WorldWideScience

Sample records for transport respiration excretion

  1. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  2. Effect of the diet traditional and non-traditional on the respiration and excretion in larvae of white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    María Alejandra Medina-Jasso

    2015-11-01

    Full Text Available Objetive. It was studied the respiration and ammoniacal excretion of zoeas and mysis of Litopenaeus vannamei fed with the diet used traditionally (of microalgae and nauplios of artemia and another alternative (not traditional of microalgae with rotifers. Materials and methods. After four hours the oxygen consumption and ammonia excretion in BOD bottles with 60 larvae (closed respirometers was estimated. The concentrations of O2 and NH4 + were measured with an electrode polarográfico in the first case and with the indophenol blue technique for the second. Results. In zoea, oxygen consumption increased with development and showed statistical differences (p=0.023. In mysis, the oxygen consumption were significance in the traditional diet, whereas no differences were alternative (p=0.003. In both stages for the ammoniacal excretion increased development stage and there were detected statistical difference (p<0.001, although to the diets were not noticed significant differences. Conclusions. A higher energy absorption for zoea (I, II y III what mysis (I, II y III larvae was obtained, this is likely an interaction between rates of respiration and excretion caused by variations in the efficiency of absorption by the larvae. The weights obtained in both larvae were not supplied with differences between diets.

  3. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  4. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion.

    Science.gov (United States)

    Urzúa, Ángel; Urbina, Mauricio A

    2017-08-01

    The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na + through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na + decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na + , as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na + was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Net ion fluxes and ammonia excretion during transport of Rhamdia quelen juveniles

    Directory of Open Access Journals (Sweden)

    Luciano de Oliveira Garcia

    2015-10-01

    Full Text Available The objective of this study was to verify net ion fluxes and ammonia excretion in silver catfish transported in plastic bags at three different loading densities: 221, 286 and 365g L-1 for 5h. A water sample was collected at the beginning and at the end of the transport for analysis of water parameters. There was a significant positive relationship between net ion effluxes and negative relationship between ammonia excretion and loading density, demonstrated by the following equations: Na+: y-24.5-0.27x, r2=0.99, Cl-: y=40.2-0.61x, r2=0.98, K+: y=8.0-27.6x, r2=0.94; ammonia excretion: y=-11.43+0.017x, r2=0.95, where y: net ion flux (mmol kg-1 h-1 or ammonia excretion (mg kg-1h-1 and x: loading density (g. Therefore, the increase of loading density increases net ion loss, but reduces ammonia excretion during the transport of silver catfish, indicating the possibility of ammonia accumulation

  6. Effects of season on the bathypelagic mysid Gnathophausia ingens: water content, respiration, and excretion

    Science.gov (United States)

    Hiller-Adams, Page; Childress, James J.

    1983-06-01

    Water contents, oxygen consumption rates and ammonia excretion rates of individuals of the large bathypelagic mysid Gnathophausia ingens were measured as a function of size and season (winter and summer). Individuals of the sizes studied live permanently beneath the euphotic zone. Water content, as a percent of wet weight, is higher in winter than in summer, suggesting seasonal variability in the midwater environment. Our data suggest that the seasonal change in water content increases with increasing size. We suggest that the changes are due in part to seasonal changes in food intake. Seasonal differences were not observed in wet-weight-specific rates of either respiration or ammonia excretion. Both rates decrease with increasing size. The constancy of the atomic O:N ratio and its high value (geometric mean = 44.3) indicate that the average proportions of lipid and protein metabolized by individuals were independent of size and season and that lipid stores were not sufficiently depleted, even in small animals, to cause a shift to predominantly protein metabolism in winter or summer. On the average, metabolic rates of individuals were unaffected by seasonal variation in the midwater environment.

  7. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    Science.gov (United States)

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    2018-04-06

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations—A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Pamela Vrabl

    2017-12-01

    Full Text Available Filamentous fungi are important cell factories. In contrast, we do not understand well even basic physiological behavior in these organisms. This includes the widespread phenomenon of organic acid excretion. One strong hurdle to fully exploit the metabolic capacity of these organisms is the enormous, highly environment sensitive phenotypic plasticity. In this work we explored organic acid excretion in Penicillium ochrochloron from a new point of view by simultaneously investigating three essential metabolic levels: the plasma membrane H+-ATPase (PM; energy metabolism, in particular adenine and pyridine nucleotides (M; and respiration, in particular the alternative oxidase (R. This was done in strictly standardized chemostat culture with different nutrient limitations (glucose, ammonium, nitrate, and phosphate. These different nutrient limitations led to various quantitative phenotypes (as represented by organic acid excretion, oxygen consumption, glucose consumption, and biomass formation. Glucose-limited grown mycelia were used as the reference point (very low organic acid excretion. Both ammonium and phosphate grown mycelia showed increased organic acid excretion, although the patterns of excreted acids were different. In ammonium-limited grown mycelia amount and activity of the plasma membrane H+-ATPase was increased, nucleotide concentrations were decreased, energy charge (EC and catabolic reduction charge (CRC were unchanged and alternative respiration was present but not quantifiable. In phosphate-limited grown mycelia (no data on the H+-ATPase nucleotide concentrations were still lower, EC was slightly decreased, CRC was distinctly decreased and alternative respiration was present and quantifiable. Main conclusions are: (i the phenotypic plasticity of filamentous fungi demands adaptation of sample preparation and analytical methods at the phenotype level; (ii each nutrient condition is unique and its metabolic situation must be considered

  9. Increased biliary excretion of glutathione is generated by the glutathione-dependent hepatobiliary transport of antimony and bismuth.

    Science.gov (United States)

    Gyurasics, A; Koszorús, L; Varga, F; Gregus, Z

    1992-10-06

    We have recently demonstrated that the hepatobiliary transport of arsenic is glutathione-dependent and is associated with a profound increase in biliary excretion of glutathione (GSH), hepatic GSH depletion and diminished GSH conjugation (Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 41: 937-944 and Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 42: 465-468, 1991). The present studies in rats aimed to determine whether antimony and bismuth, other metalloids in group Va of the periodic table, also possess similar properties. Antimony potassium tartrate (25-100 mumol/kg, i.v.) and bismuth ammonium citrate (50-200 mumol/kg, i.v.) increased up to 50- and 4-fold, respectively, the biliary excretion of non-protein thiols (NPSH). This resulted mainly from increased hepatobiliary transport of GSH as suggested by a close parallelism in the biliary excretion of NPSH and GSH after antimony or bismuth administration. Within 2 hr, rats excreted into bile 55 and 3% of the dose of antimony (50 mumol/kg, i.v.) and bismuth (150 mumol/kg, i.v.), respectively. The time courses of the biliary excretion of these metalloids and NPSH or GSH were strikingly similar suggesting co-ordinate hepatobiliary transport of the metalloids and GSH. However, at the peak of their excretion, each molecule of antimony or bismuth resulted in a co-transport of approximately three molecules of GSH. Diethyl maleate, indocyanine green and sulfobromophthalein (BSP), which decreased biliary excretion of GSH, significantly diminished excretion of antimony and bismuth into bile indicating that hepatobiliary transport of these metalloids is GSH-dependent. Administration of antimony, but not bismuth, decreased hepatic GSH level by 30% and reduced the GSH conjugation and biliary excretion of BSP. These studies demonstrate that the hepatobiliary transport of trivalent antimony and bismuth is GSH-dependent similarly to the hepatobiliary transport of trivalent arsenic. Proportionally to their biliary

  10. Cholesterol Transport Revisited : A New Turbo Mechanism to Drive Cholesterol Excretion

    NARCIS (Netherlands)

    de Boer, Jan Freark; Kuipers, Folkert; Groen, Albert K.

    A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are

  11. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1

    Science.gov (United States)

    Adlimoghaddam, Aida; Boeckstaens, Mélanie; Marini, Anna-Maria; Treberg, Jason R.; Brassinga, Ann-Karen C.; Weihrauch, Dirk

    2015-01-01

    ABSTRACT The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21±0.004 µmol gFW−1 day−1). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) and Na+/K+-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H+-ATPase, carbonic anhydrase, Na+/K+-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l−1 NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na+/K+-ATPase also increased significantly in response to 1 mmol l−1 NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins. PMID:25740900

  12. Transport mechanisms of hepatic uptake and bile excretion in clinical hepatobiliary scintigraphy with 99mTc-N-pyridoxyl-5-methyltryptophan

    International Nuclear Information System (INIS)

    Kobayashi, Masato; Nakanishi, Takeo; Nishi, Kodai; Higaki, Yusuke; Okudaira, Hiroyuki; Ono, Masahiro; Tsujiuchi, Takafumi; Mizutani, Asuka; Nishii, Ryuichi; Tamai, Ikumi; Arano, Yasushi; Kawai, Keiichi

    2014-01-01

    Introduction: In clinical hepatobiliary scintigraphy, 99m Tc-N-pyridoxyl-5-methyltryptophan ( 99m Tc-PMT) is an effective radiotracer among the 99m Tc-pyridoxylaminates. However, the mechanisms of human hepatic uptake and bile excretion transport of 99m Tc-PMT have not been determined. We thus investigated the transport mechanisms of human hepatic uptake and bile excretion in hepatobiliary scintigraphy with 99m Tc-PMT. Methods: Four solute carrier (SLC) transporters involved in hepatic uptake were evaluated using human embryonic kidney (HEK) and HeLa cells with high expression of SLC transporters (organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporters (OAT)2 and organic cation transporters (OCT)1) after 5 min of 99m Tc-PMT incubation. Metabolic analysis of 99m Tc-PMT was performed using pooled human liver S9. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters for bile excretion were examined using hepatic ABC transporter vesicles human expressing multiple drug resistance 1 (MDR1), multidrug resistance-associated protein 2 (MRP2), breast cancer resistance protein or bile salt export pump. 99m Tc-PMT was incubated for 1, 3 and 5 min with ATP or adenosine monophosphate and these vesicles. SPECT scans were performed in normal and Eisai hyperbilirubinemic (EHBR) model rats, deficient in Mrp2 transporters, without and with verapamil (rat Mdr1 and human MDR1 inhibitor) after intravenous injection of 99m Tc-PMT. Results: Uptake of 99m Tc-PMT in HEK293/OATP1B1 and HeLa/OATP1B3 was significantly higher than that in HEK293- and HeLa-mock cells. 99m Tc-PMT was not metabolized in the human liver S9. In vesicles with high expression of ABC transporters, uptake of MDR1 or MRP2 was significantly higher at all incubation times. Bile excretion of 99m Tc-PMT was also identified by comparison between normal and EHBR rats with and without verapamil on in-vivo imaging. Conclusions: Human hepatic uptake of 99m Tc-PMT was transferred

  13. Transintestinal cholesterol excretion in humans

    NARCIS (Netherlands)

    Reeskamp, Laurens F.; Meessen, Emma C. E.; Groen, Albert K.

    2018-01-01

    Purpose of review To discuss recent insights into the measurement and cellular basis of transintestinal cholesterol excretion (TICE) in humans and to explore TICE as a therapeutic target for increasing reverse cholesterol transport. Recent findings TICE is the net effect of cholesterol excretion by

  14. Analogies between respiration and a light-driven proton pump as sources of energy for active glutamate transport in Halobacterium halobium

    Science.gov (United States)

    Belliveau, J. W.; Lanyi, J. K.

    1977-01-01

    Halobacterium halobium is known to contain sheets of bacteriorhodopsin, a pigment which upon exposure to light undergoes cyclic protonation and deprotonation, resulting in net H(+) translocation. In this paper, experiments were conducted to test H. halobium cell envelope vesicles for respiration-induced glutamate uptake. It is shown that glutamate transport in H. halobium cell envelope vesicles can occur as a result of respiration, as well as light acting on bacteriorhodopsin. Glutamate transport can be energized by the oxidation of dimethyl phenylenediamine, and the properties of the transport system are entirely analogous to those observed with illumination as the source of energy. In the case of respiration-dependent glutamate transport, the transportation is also driven by a Na(+) gradient, thereby confirming the existence of a single glutamate transport system independent of the source of energy. The analogy observed is indirect evidence that the cytochrome oxidase of H. halobium functions as a H(+) pump.

  15. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    Science.gov (United States)

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  16. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  17. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double....... General linear model with repeated measures or related samples Friedman's two-way analysis was used to compare differences. Post hoc Bonferroni correction was used for multiple comparisons of post infusion periods to baseline within each treatment group. RESULTS: At baseline there were no differences in u...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  18. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    Boer, J.F. de; Schonewille, M.; Boesjes, M.; Wolters, H.; Bloks, V.W.; Bos, T.; Dijk, T.H. van; Jurdzinski, A.; Boverhof, R.; Wolters, J.C.; Kuivenhoven, J.A.; Deursen, J.M.A. van; Elferink, R.P.; Moschetta, A.; Kremoser, C.; Verkade, H.J.; Kuipers, F.; Groen, A.K.

    2017-01-01

    BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE)

  19. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    NARCIS (Netherlands)

    Rowe, John J.; Ubbink-Kok, Trees; Molenaar, Douwe; Konings, Wilhelmus; Driessen, Arnold J.M.

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate/nitrite antiporter. The longest-lived radioactive isotope of

  20. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    Science.gov (United States)

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Excretion is Faster Than Diagenesis for Nutrient Recycling in Lake Michigan Benthos

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2013-12-01

    Regeneration of phytoplankton growth nutrients including ammonium (NH4+) and phosphate (HPO4=) occurs in aquatic systems worldwide through biogeochemical processes of diagenesis. Organic matter falling to the bottom accumulates in sediments, and bacterial decomposition removes oxygen from the sub-surface. Anaerobic metabolism is energetically inefficient, and bacteria a few cm below the surface respire or ferment organic matter into carbon dioxide or organic acids, excreting nitrogen (NH4+) or phosphorus inorganic 'waste'. Subsurface production of bacterial metabolic products often leads to sharp gradients in porewater concentrations of NH4+ and HPO4=, which drive diffusive flux out of the sediments into overlying water. Aquatic systems with totally aerobic water overlying anoxic sediment (e.g., Lake Michigan) have muted efflux of certain inorganic nutrients arising from organic matter decomposition. For example, NH4+ is oxidized to nitrate in the upper few mm of surficial sediments by nitrifying bacteria. Strong subsurface porewater gradients, especially of redox- or geochemically-reactive compounds, often decline to low values well below the sediment-water interface, indicating transformation by sediment bacterial populations, or by purely geochemical processes such as calcium hydroxyphosphate (apatite) precipitation. For these, little flux to the water column occurs. In Lake Michigan, neither NH4+ nor HPO4= escapes substantially from the biogeochemical barriers between their diagenetic sources and overlying waters, either before or after ecosystem alteration by invasive quagga mussels (QM). Silicate and total CO2 evade unimpeded in the same cores. The organic matter deposited from the water column is also the nutrition of benthic bivalve filter feeders such as QM in Lake Michigan, or the Asian Clam in San Francisco Bay. In animal metabolism for energy production, only the carbon component is oxidized through respiration, with NH4+ (from protein) and HPO4= (from

  2. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  3. Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria.

    Science.gov (United States)

    Miyata, Non; Watanabe, Yasunori; Tamura, Yasushi; Endo, Toshiya; Kuge, Osamu

    2016-07-04

    Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2-Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2-Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2-Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state. © 2016 Miyata et al.

  4. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria.

    Science.gov (United States)

    Lehninger, A L

    1974-04-01

    Measurements of extra oxygen consumption, (45)Ca(2+) uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca(2+) from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, beta-hydroxybutyrate, lactate, and bicarbonate + CO(2) supported Ca(2+) uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate "pulling" force for the influx of Ca(2+) on the electrogenic Ca(2+) carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO(2) system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca(2+) and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP(3-) for internal ATP(4-) during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca(2+), K(+), and other cations.

  5. Tubular urate transporter gene polymorphisms differentiate patients with gout who have normal and decreased urinary uric acid excretion.

    Science.gov (United States)

    Torres, Rosa J; de Miguel, Eugenio; Bailén, Rebeca; Banegas, José R; Puig, Juan G

    2014-09-01

    Primary gout has been associated with single-nucleotide polymorphisms (SNP) in several tubular urate transporter genes. No study has assessed the association of reabsorption and secretion urate transporter gene SNP with gout in a single cohort of documented primary patients with gout carefully subclassified as normoexcretors or underexcretors. Three reabsorption SNP (SLC22A12/URAT1, SLC2A9/GLUT9, and SLC22A11/OAT4) and 2 secretion transporter SNP (SLC17A1/NPT1 and ABCG2/BRCP) were studied in 104 patients with primary gout and in 300 control subjects. The patients were subclassified into normoexcretors and underexcretors according to their serum and 24-h urinary uric acid levels under strict conditions of dietary control. Compared with control subjects, patients with gout showed different allele distributions of the 5 SNP analyzed. However, the diagnosis of underexcretor was only positively associated with the presence of the T allele of URAT1 rs11231825, the G allele of GLUT9 rs16890979, and the A allele of ABCG2 rs2231142. The association of the A allele of ABCG2 rs2231142 in normoexcretors was 10 times higher than in underexcretors. The C allele of NPT1 rs1165196 was only significantly associated with gout in patients with normal uric acid excretion. Gout with uric acid underexcretion is associated with transporter gene SNP related mainly to tubular reabsorption, whereas uric acid normoexcretion is associated only with tubular secretion SNP. This finding supports the concept of distinctive mechanisms to account for hyperuricemia in patients with gout with reduced or normal uric acid excretion.

