline auxotrophy failed to detect YehZYXW-mediated uptake of proline, betaines, or other osmolytes. However, transport assays revealed low-affinity glycine betaine uptake, mediated by YehZYXW, that was inhibited at high salinity. Thus, YehZYXW is a betaine transporter that shares substrate specificity, but not an osmoregulatory function, with homologues like E. coli ProU. Other work suggests that yehZYXW may be an antivirulence locus whose expression promotes persistent, asymptomatic bacterial infection.

  15. Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds.

    Science.gov (United States)

    Utsugi, Shigeko; Shibasaka, Mineo; Maekawa, Masahiko; Katsuhara, Maki

    2015-09-01

    Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  17. IAEA co-ordinated research programme on the transport of low specific activity materials and surface contaminated objects

    International Nuclear Information System (INIS)

    Gray, I.L.S.

    2000-01-01

    The International Atomic Energy Agency (IAEA) prepares regulations for the safe transport of radioactive material, and periodically revised editions of these are published. These regulations are adopted by individual countries across the world and by international organisations concerned with transport. Whilst it is desirable to have a stable framework of regulatory requirements, there is also a need to take account of technical advances and operational experience and revise the regulations. From time to time Co-ordinated Research Programmes (CRP) are established to investigate particular areas of the regulations that are giving concern. In 1996 the IAEA Standing Advisory Group on the Transport of Radioactive Material (SAGSTRAM) concluded that the requirements for classification, packaging and transport of low specific activity (LSA) material and surface contaminated objects (SCO) did not always have a strong radiation protection basis. Accordingly SAGSTRAM established a CRP with an overall objective to develop a dose-based approach for establishing LSA/SCO requirements. Six countries are participating in this CRP. Brazil, Canada, France, Germany, United Kingdom and United States. Each country is carrying out work that is outlined in agreements with the IAEA, with the work aimed at meeting the specific objective of the agreement and also contributing to achieving the overall objective of the CRP. Completion of the CRP usually involves the preparation of an IAEA TECDOC by a Consultant Services Meeting (CSM), and this TECDOC will summarise the work performed under the CRP and include any recommendations made by the CRP. Following the establishment of the CRP in 1997, the first Research Co-ordination Meeting (RCM) was held in December 1997. The second RCM was held in March 1999, with the final RCM planned for the end of 2000. The work being carried out by Brazil and Canada is focused upon the transport of uranium and thorium ores, and is a mixture of theoretical and

  18. Characteristics of specifications of transportable inverter-type X-ray equipment

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Miyazaki, Shigeru

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment. (author)

  19. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-01-01

    . The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured....... The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used...

  20. US Department of Transportation (DOT) Spec 7A Type A evaluation document: Spec 17C 55-gal steel drum with RWMC/SWEPP drum venting system carbon filter assembly

    International Nuclear Information System (INIS)

    Edling, D.A.

    1986-01-01

    As part of MRC-Mound's responsibility to coordinate DOE Spec 7A Type A Packaging testing, evaluation, and utilization, this document evaluates per 49CFR 173.415(a) the SWEPP packaging system: DOT Spec 17C steel drums - 30, 55 and 83-gal; High Density Polyethylene (HDPE) liners; and SWEPP DVS Filter Assemblies (two configurations) as a US DOT Spec 7A Type A packaging. A variety of Type A performance testing was done on: DOT Spec 17C 55-gal steel drums; DOT Spec 17C 55-gal steel drums with HDPE liners; and DOT Spec 17C 55-gal steel drums with ''Nucfil'' filters as part of MRC-Mound's Type A Packaging Evaluation Program funded by DOE/HQ, DP-4, Security Evaluations. The subject SWEPP packaging incorporates modifications to the ''Nucfil'' filter and installation assembly previously tested in conjunction with the Spec 17C 55-gal drums. Thus, additional testing was required on the new filter installation in order to evaluate the entire packaging system. This document presents the test data to demonstrate the SWEPP packaging system's performance against the DOT 7A Type A requirements

  1. Environmental transportation of tritium and estimation of site-specific model parameters for Kaiga site, India.

    Science.gov (United States)

    Reji, T K; Ravi, P M; Ajith, T L; Dileep, B N; Hegde, A G; Sarkar, P K

    2012-04-01

    Tritium content in air moisture, soil water, rain water and plant water samples collected around the Kaiga site, India was estimated and the scavenging ratio, wet deposition velocity and ratio of specific activities of tritium between soil water and air moisture were calculated and the results are interpreted. Scavenging ratio was found to vary from 0.06 to 1.04 with a mean of 0.46. The wet deposition velocity of tritium observed in the present study was in the range of 3.3E-03 to 1.1E-02 m s(-1) with a mean of 6.6E-03 m s(-1). The ratio of specific activity of tritium in soil moisture to that in air moisture ranged from 0.17 to 0.95 with a mean of 0.49. The specific activity of tritium in plant water in this study varied from 73 to 310 Bq l(-1). The present study is very useful for understanding the process and modelling of transfer of tritium through air/soil/plant system at the Kaiga site.

  2. Quality of life among dots (directly observed treatment short course ...

    African Journals Online (AJOL)

    Quality of life among dots (directly observed treatment short course) cured patients: ... which is a specific instrument and covers four domains of health i.e. physical, ... thereby necessitating measures for the improvement of the overall health of ...

  3. Characteristics of specifications of transportable inverter-type X-ray equipment

    CERN Document Server

    Yamamoto, K; Asano, H

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendenc...

  4. Specification of test criteria for containers to be used in the air transport of plutonium

    International Nuclear Information System (INIS)

    Brown, M.L.; Edwards, A.R.; Hall, S.F.