  6. Urinary Excretion of Tetrodotoxin Modeled in a Porcine Renal Proximal Tubule Epithelial Cell Line, LLC-PK1

    Directory of Open Access Journals (Sweden)

    Takuya Matsumoto

    2017-07-01

    Full Text Available This study examined the urinary excretion of tetrodotoxin (TTX modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK1. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA, l-carnitine, and cimetidine, slightly reduced by p-aminohippuric acid (PAH, and unaffected by 1-methyl-4-phenylpyridinium (MPP+, oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs and organic cation/carnitine transporters (OCTNs, partially transported by organic anion transporters (OATs and multidrug resistance-associated proteins (MRPs, and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs.

  7. Biliary excretion of ouabain in isolated perfused rat liver after treatment with microsomal enzyme inducers

    International Nuclear Information System (INIS)

    Nevasaari, K.; Alakare, B.; Kaerki, N.T.

    1976-01-01

    The effect of pretreatment with spironolactone, phenobarbital and 3,4-benzpyrene on biliary excretion of ouabain was studied in isolated perfused rat liver system after a single dose of 3 H-ouabain. Spironolactone pretreatment (100 mg/kg intraperitoneally for 4 days) changed the time course of the excretion, thus accelerating the transport of ouabain into the bile. Phenobarbital pretreatment (75 mg/kg intraperitoneally for 4 days) enhanced bile flow and increased biliary excretion of ouabain only after 15 min. At longer time periods the increase in bile flow diluted the bile level of ouabain there being no difference in the amounts excreted into the bile between the treated and untreated groups. 3,4-benzpyrene pretreatment (20 mg/kg intraperitoneally for 4 days) was without efffect on biliary excretion of ouabain. The results suggest that spironolactone differs from phenobarbital in its enhancing effect on biliary excretion of ouabain, possibly through a specific effect on an unknown hepatic transport mechanism. (author)

  8. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  9. Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux

    Directory of Open Access Journals (Sweden)

    J. Q. Chambers

    2012-12-01

    Full Text Available Respiration in tree stems is an important component of forest carbon balance. The rate of CO2 efflux from the stem has often been assumed to be a measure of stem respiration. However, recent work in temperate forests has demonstrated that stem CO2 efflux can either overestimate or underestimate respiration rate because of emission or removal of CO2 by transport in xylem water. Here, we studied gas exchange from stems of tropical forest trees using a new approach to better understand respiration in an ecosystem that plays a key role in the global carbon cycle. Our main questions were (1 is internal CO2 transport important in tropical trees, and, if so, (2 does this transport result in net release of CO2 respired in the roots at the stem, or does it cause the opposite effect of net removal of stem-respired CO2? To answer these questions, we measured the ratio of stem CO2 efflux to O2 influx. This ratio, defined here as apparent respiratory quotient (ARQ, is expected to equal 1.0 if carbohydrates are the substrate for respiration, and the net transport of CO2 in the xylem water is negligible. Using a stem chamber approach to quantifying ARQ, we found values of 0.66 ± 0.18. These low ARQ values indicate that a large portion of respired CO2 (~ 35% is not emitted locally, and is probably transported upward in the stem. ARQ values of 0.21 ± 0.10 were found for the steady-state gas concentration within the stem, sampled by in-stem equilibration probes. These lower values may result from the proximity to the xylem water stream. In contrast, we found ARQ values of 1.00 ± 0.13 for soil respiration. Our results indicate the existence of a considerable internal flux of CO2 in the stems of tropical trees. If the transported CO2 is used in the canopy as a substrate for photosynthesis, it could account for up to 10% of the C fixed by the tree, and perhaps serve as a mechanism that buffers the response of the tree to changing CO2 levels. Our results also

  10. Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis

    Science.gov (United States)

    Alteri, Christopher J.; Himpsl, Stephanie D.; Engstrom, Michael D.; Mobley, Harry L. T.

    2012-01-01

    ABSTRACT Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. PMID:23111869

  11. Contribution to the ultrastructural study of silk-excretion cells and autoradiographic analysis of intracellular fibroin transport in Bombyx mori L

    International Nuclear Information System (INIS)

    Couble, Pierre.

    1974-01-01

    It is much easier to study the mechanisms involved in the synthesis and exportation of extracellular proteins in the biological material chosen is highly differentiated. The silk-excretion gland of the silkworm is ideal in this respect because during the larva period, especially at the end of the 5th and last stage, the cells at the rear (excreting tube) synthesize and export massive quantities of a single protein: fibroin. These phenomena were explored by a cytological study carried out mainly by electron microscopy and autoradiography. The results obtained are given. They relate first of all to the morphological development of the secretion tube cells from the end of the 4th larva stage to the spinning of the cocoon, and contribute new information on the cell changes during the 4th slough and the end of the 5th age. They also concern intracellular fibroin transport which is proved to take place through the Golgi apparatus, and finally the possible role of the microtubules and microfilaments in fibroin transport and secretion. On this last point the results so far constitute only, a preliminary approach which justifie no final conclusions; they merely suggest that the microfilaments of the apical region are involved in the secretion process [fr

  12. The effect of respiration buffer composition on mitochondrial metabolism and function

    OpenAIRE

    Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu; Bazil, Jason N.

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffer...

  13. Effect of zinc and benzene on respiration and excretion of mussel larvae (Perna perna (Linnaeus, 1758 (Mollusca; Bivalvia

    Directory of Open Access Journals (Sweden)

    RADLVC. Jorge

    Full Text Available The presence of pollutants in the ocean may affect different physiological parameters of animals. Oxygen consumption and ammonia excretion were evaluated in D-shaped larvae of mussels (Perna perna exposed to zinc sulphate (ZnSO4 and benzene (C6H6. When compared to the control group, both pollutants presented a significant reduction in oxygen consumption. A reduction in the ammonia excretion was also observed, both for ZnSO4 and C6H6 and also in the oxygen consumption. The results indicate that anaerobic metabolism may occur at the beginning of P. perna mussels development, as observed in veliger larvae. The O:N ratio under experimental conditions showed low values indicating that catabolism in veliger larvae was predominantly proteic.

  14. Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters

    NARCIS (Netherlands)

    Elferink, Ronald P. J. Oude; Ottenhoff, Roelof; Fricker, Gert; Seward, David J.; Ballatori, Nazzareno; Boyer, James

    2004-01-01

    The ABC transporters bile salt export pump ( BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that

  15. Factors affecting the absorption and excretion of lead in the rat

    International Nuclear Information System (INIS)

    Conrad, M.E.; Barton, J.C.

    1978-01-01

    A reliable method for studying lead absorption and excretion in rats is described. Lead absorption occurs primarily in the duodenum where lead enters the epithelial mucosal cells. There is a relative mucosal block for lead with increasing intraluminal doses. Certain substances which bind lead and increase its solubility enhance its absorption. Iron, zinc, and calcium decrease the absorption of lead without affecting its solubility, probably by competing for shared absorptive receptors in the intestinal mucosa. The total body burden of lead does not affect lead absorption. Thus, lead does not have a feedback mechanism which limits absorption. Lead absorption is increased during rapid periods of growth and in iron-deficient animals. It is diminished with starvation and in iron-overloaded animals. The excretion and kinetics of tracer doses of radiolead were quantified. Erythrocytes seem to serve an important role in transport. Excretion occurs in urine and stool. Bile is an important route of excretion in the gut. Although most of a tracer dose is rapidly excreted, the excretory process is limited permitting lead accumulation primarily in bone

  16. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis.

    Directory of Open Access Journals (Sweden)

    Hyun Cheol Roh

    2013-05-01

    Full Text Available Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals.

  17. Effect of 30-day orbital flight BION M1 on excretion of expired endogenous CO in mice

    Science.gov (United States)

    Shulagin, Yury; Tatarkin, Sergey; Dyachenko, Alexander

    It is known that increased destruction of hem structures is accompanied by increase of the endogenous carbon monoxide excretion rate with respiration (VCO). Changes VCO preceded the observed changes in the blood composition [D’yachenko A. et al., 2010]. Changes in blood composition, i.e. rise of red blood cells content and reduction of reticulocytes content was detected after a 12-day orbital flight (OF) in mice C57BL/6 [Gridley D.et al., 2003]. The purpose of this study was to investigate the effect of 30-day OF on excretion of endogenous CO. The method and apparatus for simultaneous measurement of VCO, and O2 and CO2 exchange were developed. The research consisted of three parts: 1). Measurement of VCO in five C57BL/6 mice after 30-day OF on the Russian satellite BION M1. 2). Measurement of VCO in six C57BL/6 mice after 30-day ground-based experiment (GBE) with simulated flight telemetry environment of BION M1. 3). Measurement of VCO in seven C57BL/6 mice in vivarium The results: Mice weight after OF was 24.3+-3.3 (mean +-SD) with minimal weight 18.1 g, and maximal weight 29.9 g. Vivarium mice weight was 27.0+-1.8 g. KGE mice weight was 25.0+-1.3 g. Mice age in all three groups was the same. We measured and estimated VCO and total CO excretion (MCO) for two gas mixtures ventilated mouse camera: atmospheric CO-contained air and then CO-free air(30 min). The results showed that the average MCO allocated GBE and vivarium mice did not significantly differ. Average MCO in mice after OF was significantly higher then in vivarium group (T=-2,74; p=0.02). MCO after GBE was between the vivarium and OF groups. MCO in OF and KGE groups did not differ ( T=-1,93; p=0,085). Blood tests in mice after OF was not carried out, because the recovery after the OF was studied in this group. The largest excretion of CO was observed in a mouse N39 after the OF. The weight of this mouse was only 18.1 g, i.e. much less than mean weight. Increase of VCO in food-restricted animal is known

  18. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-02-20

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Ontogenetic body-mass scaling of nitrogen excretion relates to body surface area in diverse pelagic invertebrates

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Lilley, M.K.S.; Glazier, D.S.

    2017-01-01

    . Among diverse pelagic invertebrates that change shape during ontogeny, recent analysis has demonstrated a significant positive correlation between the body-mass allometry of respiration rates (measured as the ontogenetic body mass-scaling exponent bR) and the allometry of body surface area (b......A, as predicted from body-shape changes using a Euclidean model). As many pelagic invertebrates use a large portion of their external body surface for both resource uptake and waste excretion, we predicted that body-mass scaling exponents for rates of excretion of soluble N (bN) should also then relate...... to the degree of body-shape change during growth. We tested this hypothesis using literature data on bN for 39 species of pelagic invertebrates across five different phyla, and find strong support: bN is significantly positively correlated with predicted bA, whilst also co-varying with bR. Intraspecific...

  20. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia.

    Science.gov (United States)

    Wang, Yu; Lin, Zhijian; Zhang, Bing; Nie, Anzheng; Bian, Meng

    2017-01-01

    Excessive production and/or reduced excretion of uric acid could lead to hyperuricemia, which could be a major cause of disability. Hyperuricemia has received increasing attention in the last few decades due to its global prevalence. Cichorium intybus L., commonly known as chicory, is a perennial herb of the asteraceae family. It was previously shown to exert potent hypouricemic effects linked with decreasing uric acid formation in the liver by down-regulating the activity of xanthine oxidase, and increasing uric acid excretion by up-regulating the renal OAT3 mRNA expression. The present study aimed to evaluate its extra-renal excretion and possible molecular mechanism underlying the transporter responsible for intestinal uric acid excretion in vivo. Chicory was administered intragastrically to hyperuricemic rats induced by drinking 10% fructose water. The uricosuric effect was evaluated by determining the serum uric acid level as well as the intestinal uric acid excretion by HPLC. The location and expression levels of ATP-binding cassette transporter, sub-family G, member 2 (ABCG2) in jejunum and ileum were analyzed. The administration of chicory decreased the serum uric acid level significantly and increased the intestinal uric acid excretion obviously in hyperuricemic rats induced by 10% fructose drinking. Staining showed that ABCG2 was expressed in the apical membrane of the epithelium and glands of the jejunum and ileum in rats. Further examination showed that chicory enhanced the mRNA and protein expressions of ABCG2 markedly in a dose-dependent manner in jejunum and ileum. These findings indicate that chicory increases uric acid excretion by intestines, which may be related to the stimulation of intestinal uric acid excretion via down-regulating the mRNA and protein expressions of ABCG2.

  1. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.

    Science.gov (United States)

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.

  2. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  3. Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E

    2017-12-01

    Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of

  4. Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli.

    Science.gov (United States)

    Wilson, Jayne Louise; Jesse, Helen E; Hughes, Bethan; Lund, Victoria; Naylor, Kathryn; Davidge, Kelly S; Cook, Gregory M; Mann, Brian E; Poole, Robert K

    2013-08-10

    Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H(+)/O quotients, i.e., H(+) extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true "uncoupling," that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K(+) (or Na(+)), causing a stimulation of respiration and H(+) pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis.

  5. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    Science.gov (United States)

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  6. Renal Ammonia Metabolism and Transport

    Science.gov (United States)

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  7. The stability of arterial blood gases during transportation of patients using the RespirTech PRO.

    Science.gov (United States)

    Romano, M; Raabe, O G; Walby, W; Albertson, T E

    2000-05-01

    The transportation of critically ill patients requiring mechanical ventilation is recognized as a high-risk and expensive procedure. Approaches have included using manual bag-type valve resuscitators and expensive portable transport ventilators. This study evaluated the effectiveness of the inexpensive portable RespirTech PRO (RTP) gas-powered automatic resuscitator during intrahospital transport of critically ill mechanically ventilated patients. Twenty medical intensive care patients on stable mechanical ventilator settings had arterial blood gas and vital sign determination before routine transport out of the intensive care unit (ICU). Repeat measurements were made during transport approximately 30 minutes after being placed on the RTP portable pressure-cycled automatic resuscitator using an FiO2 of 100%. During use of the RTP for transport, there were no statistically significant variations observed in mean arterial blood pressure [82 +/- 11 SD (range 65 to 112) mm Hg before transport versus 85 +/- 14 SD (range 59 to 110) mm Hg during transport], heart rate [94 +/- 16 SD (range 74 to 127) beats/min) before versus 96 +/- 17 SD (range 69 to 132) beats/min during], arterial pH [7.41 +/- 0.07 SD (range 7.31 to 7.58) before versus 7.42 +/- 0.05 SD (range 7.37 to 7.52) during], and PaCO2 [43 +/- 10 SD (range 26 to 65) mm Hg before versus 43 +/- 10 SD (range 27 to 61 mm Hg) during]. Because the FiO2 before transport was 63 +/- 26 SD (range 30% to 100%) versus 100% during transport using the RTP, the mean PaO2 was significantly increased from 124 +/- 86 SD (range 57 to 367) mm Hg before transport to 297 +/- 168 SD (range 65 to 537) mm Hg during (P< .001). No transportation associated clinical adverse events were noted. Several previous investigations have shown that portable ventilators are safe and effective in intrahospital transport of mechanically ventilated patients. This study showed that the portable pressure-cycled RTP also allows safe transportation of

  8. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  9. Saccharomyces cerevisiae proteinase A excretion and wine making.

    Science.gov (United States)

    Song, Lulu; Chen, Yefu; Du, Yongjing; Wang, Xibin; Guo, Xuewu; Dong, Jian; Xiao, Dongguang

    2017-11-09

    Proteinase A (PrA), the major protease in Saccharomyces cerevisiae, plays an essential role in zymogen activation, sporulation, and other physiological processes in vivo. The extracellular secretion of PrA often occurs during alcoholic fermentation, especially in the later stages when the yeast cells are under stress conditions, and affects the quality and safety of fermented products. Thus, the mechanism underlying PrA excretion must be explored to improve the quality and safety of fermented products. This paper briefly introduces the structure and physiological function of PrA. Two transport routes of PrA, namely, the Golgi-to-vacuole pathway and the constitutive Golgi-to-plasma membrane pathway, are also discussed. Moreover, the research history and developments on the mechanism of extracellular PrA secretion are described. In addition, it is briefly discussed that calcium homeostasis plays an important role in the secretory pathway of proteins, implying that the regulation of PrA delivery to the plasma membrane requires the involvement of calcium ion. Finally, this review focuses on the effects of PrA excretion on wine making (including Chinese rice wine, grape wine, and beer brewage) and presents strategies to control PrA excretion.

  10. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    Science.gov (United States)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  11. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.

  12. Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia

    Science.gov (United States)

    Quijada-Rodriguez, Alex R.; Treberg, Jason R.

    2015-01-01

    Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)−1·h−1 ammonia and 14.7 ± 1.9 nmol·gFW−1·h−1 urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na+/K+-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na+/K+-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na+/K+-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. PMID:26180186

  13. Ru(CO)3Cl(Glycinate) (CORM-3): A Carbon Monoxide–Releasing Molecule with Broad-Spectrum Antimicrobial and Photosensitive Activities Against Respiration and Cation Transport in Escherichia coli

    Science.gov (United States)

    Wilson, Jayne Louise; Jesse, Helen E.; Hughes, Bethan; Lund, Victoria; Naylor, Kathryn; Davidge, Kelly S.; Cook, Gregory M.; Mann, Brian E.

    2013-01-01

    Abstract Aims: Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. Results: CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H+/O quotients, i.e., H+ extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true “uncoupling,” that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K+ (or Na+), causing a stimulation of respiration and H+ pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). Innovation: This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. Conclusion: CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis. Antioxid. Redox Signal. 19, 497–509. PMID:23186316

  14. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  15. Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters

    OpenAIRE

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities fo...

  16. Study of o-125I-benzoate excretion mechanisms in the rabbit

    International Nuclear Information System (INIS)

    Richter, R.; Laznicek, M.; Kvetina, J.; Laznickova, A.

    1990-01-01

    An analysis of the mechanisms of renal clearance of o- 125 I-benzoate in the rabbit based on the inhibition of the secretory transport by probenecid showed that o- 125 I-benzoate was eliminated in the kidneys not only by glomerular filtration but also by tubular secretion. The total amount of the drug excreted in the urine was affected by tubular resorption (apparently by the process of passive diffusion), which exceeded tubular secretion. A comparison of the chromatograms of the plasma and the urine before and after the competitive inhibition of the tubular active transport by probenecid revealed a higher amount of o- 125 I-benzoylglucuronide in the urine in the case of inhibition. The results suggest that the kidneys participated in the total biotransformation of o- 125 I-benzoate. The excretion of the original drug and metabolites in the bile contributed less than 1% to the total clearance in rabbits. (author). 3 figs., 3 tabs., 10 refs

  17. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  18. Intestinal radiocalcium transport versus urinary excretion in long term 1.25(OH)2D3 tratment

    International Nuclear Information System (INIS)

    Caniggia, A.; Nuti, R.; Lore, F.; Vattimo, A.

    1985-01-01

    The effects of a long-term (4-24 months) treatment with physiological doses of 1,25(OH)2D3 (without calcium supplementation) on various parameters related to calcium metabolism and renal function were investigated in postmenopausal osteoporotic patients. On 1,25(OH)2D3 treatment, the intestinal calcium absorption increased remarkably, as did urinary calcium excretion; on the other hand, hydroxyproline excretion remained unchanged, whereas the cAMP/creatinine ratio in urine decreased. No change was observed concerning blood urea nitrogen and creatinine clearance, and no renal stones developed. The conclusion is that the increase in urinary calcium excretion ocurring on long-term treatment with 1,25(OH)2D3 reflects the increase in calcium absorption without a significant resorptive component and, under the conditions of the present study, has no effect on renal function

  19. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia.

    Science.gov (United States)

    Zhang, Yi; Jin, Lijun; Liu, Jinchang; Wang, Wei; Yu, Haiyang; Li, Jian; Chen, Qian; Wang, Tao

    2018-03-25

    Dioscin, a spirostane glycoside, the rhizoma of Dioscorea septemloba (Diocoreacea) is used for diuresis, rheumatism, and joints pain. Given the poor solubility and stability of Dioscin, we proposed a hypothesis that Dioscin's metabolite(s) are the active substance(s) in vivo to contribute to the reducing effects on serum uric acid levels. The aim of this study is to identify the active metabolite(s) of Dioscin in vivo and to explore the mechanism of its antihyperuricemic activity. After oral administration of Dioscin in potassium oxonate (PO) induced hyperuricemia rats and adenine-PO induced hyperuricemia mice models, serum uric acid and creatinine levels, clearance of uric acid and creatinine, fractional excretion of uric acid, and renal pathological lesions were determined were used to evaluate the antihyperuricemic effects. Renal glucose transporter-9 (GLUT-9) and organic anion transporter-1 (OAT-1) expressions were analyzed by western blotting method. Renal uric acid excretion was evaluated using stably urate transporter-1 (URAT-1) transfected human epithelial kidney cell line. Intestinal uric acid excretion was evaluated by measuring the transcellular transport of uric acid in HCT116 cells. In hyperuricemia rats, both 25 and 50mg/kg of oral Dioscin decreased serum uric acid levels over 4h. In the hyperuricemia mice, two weeks treatment of Dioscin significantly decreased serum uric acid and creatinine levels, increased clearance of uric acid and creatinine, increased fractional excretion of uric acid, and reduced renal pathological lesions caused by hyperuricemia. In addition, renal GLUT -9 was significantly down-regulated and OAT-1 was up-regulated in Dioscin treated hyperuricemia mice. Dioscin's metabolite Tigogenin significantly inhibited uric acid re-absorption via URAT1 from 10 to 100μM. Diosgenin and Tigogenin increased uric acid excretion via ATP binding cassette subfamily G member 2 (ABCG2). Decreasing effect of Dioscin on serum uric acid level and

  20. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    OpenAIRE

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  1. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration.

    Science.gov (United States)

    Moyes, Andrew B; Gaines, Sarah J; Siegwolf, Rolf T W; Bowling, David R

    2010-11-01

    Carbon isotope ratios (δ¹³C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ¹³C of soil respiratory CO₂ on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO₂ mole fraction and δ¹³C and continuous open chambers. δ¹³C of respired CO₂ and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ¹³C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ¹³C variation was driven by non-steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ¹³C of the soil surface CO₂ flux. Seasonal δ¹³C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO₂ source. © 2010 Blackwell Publishing Ltd.

  2. Nickel Dermatitis - Nickel Excretion

    DEFF Research Database (Denmark)

    Menné, T.; Thorboe, A.

    1976-01-01

    Nickel excretion in urine in four females -sensitive to nickel with an intermittent dyshidrotic eruption was measured with flameless atomic absorption. Excretion of nickel was found to be increased in association with outbreaks of vesicles. The results support the idea that the chronic condition ...

  3. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta.

    Science.gov (United States)

    Cartolano, Maria C; Amador, Molly H B; Tzaneva, Velislava; Milsom, William K; McDonald, M Danielle

    2017-12-01

    Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT 2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E

    2017-05-01

    Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 in a lipid emulsion and dietary cholesterol with cholesterol-d 5 and sitostanol-d 4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P <0.0001) and low-density lipoprotein cholesterol 19.8±1.9% ( P =0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% ( P <0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% ( P <0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% ( P =0.0096). Fecal bile acids were unchanged. Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.

  5. Marine, freshwater and aerially acclimated mangrove rivulus (Kryptolebias marmoratus) use different strategies for cutaneous ammonia excretion

    Science.gov (United States)

    Cooper, Christopher A.; Wilson, Jonathan M.

    2013-01-01

    Rhesus (Rh) glycoproteins are ammonia gas (NH3) channels known to be involved in ammonia transport in animals. Because of the different osmoregulatory and ionoregulatory challenges faced by teleost fishes in marine and freshwater (FW) environments, we hypothesized that ammonia excretion strategies would differ between environments. Also, we hypothesized that cutaneous NH3 volatilization in air-acclimated fish is facilitated by base secretion. To test these hypotheses, we used the skin of the euryhaline amphibious mangrove rivulus (Kryptolebias marmoratus). The skin excretes ammonia and expresses Rh glycoproteins. Serosal-to-mucosal cutaneous ammonia flux was saturable (0–16 mmol/l ammonia, Km of 6.42 mmol/l). In FW, ammonia excretion increased in response to low mucosal pH but decreased with pharmacological inhibition of Na+/H+ exchangers (NHE) and H+ ATPase. Conversely, in brackish water (BW), lowering the mucosal pH significantly decreased ammonia excretion. Inhibitors of NHE also decreased ammonia excretion in BW fish. Immunofluorescence microscopy demonstrated that both the Rh isoform, Rhcg1, and NHE3 proteins colocalized in Na+/K+ ATPase expressing mitochondrion-rich cells in the gills, kidney, and skin. We propose that the mechanisms of cutaneous ammonia excretion in FW K. marmoratus are consistent with the model for branchial ammonia excretion in FW teleost fish. NH4+ excretion appeared to play a stronger role in BW. NH4+ excretion in BW may be facilitated by apical NHE and/or diffuse through paracellular pathways. In aerially acclimated fish, inhibition of NHE and H+ ATPase, but not the Cl−/HCO3− exchanger, significantly affected cutaneous surface pH, suggesting that direct base excretion is not critical for NH3 volatilization. Overall, K. marmoratus use different strategies for excreting ammonia in three different environments, FW, BW, and air, and Rh glycoproteins and NHE are integral to all. PMID:23389109

  6. 3-Methylhistidine excretion in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-12-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium (/sup 40/K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction.

  7. 3-Methylhistidine excretion in myotonic dystrophy

    International Nuclear Information System (INIS)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-01-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium ( 40 K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction

  8. Urinary excretion of epidermal growth factor and Tamm-Horsfall protein in three rat models with increased renal excretion of urine

    DEFF Research Database (Denmark)

    Thulesen, J; Jørgensen, P E; Torffvit, O

    1997-01-01

    were examined in three groups of rats with increased renal excretion of urine: uninephrectomy, non-osmotic polyuria and diabetic osmotic polyuria. Twenty-four hour urine samples were obtained after 7, 14 and 21 days. The urinary volume per kidney was doubled in uninephrectomy when compared to controls....... There was a seven-fold increase in urinary volume in rats with non-osmotic polyuria and diabetic osmotic polyuria, as compared to controls. Uninephrectomy, non-osmotic polyuria and diabetes all affected the urinary excretion of EGF and THP differently. The EGF excretion in uninephrectomized rats was 60......-80% of that of the controls, whereas THP excretion was unchanged, indicating that EGF excretion varied with renal tissue mass. Non-osmotic polyuria caused a five-fold increase in THP excretion but no change in EGF excretion. THP excretion in the diabetic rats was increased three-fold after 21 days when compared to controls...

  9. Interpretation of uranium and thorium excretion data taking into account excretion data caused by natural sources

    International Nuclear Information System (INIS)

    Sahre, P.; Schoenmuth, Th.; Helling, K.

    2000-01-01

    At the Nuclear Engineering and Analytics Inc. Rossendorf near Dresden (Germany) occupationally exposed persons are working with Uranium and Thorium. In accordance with German guides urine and faecal analysis is carried out. But for the interpretation the data in terms of dose or intake it is important to have knowledge about the portion of the activity measured caused by natural sources. For this reason 16 occupationally exposed persons who did not have any history of occupational exposure to Thorium or Uranium have been checked concerning the excretion data since 1994. The excretion data in mBq per day for all persons covers the following ranges: Faeces: U-234 1 to 310 mBq/d, U-235 0.2 to 3.7 mBq/d, U-238 1.3 to 72 mBq/d. Th-228 7 to 89 mBq/d, Th-230 0.7 to 19 mBq/d, Th-232 0.7 to 16 mBq/d. Urine: all values below the detection limits of about 1 mBq/l. The large variation results from differences between the individual excretion rates but also from the variation of the excretion rate of one person. For example, the U-234-faecal excretion of one person reaches from 77 to 310 mBq per day. In the paper the faecal excretion for some individuals in dependence on the time are given. These excretion date caused by natural sources are taken into account by interpreting faecal excretion data of occupationally exposed persons working with Uranium or Thorium. If the measured faecal excretion per day is within the range caused by natural sources no interpretation will be done. By exceeding these values additional faeces and urine samples will be collected and measured. In dependence on these additional results intake and dose will be assessed some times by using lung counter or whole body counter measuring results. In the paper some examples are described. (author)

  10. Choosing the right respirator

    International Nuclear Information System (INIS)

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  11. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  12. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  13. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  14. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    Science.gov (United States)

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  15. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  16. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  17. Po-210 excretion and radon exposure

    International Nuclear Information System (INIS)

    Breuer, F.; Clemente, G.F.

    1979-01-01

    A mathematical model is given to describe the metabolism of the 210 Po introduced into the systemic compartiments of the human body. The model has been based on the experimental data referred to the 210 Pb- 210 Po intake, excretion and body burden of members of the general italian population. The model fits also very well the experimental data of 210 Pb- 210 Po intake and excretion reported by other authors. The retention function of 210 Po in total body, soft tissue and bone has been evaluated together with the urinary excretion function and the absorbed fraction by ingestion. The model is very valuable to evaluate the lung exposure to Radon decay products on the basis of the 210 Pb- 210 Po urinary excretions

  18. Respirators. Does your face fit

    Energy Technology Data Exchange (ETDEWEB)

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  19. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  20. Renal acid excretion in the domestic fowl.

    Science.gov (United States)

    Long, S; Skadhauge, E

    1983-05-01

    1. In order to assess the role of uricotelism in net renal acid excretion, blood and ureteral urine samples were collected from five hens fed a commercial poultry feed (Diet A) and five hens fed a protein-rich, Na-poor feed (Diet B). All samples were analysed for pH, PCO2, ammonium, phosphate, uric acid and urates (UA + U) and inulin. 2. On Diet A, average pH in venous blood was 7.42, while urinary pH (pHu) ranged from 4.74 to 7.25. At average pHu (6.10), uric acid accounted for 52% of total acid excreted, H2PO4 for 20% and NH4 for 28%. Net acid excretion in ureteral urine was 345 muequiv h-1 kg body weight-1, or 5-10 times that observed in ureotelic vertebrates (amphibians and mammals). 3. The relative contributions of these urinary buffers to net renal acid excretion changed with pHu. Significant negative correlations exist between pHu and both total phosphate and ammonium excretion rates (P less than 0.001). Excretion rates of (UA + U) showed a positive correlation (P less than 0.05) with pHu. 4. Feeding on Diet B revealed the homeostatic power of the avian kidney. Blood pH and PCO2 were not changed relative to values in hens fed the control diet while striking increases in excretion rates of all urinary buffers (except HCO3) were observed. Average pHu fell to 5.12, and the average net renal acid excretion rate doubled.

  1. Assessment of peritoneal membrane permeability by Tc-99m-excretion in patients undergoing CAPD

    International Nuclear Information System (INIS)

    Das, B.K.; Senthilnathan, M.S.; Pradhan, P.K.; Jeloka, T.K.; Sharma, R.K.

    2002-01-01

    Full text: Among various conservative treatment modalities for end stage renal disease (ESRD), continuous ambulatory peritoneal dialysis (CAPD) is increasingly being used in many centers. The success of CAPD depends largely on the permeable characteristics of the peritoneal membrane. Peritoneal Equilibration Test (PET), first described by Twardowski in 1987, is the most commonly used method for determination of peritoneal membrane characteristics. However, this test has several limitations. In order to find an alternative method for assessing peritoneal membrane characteristics we undertook this prospective study involving 20 patients. The main objective was to determine whether peritoneal excretion of intravenously applied Tc-99m-DTPA can be used for this purpose. 20 patients undergoing regular CAPD were included in this study. 370 MBq (10 mCi) of Tc-99m-DTPA was injected intravenously in the same standard preconditions as for the PET evaluation. A standard dose of 370 MBq (10 mCi) DTPA was kept and used later for calculations. At the end of 4 hours, a dialysate fluid sample was collected and the total dialysis effluent volume was measured. Excretion of Tc-99m-DTPA into the dialysate fluid as percentage of injected dose was calculated. Simultaneously standard PET values were determined. The peritoneal excretion of Tc-99m-DTPA ranged from 8 to 16 % of the injected dose depending upon the peritoneal membrane permeability. The patients were divided into following four groups depending upon DTPA excretion. High transporters (15 % and above); high average(12-15 %); low average (10-12 %); low transporters (10 % and less). When the results were compared with standard PET values, a good correlation could be established. We conclude that the radioisotope method using Tc-99m-DTPA can a good alternative technique to assess peritoneal membrane permeability. (author)

  2. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  4. Iodine excretion in school children in Copenhagen

    DEFF Research Database (Denmark)

    Rasmussen, Lone B.; Kirkegaard-Klitbo, Ditte Marie; Laurberg, Peter

    2016-01-01

    INTRODUCTION: Studies of dietary habits show a high iodine intake in children in Denmark. Iodine excretion in children has not previously been assessed. Iodine excretion in adults is below the recommended threshold, and it is therefore being discussed to increase the fortification level. The main...... objective of this study was to assess iodine excretion in children living in Copenhagen to establish whether a moderate increase in iodine fortification would lead to excess iodine intake in this group. METHODS: Children in first and fifth grade were recruited through schools in Copenhagen. In total, 244...... children de-ivered a urine sample. Urine samples were analysed for iodine and creatinine, and the results were expressed as urinary iodine concentration (UIC) and as estimated 24-h iodine excretion. Iodine excretion in children was also compared with that of adults living in the same area, investigated...