    1980-01-01

    Potential accidents in the transport by aeroplane of plutonium are considered. Past literature on the subject is reviewed. Civilian air accident statistics are surveyed: impact and fire are shown to be the major threats. Probabilities (given an accident) are derived for encountering and impact of above any given speed as a function of speed, and a fire of above any given duration, as a function of duration. The crash of two typical jet cargo aircraft (BAC-111, Boeing-707) against a rigid normal surface is considered and cargo hold decelerations derived from a one-dimensional model. The response of a cargo to such decelerations is calculated for loads of two typical containers, and related to the velocity of impact into a hard target necessary to produce similar damage in single containers. Free fall of containers and the effect on the surface struck are discussed. The response of two typical containers to a fire is calculated, allowing for the charring of insulating/shock absorbing material. Calculations without charring appear pessimistic. The consequences of plutonium release are estimated and risk spectra derived for two failure assumptions. The implications for container test criteria are discussed, and recommendations made

  5. FISCAL FEATURES SPECIFIC TO INTRA-COMMUNITY TRANSACTIONS OF NEW MEANS OF TRANSPORTATION AND EXCISABLE PRODUCTS

    Directory of Open Access Journals (Sweden)

    PALIU - POPA LUCIA

    2012-06-01

    Full Text Available With a view to our country's accession to the Community space, the Romanian legislation has undergone many changes, and we should point out among others those in the tax system, that primarily aims to ensure the functioning of the national economy in the globalization of the economic and social activities worldwide. Although at first sight the new procedures have a positive impact on the development of intra-Community commercial businesses, due to the elimination of customs formalities and hence of the fees paid to customs officials, however there are costs generated by the application of EU law, which should not be neglected. Considering the many situations that arise in carrying out intra-Community commercial transactions, that are aimed at the differentiated tax procedures from the value added tax perspective, we considered appropriate, to address below the tax features related to intra-Community acquisitions and supplies of new means of transport and excisable products, because these are two important categories of goods that generate differential tax treatments, so that after the tax analysis we should be able to draw some relevant conclusions.

  6. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  7. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes.

    Science.gov (United States)

    Jean, Bernandie; Surratt, Christopher K; Madura, Jeffry D

    2017-09-01

    The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  9. Gate-induced carrier delocalization in quantum dot field effect transistors.

    Science.gov (United States)

    Turk, Michael E; Choi, Ji-Hyuk; Oh, Soong Ju; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2014-10-08

    We study gate-controlled, low-temperature resistance and magnetotransport in indium-doped CdSe quantum dot field effect transistors. We show that using the gate to accumulate electrons in the quantum dot channel increases the "localization product" (localization length times dielectric constant) describing transport at the Fermi level, as expected for Fermi level changes near a mobility edge. Our measurements suggest that the localization length increases to significantly greater than the quantum dot diameter.

  10. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin; Roy, A. -M.; Curry, Matthew Jon; Ten Eyck, Gregory A.; Manginell, Ronald P.; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M; Ward, Daniel Robert; Lilly, Michael; pioro-ladriere, michel

    2017-07-01

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

  11. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  12. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  13. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  14. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  15. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  16. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  17. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  18. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  19. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  20. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  1. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  2. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  3. Federal, state, and local regulation of radioactive-waste transportation: Progress toward a definition of regulatory authority

    International Nuclear Information System (INIS)

    Livingston-Behan, E.A.

    1986-01-01

    The supremacy clause, the commerce clause, and the equal-protection guarantees of the U.S. Constitution establish the basic framework for defining the authority of Federal, State, and local governments to regulate the transportation of radioactive waste. Court decisions and advisory rulings of the U.S. Department of Transportation (DOT) suggest that State and local regulation of the transportation of spent nuclear fuel and high-level radioactive waste is precluded under supremacy-clause principles to the extent that such regulation addresses nuclear safety or aspects of transportation that are already specifically regulated by the Federal government. Even where State and local requirements are found to be valid under the supremacy clause, they must still satisfy constitutional requirements under the commerce and equal-protection clauses. Despite stringent standards of review, State and local transportation requirements have been upheld where directly related to the traditional exercise of police powers in the area of transportation. Legitimate State and local police-power activities identified to date by the DOT and the courts include inspection and enforcement, immediate accident reporting, local regulation of traffic, and certain time-of-day curfews. The extent to which State and local permitting requirements and license fees may be determined valid by the DOT and the courts remains unclear. Continued clarification by the DOT and the courts as to the validity of permits and fees will serve to further define the appropriate balance for Federal, State, and local regulation of radioactive-waste transportation

  4. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  5. 49 CFR Appendix H to Part 40 - DOT Drug and Alcohol Testing Management Information System (MIS) Data Collection Form

    Science.gov (United States)

    2010-10-01

    ..., App. H Appendix H to Part 40—DOT Drug and Alcohol Testing Management Information System (MIS) Data... 49 Transportation 1 2010-10-01 2010-10-01 false DOT Drug and Alcohol Testing Management Information System (MIS) Data Collection Form H Appendix H to Part 40 Transportation Office of the Secretary...

  6. Specific Features of Transport Market Characterising the Interrelation of Logistics, Global Distribution and Traffic

    Directory of Open Access Journals (Sweden)

    Teodor Perić

    2002-11-01

    Full Text Available If we acknowledge the role of traffic as active leaderof the sustainable economy development, then we certainlyhave to analyse the environment in which the traffic exists asa system, and therefore we have to foresee its limits which aredetermined by the specifics of the traffic system. Representingthe circulation system of economy, traffic has to eavesdrop onthe demands of the market, and has to be transformed andmodernised. The experience gained by working on the projectsand the studies related to business organisation resulted inthe conclusion that the requirements related to logistics inthe nineties were significantly greater than had been thecommon target until then -reduction of costs. In order to adjustcompletely to the market demands, with the help of advancedinformation technology, the companies apply logisticsas tools of competitiveness on the market. Extraordinmyachievements of IT, using of virtual reality enable businesspeople to communicate and contract businesses without beingphysically present. What is it that makes some companies moresuccessful than others? It is obviously a question of the advantagesof distribution realisation due to the fact that nowadayspurchase and selling are run globally in the world. The distributionof products at the right time, to the right place, at a pricewhich is favourable both to the seller and the buyer, in the rightmanner and in the appropriate quantity in the marketing senseis the prerequisite for the business success as element of businesslogistics. The development of this tool must be basedon the monitoring of the needs for the logistics managementand the tactical adaptability of the company. The solution oflogistics management of business processes must satisfy thecurrent and future customers' requirements in order to be competitive.

  7. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  8. Rotavirus NSP4114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane

    Directory of Open Access Journals (Sweden)

    Vasseur Monique

    2006-11-01

    Full Text Available Abstract The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.

  9. The dopamine transporter gene may not contribute to susceptibility and the specific personality traits of amphetamine dependence.