  5. Application of the multitracer technique. Transport of various elements in the pregnant rats and the fetus

    International Nuclear Information System (INIS)

    Hirunuma, Rieko; Enomoto, Shuichi

    2003-01-01

    The placenta functions as a barrier between fetus and mother, providing regulation of heat exchange, respiration, nutrition, and excretion for the fetus. There is limited information on the transport of trace elements from the mother to the fetus. Transfer of trace elements via the placenta to the fetus rats was examined by the multitracer technique, which can be used to evaluate the behavior of many elements under the same experimental condition. In this experiment, the multitracer solution contained the following elements: Be, Na, Sc, V, Mn, Fe, Co, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Tc and Ru. We examined the time courses of uptake of various elements in the placenta and the fetus. From these results, we observed a significant difference in time dependency between each element. The elements were divided into three groups. Based on the results, it was considered that the placenta is highly selective because essential elements are readily transported across placenta/membranes to the growing fetus, whereas nonessential metals hardly penetrated the placental barrier that protects the fetus from toxic effects. (author)

  6. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Science.gov (United States)

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  7. Distribution and excretion of inhaled mercury vapour

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1961-01-01

    Rats have been exposed for varying periods to an atmosphere containing 1 mg/cu.m. mercury vapor. The toxic effects produced showed resemblances to signs of mercurialism in man. An attempt has been made to study the kinetics of absorption and excretion of mercury from measurements of the amounts excreted and stored in the tissues. The efficiency of absorption of mercury by the rat lung is about 50%. A small proportion is excreted into the gut. After about 10 days of continuous exposure a steady state is reached in which excretion balances absorption. During short exposures the turnover of mercury in all tissues except brain is fairly rapid and most of the mercury is cleared from the body within a week after exposure. The urinary excretion of mercury, during the initial stage of storage in the tissues and the final stage of clearance, shows divergencies from the simple exponential pattern; there appears to be a delay mechanism in the kidney which, in intermittent exposures, may result in the occurrence of peak excretion during periods of non-exposure. After more prolonged exposures the mercury in the kidney appears to be converted to a form which is only very slowly excreted. The significance of the urinary excretion of mercury by man after industrial exposure to mercury vapour is discussed. The rat experiments suggest that single measurements will give only limited information concerning industrial conditions, but that an approximate assessment of the total absorbed during a working week would be obtained if it were possible to make a seven-day collection of urine. Repeated measurements after exposure would yield information on the duration of exposure and would have some diagnostic value.

  8. Recent Advances in Understanding of Kinetic Interplay Between Phase II Metabolism and Efflux Transport.

    Science.gov (United States)

    Wang, Shuai; Xing, Huijie; Zhao, Mengjing; Lu, Danyi; Li, Zhijie; Dong, Dong; Wu, Baojian

    2016-01-01

    Mechanistic understanding of the metabolism-transport interplay assumes great importance in pharmaceutical fields because the knowledge can help to interpret drug/xenobiotic metabolism and disposition studies as well as the drug-drug interactions in vivo. About 10 years ago, it started to recognize that cellular phase II metabolism is strongly influenced by the excretion (efflux transport) of generated metabolites, a kinetic phenomenon termed "phase II metabolism-transport interplay". This interplay is believed to have significant effects on the pharmacokinetics (bioavailability) of drugs/chemicals undergoing phase II metabolism. In this article, we review the studies investigating the phase II metabolism-transport interplay using cell models, perfused rat intestine, and intact rats. The potential confounding factors in exploring such interplay is also summarized. Moreover, the mechanism underlying the phase II metabolism-transport interplay is discussed. Various studies with engineered cells and rodents have demonstrated that there is an interaction (interplay) between phase II enzymes and efflux transporters. This type of interplay mainly refers to the dependence of phase II (conjugative) metabolism on the activities of efflux transporters. In general, inhibiting efflux transporters or decreasing their expression causes the reductions in metabolite excretion, apparent excretion clearance (CLapp) and total metabolism (fmet), as well as an increase in the intracellular level of metabolite (Ci). The deconjugation mediated by hydrolase (acting as a "bridge") is essential for the interplay to play out based on pharmacokinetic modeling/simulations, cell and animal studies. The hydrolases bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof (a bridging effect). Without the bridge, metabolite formation is independent on its downstream process excretion, thus impact of metabolite excretion on its formation is impossible

  9. Estimation of the systemic burden of plutonium from urinary excretion data and a multi-exponential model for excretion in comparison with autopsy data

    International Nuclear Information System (INIS)

    Bernard, S.R.; Nestor, C.W.

    1985-01-01

    The authors have adapted other's method for computing the systemic burden from urinary excretion data to use a multi-exponential model (2) for excretion, rather than Langham's power function. The mathematical basis of Synder's method is the representation of the systemic burden as the convolution integral of the observed urinary excretion data with the inverse Laplace transform of the excretion function; in the case of urinary excretion of plutonium, the power function has a Laplace transform, but for other elements (notably uranium) it does not. If the method is to be used for other radioisotopes, the excretion function must have a Laplace transform, and for this reason we have used a multi-exponential form of the excretion function. They have written a computer program to calculate estimates of the systemic burden and the integrated intake from urinary excretion data, and have compared the results with two cases for which autopsy data are available, as presented in this paper

  10. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  11. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  12. Estimation of Body Composition from Urinay Creatinine Excretion

    OpenAIRE

    小室, 史恵; 小宮, 秀一

    1982-01-01

    Simultaneous determinations of total body water, using the deuterium oxide dilution method, and urinary creatinine excretion have been carried out in 26 males and females. Total body water and FFM may be predicted from urinary creatinine excretion by T.B.W.=0.0165 Cr. +17.773. FFM=0.0225 Cr. +17.446. In this subjects a high correlation (r=0.874) was found between T.B.W, FFM and urinary creatinine excretion. It appears that FFM can be predicted from urinary creatinine excretion.

  13. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  14. Pharmacokinetics and Biliary Excretion of Fisetin in Rats.

    Science.gov (United States)

    Huang, Miao-Chan; Hsueh, Thomas Y; Cheng, Yung-Yi; Lin, Lie-Chwen; Tsai, Tung-Hu

    2018-06-14

    The hypothesis of this study is that fisetin and phase II conjugated forms of fisetin may partly undergo biliary excretion. To investigate this hypothesis, male Sprague-Dawley rats were used for the experiment, and their bile ducts were cannulated with polyethylene tubes for bile sampling. The pharmacokinetic results demonstrated that the average area-under-the-curve (AUC) ratios ( k (%) = AUC conjugate /AUC free-form ) of fisetin, its glucuronides, and its sulfates were 1:6:21 in plasma and 1:4:75 in bile, respectively. Particularly, the sulfated metabolites were the main forms that underwent biliary excretion. The biliary excretion rate ( k BE (%) = AUC bile /AUC plasma ) indicates the amount of fisetin eliminated by biliary excretion. The biliary excretion rates of fisetin, its glucuronide conjugates, and its sulfate conjugates were approximately 144, 109, and 823%, respectively, after fisetin administration (30 mg/kg, iv). Furthermore, biliary excretion of fisetin is mediated by P-glycoprotein.

  15. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  16. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Late excretion of plutonium following acquisition of known amounts

    International Nuclear Information System (INIS)

    Rundo, J.

    1981-01-01

    The urinary and fecal excretion rates of plutonium 10,000 days after intravenous injection of known amounts are compared with the predictions of various models. Both Langham's and Durbin's equations underestimated the urinary excretion by about an order of magnitude; the observed fecal excretion rates were also higher than the predictions. The total excretion rate predicted by the ICRP model was in quite good agreement with the observed rate, but it overestimated it at early times ( 239 Pu of former Manhattan Project plutonium workers, as calculated from the measured urinary excretion an application of Langham's equation. In one of these subjects the urinary excretion rate started to increase at about 6000 days, reached a maximum at about 9500 days, and declined for the next 2700 days

  18. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    Science.gov (United States)

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF). Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Involvement of Multiple Transporters-mediated Transports in Mizoribine and Methotrexate Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Teruo Murakami

    2012-08-01

    Full Text Available Mizoribine is administered orally and excreted into urine without being metabolized. Many research groups have reported a linear relationship between the dose and peak serum concentration, between the dose and AUC, and between AUC and cumulative urinary excretion of mizoribine. In contrast, a significant interindividual variability, with a small intraindividual variability, in oral bioavailability of mizoribine is also reported. The interindividual variability is mostly considered to be due to the polymophisms of transporter genes. Methotrexate (MTX is administered orally and/or by parenteral routes, depending on the dose. Metabolic enzymes and multiple transporters are involved in the pharmacokinetics of MTX. The oral bioavailability of MTX exhibits a marked interindividual variability and saturation with increase in the dose of MTX, with a small intraindividual variability, where the contribution of gene polymophisms of transporters and enzymes is suggested. Therapeutic drug monitoring of both mizoribine and MTX is expected to improve their clinical efficacy in the treatment of rheumatoid arthritis.

  20. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  1. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China

    Science.gov (United States)

    Chan, L. Y.; Lau, W. L.; Zou, S. C.; Cao, Z. X.; Lai, S. C.

    This study examined commuter exposure to respirable suspended particulate (PM 10 and PM 2.5) and carbon monoxide (CO) in public transportation modes in Guangzhou, China. During the sampling period, a total of 80 CO, 80 PM 10 and 56 PM 2.5 samples were conducted in four popular commuting modes (subway, air-conditioned bus, non-air-conditioned bus and taxi) while running in typical urban routes. The results show that the PM 10 as well as CO level is greatly influenced by the mode of transport. The highest mean PM 10 and CO level was obtained in a non-air-conditioned bus (203 μg m -3) and in an air-conditioned taxi (28.7 ppm) , respectively. Noticeably, the exposure levels in subway are lower than those in the roadway transports. The ventilation condition of the transport is also a crucial factor affecting the in-vehicle level. There was statistically significant difference of PM10 (ptransports, which provide service at regular intervals regardless of the time of day. The PM 2.5 inter-microenvironment variation is similar to the pattern of PM 10. The PM 2.5 to PM 10 ratio in the transports was high, ranging from 76% to 83%. The poor vehicle emission controls, poor vehicle maintenance, plus the slow moving traffic condition with frequent stops are believed to be the major causes of high in-vehicle levels in some public commuting trips.

  2. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  3. Inhibition of P-glycoprotein and multidrug resistance-associated protein 2 regulates the hepatobiliary excretion and plasma exposure of thienorphine and its glucuronide conjugate

    Directory of Open Access Journals (Sweden)

    Ling-Lei Kong

    2016-08-01

    Full Text Available Thienorphine (TNP is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.

  4. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction.

    Science.gov (United States)

    Ferguson, Michael A; Sutton, Robert M; Karlsson, Michael; Sjövall, Fredrik; Becker, Lance B; Berg, Robert A; Margulies, Susan S; Kilbaugh, Todd J

    2016-06-01

    Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P respiration through Complex II (OXPHOSCII, P respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.

  6. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  7. Recent advances on uric acid transporters

    Science.gov (United States)

    Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na

    2017-01-01

    Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027

  8. Identification of ABC transporters acting in vitamin B12 metabolism in Caenorhabditis elegans.

    Science.gov (United States)

    McDonald, Megan K; Fritz, Julie-Anne; Jia, Dongxin; Scheuchner, Deborah; Snyder, Floyd F; Stanislaus, Avalyn; Curle, Jared; Li, Liang; Stabler, Sally P; Allen, Robert H; Mains, Paul E; Gravel, Roy A

    2017-12-01

    Vitamin B 12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [ 14 C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B 12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC

  9. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  10. Maggot excretions inhibit biofilm formation on biomaterials.

    Science.gov (United States)

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  11. Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in Arabidopsis thaliana.

    Science.gov (United States)

    Barros, Jessica A S; Cavalcanti, João Henrique F; Medeiros, David B; Nunes-Nesi, Adriano; Avin-Wittenberg, Tamar; Fernie, Alisdair R; Araújo, Wagner L

    2017-09-01

    Under heterotrophic conditions, carbohydrate oxidation inside the mitochondrion is the primary energy source for cellular metabolism. However, during energy-limited conditions, alternative substrates are required to support respiration. Amino acid oxidation in plant cells plays a key role in this by generating electrons that can be transferred to the mitochondrial electron transport chain via the electron transfer flavoprotein/ubiquinone oxidoreductase system. Autophagy, a catabolic mechanism for macromolecule and protein recycling, allows the maintenance of amino acid pools and nutrient remobilization. Although the association between autophagy and alternative respiratory substrates has been suggested, the extent to which autophagy and primary metabolism interact to support plant respiration remains unclear. To investigate the metabolic importance of autophagy during development and under extended darkness, Arabidopsis ( Arabidopsis thaliana ) mutants with disruption of autophagy ( atg mutants) were used. Under normal growth conditions, atg mutants showed lower growth and seed production with no impact on photosynthesis. Following extended darkness, atg mutants were characterized by signatures of early senescence, including decreased chlorophyll content and maximum photochemical efficiency of photosystem II coupled with increases in dark respiration. Transcript levels of genes involved in alternative pathways of respiration and amino acid catabolism were up-regulated in atg mutants. The metabolite profiles of dark-treated leaves revealed an extensive metabolic reprogramming in which increases in amino acid levels were partially compromised in atg mutants. Although an enhanced respiration in atg mutants was observed during extended darkness, autophagy deficiency compromises protein degradation and the generation of amino acids used as alternative substrates to the respiration. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Iodine excretion in school children in Copenhagen

    DEFF Research Database (Denmark)

    Rasmussen, Lone B; Kirkegaard-Klitbo, Ditte Marie; Laurberg, Peter

    2016-01-01

    INTRODUCTION: Studies of dietary habits show a high iodine intake in children in Denmark. Iodine excretion in children has not previously been assessed. Iodine excretion in adults is below the recommended threshold, and it is therefore being discussed to increase the fortification level. The main...

  13. Ammonia production, excretion, toxicity, and defense in fish: A Review

    Directory of Open Access Journals (Sweden)

    Alex Y K Ip

    2010-10-01

    Full Text Available Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+ transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia-tolerance, respectively.

  14. Excretion of biotrace elements using the multitracer technique in mice

    International Nuclear Information System (INIS)

    Wang, X.; Wu, M.; Yin, X.M.; Zhang, X.; Li, Z.W.; Tian, J.; Sheng, X.L.

    1999-01-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40 Ar ions was applied to the investigation of the trace elements behavior in feces and urine of mouse. The excretion rates of 23 elements, Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Mo, Nb, Tc, Ru, Ag and In were simultaneously detected under strictly identical experimental conditions, in order to clarify the excretion behavior of the elements in Mice. Fecal and urinary excretion rates of the elements in mice reached the highest value separately at 48 and 24 hours. The total excretion of Mo, Tc and Co within 96 hours were all larger, more than 60%. Accumulative excretion rates of Ca, Nb, Mg, Sr, V, Sc, Na, Cr, Fe, Ag, Mn and Zr were 60-30%. The total rates of Ru, K, As, Zn, Rb, Y, Ga and In were less than 30%, and low excretion. The main excretion pathway of Mo, Co, Mg, Fe and Ag was through urine, and Na, K, As and Rb were eliminated from the body also in urine. But fecal excretion of Tc, Nb, Sr, Y, Ru, and In were larger than urinary excretion, and Ca, Sc, Mn, Zr, Zn were eliminated from the body in feces. (author)

  15. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  16. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    Science.gov (United States)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  17. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  18. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  19. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  20. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  1. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4 , the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1 , which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  3. CADMIUM EXCRETION IN FECES OF RATS AT EXPERIMENTAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    O. A. Zemlianyi

    2014-10-01

    Full Text Available Studies demonstrated that the excretions per 1 gof rat weight inthe experimental group usually prevails over the  control group, especially in the second part of the experiment. The increase in the amount of feces in animals of the experimental group was also registered. Such processes may indicate the intense excretory processes and  increase the output of harmful  pollutants from the rats  together with overall stimulation of rat digestive activity. The higher correlations between Cd and other pollutants, namely toxic Ni and Pb (r = 0.84 and 0.91, respectively were calculated for rat feces of experimental group compared to the control. The concentration of Cd and Pb in the excretion of experimental group was maximal in the first day of the experiment, suggesting definite reaction towards rapid output of maximum amount of toxicants from rat body. Subsequently, a decrease in concentration of other pollutants demonstrated their incorporation in metabolic processes and significant accumulation in rat body (kidney and liver, or involvement of other mechanisms for neutralization and removal of intoxicants. Given the increasing amount of excretions  in the second half of the experiment, this may be a solution to this issue. The Cd output per 1 g of rat weight was maximal in the first day, followed by a rapid decline and partial restoration in second half of the experiment. Obviously, it confirms the theory of substitution mechanisms in excretion of significant amount of hazardous toxicants and shifting towards less concentrated excretions in greater amount. Thus, the correlation index between the percentage of excreted pollutant and its concentration in the excretion was 0.75. When we considered only the first 7 days this increased to 0.91 and proved that during the first stage of experiment the percentage of pollutants excretion was dependent upon its concentration in feces. Correlation between Cd output rate and excretion volumes was

  4. Physiological and molecular ontogeny of branchial and extra-branchial urea excretion in posthatch rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Zimmer, Alex M; Wood, Chris M

    2016-02-01

    All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (J(urea)) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of J(urea) by posthatch rainbow trout (Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while J(urea) increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of J(urea), while the gills became the dominant site for J(urea) only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial J(urea). Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity. Copyright © 2016 the American Physiological Society.