    Science.gov (United States)

    Tzeng, Nian-Sheng; Lu, Ru-Band; Yeh, Hui-Wen; Yeh, Yi-Wei; Huang, Chang-Chih; Yen, Che-Hung; Kuo, Shin-Chang; Chen, Chun-Yen; Chang, Hsin-An; Ho, Pei-Shen; Cheng, Serena; Shih, Mei-Chen; Huang, San-Yuan

    2015-04-01

    A substantial amount of evidence suggests that dysfunction of the dopamine transporter may be involved in the pathophysiology of amphetamine dependence (AD). The aim of this study was to examine whether the dopamine transporter gene (DAT1, SLC6A3) is associated with development of AD and whether this gene influences personality traits in patients with AD. Eighteen polymorphisms of the DAT1 gene were analyzed in a case-control study that included 909 Han Chinese men (568 patients with AD and 341 control subjects). The patients fulfilled the DSM-IV-TR criteria for AD. The Tridimensional Personality Questionnaire (TPQ) was used to assess personality traits and to examine the association between these traits and DAT1 gene variants. A weak association was found between the rs27072 polymorphism and development of AD, but these borderline associations were unconfirmed by logistic regression and haplotype analysis. Although harm avoidance and novelty seeking scores were significantly higher in patients than in controls, DAT1 polymorphisms did not influence these scores. This study suggests that high harm avoidance and novelty seeking personality traits may be a risk factor for the development of AD. However, the DAT1 gene may not contribute to AD susceptibility and specific personality traits observed in AD among Han Chinese men. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. The characterization of novel mycorrhiza-specific phosphate transporters from ¤Lycopersicon esculentum¤ and ¤Solanum tuberosum¤ uncovers functional redundancy in symbiotic phosphate transport in solanaceous species

    DEFF Research Database (Denmark)

    Nagy, F.; Karandashov, V.; Chague, W.

    2005-01-01

    , is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature 414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous...... species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice......Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture...

  11. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  12. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  13. Regional alternative transportation evaluation report - Region 4

    Science.gov (United States)

    2013-08-15

    The U.S. Fish and Wildlife Service (FWS) and the U.S. Department of Transportation (DOT) Volpe Center (Volpe Center) conducted a regional alternative transportation evaluation (RATE) in Region 4, which is comprised of Alabama, Arkansas, Florida, Geor...

  14. Regional alternative transportation evaluation report - region 2

    Science.gov (United States)

    2012-03-01

    The U.S. Fish and Wildlife Service (FWS) and the U.S. Department of Transportation (DOT) Volpe : Center (Volpe Center) conducted a regional alternative transportation evaluation (RATE) in Region 2, : which is comprised of Arizona, Oklahoma, New Mexic...

  15. Regional alternative transportation evaluation report - region 5

    Science.gov (United States)

    2011-11-14

    The U.S. Fish and Wildlife Service (FWS) and the U.S. Department of Transportation (DOT) Volpe Center (Volpe Center) conducted a regional alternative transportation evaluation (RATE) in Region 3, which is comprised of Illinois, Indiana, Iowa, Michiga...

  16. Regional Alternative Transportation Evaluation: Region 8

    Science.gov (United States)

    2016-02-28

    The U.S. Fish and Wildlife Service (FWS), Federal Lands Highway (FLH), and the U.S. Department of Transportation (DOT) Volpe Center (Volpe Center) have conducted regional alternative transportation evaluations (RATEs) in almost each of FWSs eight ...

  17. Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer

    International Nuclear Information System (INIS)

    Matityahu, Shlomi; Aharony, Amnon; Entin-Wohlman, Ora; Tarucha, Seigo

    2013-01-01

    We study the spin-dependent transport of spin-1/2 electrons through an interferometer made of two elongated quantum dots or quantum nanowires, which are subject to both an Aharonov–Bohm flux and (Rashba and Dresselhaus) spin–orbit interactions. Similar to the diamond interferometer proposed in our previous papers (Aharony et al 2011 Phys. Rev. B 84 035323; Matityahu et al 2013 Phys. Rev. B 87 205438), we show that the double-dot interferometer can serve as a perfect spin filter due to a spin interference effect. By appropriately tuning the external electric and magnetic fields which determine the Aharonov–Casher and Aharonov–Bohm phases, and with some relations between the various hopping amplitudes and site energies, the interferometer blocks electrons with a specific spin polarization, independent of their energy. The blocked polarization and the polarization of the outgoing electrons is controlled solely by the external electric and magnetic fields and do not depend on the energy of the electrons. Furthermore, the spin filtering conditions become simpler in the linear-response regime, in which the electrons have a fixed energy. Unlike the diamond interferometer, spin filtering in the double-dot interferometer does not require high symmetry between the hopping amplitudes and site energies of the two branches of the interferometer and thus may be more appealing from an experimental point of view. (paper)

  18. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    Science.gov (United States)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  19. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.

    Science.gov (United States)

    Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S

    2013-09-01

    The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  1. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Risk Management Working Group Teleconference...

  2. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  3. Procurement and Contracting, Transportation & Public Facilities, State of

    Science.gov (United States)

    Visiting Alaska State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Procurement and Contracting Search DOT& pages Department of Transportation & Public Facilities PO Box 112500 3132 Channel Drive Juneau

  4. Rural public transportation technologies : user needs and applications : final report

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  5. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-03-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  6. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. Rural Public Transportation Technologies: User Needs and Applications. Executive Summary

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportation's (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities...

  8. Alternative Fuel Transportation Optimization Tool : Description, Methodology, and Demonstration Scenarios.

    Science.gov (United States)

    2015-09-01

    This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....

  9. Evaluation of wood species and preservatives for WisDOT sign posts.

    Science.gov (United States)

    2013-10-01

    The Wisconsin Department of Transportation (WisDOT) uses preservative-treated wood posts for much of the signage along state highways because wood is relatively inexpensive, easy to install, and has the necessary strength properties to tolerate typic...

  10. Draft project management update to the Iowa DOT Project Development Manual : final report.

    Science.gov (United States)

    2016-08-01

    This work supported drafting project management guidance for the Iowa Department of Transportation (DOT). The goal is to : incorporate a greater focus on project management in their project development process. : A technical advisory committee (TAC) ...

  11. Software development to implement the TxDOT culvert rating guide.

    Science.gov (United States)

    2013-05-01

    This implementation project created CULVLR: Culvert Load Rating, Version 1.0.0, a Windows-based : desktop application software package that automates the process by which Texas Department of Transportation : (TxDOT) engineers and their consultants ...

  12. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  13. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  14. Quantum Dot Photonics

    Science.gov (United States)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  15. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  16. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  17. Quantum Dots for Molecular Diagnostics of Tumors

    OpenAIRE

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imaging in vivo. We also point out the essential problems that require resolution in order to c...

  18. Efficient eco-friendly inverted quantum dot sensitized solar cells

    NARCIS (Netherlands)

    Park, Jinhyung; Sajjad, Muhammad T.; Jouneau, Pierre-Henri; Ruseckas, Arvydas; Faure-Vincent, Jérôme; Samuel, Ifor D. W.; Reiss, Peter; Aldakov, Dmitry

    2016-01-01

    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have

  19. Thermoelectric effects in molecular quantum dots with contacts

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Loos, Jan; Fehske, H.

    2014-01-01

    Roč. 89, č. 15 (2014), "155133-1"-"155133-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : theory of electronic transport * scattering mechanisms * polarons and electron-phonon interactions * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  20. Phonon excess heating in electronic relaxation theory in quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Lin, Ch. Y.

    2008-01-01

    Roč. 22, č. 20 (2008), s. 3439-3460 ISSN 0217-9792 R&D Projects: GA MŠk ME 866 Institutional research plan: CEZ:AV0Z10100520 Keywords : quantum dots * electron -phonon interaction * electron ic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.558, year: 2008

  1. Effect of water chemistry on the aggregation and photoluminescence behavior of carbon dots.

    Science.gov (United States)

    Bayati, Mohamed; Dai, Jingjing; Zambrana, Austin; Rees, Chloe; Fidalgo de Cortalezzi, Maria

    2018-03-01

    Carbon dots are rapidly emerging carbon-based nanomaterials that, due to their growing applications, will inevitable find their way to natural waters; however, their environmental fate is mostly unknown. Carbon dots with different surface functionality were fabricated and characterized by TEM and FT-IR. Their surface charge, given by the zeta potential, and their hydrodynamic diameter in suspension were investigated under a variety of environmentally relevant conditions. The effect of ionic strength was studied in the presence of monovalent (NaCl) and divalent (CaCl 2 ) cations, for pH levels from 3 to 11; humic acid was used as a model for dissolved natural organic matter. Total potential energies of interactions were modeled by classical DLVO theory. The experimental results showed that water chemistry altered the surface charge of the nanomaterials, but their hydrodynamic size could not be correlated to those changes. Evidence of specific interactions was found for the amino functionalized particles in most cases, as well as the plain carbon dots in the presence of Ca 2+ and humic acid. Nanoparticles remained largely stable in suspension, with some exception at the highest ionic strength considered. DLVO theory did not adequately capture the aggregation behavior of the system. Moreover, cation and/or humic acid adsorption negatively affected the emission intensity of the particles, suggesting limitations to their use in natural water sensing applications. The particular stability shown by the carbon dots results in exposure to organisms in the water column and the possibility of contamination transported to significant distances from their source. Copyright © 2017. Published by Elsevier B.V.

  2. [Louis Braille (1809-1852)--inventor of raised dots system].

    Science.gov (United States)

    Maciejewicz, Piotr; Kopacz, Dorota

    2005-01-01

    Louis Braille was born on January 4th 1809 in Coupvray, France. An injury to his eye at the age of three, resulted in total loss of vision. In 1819 he entered the Institute for Blind Youth in Paris. There he would live, study, and later teach. When he was fifteen, he developed system of reading and writing by means of raised dots, which is known today as Braille. The basis of the Braille system is known as a Braille cell. The cell is comprised of six dots numbered in a specific order. Each dot or combination of dots represents a letter of the alphabet. This Braille system has established itself internationally and formed the basic Braille for all languages.

  3. 76 FR 42160 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Space Transportation Operations Working Group of the Commercial Space Transportation Advisory...

  4. 77 FR 71474 - Commercial Space Transportation Advisory Committee-Charter Renewal

    Science.gov (United States)

    2012-11-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Transportation (DOT). ACTION: Announcement of Charter Renewal of the Commercial Space Transportation Advisory... Administrator of the Federal Aviation Administration (FAA) on the critical matters facing the U.S. commercial...

  5. SPECIFIC FEATURES OF HIGHER EFFICIENCY IN FUNCTIONING OF ROAD-TRANSPORT COMPLEX IN THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. G. Solodkaya

    2015-01-01

    Full Text Available The road-transport complex objectively reflects the essence of efficient transportation process which is carried out by transport facilities along the highways. The complex  emphasizes an equivalent contribution of transport facilities and highways in a unified transportation process. Efficiency of the state economy rigidly depends on availability of the developed and well-functioning network of highways. Countries with the developed economy which have generally finished creation of national highway networks continue to invest money in public road systems that stimulates development of industrial sectors, agriculture and trade, etc. Their progress and efficient functioning is possible only with the balanced, overall development of the road-transport complex of the country. Functioning of the road-transport complex is inextricable connected with the operation of automotive transport and road infrastructure. Interaction of these two components of the unified economic system is determined by technical characteristics of the automotive transport and transport and operational indices of  the highways. Development of methods for optimum organization of management for functioning of the road complex is considered as an important problem of the national economy while forming market economy mechanisms. Further growth of capital expenditures including  investments will be needed in order to ensure such road conditions that meet the requirements of modern and perspective road traffic. Management of the highway network conditions presupposes a selection of such set of regulatory impacts on road conditions which will allow to minimize expenses in the road-transport complex. Elaboration and realization of the most efficient repair measures serve as such regulatory impact. The purpose is achieved while solving the problem pertaining to minimization of expenses on  transportations in the road-transport complex in the process of the realization of the most

  6. Landauer current and mutual information in a bosonic quantum dot

    Science.gov (United States)

    Shashikant Sable, Hrushikesh; Singh Bhakuni, Devendra; Sharma, Auditya

    2018-02-01

    We study the quantum transport of bosons through a quantum dot coupled to two macroscopic heat baths L and R, held at fixed temperatures TL and TR respectively. We manage to cast the particle as well as the heat current into the Landauer form. Following the correlation matrix approach, we compute the time-dependent mutual information of the dot with the baths. We find that mutual information goes logarithmically as the number of bosons, and at low temperatures, it is possible to set up the parameters in such a way that in steady-state, the mutual information goes quadratically as a function of current.

  7. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  8. Phosphorene quantum dots

    Science.gov (United States)

    Vishnoi, Pratap; Mazumder, Madhulika; Barua, Manaswee; Pati, Swapan K.; Rao, C. N. R.