  5. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion.

    Science.gov (United States)

    Boo, Mel V; Hiong, Kum C; Goh, Enan J K; Choo, Celine Y L; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2018-04-24

    Ammonium transporters (AMTs) can participate in ammonia uptake or excretion across the plasma membrane of prokaryotic, plant and invertebrate cells. The giant clam, Tridacna squamosa, harbors nitrogen-deficient symbiotic zooxanthellae, and normally conducts light-enhanced ammonia absorption to benefit the symbionts. Nonetheless, it can excrete ammonia when there is a supply of exogenous nitrogen or exposed to continuous darkness. This study aimed to elucidate the role of AMT1 in the ctenidium of T. squamosa by cloning and characterizing the AMT1/AMT1, determining its subcellular localization, and examining changes in its transcript and protein expression levels in response to light exposure. The cDNA coding sequence of AMT1 from T. squamosa consisted of 1527 bp and encoded 508 amino acids of 54.6 kDa. AMT1-immunofluorescence was detected mainly at the apical epithelium of ctenidial filaments, and it decreased significantly after 12 h of exposure to light. By contrast, the epithelial cells surrounding the tertiary water channels in the ctentidium, which are known to exhibit light-enhanced glutamine synthetase expression and take part in the assimilation of exogenous ammonia in light, did not display any AMT1-immunolabelling. Furthermore, the transcript level and protein abundance of ctenidial AMT1/AMT1 decreased significantly at the 6th and 12th h of light exposure. Taken together, these results indicate that AMT1 might participate in ammonia excretion instead of ammonia absorption and assimilation in T. squamosa. It is probable that the expression levels of AMT1/AMT1 need to be down-regulated during light exposure to achieve light-enhanced ammonia uptake.

  6. Plutonium fecal and urinary excretion functions: Derivation from a systematic whole-body retention function

    International Nuclear Information System (INIS)

    Sun, C.; Lee, D.

    1999-01-01

    Liver-bile secretion directly influences the content of plutonium in feces. To assess the reliability of plutonium metabolic models and to improve the accuracy of interpreting plutonium fecal data, the authors developed a compartmental model that simulates the metabolism of plutonium in humans. With this model, they can describe the transport of plutonium contaminants in the systemic organs and tissues of the body, including fecal and urine excretions, without using elaborate kinetic information. The parameter values of the models, which describe the translocation rates and recycling of plutonium in the body, can be derived from a multi-term exponential systemic function for whole-body retention. The analytical derivations and algorithms for solving translocation parameter values are established for the model and illustrated by applying them to the biokinetics and bioassay of plutonium. This study describes how to (1) design a physiological model for incorporating liver biliary secretion and for obtaining a fecal-excretion function, (2) develop an analytical solution for identifying the translocation-parameter values incorporating the recycling of plutonium in the body, and (3) derive a set of urinary and fecal excretion-functions from a published systemic whole-body retention function, generally acknowledged to be accurate, as a real and practical example

  7. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion

    NARCIS (Netherlands)

    Roelofsen, H; Wolters, H; Van Luyn, MJA; Miura, N; Kuipers, F; Vonk, RJ

    Background & Aims: Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network,

  8. Absorption, distribution and excretion of inhaled hydrogen fluoride in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1979-01-01

    Rats were subjected to whole body HF exposure for 6 hrs or to nose-only HF exposure for 1 hr. Total and/or ionic fluoride concentrations in selected tissues were determined at various times following exposure. In rats sacrificed 6 hrs after whole body exposure, dose-dependent increases in lung, plasma, and kidney total and ionic fluoride concentration occurred. Rats excreted more fluoride in the urine after whole body exposure than could be explained by the amount of HF inhaled. Considerable evidence suggests that airborne HF deposits on fur and is then ingested due to preening activity. Urinary fluoride excretion was increased by nose-only exposure. The urinary fluoride excretion accounted for approximately twice the fluoride estimated to be inhaled during exposure. Tissue fluoride concentrations were elevated immediately after nose-only exposure. Fluoride concentrations in lung and kidney returned to control levels within 12 hrs. Plasma fluoride concentration was slightly elevated 24 hrs after the start of the 1 hr exposure but was at control levels at 96 hrs. Immediately following nose-only exposure, lung ionic fluoride concentrations were less than plasma ionic fluoride concentrations suggesting that the fluoride in the lung had reached that site via plasma transport rather than by inhalation. A dose-dependent increase in plasma ionic fluoride concentration occurred after upper respiratory tract HF exposure providing strong evidence that fluoride is absorbed systemically from that site. The plasma ionic fluoride concentration after upper respiratory tract exposure was of sufficient magnitude to account for the plasma fluoride concentrations observed in intact nose-only exposed rats. (ERB)

  9. Biliary excretion of cadmium in rat. III. Effects of chelating agents and change in intracellular thiol content on billiary transport and tissue distribution of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M.G.

    1980-03-01

    The effects of changes in sulfur-containing intracellular ligands on biliary excretion of cadmium were studied in rats. Injection of zinc or copper salts 24 h before intravenous injection of /sup 109/CdCl/sub 2/ (1 mg/kg Cd) decreased biliary excretion of Cd. Pretreatment with cysteine (25 mg/kg) had a similar effect. Depletion of intracellular thiol by injection of diethylmaleate had little effect. The effect of chelating agents on the pharmacokinetics of Cd depended on time of administration of the agents after exposure to Cd. When chelating agents were administered 1/2 h after Cd injection (before the synthesis of metallothionein), the thiol-containing agents (2,3-dimercapto-1-propanol (BAL), DL-penicillamine, N-acetylpenicillamine, and dithioerythritol increased the biliary excretion of Cd, while the carboxyl-containing ones (EDTA and nitrilotriacetate) increased the urinary excretion of Cd. BAL was the most effective chelating agent, but there was also an increase in the renal concentration of Cd. However, when these chelating agents were administered 24 h after Cd injection (after the synthesis of metallothionein), only BAL increased the biliary excretion of Cd. Renal and hepatic Cd concentrations decreased concurrently after BAL treatment.

  10. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  11. Poliovirus Excretion in Children with Primary Immunodeficiency Disorders, India.

    Science.gov (United States)

    Mohanty, Madhu Chhanda; Madkaikar, Manisha Rajan; Desai, Mukesh; Taur, Prasad; Nalavade, Uma Prajwal; Sharma, Deepa Kailash; Gupta, Maya; Dalvi, Aparna; Shabrish, Snehal; Kulkarni, Manasi; Aluri, Jahnavi; Deshpande, Jagadish Mohanrao

    2017-10-01

    Prolonged excretion of poliovirus can occur in immunodeficient patients who receive oral polio vaccine, which may lead to propagation of highly divergent vaccine-derived polioviruses (VDPVs), posing a concern for global polio eradication. This study aimed to estimate the proportion of primary immunodeficient children with enterovirus infection and to identify the long-term polio/nonpolio enterovirus excreters in a tertiary care unit in Mumbai, India. During September 2014-April 2017, 151 patients received diagnoses of primary immunodeficiency (PID). We isolated 8 enteroviruses (3 polioviruses and 5 nonpolio enteroviruses) in cell culture of 105 fecal samples collected from 42 patients. Only 1 patient with severe combined immunodeficiency was identified as a long-term VDPV3 excreter (for 2 years after identification of infection). Our results show that the risk of enterovirus excretion among children in India with PID is low; however, systematic screening is necessary to identify long-term poliovirus excreters until the use of oral polio vaccine is stopped.

  12. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  13. The influence of some thiols on biliary excretion of methyl mercury

    International Nuclear Information System (INIS)

    Refsvik, T.

    1983-01-01

    N-Acetylpenicillamine and thiola increased biliary excretion of methyl mercury and sulfhydryl right after administration. Cysteine increased excretion of methyl mercury in bile after a temporary decrease following administration. During the interval of decreased mercury excretion biliary excretion of cysteine passed through a maximum. This indicates the existence of a common factor of the excretory systems for cysteine and methyl mercury and illustrates that cysteine cannot carry methyl mercury from liver to bile. Relatively large proportions of unchanged thiola and N-acetylpenicillamine were excreted in bile. Bile collected after administration of one of these compounds, in addition to thiola or N-acetylpenicillamine, contained other methyl mercury carrying components not present in control bile. From the experiments undertaken it cannot be stated whether these components play any role in the increased excretion of methyl mercury in bile caused by thiola and N-acetylpenicillamine. The mechanisms of increased biliary excretion of methyl mercury following administration of N-acetylpenicillamine, thiola and cysteine are discussed. (author)

  14. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  15. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  16. Hydrochlorothiazide-induced 131I excretion facilitated by salt and water

    International Nuclear Information System (INIS)

    Beyer, K.H. Jr.; Fehr, D.M.; Gelarden, R.T.; White, W.J.; Lang, C.M.; Vesell, E.S.

    1981-01-01

    Salt intake is restricted under clinical conditions for which thiazide diuretics are customarily used. Dietary iodide intake offsets any effect of thiazide on iodide loss. However, our correlation coefficients relating Na+ to Cl- to I- excretion indicate that as thiazide administration or sodium chloride intake increases renal Na+ and Cl- excretion, I- reabsorption by the nephron coordinately decreases. Increased sodium chloride and water intake by the dog doubled I-excretion rates. Hydrochlorothiazide increased the sodium chloride and water enhanced I-excretion rate as much as eight-fold. Without added NaCl, hydrochlorothiazide increased the excretion rate of 131I by three- to eightfold, acutely. Within five to seven days after 131I oral administration, hydrochlorothiazide (1 or 2 mg/kg twice daily) doubled the rate of 131I disappearance from plasma, reduced the fecal output of 131I, and increased its rate of renal excretion. When hydrochlorothiazide was administered, as much 131I was excreted in the first 24 hours as occurred in 48 hours when sodium chloride and water were given without hydrochlorothiazide. Thiazide administration in customary clinical dosage twice a day with substantial sodium chloride and water for the first two days after exposure to 131I, should therefore facilitate the safe excretion of 131I. This accelerated removal of 131I might be enhanced even more if thyroid uptake of 131I is blocked by administration of potassium iodide, as judged by the greater 131I recovery from thyroidectomized dogs

  17. Circadian variation of urinary albumin excretion in pregnancy

    NARCIS (Netherlands)

    Douma, C. E.; van der Post, J. A.; van Acker, B. A.; Boer, K.; Koopman, M. G.

    1995-01-01

    OBJECTIVE: The hypothesis was tested that circadian variations in urinary albumin excretion of pregnant women in the third trimester of normal pregnancy are different from nonpregnant individuals. DESIGN: Circadian variability in urinary albumin excretion was studied both in pregnant women and in

  18. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  19. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  20. Modeling single cell antibody excretion on a biosensor

    NARCIS (Netherlands)

    Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.

    2016-01-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed

  1. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    Science.gov (United States)

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Sahlin, Kent; Fernström, Maria

    2007-01-01

    , and the proportion of type 2X fibers correlated with markers of insulin resistance (P type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development......We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy....... Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P

  3. Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons

    Science.gov (United States)

    Clerc, Pascaline; Polster, Brian M.

    2012-01-01

    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria. PMID:22496810

  4. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  6. Systemic excretion of benzo(a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules

    International Nuclear Information System (INIS)

    Shu, H.P.; Bymun, E.N.

    1983-01-01

    In vitro studies have previously indicated that benzo(a)pyrene distributes primarily into the plasma lipoprotein fraction when incubated with whole plasma. Hydroxylated metabolites of benzo(a)pyrene distribute increasingly into the albumin fraction as the degree of metabolite hydroxylation increases. This report assesses the influence of plasma lipoproteins and albumin as carriers for benzo(a)pyrene on carcinogen excretion in the control and microsomally induced rat. Male Sprague-Dawley rats cannulated in the bile duct received i.v. injections of radiolabeled benzo(a)pyrene noncovalently bound to the very-low-density, low-density, or high-density lipoproteins in equimolar amounts. Bile was collected and measured for radioactivity. Cumulative biliary excretions of benzo(a)pyrene complexed with rat lipoproteins were 39.6 +/- 9.7 (S.D.), 24.6 +/- 1.3, and 21.2 +/- 8.8% for very low-density, low-density, and high-density lipoprotein, respectively. Values for excretion of benzo(a)pyrene complexed with rat or human lipoproteins were comparable. These data suggest that the transport molecule can effect a 2-fold difference in benzo(a)pyrene excretion under conditions of the present study. Thus, excretion increased as the degree of benzo(a)pyrene hydroxylation increased. The effect of microsomal enzyme induction on excretion of lipoprotein-bound benzo(a)pyrene was also assessed. Contrary to expectation, excretion of benzo(a)pyrene bound to the very-low-density, low-density, or high-density lipoproteins in Aroclor-induced rats was not greater than that of control animals. Hence, under the conditions of the present study, 60 to 80% of the injected benzo(a)pyrene and 50 to 60% of the injected benzo(a)pyrene metabolites were not excreted immediately in control or microsomally induced animals. This benzo(a)pyrene may represent a carcinogen pool that is slowly excreted

  7. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Science.gov (United States)

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  8. Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Annett Juretzko

    2017-04-01

    Full Text Available Background/Aims: Several studies sought to identify new biomarkers for chronic kidney disease (CKD. As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR. We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. Methods: We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC curves, spearman correlation coefficients and linear regression models were calculated. Results: Urinary angiotensinogen [2,511 (196-31,909 vs. 18.6 (8.3-44.0 pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155 vs. 0.069 (0.045-0.148 pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01 and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01 were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. Conclusion: Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may

  9. Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease.

    Science.gov (United States)

    Juretzko, Annett; Steinbach, Antje; Hannemann, Anke; Endlich, Karlhans; Endlich, Nicole; Friedrich, Nele; Lendeckel, Uwe; Stracke, Sylvia; Rettig, Rainer

    2017-01-01

    Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated. Urinary angiotensinogen [2,511 (196-31,909) vs. 18.6 (8.3-44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155) vs. 0.069 (0.045-0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by

  10. Short communication: Assessing urea transport from milk to blood in dairy cows

    NARCIS (Netherlands)

    Spek, J.W.; Dijkstra, J.; Borne, van den J.J.G.C.; Bannink, A.

    2012-01-01

    The concentration of urea in milk (MUC) has emerged as a potentially useful tool to predict urinary N excretion. Various factors may affect the relationship between MUC and urinary N excretion, including transport characteristics of urea from blood to milk and vice versa. The main objective of this

  11. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    Science.gov (United States)

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  13. Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.

    Science.gov (United States)

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

    2013-12-01

    The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor). © 2013 Wiley Periodicals, Inc.

  14. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study.

    Science.gov (United States)

    Wu, Baojian

    2012-01-01

    Understanding of the interdependence of cytochrome P450 enzymes and P-glycoprotein in disposition of drugs (also termed "transport-metabolism interplay") has been significantly advanced in recent years. However, whether such "interplay" exists between phase II metabolic enzymes and efflux transporters remains largely unknown. The objective of this article is to explore the role of efflux transporters (acting on the phase II metabolites) in disposition of the parent drug in Caco-2 cells, liver, and intestine via simulations utilizing a catenary model (for Caco-2 system) and physiologically based pharmacokinetic (PBPK) models (for the liver and intestine). In all three models, "transport-metabolism interplay" (i.e., inhibition of metabolite efflux decreases the metabolism) can be observed only when futile recycling (or deconjugation) occurred. Futile recycling appeared to bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof. Without futile recycling, metabolite formation was independent on its downstream process excretion, thus impact of metabolite excretion on its formation was impossible. Moreover, in liver PBPK model with futile recycling, impact of biliary metabolite excretion on the exposure of parent drug [(systemic (reservoir) area under the concentration-time curve (AUC(R1))] was limited; a complete inhibition of efflux resulted in AUC(R1) increases of less than 1-fold only. In intestine PBPK model with futile recycling, even though a complete inhibition of efflux could result in large elevations (e.g., 3.5-6.0-fold) in AUC(R1), an incomplete inhibition of efflux (e.g., with a residual activity of ≥ 20% metabolic clearance) saw negligible increases (interplay between phase II enzymes and efflux transporters. Those studying such "interplay" are encouraged to adequately consider potential consequences of inhibition of efflux transporters in humans. Copyright © 2011 Wiley-Liss, Inc.

  16. Species differences in biliary excretion of benzo[a]pyrene

    International Nuclear Information System (INIS)

    Weyand, E.H.; Bevan, D.R.