    2018-05-01

    Phosphorene, a two-dimensional material, has been a subject of recent investigations. In the present study, we have prepared blue fluorescent phosphorene quantum dots (PQDs) by liquid phase exfoliation of black phosphorus in two non-polar solvents, toluene and mesitylene. The average particle sizes of PQDs decrease from 5.0 to 1.0 nm on increasing the sonicator power from 150 to 225 W. The photoluminescence spectrum of the PQDs is red-shifted in the 395-470 nm range on increasing the excitation-wavelength from 300 to 480 nm. Electron donor and acceptor molecules quench the photoluminescence, with the acceptors showing more marked effects.

  9. Conductance Peaks in Open Quantum Dots

    International Nuclear Information System (INIS)

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-01-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be Z >=α Z /Z c , where α Z is a universal constant and Z c is the conductance autocorrelation length, which is system specific. The analysis of Z > does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Z c .

  10. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  11. Onsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    This report documents the emergency preparedness Hazards Assessment for the onsite transportation of hazardous material at the Hanford Site. The assessment is required by US Department of Energy (DOE) Order 5500.3A and provides the technical basis for the emergency classification and response procedures. A distinction is made between onsite for the purpose of emergency preparedness and onsite for the purpose of applying US Department of Transportation (DOT) regulations. Onsite for the purpose of emergency preparedness is considered to be within the physical boundary of the entire Hanford Site. Onsite for the purpose of applying DOT regulations is north of the Wye Barricade

  12. Transportation Problems in Special Education Programs in Rural Areas - A Specific Solution and Some Suggestions for Delivery System Development.

    Science.gov (United States)

    Brody, Z. H.

    The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…

  13. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  14. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Amy Szuchmacher [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Soto, Carissa M [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Wilson, Charmaine D [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Moore, Martin H [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Lin, Tianwei [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Chatterji, Anju [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-10-28

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot-protein assemblies were studied in detail. The IgG-QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV-QD complexes have a local concentration of quantum dots greater than 3000 nmol ml{sup -1}, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  15. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    with masses spanning 105.8107.4solar masses, specific star formation rates of 10-7.4, and redshifts of 0.5 z 5.4.Exploring these little blue dots, the Elmegreens find that the galaxies sizes tend to be just a few hundred light-years across. They are gas-dominated; gas currently outweighs stars in these galaxies by perhaps a factor of five. Impressively, based on the incredibly high specific star formation rates observed in these little blue dots, they appear to have formed all of their stars in the last 1% of the age of the universe for them.An Origin for Globulars?Log-log plot of star formation rate vs. mass for the three main groups of little blue dots (red, green, and blue markers), a fourth group of candidates with different properties (brown markers), and previously discovered local blueberry galaxies. The three main groups of little blue dots appear to be low-mass analogs of blueberries. [Elmegreen Elmegreen 2017]Intriguingly, this rapid star formation might be the key to answering a long-standing question: where do globular clusters come from? The Elmegreens propose that little blue dots might actually be an explanation for the origin of these orbiting, spherical, low-metallicity clusters of stars.The authors demonstrate that, if the current star formation rates observed in little blue dots were to persist for another 50 Myr before feedback or gas exhaustion halted star production, the little blue dots could form enough stars to create clusters of roughly a million solar masses which is large enough to explain the globular clusters we observe today.If little blue dots indeed rapidly produced such star clusters in the past, the clusters could later be absorbed into the halos of todays spiral and elliptical galaxies, appearing to us as the low-metallicity globular clusters that orbit large galaxies today.CitationDebra Meloy Elmegreen and Bruce G. Elmegreen 2017 ApJL 851 L44. doi:10.3847/2041-8213/aaa0ce

  16. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  17. Risk assessment associated with the transport of low specific activity waste to the Centre de l'Aube disposal facility, France

    International Nuclear Information System (INIS)

    Raffestin, D.; Tort, V.; Manen, P.; Schneider, T.; Lombard, J.

    1994-01-01

    Since 1991, French Low Specific Activity wastes have been stored in the near-surface waste disposal site in the Aube region (CSA). In 1995, the CSA plans to receive approximately 23,000 m 3 of waste from the three major producers, EDF (Electricite de France), COGEMA (COmpagnie GEnerale des MAtieres nucleaires), and the CEA (Commissariat a l'Energie Atomique). Four different kinds of package are broadly represented: the 200 l drums to be compacted, the 200 l drums filled with fixed wastes, concrete shells and metallic boxes. As the radiological exposures resulting from waste transport could stem from both incident-free transport and accident situations, two separate studies have been conducted. Using the INTERTRAN code (IAEA software) for accident-free transport, the overall effective collective doses related to the whole transport activity have been calculated and a risk of 0.48 man.Sv per year has been deduced. (author)

  18. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    Science.gov (United States)

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  19. Printer model for dot-on-dot halftone screens

    Science.gov (United States)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  20. Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion

    International Nuclear Information System (INIS)

    Sudhagar, Pitchaimuthu; Herraiz-Cardona, Isaac; Park, Hun; Song, Taesup; Noh, Seung Hyun; Gimenez, Sixto; Sero, Ivan Mora; Fabregat-Santiago, Francisco; Bisquert, Juan; Terashima, Chiaki; Paik, Ungyu; Kang, Yong Soo

    2016-01-01

    Highlights: • Low dimension ∼5 nm graphene quantum dots nanoparticles were synthesized using chemical exfoliation method. • One dimensional TiO 2 hallow nanowire is grown directly onto conducting substrates using ZnO nanowire as sacrificial template. • The merits of optical properties of the graphene quantum dots sensitizer with the transport properties of the host 1-D TiO 2 nanowire were combined and demonstrate as photoanode in photoelectrochemical hydrogen generation. • A photocurrent enhancement of ∼70% at pristine TiO 2 by graphene quantum dots was achieved through photoelectrocatalytic water oxidation using sacrificial-free electrolyte. • The underlying mechanism of photocharge carrier transfer characteristics at graphene quantum dots/TiO 2 interface is studied using electrochemical impedance spectroscopy. - Abstract: Photocarrier (e − /h + ) generation at low dimension graphene quantum dots offers multifunctional applications including bioimaging, optoelectronics and energy conversion devices. In this context, graphene quantum dots onto metal oxide electron transport layer finds great deal of attention in solar light driven photoelectrochemical (PEC) hydrogen fuel generation. The merits of combining tailored optical properties of the graphene quantum dots sensitizer with the transport properties of the host wide band gap one dimensional nanostructured semiconductor provide a platform for high charge collection which promotes catalytic proton reduction into fuel generation at PEC cells. However, understanding the underlying mechanism of photocarrier transfer characteristics at graphene quantum dots/metal oxide interface during operation is often difficult as graphene quantum dots may have a dual role as sensitizer and catalyst. Therefore, exploring photocarrier generation and injection at graphene quantum dot/metal oxide heterointerfaces in contact with hole scavenging electrolyte afford a new pathway in developing graphene quantum dots based

  1. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  2. Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta06835a Click here for additional data file.