    1986-01-01

    Biliary excretion of benzo[a]pyrene (B[a]P) was investigated in rats, hamsters, and guinea pigs following intratracheal administration. [ 3 H]-B[a]P, in amounts of approximately 150 ng or 350 μg, was instilled into lungs and amounts of radioactivity excreted in bile were monitored for six hrs following administration. Differences in biliary excretion of [ 3 H]-B[a]P and/or metabolites among species were observed at low doses but not at high doses. Six hours after instillation of a low dose of B[a]P, 70, 54, and 62% of the dose was excreted in bile of rats, hamsters, and guinea pigs, respectively. Upon administration of the higher dose of B[a]P, approximately 50% of the dose was excreted in bile in six hrs by all species. Thus, rats and guinea pigs exhibit differences in biliary excretion of low and high doses of B[a]P whereas hamsters do not. Profiles of phase II metabolites in rats and hamsters were similar at both low and high doses, with the majority of metabolites being glucuronides and thioether conjugates. However, differences in relative amounts of these conjugates were observed between the two doses, with a shift towards a greater proportion of glucuronides at the higher dose. Metabolites in bile from guinea pigs were primarily thioether conjugates, which accounted for 88% of metabolites at the low dose and 95% at the high dose

  17. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    International Nuclear Information System (INIS)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  18. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  19. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  20. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  1. Influence of spironolactone on the excretion of 203Hg2+ in rats

    International Nuclear Information System (INIS)

    Cikrt, M.; Tichy, M.

    1975-01-01

    The effect of spironolactone (SPL) on 203 Hg 2+ excretion was studied in rats with a special emphasis in biliary excretion. No correlation was found between the number of doses of SPL pretreatment (1-5 doses of 5 mg/100 g body weight) and the biliary excretion of 203 Hg 2+ within 6 hours after intravenous administration of 120 μg Hg 2+ per rat. After the SPL pretreatment there was a significantly increased mercury stool excretion 24 hours after intravenous administration. Concurrent oral administration of SH-groups containing sorbent had no effect on mercury stool excretion. Repeated administration of 203 Hg 2+ (5 hours after the first dose) induced significantly increased biliary excretion of mercury in rats pretreated with SPL. On the other hand, repeated administration of SPL (4 hours after intravenous administration of mercury) did not influence the biliary excretion of mercury. The results indicate that the effect of SPL on biliary excretion of mercury could be limited by the level of ''mercury available'' in the organism and might be determined by a direct interaction of mercury molecule with the molecule of SPL

  2. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  3. Urinary growth hormone excretion in 657 healthy children and adults

    DEFF Research Database (Denmark)

    Main, K; Philips, M; Jørgensen, M

    1991-01-01

    .0001) with maximum values in Tanner stage 3 for girls and 4 for boys. This corresponded to a peak in u-GH excretion between 11.5-14.5 years in girls and 12.5-16 years in boys. Additionally, u-GH excretion in adults was significantly higher than in prepubertal children (p less than 0.001). The day/night ratio of u......Urinary growth hormone (u-GH) excretion was measured in 547 healthy children and 110 adults by ELISA with a detection limit of 1.1 ng/l u-GH after prior concentration of the urine samples (20- to 30-fold). u-GH excretion values were significantly dependent on the pubertal stage (p less than 0...

  4. Intestinal excretion of metals by rats

    International Nuclear Information System (INIS)

    Schaefer, S.G.

    1979-01-01

    The excretion of 65 Zn, sup(115m)Cd, 203 Hg, 207 Bi, 210 Pb, 60 Co, 64 Cu, 85 Sr and 86 Rb in the perfused sections of the intestinal tract in vivo was investigated by the pendular perfusion method. After intravenous administration the excretion of metals was investigated in the jejunum, in the colon and in some experiments also in the ileum. The fluid net movement in the jejunum and colon was measured in dependency on the energy spectrum of the applied metal isotope by means of 14 C or 3 H-polyethylene glycol 2000. (orig./MG) [de

  5. Partitioning of ecosystem respiration in a beech forest

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  6. Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Yefu; Song, Lulu; Han, Yueran; Liu, Mingming; Gong, Rui; Luo, Weiwei; Guo, Xuewu; Xiao, Dongguang

    2017-01-01

    Proteinase A (PrA), encoded by PEP4 gene, is detrimental to beer foam stability. There are two transport pathways for the new synthesized PrA in yeast, sorting to the vacuole normally, or excreting out of the cells under stress conditions. They were designated as the Golgi-to-vacuole pathway and the constitutive secretory pathway, respectively. To reduce PrA excretion in some new way instead of its coding gene deletion, which had a negative effect on cell metabolism and beer fermentation, we modified the PrA transport based on these above two pathways. In the Golgi-to-vacuole pathway, after the verification that Vps10p is the dominant sorting receptor for PrA Golgi-to-vacuolar transportation by VPS10 deletion, VPS10 was then overexpressed. Furthermore, SEC5, encoding exocyst complexes' central subunit (Sec5p) in the constitutive secretory pathway, was deleted. The results show that PrA activity in the broth fermented with WGV10 (VPS10 overexpressing strain) and W∆SEC5 (SEC5 deletion strain) was lowered by 76.96 and 32.39%, compared with the parental strain W303-1A, at the end of main fermentation. There are negligible changes in fermentation performance between W∆SEC5 and W303-1A, whereas, surprisingly, WGV10 had a significantly improved fermentation performance compared with W303-1A. WGV10 has an increased growth rate, resulting in higher biomass and faster fermentation speed; finally, wort fermentation is performed thoroughly. The results show that the biomass production of WGV10 is always higher than that of W∆SEC5 and W303-1A at all stages of fermentation, and that ethanol production of WGV10 is 1.41-fold higher than that of W303-1A. Obviously, VPS10 overexpression is beneficial for yeast and is a more promising method for reduction of PrA excretion.

  7. Relation between creatinine and uric acid excretion.

    OpenAIRE

    Nishida, Y

    1992-01-01

    The relation between creatinine and uric acid metabolism was analysed in 77 male patients with primary gout and 62 healthy male subjects. Significant positive correlations between 24 hour urinary creatinine and uric acid excretion were shown in both groups. The mean urinary creatinine and uric acid excretions in the patients with gout were significantly increased as compared with those of normal male controls. These results suggest that there is a close correlation between creatinine and uric...

  8. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  9. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  10. Utilization of Chicken Excretions as Compost Manure in Bolu

    Directory of Open Access Journals (Sweden)

    Cihat Kütük

    2013-11-01

    Full Text Available Turkish agricultural soils are insufficient with regard to organic matter content. Likewise, organic matter amounts in agricultural areas of Bolu are low. The benefits of organic matter to physical, chemical and biologic properties of soils are known for very long time. On the other hand, huge amount of chicken excretions are produced in Turkey with increased chicken production recently, and this result in substantial health and environmental problems. Amount of chicken excretions are estimated about 10 000 000 tons in Turkey. In Bolu, these amounts of chicken excretions are 300 000 tons per year. The most appropriate way to solve this question is to transform chicken excretions to organic manure and apply to agricultural fields. Composting is basic process for transforming of chicken excretions to organic manure. Composting is the aerobic decomposition of organic materials in the thermophilic temperature range of 40-65 °C. There are two essential methods in composting. One of them is traditional method taking much time and producing low grade manure. Another is rapid composting method taking less time and producing high grade manure under more controlled conditions. Rapid composting methods which are more acceptable as commercially in the world are windrow, rectangular agitated beds and rotating drum, respectively Selection of appropriate method is depending on composting material, environmental and economical conditions. Chicken excretions occurring large amounts in Bolu must be transformed to organic manure by means of a suitable composting method and used in agriculture. Because, chicken manure is an important resource for sustainable agriculture in Turkey and it should be evaluated.

  11. The Effect of Grape Seed Proanthocyanidin Extract (GSPE on Urinary Sodium Excretion

    Directory of Open Access Journals (Sweden)

    Gulsum Ozkan

    2013-10-01

    Full Text Available Aim: While various hormones and mediators reduce the urinary excretion of Na, other mediators such as nitric oxide (NO increase Na excretion. Grape seed proanthocyanidin extract (GSPE is a molecule that has an antioxidant effect by increasing NO levels. Our study was intended to evaluate the effect of GSPE on Na excretion. Material and Method: Fourteen rats were divided into control and GSPE groups. The control group was given 1 cm3 milk by gavage for one week, while the GSPE group was given 100 mg/kg GSPE. Seventh-day urines were collected from rats monitored over 24 h in a metabolic cage. Urinary Na excretion at the end of 24 h was investigated and the experiment concluded. Results: There was no difference between the control and GSPE groups in terms of weight, solid and liquid food intake and urine volumes. 24-hour urinary Na excretion was higher in the GSPE group (1.43±0.30 g/day compared to the control group (1.37±0.29 g/day, although the difference was not statistically significant. Na excretion was positively correlated with solid food intake (p=0.029, r=0.583  and urine volume (p<0.001, r=0.806. Discussion: Our study shows, for the first time in the literature, that GSPE increases  urinary Na excretion in healthy rats,  though not to a statistically significant extent, and that solid food intake and urine volume affect Na excretion. We think that it will be useful for the effect of GSPE on urinary Na excretion in hypertensive rats with impaired Na excretion and balance to be evaluated in future studies.

  12. BOREAS TE-5 Soil Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  13. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  14. Excretion of Different Forms of Zinc by the prawn Palaemon serratus (Pennant)

    International Nuclear Information System (INIS)

    Small, L.F.; Keckes, S.; Fowler, S.W.

    1976-01-01

    Freshly collected speciments of Palaemon serratus from the upper Adriatic Sea were used to determine excretion rates of zinc in ''zinc-free'' water by anodic stripping polarographic techniques. Weight-specific excretion of total zinc varied reciprocally with body weight apparently in a log-log relationship. Weight-specific excretion of ionic-particulate zinc appeared greatest in short term (1-3 hr) experiments, while weight specific excretion of complexed zinc appeared greatest in longer term (4-5 hr) experiments; however, we cannot exclude the possibility that ionic-particulate zinc and dissolved organic compounds were excreted separately and subsequently combined in the water to yield zinc complex. (author)

  15. Excretion of different forms of zinc by the prawn Palaemon serratus (Pennant)

    International Nuclear Information System (INIS)

    Small, L.F.; Keckes, S.; Fowler, S.W.

    1974-01-01

    Freshly collected specimens of Palaemon serratus from the upper Adriatic Sea were used to determine excretion rates of zinc in zinc-free water by anodic stripping polarographic techniques. Weight-specific excretion of total zinc varied reciprocally with body weight, apparently in a log--log relationship. Weight-specific excretion of ionic-particulate zinc appeared greatest in short term (1 to 3 hr) experiments, while weight-specific excretion of complexed zinc appeared greatest in longer term (4 to 5 hr) experiments; however, we cannot exclude the possibility that ionic-particulate zinc and dissolved organic compounds were excreted separately and subsequently combined in the water to yield zinc complex. (auth)

  16. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  17. What controls respiration rate in stored sugarbeet roots

    Science.gov (United States)

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  18. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems

    Science.gov (United States)

    Idkaidek, Nasir M.

    2013-01-01

    The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977

  19. Urine alkalization facilitates uric acid excretion

    Science.gov (United States)

    2010-01-01

    Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet) and others composed of less protein but vegetable-fruit rich food materials (alkali diet). Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+) and anions (Cl-,SO42-,PO4-) necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai) were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-]), indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body. PMID:20955624

  20. Salivary glucose concentration and excretion in normal and diabetic subjects.

    Science.gov (United States)

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  1. The excretion of ammonium by enchytraeids (Cognettia sphagnetorum)

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Christensen, Bent; Holmstrup, Martin

    2011-01-01

    a significant role in the N-cycling. The objective of this study was to quantify NH4+–N excretion of C. sphagnetorum at different temperatures. The results were combined with investigations of population dynamics during one year to estimate annual NH4+–N excretion of the population of C. sphagnetorum in a dry...... Danish heath soil. C. sphagnetorum significantly increased its NH4+–N excretion rate with increasing temperature. At 5 °C about 0.5 μg NH4+–N mg dry weight−1 day−1 was excreted increasing to about 3.3 μg NH4+–N mg dry weight−1 day−1 at 20 °C. Average enchytraeid biomass in the field was 2.5–3.5 g dry...... weight m−2 during cool and wet periods. Dry and warm conditions in May and June, 2008, had a drastic and long-term negative impact on the enchytraeid community. The excretion of NH4+–N by enchytraeids was therefore highest during the cool and moist months despite low temperatures (October 2007–May 2008...

  2. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Bundvands respiration i Kattegat og Bælthavet

    DEFF Research Database (Denmark)

    Hansen, Jørgen L. S.; Bendtsen, Jørgen

    Der findes generelt meget få direkte målinger af den pelagiske respiration, og det har ikke været muligt at finde repræsentative målinger af den pelagiske respiration for de åbne danske farvande. Her præsenteres et sæsonstudie af bundvandets respiration fra 5 stationer i et transekt gående fra det....... Temperaturfølsomheden af respirationsraten udtrykt som en Q10 var 3,01 ± 1.07 for alle forsøg og uafhængigt af om prøverne blev kølet eller opvarmet under inkubationerne. Den labile pulje af organisk stof blev bestemt og de observerede respirations rater svarede til specifikke kulstof omsætningsrater på mellem 0...... målbar reduktion i det partikulære materiale under inkubationerne, tyder overraskende på,at opløst organisk materiale (DOM) er den vigtigste kulstofkilde for bundvandet respiration....

  4. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable container...

  5. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  6. Uptake and excretion of 110mAg by Mud carp Cirrhina molitorella

    International Nuclear Information System (INIS)

    Chen Shunhua; Zhong Chuangguang

    2004-01-01

    Accumulation, excretion and tissue distribution of 110m Ag from both labeled food and water pathways in juvenile mud carp Cirrhina molitorella were investigated. Results indicated that the excretion rate of 110m Ag uptaken from artificial food pathway was very fast. 24 hours after feeding, the radioactivity of the fish decreased rapidly to 2.62% of the initial one and maintained the similar level afterwards in the 7 days excretion experiment. On the 7th day of excretion, the fish were dissected to separate the organs and tissues. The distribution of 110m Ag in the fish was uneven. Radioactivity of 110m Ag in the organs and tissues was in the order as liver>intestine>gall bladder>eye>gill>remainder>muscle. The radioactivity in liver, intestine and gall bladder were 48.14%, 18/43% and 15.43% of the total radioactivity of the fish, respectively. The accumulation of waterborne 110m Ag by mud carp showed that 110m Ag was easy to be uptaken by the fish. the concentration factors at 8th hour and 13th day were 23.8 and 208.6 respectively. Excretion of 110m Ag uptaken from water pathway was slower than that from food pathway. The radioactivity decreased to 20.1% and 16.7% on 15th and 28th day, respectively. The excretion procedure was composed of fast excretion phase (0-2d) and slow excretion phase (2-28d). The half-life of 110m Ag in mud carp in the slow excretion phase was 22d during the slow excretion phase. The distribution of 110m Ag in organs and tissues was mainly in viscera, which accounted for about 80% of the total radioactivity of the fish

  7. Method for obtaining more precise measures of excreted organic carbon

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  8. Quantifying soil respiration at landscape scales. Chapter 11

    Science.gov (United States)

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  9. Characterizing the impact of diffusive and advective soil gas transport on the measurement and interpretation of the isotopic signal of soil respiration

    Science.gov (United States)

    Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond

    2010-01-01

    By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...

  10. Study on the excretion of pb-210 and po-210

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, Hiroyuki [National Inst. of Radiological Sciences, Chiba (Japan)

    1982-06-01

    The amount of Po-210 excreted in urine and feces was more influenced by Po-210 that was taken with food and drink than taken through inhalation. The amount of Pb-210 in urine of mining workers among uranium mine workers was higher than that of the non-uranium mine workers. It was thought that this fact was due to the working environment in uranium mine the amount of Pb-210 being a few tens times higher than that in normal environment. The activity ratios of Po-210 of faecal to urinary excretion are widely distributed, however, the average value of many samples approached to 10. Urinary excretion of Po-210 was highest after 24 hours of ingestion, but for faecal excretion, it was highest after 3 day.

  11. Fetoplacental transport of various trace elements in pregnant rat using the multitracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Shuichi; Hirunuma, Rieko [Radioisotope Technology Division, Cyclotron Center, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama (Japan)

    2001-05-01

    The placenta functions as the barrier between fetus and mother, providing means of regulation of heat exchange, respiration, nutrition, and excretion for the fetus. In this paper, the multitracer technique was applied to study the maternal transport of trace elements via the placenta to the fetus. In this experiment, the multitracer solution used contained the following nuclides: {sup 7}Be, {sup 22}Na, {sup 46}Sc, {sup 48}V, {sup 52}Mn, {sup 59}Fe, {sup 56}Co, {sup 65}Zn, {sup 67}Ga, {sup 74}As, {sup 75}Se, {sup 84}Rb, {sup 85}Sr, {sup 87}Y, {sup 88}Zr, {sup 96}Tc, {sup 101m}Rh, and {sup 103}Ru. We examined the time dependence of the uptake amounts about various elements. From these results, we observed a large difference in the time dependencies between elements and the elements were classified into three groups. Group I elements, such as Be, Sc, V, As, Y, Zr, Tc, Rh, and Ru, are transported to the placenta from the maternal blood and only accumulates in the placenta. Group II elements, such as Na, Co, Ga, Rb, and Sr, are transported to the placenta from the maternal blood and accumulate in the placenta, fetus, and amniotic fluid. Group III elements, such as Mn, Fe, Zn, and Se, are transported to the placenta from the maternal blood and mainly accumulate in the fetus. From these results, it was considered that the placenta is a highly selective filters because essential elements such as Group III elements are readily transported from the placental membrane to the growing fetus, whereas nonessential metals such as Group I elements have difficulty penetrating the placental barrier that protects the fetus from the toxic effects of these elements. (author)

  12. Normal urinary albumin excretion in recently diagnosed type 1 diabetic patients

    DEFF Research Database (Denmark)

    Lind, B; Jensen, T; Feldt-Rasmussen, B

    1989-01-01

    of diabetes. Urinary albumin excretion (median and 95% confidence interval) was similar in the diabetic patients and normal control subjects (8 (6-11) vs 8 (6-11) mg 24-h-1, NS). Four diabetic patients had urinary albumin excretion in the microalbuminuric range of 30-300 mg 24-h-1. There was no significant...... difference between the two groups in urinary excretion of retinol binding protein. The distribution among the individuals of both urinary proteins was positively skewed and similar in the two groups. In conclusion, no significant differences in the urinary excretion of albumin and retinol binding protein...... were found between recently diagnosed Type 1 diabetic patients and normal subjects....