    Science.gov (United States)

    Hong, John; Hou, Bo; Lim, Jongchul; Pak, Sangyeon; Kim, Byung-Sung; Cho, Yuljae; Lee, Juwon; Lee, Young-Woo; Giraud, Paul; Lee, Sanghyo; Park, Jong Bae; Morris, Stephen M.; Snaith, Henry J.; Kim, Jong Min

    2016-01-01

    Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells. PMID:29308200

  3. Electron Transport in Quantum Dots and Heat Transport in Molecules

    DEFF Research Database (Denmark)

    Kirsanskas, Gediminas

    Since the invention of the transistor in 1947 and the development of integrated circuits in the late 1950’s, there was a rapid progress in the development and miniaturization of the solid state devices and electronic circuit components. This miniaturization raises a question “How small do we have...

  4. A strongly interacting polaritonic quantum dot

    Science.gov (United States)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  5. Coherence and spin effects in quantum dots

    International Nuclear Information System (INIS)

    Katsumoto, S

    2007-01-01

    This review focuses on experiments on coherent transport through quantum dot systems. The most important quantity obtained in coherent transport is the phase shift through the dots, which gives complementary information to the scattering amplitude (i.e. the conductance). However, two-terminal devices have a particular difficulty, called 'phase rigidity', in obtaining the phase shift. There are two representative ways to avoid this problem: one is to adopt a multi-terminal configuration and another is to use resonance in the interferometer. This review mainly reviews the latter approaches. Such resonance in the whole interferometer often joins with local resonance inside the interferometer and appears as the Fano effect, which is a powerful tool for investigating the phase shift problem with the aid of theories. In addition to such resonances of single-electron states, electron spin causes a kind of many-body resonance, that is, the Kondo effect. Combination of these resonances is the Fano-Kondo effect. Experiments on the Fano-Kondo effect, which unveil the nature of the Kondo resonance, are also reviewed. (topical review)

  6. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2012 Ed.). Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This Safety Guide provides recommendations and guidance on achieving and demonstrating compliance with IAEA Safety Standards Series No. SSR-6, Regulations for the Safe Transport of Radioactive Material (2012 Edition), which establishes the requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material, including the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Standards Series No. TS-G-1.1 Rev. 1, which was issued in 2008.

  7. Fast current blinking in individual PbS and CdSe quantum dots.

    Science.gov (United States)

    Maturova, Klara; Nanayakkara, Sanjini U; Luther, Joseph M; van de Lagemaat, Jao

    2013-06-12

    Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.

  8. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  9. Quantum dot-based microfluidic biosensor for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Ghrera, Aditya Sharma [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); School of Engineering and Technology, ITM University, Gurgaon-122017 (India); Pandey, Chandra Mouli; Ali, Md. Azahar [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Department of Biotechnology, Delhi Technological University, Delhi-110042 (India)

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  10. Quantum dot-based microfluidic biosensor for cancer detection

    Science.gov (United States)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  11. Quantum dot-based microfluidic biosensor for cancer detection

    International Nuclear Information System (INIS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-01-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10 −15 M to 10 −11 M

  12. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    Science.gov (United States)

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ANALYSIS OF THE CITY TRANSPORT SYSTEM’S DEVELOPMENT STRATEGY DESIGN PRINCIPLES WITH ACCOUNT OF RISKS AND SPECIFIC FEATURES OF SPATIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Irina MAKAROVA

    2017-04-01

    Full Text Available Transport system is the key indicator of sustainable spatial development, because if it is ineffective it can render the economy, the environment, and society vulnerable. Despite the large number of already existing research, the city transportation sys-tem’s development strategy design is still a relevant objective, because the existing ways and strategies of the transport development may not always be applicable in certain circumstances. This article presents the possible ways of improvement of sustainability of the city transportation systems adapted in accordance with the peculiarities of Russian cities. It is stated that when working out a city transportation system’s development strategy it is necessary to take into account all possible risks. According to the case study of Naberezhnye Chelny city, all vulnerabilities of the system that today are typical almost for all Russian cities were analyzed, classification of risks was made, and means of their control were suggested. Solutions proposed as a result of the SWOT-analysis can be used when developing transport strategies for other cities with similar specificity.

  14. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago

    2006-01-01

    Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.

  15. Specific transport and storage solutions: Waste management facing current and future stakes of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deniau, Helene; Gagner, Laurent; Gendreau, Francoise; Presta, Anne

    2006-01-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge: protection of people and environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, COGEMA LOGISTICS has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear producers through their operational choices. We will focus on the COGEMA LOGISTICS technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfill both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (COGEMA LOGISTICS, TRANSNUCLEAR, MAINCO, and LEMARECHAL CELESTIN) in order to manage transportation of liquid and solid waste towards interim or final storage sites. The paper has the following contents: About radioactive waste; - Radioactive waste classification; - High level activity waste and long-lived intermediate level waste; - Long-lived low level waste; - Short-lived low- and intermediate level waste; - Very low level waste; - The radioactive waste in nuclear fuel cycle; - Packaging design and

  16. GaAs structures with InAs and As quantum dots produced in a single molecular beam epitaxy process

    International Nuclear Information System (INIS)

    Nevedomskii, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2009-01-01

    Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.

  17. Graphene based quantum dots.

    Science.gov (United States)

    Zhang, H G; Hu, H; Pan, Y; Mao, J H; Gao, M; Guo, H M; Du, S X; Greber, T; Gao, H-J

    2010-08-04

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  18. 77 FR 18879 - Department of Transportation Final Environmental Justice Strategy

    Science.gov (United States)

    2012-03-28

    ... Transportation Final Environmental Justice Strategy AGENCY: Office of the Secretary of Transportation, DOT... strategy, which sets forth DOT's commitment to identifying and addressing disproportionately high and...-income populations. This strategy is published as a final document; however, it is a revision of a...

  19. Base compaction specification feasibility analysis.

    Science.gov (United States)

    2012-12-01

    The objective of this research is to establish the technical engineering and cost : analysis concepts that will enable WisDOT management to objectively evaluate the : feasibility of switching construction specification philosophies for aggregate base...

  20. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot

    Science.gov (United States)

    Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2018-05-01

    We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.

  1. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  2. DOT Official County Highway Map

    Data.gov (United States)

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  3. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    Science.gov (United States)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  4. Physics of lateral triple quantum-dot molecules with controlled electron numbers

    International Nuclear Information System (INIS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-01-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron–electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation. (review article)

  5. Rural Public Transportation Technologies: User Needs and Applications. Final Report

    Science.gov (United States)

    1998-08-01

    The Rural Public Transportation Technologies: User Needs and Applications Study was conducted as part of the U.S. DOT's overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities and challenges of planning and...

  6. User's manual for sustainable transportation performance measures calculator

    Science.gov (United States)

    2010-08-01

    Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...

  7. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  8. The quantum mechanical description of the dot-dot interaction in ionic colloids

    International Nuclear Information System (INIS)

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  9. 49 CFR Appendix B to Part 40 - DOT Drug Testing Semi-Annual Laboratory Report to Employers

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Pt. 40, App. B Appendix B to Part 40—DOT Drug Testing.... Specimen Results Reported (total number) By Test Reason (a) Pre-employment (number) (b) Post-Accident...

  10. Regulatory compliance guide for DOT-7A type A packaging design

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1996-01-01

    The purpose of this guide is to provide instruction for assuring that the regulatory design requirements for a DOT-7A Type A packaging are met. This guide also supports the testing and evaluation activities that are performed on new packaging designs by a DOE-approved test facility through the DOE's DOT-7A Test Program. This Guide was updated to incorporate regulatory changes implemented by HM-169A (49 CFR, 'Transportation')

  11. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Sanz, Y; Toldra, F; Renault, P; Poolman, B

    2003-01-01

    The genome sequence of Lactococcus lactis IL1403 revealed the presence of a putative peptide-binding protein-dependent ABC-transporter (Dpp). The genes for two peptide-binding proteins (dppA and dppP) precede the membrane components, which include two transmembrane protein genes (dppB and dppC) and

  12. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... device. A pressure gauge or suitable tell-tale indicator for the detection of disc rupture, pin-holing or... the portable tank operator to check to determine if the disc is leak free. The frangible disc must...

  13. Quantum Dots for Molecular Diagnostics of Tumors

    Science.gov (United States)

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  14. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    Science.gov (United States)

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  15. 76 FR 46357 - Notice of Limitation on Claims Against Proposed Public Transportation Projects

    Science.gov (United States)

    2011-08-02

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Notice of Limitation on Claims Against Proposed Public Transportation Projects AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice... that FTA has taken final agency actions by issuing certain approvals for the public transportation...

  16. 77 FR 26818 - Notice of Limitation on Claims Against Proposed Public Transportation Projects

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Notice of Limitation on Claims Against Proposed Public Transportation Projects AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice... public transportation projects listed below. The actions on these projects, as well as the laws under...

  17. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  18. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  19. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-08-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  20. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  1. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference (COMSTAC). SUMMARY: Pursuant...

  2. 76 FR 78332 - Amended Notice of Limitation on Claims Against Proposed Public Transportation Project

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Amended Notice of Limitation on Claims Against Proposed Public Transportation Project AGENCY: Federal Transit Administration (FTA), DOT. ACTION... actions announced herein for the listed public transportation project will be barred unless the claim is...

  3. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  4. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  5. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee-Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section 10...

  6. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-10-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. 78 FR 26112 - Limitation on Claims Against Proposed Public Transportation Projects; Correction

    Science.gov (United States)

    2013-05-03

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Limitation on Claims Against Proposed Public Transportation Projects; Correction AGENCY: Federal Transit Administration (FTA), DOT. ACTION... Register on April 22, 2013, concerning a limitation on claims for certain specified public transportation...

  8. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications

    Science.gov (United States)

    Ellis, Matthew A.; Grandinetti, Giovanna; Fichter, Katye M.

    2016-01-01

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications. PMID:26891282

  9. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications.

    Science.gov (United States)

    Ellis, Matthew A; Grandinetti, Giovanna; Fichter, Katye M; Fichter, Kathryn M

    2016-02-06

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.

  10. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  11. State DOT mission evolution.

    Science.gov (United States)

    2013-04-01

    This paper highlights the challenges faced by six state departments of transportation (California, Colorado, Florida, Massachusetts, Missouri, Oregon) and the views of their respective chief executive officers within the context of national trends. E...

  12. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  13. High frequency response of open quantum dots

    International Nuclear Information System (INIS)

    Brunner, R.; Meisels, R.; Kuchar, F.; Ferry, D.; Elhassan, M.; Ishibashi, K.

    2002-01-01

    Full text: We investigate the response of the transport through open quantum dots to millimeterwave radiation (up to 55 GHz). In the low-field region ( 11 cm -2 and a mobility of 1.2 10 6 cm 2 /Vs. By applying a sufficiently negative voltage to the gates the 2DES is split into two regions connected only by a dot-like region (about 350 nm diameter) between them. The DC data exhibit backscattering peaks at fields of a few tenth of a Tesla. Shubnikovde- Haas (SdH) oscillations appear above 0.5 T. While the SdH oscillations show the usual temperature dependence, the backscattering peaks are temperature independent up to 2.5 K. The backscattering peak shows a reduction of 10 percent due to the millimeterwave irradiation. However, due to the temperature independence of this peak, this reduction cannot simply be attributed to electron heating. This conclusion is supported by the observation of a strong frequency dependence of the reduction of the peak height. (author)

  14. Transport in the plasma edge specific connection to the wall in the Tore Supra ergodic divertor experiments

    International Nuclear Information System (INIS)

    Grosman, A.; Ghendrih, P.; DeMichelis, C.; Monier-Garbet, P.; Vallet, J.C.; Capes, H.; Chatelier, M.; Geraud, A.; Goniche, M.; Grisolia, C.; Guilhem, D.; Harris, G.; Hess, W.; Nguyen, F.; Poutchy, L.; Samain, A.