  13. Variation of 210Po daily urinary excretion for male subjects at environmental level

    International Nuclear Information System (INIS)

    Hoelgye, Z.; Hyza, M.; Mihalik, J.; Rulik, P.; Skrkal, J.

    2015-01-01

    210 Po was determined in 24-h urine of seven healthy males from Prague, Czech Republic, for ten consecutive days. The results show that for each volunteer, the urinary excretion of 210 Po changed only little from day to day in the studied time period. For two volunteers, the difference in the daily excreted 210 Po activity for two consecutive days was not significant, given the 95 % confidence interval (two sigma) of the activity measurements. The same is valid for the excretion data of the other volunteers, except for some days where the differences were slightly higher. The range of daily urinary excretion of 210 Po of each volunteer in the studied time period was quite narrow. Among the volunteers, the maximum daily urinary excretion value of 210 Po was at most about a factor of 2.5 higher than the lowest excretion value. An attempt to explain the observed small inter-individual variability of 210 Po excretion in daily urine is made. (orig.)

  14. Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea.

    Science.gov (United States)

    Madejczyk, Michael S; Boyer, James L; Ballatori, Nazzareno

    2009-05-01

    The liver is a major organ involved in regulating whole body manganese (Mn) homeostasis; however, the mechanisms of Mn transport across the hepatocyte basolateral and canalicular membranes remain poorly defined. To gain insight into these transport steps, the present study measured hepatic uptake and biliary excretion of Mn in an evolutionarily primitive marine vertebrate, the elasmobranch Leucoraja erinacea, the little skate. Mn was rapidly removed from the recirculating perfusate of isolated perfused skate livers in a dose-dependent fashion; however, only a small fraction was released into bile (skate hepatocytes in culture. Mn uptake was inhibited by a variety of divalent metals, but not by cesium. Analysis of the concentration-dependence of Mn uptake revealed of two components, with apparent K(m) values 1.1+/-0.1 microM and 112+/-29 microM. The K(m) value for the high-affinity component was similar to the measured skate blood Mn concentration, 1.9+/-0.5 microM. Mn uptake was reduced by nearly half when bicarbonate was removed from the culture medium, but was unaffected by a change in pH from 6.5 to 8.5, or by substitution of Na with Li or K. Mn efflux from the hepatocytes was also rapid, and was inhibited when cells were treated with 0.5 mM 2,4-dinitrophenol to deplete ATP levels. These data indicate that skate liver has efficient mechanisms for removing Mn from the sinusoidal circulation, whereas overall biliary excretion is low and appears to be mediated in part by an ATP-sensitive mechanism.

  15. Research on urinary excretion of purine derivatives in ruminants: Past, present and future

    International Nuclear Information System (INIS)

    Chen, X.B.; Orskov, E.R.

    2004-01-01

    Research on urinary excretion of purine derivatives (PD), namely allantoin, uric acid, xanthine and hypoxanthine, in ruminants have been carried out with an objective to use the excretion of these purine metabolites as a parameter to estimate the intestinal flow of microbial protein. This paper reviews the published literature, from the first paper in 1931 to the current date. The current status of understanding in some key topics is discussed. The topics include: endogenous excretion, modelling the response of PD excretion to purine absorption, calculation of microbial N supply from PD excretion, use of spot urine measurement, possible use of plasma or milk PD as an alterative index, and applications in ruminant nutrition research. This review also covers the current understanding of PD excretion in different animal species, including sheep, cattle, goats, buffaloes, llamas, camels, yak and deer. Progress in analytical methods for the determination of purine derivatives is also discussed. Finally, areas of future research are highlighted. The paper stresses the need for more studies on metabolism of PD in the tissue, the kinetics of PD in the blood and physiological processes of renal excretion, so as to understand better the mechanism that accounts for the between-species and within species variation in PD excretion. Development of simpler and more rapid methods for defining the endogenous excretion and purine input-output relationship is also an area for future work. (author)

  16. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    Pamela eVrabl

    2012-04-01

    Full Text Available Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH.We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi.In this study we explored this hypothesis using ammonium limited chemostat cultivations (pH 2-7, and ammonium or phosphate limited bioreactor batch cultivations (pH 5 and 7. Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids.Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  17. Absorption and excretion of zinc, cadmium and mercury in the gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, H [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-10-01

    The absorption and excretion of inorganic zinc, cadmium and mercury in the gastrointestinal tract were compared using /sup 65/Zn, /sup 109/Cd and /sup 203/Hg. A single dose of /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was administered orally or injected intravenously to investigate the distribution, excretion into bile and excretion into feces or urine. Absorption and excretion through the gastrointestinal tract of mice were studied by the tied loop method. Groups of eight mice or rats were used to measure the radioactivity in sample with a scintillation counter. Most of the orally administered /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was excreted into feces and was less absorbed by the gastrointestinal tract, respectively. Absorption rate in the gastrointestinal tract was as follows: /sup 203/Hg>/sup 65/Zn>/sup 109/Cd. Intravenously injected /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was escreted into the gastrointestinal tract through the gastrointestinal wall and bile duct, respectively. Excretion rate in the gastrointestinal tract was as follows: /sup 65/Zn>/sup 203/Hg>/sup 109/Cd. When comparing the absorption and excretion in each gastrointestinal tract divided into 10 parts, /sup 65/Zn, and /sup 109/Cd were relatively well absorbed from the upper and lower part of small intestine and excreted into the upper, middle, lower part. /sup 203/Hg was relatively well absorbed from the upper, lower part of small intestine and excreted into the stomach and the caecum. The major organs that accumulated absorbed /sup 65/Zn, /sup 109/Cd or /sup 203/Hg were the pancreas and liver, liver and kidney, kidney and liver, respectively.

  18. Urinary excretion of unconjugated and conjugated 3,5-diiodothyronine

    DEFF Research Database (Denmark)

    Hommel, E; Faber, J; Kirkegaard, C

    1985-01-01

    was 276 pmol/d, whereas the median excretion of glucuronidated and sulfated 3,5-T2 in 7 healthy subjects was 448 and 451 pmol/d, respectively. The median excretion of 154 pmol/d in 9 hypothyroid patients did not differ from that found in controls. In contrast 12 patients with hyperthyroidism had...

  19. Soil Respiration under Different Land Uses in Eastern China

    Science.gov (United States)

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  20. Urine alkalization facilitates uric acid excretion

    Directory of Open Access Journals (Sweden)

    Seyama Issei

    2010-10-01

    Full Text Available Abstract Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet and others composed of less protein but vegetable-fruit rich food materials (alkali diet. Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+ and anions (Cl-,SO42-,PO4- necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-], indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body.

  1. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  2. Quantitative evaluation of the protective effect of respirators

    International Nuclear Information System (INIS)

    Murata, Mikio

    1983-01-01

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF 6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  3. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  4. Urinary prostaglandin E and vasopressin excretion in essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1983-01-01

    excretion of prostaglandin E (PGE), immunoreactive arginine vasopressin (iA VP), and kallikrein were determined. PGE was quantitated with a radioimmunoassay having 4.9% cross-reactivity with prostaglandin E (PGE). After 4 weeks on the diet, water consumption and urinary iAVP excretion increased....... Increased water consumption and increased urinary iAVP excretion seem to be early symptoms (after 4 weeks) of EFA deficiency, whereas decreased urine output and decreased urinary PGE excretion occur much later (after 10 weeks). Two energy% linolenate supplementation to a fat-free diet did not change...

  5. Catecholamine, Corticosteroid and Ketone Excretion in Exercise and Hypoxia,

    Science.gov (United States)

    OHCS excretion tended to be higher during the experimental period and subsequently lower overnight during the hypoxia week. Ketosis occurred in two...subjects. In one of these it could be readily related to previous extraneous stress. Excretion of unidentified ketones in overnight urines was sometimes suspected and occurred beyond doubt following gross ketosis . (Author)

  6. Purine derivative excretion and microbial protein synthesis in sheep ...

    African Journals Online (AJOL)

    In a 3 x 3 Latin square design experiment, urinary excretions of purine derivatives (allantoin N, Uric acid N, Xanthine + Hypoxanthine N) were measured and used to estimate microbial N yield in 9 sheep fed roughage- based diet supplemented with 0, 150 and 300g DM grass silage respectively. Daily urinary excretions of ...

  7. Global spatiotemporal distribution of soil respiration modeled using a global database

    Science.gov (United States)

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  8. Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative

    Science.gov (United States)

    Thornley, John H. M.

    2011-01-01

    Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose

  9. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  10. The gastrointestinal absorption and urinary excretion of plutonium in male volunteers

    International Nuclear Information System (INIS)

    Ham, G.J.; Harrison, J.D.

    2000-01-01

    The gastrointestinal absorption and urinary excretion of 244 Pu have been measured in five healthy adult males in a two-stage study. Firstly, the volunteers ingested about 10 14 atoms of 244 Pu in citrate solution with a mid-day meal and urinary excretion was measured for the following 7-9 days. After a period of at least six months, the same volunteers were given an intravenous injection of 2x10 12 atoms of 244 Pu in citrate solution. Urinary excretion was then measured for the following 7-9 days and subsequently at intervals over periods up to 5-6 years. Fractional absorption of Pu from the gastrointestinal tract, calculated by comparing excretion for the two routes of administration, averaged 6x10 -4 , consistent with the ICRP value of 5x10 -4 . The results show a positive correlation between increasing age of the subjects, between 36 and 64 years of age, and increasing absorption of ingested Pu from 10 -4 to 10 -3 . In general, results for urinary excretion after injection are consistent with prediction of the current ICRP model although daily excretion after 5-6 years (3 subjects) averages 0.005% of the administered amount, about twice the predicted value. (author)

  11. Simulating soil N2O emissions and heterotrophic CO2 respiration in arabe systems using FASSET and MoBiLE-DNDC

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Kracher, Daniele; Lægdsmand, Mette

    2011-01-01

    Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under w...... mineral nitrogen, which seemed to originate from deficiencies in simulating degradation of soil organic matter, incorporated residues of catch crops and organic fertilizers. To improve the performance of the models, organic matter decomposition parameters need to be revised.......Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under...... winter wheat grown in three different organic and one inorganic fertilizer-based cropping system using two different models, i.e., MoBiLE-DNDC and FASSET. The two models were generally capable of simulating most seasonal trends of measured soil heterotrophic CO2 respiration and N2O emissions. Annual soil...

  12. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  13. Urinary, biliary and faecal excretion of rocuronium in humans

    NARCIS (Netherlands)

    Proost, JH; Eriksson, LI; Mirakhur, RK; Wierda, JMKH

    2000-01-01

    The excretion of rocuronium and its potential metabolites was studied in 38 anaesthetized patients, ASA I-III and 21-69 yr old. Rocuronium bromide was administered as an i.v. bolus dose of 0.3 or 0.9 mg kg(-1). in Part A of the study, the excretion into urine and bile, and the liver content were

  14. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  15. Urinary excretion of platinum from South African precious metals refinery workers.

    Science.gov (United States)

    Linde, Stephanus J L; Franken, Anja; du Plessis, Johannes L

    2018-03-30

    Urinary platinum (Pt) excretion is a reliable biomarker for occupational Pt exposure and has been previously reported for precious metals refinery workers in Europe but not for South Africa, the world's largest producer of Pt. This study aimed to quantify the urinary Pt excretion of South African precious metals refinery workers. Spot urine samples were collected from 40 workers (directly and indirectly exposed to Pt) at two South African precious metals refineries on three consecutive mornings prior to their shifts. Urine samples were analysed for Pt using inductively coupled plasma-mass spectrometry and were corrected for creatinine content. The urinary Pt excretion of workers did not differ significantly between sampling days. Urinary Pt excretions ranged from work area (P=0.0006; η 2 =0.567) and the number of years workers were employed at the refineries (P=0.003; η 2 =0.261) influenced their urinary Pt excretion according to effect size analyses. Directly exposed workers had significantly higher urinary Pt excretion compared with indirectly exposed workers (P=0.007). The urinary Pt excretion of South African precious metals refinery workers reported in this study is comparable with that of seven other studies conducted in precious metals refineries and automotive catalyst plants in Europe. The Pt body burden of workers is predominantly determined by their work area, years of employment in the refineries and whether they are directly or indirectly exposed to Pt. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol

    International Nuclear Information System (INIS)

    Hagen, Thilo; D'Amico, Gabriela; Quintero, Marisol; Palacios-Callender, Miriam; Hollis, Veronica; Lam, Francis; Moncada, Salvador

    2004-01-01

    2-Methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol, is known to have antiproliferative, antiangiogenic, and proapoptotic activity. Mechanistically, 2ME2 has been shown to downregulate hypoxia-inducible factor 1α (HIF1α) and to induce apoptosis in tumour cells by generating reactive oxygen species (ROS). In this study we report that 2ME2 inhibits mitochondrial respiration in both intact cells and submitochondrial particles, and that this effect is due to inhibition of complex I of the mitochondrial electron transport chain (ETC). The prevention by 2ME2 of hypoxia-induced stabilisation of HIF1α in HEK293 cells was found not to be due to an effect on HIF1α synthesis but rather to an effect on protein degradation. This is in agreement with our recent observation using other inhibitors of mitochondrial respiration which bring about rapid degradation of HIF1α in hypoxia due to increased availability of oxygen and reactivation of prolyl hydroxylases. The concentrations of 2ME2 that inhibited complex I also induced the generation of ROS. 2ME2 did not, however, cause generation of ROS in 143B rho - cells, which lack a functional mitochondrial ETC. We conclude that inhibition of mitochondrial respiration explains, at least in part, the effect of 2ME2 on hypoxia-dependent HIF1α stabilisation and cellular ROS production. Since these actions of 2ME2 occur at higher concentrations than those known to inhibit cell proliferation, it remains to be established whether they contribute to its therapeutic effect

  17. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  18. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  19. Effect of change in diet on excretion of plutonium-239 from organism

    International Nuclear Information System (INIS)

    Ivanova, N.P.

    1987-01-01

    To check supposition on milk effect on plutonium-239 excretion from organism the portable water for rats, contained in individual metabolic cages permitting separate excretion analysis, was replaced by milk. Some days later milk was excluded from diet. 24-hourly rate of radionuclide with feces and urine excretion from organism was determined. On the basis of preliminary data analysis it is supposed that interaction of some milk components with biocomponents of blood and deposition organ tissues violate 239 Pu steady equilibrium distribution in organism, affecting its metabolism through the intermediary of blood system. It results in increased plutonium excretion

  20. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  1. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  2. Human excretion behaviour in a schistosomiasis endemic area of the Geizira, Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Cheesmond, A.K.; Fenwick, A.

    1981-06-01

    A 12-month study of the excretory behaviour of resident and migrant labourers in Gezira, Sudan, was undertaken to contribute base-line information towards the development of a new control strategy. Of 398 observed acts of excretion 70% of urinations and 93% of defaecations occurred in sites far removed from any water body. After excretion only 31% people washed themselves (and only 7.1% actually washed their genital region directly into a water body). People excreting far from water were as likely to wash afterwards as those excreting near a water body. This finding contradicted previous expectations based on the hygienic precepts of Islam. The results show that privacy is a more important consideration than proximity of water in the selection of a site for excretion, and suggest that there is only limited regular contamination by S. mansoni eggs under the observed conditions.

  3. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    Directory of Open Access Journals (Sweden)

    Luis Alberto Madrigal-Perez

    2016-03-01

    Full Text Available Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1 decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2 increases adenosine monophosphate/adenosine diphosphate (AMP/ADP ratio that can lead to AMP protein kinase (AMPK activation, which is related to its health effects, and (3 increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.

  4. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  5. The nutrition/excretion system of urban areas: socioecological regimes and transitions.

    OpenAIRE

    Esculier , Fabien

    2018-01-01

    Nutrition and excretion are fundamental physiological needs for all human beings. Analysis of their materiality, from the cellular scale up to the great planetary-scale biogeochemical cycles, shows that nutrition and excretion form a system. The focus of our study is the sustainability of the nutrition/excretion systems of urban areas, which we have sought to assess by analysing substance flows.The most relevant of these substances seems to be nitrogen, so by assessing urban nitrogen flows we...