    1992-01-01

    The ergodic divertor experiments in TORE SUPRA can be analysed along two main lines. The first one refers to the change of the heat and particle transport in the ergodized zone. This is especially true for the electron heat transport which is enhanced in the edge layer. But other distinctive features give evidence of the importance of the parallel connexion length between the plasma edge and the wall. The field lines, which are stochastic in the major part of the perturbed layer (10-15 cm) are such that, in the outermost layer (3 cm), the connexion topology is regular. This has obvious effects on the particle and power deposition, but also on the plasma parameters, and consequently influences the particle recycling and impurity shielding processes. The TORE SUPRA ergodic divertor experiments are reviewed in this framework

  15. The in vivo disposition and in vitro transmembrane transport of two model radiometabolites of DOTA-conjugated receptor-specific peptides labelled with (177) Lu.

    Science.gov (United States)

    Volková, Marie; Mandíková, Jana; Bárta, Pavel; Navrátilová, Lucie; Lázníčková, Alice; Trejtnar, František

    2015-01-01

    In vivo metabolism of the radiolabelled receptor-specific peptides has been described; however, information regarding the pharmacokinetic behaviour of the degradation products within the body is very scarce. The present study was designed to obtain new knowledge on the disposition and elimination of low-molecular radiometabolites of receptor-specific peptides in the organism and to reveal the potential involvement of selected membrane transport mechanisms in the cellular uptake of radiometabolites, especially in the kidney. The study compared pharmacokinetics of two radiometabolites: a final metabolite of somatostatin analogues, (177)Lu-DOTA-DPhe, and a tripeptide metabolite of (177)Lu-DOTA-minigastrin 11, (177)Lu-DOTA-DGlu-Ala-Tyr. Their pharmacokinetics was compared with that of respective parent (177)Lu-radiopeptide. Both radiometabolites exhibited relative rapid clearing from most body tissues in rats in vivo along with predominant renal excretion. The long-term renal retention of the smaller radiometabolite (177)Lu-DOTA-DPhe was lower than that of (177)Lu-DOTA-DGlu-Ala-Tyr. An uptake of (177)Lu-DOTA-DPhe by human renal influx transporter organic cation transporter 2 was found in vitro in a cellular model. The study brings the first experimental data on the in vivo pharmacokinetics of radiometabolites of receptor-specific somatostatin and gastrin analogues. The found results may indicate a negative correlation between the degree of decomposition of the parent peptide chain and the renal retention of the metabolite. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Cobalt micro-magnet integration on silicon MOS quantum dots

    Science.gov (United States)

    Camirand Lemyre, Julien; Rochette, Sophie; Anderson, John; Manginell, Ronald P.; Pluym, Tammy; Ward, Dan; Carroll, Malcom S.; Pioro-Ladrière, Michel

    Integration of cobalt micro-magnets on silicon metal-oxide-semiconductor (MOS) quantum dot devices has been investigated. The micro-magnets are fabricated in a lift-off process with e-beam lithography and deposited directly on top of an etched poly-silicon gate stack. Among the five resist stacks tested, one is found to be compatible with our MOS specific materials (Si and SiO2) . Moreover, devices with and without additional Al2O3 insulating layer show no additional gate leakage after processing. Preliminary transport data indicates electrostatic stability of our devices with integrated magnets. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  17. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate.

    Directory of Open Access Journals (Sweden)

    Anne Maillard

    Full Text Available Under sulfur (S deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo. This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management.

  18. A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1

    Science.gov (United States)

    Guether, Mike; Neuhäuser, Benjamin; Balestrini, Raffaella; Dynowski, Marek; Ludewig, Uwe; Bonfante, Paola

    2009-01-01

    In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4+ seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4+. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake. PMID:19329566

  19. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development.

    Science.gov (United States)

    Sankaran, Renuka P; Ebbs, Stephen D

    2008-01-01

    The accumulation of excess Cd in the seeds of cereal and other crops compromises their commercial value and presents a potential risk to human health. Indian mustard [Brassica juncea (L.) Czern.] is a moderate accumulator of heavy metals such as Cd and Zn, and the seeds are consumed throughout the world, particularly in the Indian subcontinent. The study here examined the transport of Cd into Indian mustard plants and to seeds as a function of external Cd and the stage of the life cycle (vegetative growth, flowering and seed set) to identify critical developmental windows where transport from roots to seeds was the greatest. Plants were also treated simultaneously with Zn to determine if Zn fertilization mitigated the transport of Cd to seeds. Plants treated with Cd during the seed set accumulated the highest concentrations of Cd, exceeding 8 mg kg(-1) dry weight in some instances. Cadmium accumulated during vegetative growth was not highly redistributed to seeds. No effects of Zn were observed with regard to Cd redistribution to seeds. This may be because of the relatively small Zn : Cd ratios tested. However, the results suggest that if Zn fertilization is to be used to reduce the Cd accumulation in seeds of this species, that plants should be treated during the seed set stage. As the seeds of Indian mustard consistently accumulated Cd to concentrations that exceed acceptable limits for food crops, additional study of Cd redistribution in this species is warranted.

  20. Extracellular concentration of homocysteine in human cell lines is influenced by specific inhibitors of cyst(e)ine transport.

    Science.gov (United States)

    Hultberg, Björn

    2004-04-01

    Despite the growing evidence that plasma homocysteine is a cardiovascular risk factor, the mechanism behind the vascular injuries is still unknown. Studies of the cellular uptake systems for homocysteine are scarce, but membrane transporters of cyst(e)ine seem to be involved. In the present study the cellular uptake of extracellular homocysteine in HeLa and hepatoma cell lines is investigated by using several different transport inhibitors for cellular uptake of cyst(e)ine. It is shown that systems A and Xc- are the main transport systems for homocysteine uptake in HeLa cells. It is also confirmed that the magnitude of homocysteine uptake in hepatoma cells is lower than in HeLa cells. However, in the presence of high amounts of extracellular homocysteine both cell types exhibited a high elimination of homocysteine, which was inhibited by the presence of inhibitors of systems A or Xc-. It is possible that there is normally a high turnover of homocysteine in cell cultures, which is not detected by occasional determinations of homocysteine concentrations. The complex pattern of homocysteine production, release, uptake and distribution between different cells in the body is important to examine further in order to possibly be able to modulate the elimination of homocysteine from circulation and thereby lower the risk of cardiovascular disease.