  6. Excretion of depleted uranium by Gulf war veterans

    International Nuclear Information System (INIS)

    Toohey, R.E.

    2003-01-01

    During the Persian Gulf War, in 1991, approximately 100 US military personnel had potential intakes of depleted uranium (DU), including shrapnel wounds. In 1993, the US government initiated a follow-up study of 33 Gulf War veterans who had been exposed to DU, many of whom contained embedded fragments of DU shrapnel in their bodies. The veterans underwent medical evaluation, whole-body counting, and urinalysis for uranium by kinetic phosphorescence analysis (KPA). Data are available from seven individuals who exceeded the detection limit for whole-body counting and also had elevated urinary uranium. Urinary excretion rates, in μg U g -1 creatinine, were determined in 1997 and 1999. The body contents, in mg DU, were determined in 1997; it is assumed there were no significant decreases in total body content in the interim. For the 1997 data, the mean fractional excretion was (2.4 ± 2.8) x 10 -5 g -1 creatinine, and for the 1999 data, the mean was (1.1 ± 0.6) x 10 -5 g -1 creatinine. However, these means are not significantly different, nor is there any correlation of excretion rate with body content. Thus, human data available to date do not provide any basis for determining the effects of particle surface area, composition and solubility, and biological processes such as encapsulation, on the excretion rate. (author)

  7. Organic carbon budget for the eastern boundary of the North Atlantic subtropical gyre: major role of DOC in mesopelagic respiration.

    Science.gov (United States)

    Santana-Falcón, Yeray; Álvarez-Salgado, Xosé Antón; Pérez-Hernández, María Dolores; Hernández-Guerra, Alonso; Mason, Evan; Arístegui, Javier

    2017-08-31

    Transports of suspended particulate (POC susp ) and dissolved (DOC) organic carbon are inferred from a box-model covering the eastern boundary of the North Atlantic subtropical gyre. Corresponding net respiration rates (R) are obtained from a net organic carbon budget that is based on the transport estimates, and includes both vertical and lateral fluxes. The overall R in the mesopelagic layer (100-1500 m) is 1.6 ± 0.4 mmol C m -2 d -1 . DOC accounts for up to 53% of R as a result of drawdown of organic carbon within Eastern North Atlantic Central Water (ENACW) that is entrained into sinking Mediterranean Overflow Water (MOW) that leads to formation of Mediterranean water (MW) at intermediate depths (~900 m). DOC represents 90% of the respired non-sinking organic carbon. When converted into oxygen units, the computed net respiration rate represents less than half the oxygen utilization rates (OUR) reported for the mesopelagic waters of the subtropical North Atlantic. Mesoscale processes in the area, not quantified with our approach, could account in part for the OUR differences observed between our carbon budget and other published studies from the North Atlantic, although seasonal or interannual variability could also be responsible for the difference in the estimates.

  8. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  9. [New theory of holistic integrative physiology and medicine. III: New insight of neurohumoral mechanism and pattern of control and regulation for core axe of respiration, circulation and metabolism].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    Systemic mechanism of neurohumoral control and regulation for human is limited. We used the new theory of holistic integrative physiology and medicine to approach the mechanism and pattern of neurohumoral control and regulation for life. As the core of human life, there are two core axes of functions. The first one is the common goal of respiration and circulation to transport oxygen and carbon dioxide for cells, and the second one is the goal of gastrointestinal tract and circulation to transport energy material and metabolic product for cells. These two core axes maintain the metabolism. The neurohumoral regulation is holistically integrated and unified for all functions in human body. We simplified explain the mechanism of neurohumoral control and regulation life (respiration and circulation) as the example pattern of sound system. Based upon integrated regulation of life, we described the neurohumoral pattern to control respiration and circulation.

  10. A Global Database of Soil Respiration Data, Version 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  11. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  12. A Global Database of Soil Respiration Data, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  13. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  14. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    Science.gov (United States)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  15. Excretion of metrizamide (Amipaque) in humans following lumbar subarachnoid injection

    International Nuclear Information System (INIS)

    Amundsen, P.; Weber, H.; Hoel, L.; Golman, K.

    1979-01-01

    The excretion of metrizamide through the kidneys and intestinal tract was determined in 10 patients submitted to myelography because of sciatica, for a period of 7 days following the examination. In the faeces, less than 5 per cent of the injected contrast medium was recovered during this period. Total recovery in the urine varied considerably from patient to patient, but most of the contrast medium was excreted during the first 48 hours. From the fourth day on, only small amounts were excreted, but even on the 7th day 3 to 11 mg iodine remained, which corresponds to 6 to 22 mg of metrizamide. (Auth.)

  16. Metabolism of [14C] bicarbonate by Streptococcus lactis: the synthesis, uptake and excretion of aspartate by resting cells

    International Nuclear Information System (INIS)

    Hillier, A.J.; Rice, G.H.; Jago, G.R.

    1978-01-01

    Resting cells of Streptococcus lactis C10 were able to synthesize aspartic acid de novo but could not actively transport aspartic acid into the cell. Intracellular aspartate was excreted from the cell in the presence of glucose but did not exchange with any extracellular amino acids. The results indicate that Str. lactis C10 obtains the aspartic acid it requires for growth by bicarbonate fixation instead of by the utilization of extracellular aspartic acid. (author)

  17. Reduction in fecal excretion of Giardia cysts: effect of cholestasis and diet.

    Science.gov (United States)

    Erlandsen, Stanley

    2005-12-01

    Bile is a major growth factor for the proliferation of Giardia spp. trophozoites in the small intestine and, at high concentrations, stimulates encystment of trophozoites. This report demonstrates that surgical cholestasis to interrupt the flow of bile from liver to intestine or the use of bile-binding resins in the diet can both dramatically decrease the fecal excretion of Giardia muris cysts. Cholestasis produced a 3 log reduction in excretion of G. muris cysts within 24 hr of surgery and a 4 log reduction after 3 days. Sham controls showed no difference in cyst excretion from presurgical control values. Two isocaloric diets were studied: a control diet (N) of Purina mouse chow containing 5% celufil and an experimental diet (CR) containing 5% cholestyramine, a resin that binds bile. Compared with the N diet, the CR diet was associated with reductions in cyst excretion of 3 logs within 1 day. Despite lowered excretion of G. muris cysts in mice fed the cholestyramine diet, the trophozoite recovery from the duodenum was similar with both diets. Cyclic feeding of the CR diet and the N diet at 3-day intervals produced significant oscillations (changes of 3-4 logs) in fecal cyst shedding. The significant reductions in fecal excretion of cysts observed with agents that bind bile suggests that diets capable of binding bile might be a therapeutic means to minimize the fecal excretion of cysts and thereby may help to reduce the risk of spreading giardiasis through fecal-oral contamination.

  18. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast.

    Science.gov (United States)

    Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo

    2017-04-01

    Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

  19. Decrease in Urinary Creatinine Excretion in Early Stage Chronic Kidney Disease

    Science.gov (United States)

    Tynkevich, Elena; Flamant, Martin; Haymann, Jean-Philippe; Metzger, Marie; Thervet, Eric; Boffa, Jean-Jacques; Vrtovsnik, François; Houillier, Pascal; Froissart, Marc; Stengel, Bénédicte

    2014-01-01

    Background Little is known about muscle mass loss in early stage chronic kidney disease (CKD). We used 24-hour urinary creatinine excretion rate to assess determinants of muscle mass and its evolution with kidney function decline. We also described the range of urinary creatinine concentration in this population. Methods We included 1072 men and 537 women with non-dialysis CKD stages 1 to 5, all of them with repeated measurements of glomerular filtration rate (mGFR) by 51Cr-EDTA renal clearance and several nutritional markers. In those with stage 1 to 4 at baseline, we used a mixed model to study factors associated with urinary creatinine excretion rate and its change over time. Results Baseline mean urinary creatinine excretion decreased from 15.3±3.1 to 12.1±3.3 mmol/24 h (0.20±0.03 to 0.15±0.04 mmol/kg/24 h) in men, with mGFR falling from ≥60 to creatinine excretion at baseline. Mean annual decline in mGFR was 1.53±0.12 mL/min/1.73 m2 per year and that of urinary creatinine excretion rate, 0.28±0.02 mmol/24 h per year. Patients with fast annual decline in mGFR of 5 mL/min/1.73 m2 had a decrease in urinary creatinine excretion more than twice as big as in those with stable mGFR, independent of changes in urinary urea as well as of other determinants of low muscle mass. Conclusions Decrease in 24-hour urinary creatinine excretion rate may appear early in CKD patients, and is greater the more mGFR declines independent of lowering protein intake assessed by 24-hour urinary urea. Normalizing urine analytes for creatininuria may overestimate their concentration in patients with reduced kidney function and low muscle mass. PMID:25401694

  20. K+ excretion: the other purpose for puddling behavior in Japanese Papilio butterflies.

    Science.gov (United States)

    Inoue, Takashi A; Ito, Tetsuo; Hagiya, Hiroshi; Hata, Tamako; Asaoka, Kiyoshi; Yokohari, Fumio; Niihara, Kinuko

    2015-01-01

    To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.

  1. Greater bile acid excretion with soy bean than with cow milk in infants.

    Science.gov (United States)

    Potter, J M; Nestel, P J

    1976-05-01

    The excretion of fecal sterols and bile acids was measured in five infants from the 1st week of life to 2 or 3 months of age as the composition of their diet was changed from cow milk to soy bean milk. Bile acid excretion, adjusted for body weight, was initially lower during the 1st than during the 3rd week, when it reached adult values. The average excretion of bile acids was 6.8 mg/kg per day with soy bean milk and 3.6 mg/kg per day with cow milk. Net sterol excretion (total sterol output minus cholesterol intake) was also twice as high with soy bean milk and probably reflected enhancement of cholesterol re-excretion as well as of synthesis since the cholesterol content of soy beans is nil. However, net sterol excretion remained higher with soy bean than with cow milk even when egg yolk cholesterol was added to the soy bean milk. It is concluded that the substitution of soy bean milk for cow milk, which lowered the plasma cholesterol in all infants (even in the presence of dietary cholesterol) leads to an increase in bile acids and probably also in cholesterol excretion in young infants.

  2. Pre-symptomatic increase in urine-orosomucoid excretion in pre-eclamptic women

    DEFF Research Database (Denmark)

    Kronborg, Camilla Skovhus; Allen, Jim; Vittinghus, Erik

    2007-01-01

    , 32 women developed pre-eclampsia, and 5 controls for every case of pre-eclampsia were found. Blood samples were collected 4 times and urine samples 6 times from the 18/19th week and throughout pregnancy. Orosomucoid and albumin in plasma were analysed by standard methods, and in urine by sandwich...... in orosomucoid. In the plasma samples, orosomucoid was significantly higher late in pre-eclamptic pregnancies (>or=36th week, p=0.0275). CONCLUSIONS: Pre-eclampsia is associated with a pre-symptomatic increase in the urine excretion of orosomucoid, and orosomucoid excretion precedes that of albumin. Orosomucoid...... excretion can probably be used as a prognostic tool in combination with other screening methods, and seems to be a more sensitive marker for evolving pre-eclampsia than albumin. Plasma orosomucoid is significantly increased late in pre-eclampsia. Thus, the increased excretion of orosomucoid must primarily...

  3. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    OpenAIRE

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-01-01

    Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration t...

  4. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  5. How much work is expended for respiration?

    Science.gov (United States)

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  6. Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010.

    Science.gov (United States)

    Pfeiffer, Christine M; Hughes, Jeffery P; Cogswell, Mary E; Burt, Vicki L; Lacher, David A; Lavoie, Donna J; Rabinowitz, Daniel J; Johnson, Clifford L; Pirkle, James L

    2014-05-01

    Little information is available on temporal trends in sodium intake in the U.S. population using urine sodium excretion as a biomarker. Our aim was to assess 1988-2010 trends in estimated 24-h urine sodium (24hUNa) excretion among U.S. adults (age 20-59 y) participating in the cross-sectional NHANES. We used subsamples from a 1988-1994 convenience sample, a 2003-2006 one-third random sample, and a 2010 one-third random sample to comply with resource constraints. We estimated 24hUNa excretion from measured sodium concentrations in spot urine samples by use of calibration equations (for men and women) derived from the International Cooperative Study on Salt, Other Factors, and Blood Pressure study. Estimated 24hUNa excretion increased over the 20-y period [1988-1994, 2003-2006, and 2010; means ± SEMs (n): 3160 ± 38.4 mg/d (1249), 3290 ± 29.4 mg/d (1235), and 3290 ± 44.4 mg/d (525), respectively; P-trend = 0.022]. We observed significantly higher mean estimated 24hUNa excretion in each survey period (P trends in mean estimated 24hUNa excretion remained significant (P-trend = 0.004). We observed no temporal trends in mean estimated 24hUNa excretion among BMI subgroups, nor after adjusting for BMI. Although several limitations apply to this analysis (the use of a convenience sample in 1988-1994 and using estimated 24hUNa excretion as a biomarker of sodium intake), these first NHANES data suggest that mean estimated 24hUNa excretion increased slightly in U.S. adults over the past 2 decades, and this increase may be explained by a shift in the distribution of BMI.

  7. Investigation of the daily variation in iodine and creatinine excretion in human urine

    International Nuclear Information System (INIS)

    Aabech, H.S.

    1975-08-01

    Continuing earlier investigations of the level of iodine intake in Norway, the excretion of iodine in 24-hour samples of urine over 7 days has been measured for 23 persons. Three of them collected 24-hour samples of urine during continuous periods of 21, 22 and 54 days. The main aim of the investigation was to study the diurnal variation of iodine excretion , and to correlate it with diet components when connection was suspected. To this end the persons had to keep record of the diet, especially with respect to fish and fish products. The variation from day to day of the iodine excretion was much greater than expected, and the highest values were always preceded by meals of sea-fish. Mean 24-hour iodine excretion from 13 males was 266 μg/24h (range 54-2272), from 8 females 154 μg/24h (range 58-627), and from 2 children 74 μg/24h (range 33-129). Large fluctuations were present, as indicated by standard deviations that varied from 12 to 119% of the mean. None of the persons had a mean 24-hour excretion lower than the advised minimum of 1 μg iodine/kg b w. The excretion of creatinine has also been measured, and the excretion from day to day showed large fluctuations for some of the persons. In 13 males the mean 24-hour excretion of creatinine was 1.88 gram (range 0.81-2.93), and in 8 females 1.17 gram (range 0.47-1.74). In one person, who collected urine during a period of 54 days, the mean excretion of creatinine was 1.80 gram (range 1.19-2.75). (auth.)

  8. Tissular localization and excretion of intravenously administered silica nanoparticles of different sizes

    International Nuclear Information System (INIS)

    Xie Guangping; Sun Jiao; Zhong Gaoren

    2012-01-01

    The nanotoxicology as a new subdiscipline of nanotechnology needs to be studied in vivo. To do so, it is essential to understand certain pharmacological information of the nanoparticles in vivo. Silica nanoparticles (SiNPs) have been developed for a number of biomedical uses; however, research on their tissular localization and excretion has been limited. In this study, we analyzed the localization of intravenously administered SiNPs with sizes of 20 and 80 nm in liver and spleen and quantitatively investigated the excretion of SiNPs through urine and feces. The results of the tissular localization study showed that the SiNPs were located in liver evenly; however, they were mainly accumulated in the white pulp of spleen. The quantitative excretory assay found the renal excretion being the main excretion pathway of SiNPs and indicated that the accumulated excretory rate of 80 nm SiNPs through urine was higher than that of 20 nm SiNPs because of the higher hemoconcentration. Further analysis of radioactive substances in the excreta showed the convincing confirmatory evidence that the SiNPs of both the sizes of 20 and 80 nm could be excreted through urine. These results provide important information on in vivo distribution and excretion of SiNPs.

  9. Short Term INT-Formazan Production as a Proxy for Marine Prokaryote Respiration

    Science.gov (United States)

    Cajal-Medrano, R.; Villegas-Mendoza, J.; Maske, H.

    2016-02-01

    Prokaryotes are poisoned by the tetrazolium electron transport probe INT on time scales of less than one hour, invalidating the interpretation of the rate of in vivo INT reduction to formazan as a proxy for oxygen consumption rates (Villegas-Mendoza et al. 2015). We measured oxygen consumption rate (R; µM O2 hour-1) and electron transport activity with in vivo INT formazan production (IFP, mM formazan) at 0.5 mM INT during 1 hour exposure time of natural communities and cultures of the marine bacteria Vibrio harveyi growing in batch and continuous cultures. A strong exponential relationship R = 0.20 IFP2.15 (pgrowth rates under aerobic condition. We find that IFP and oxygen consumption increase with bacterial specific growth rates and temperature as expected from basic principles of physiology and biochemistry. Oxygen and nitrogen saturated batch cultures of V. harveyi showed that both, IFP and oxygen consumption increased for 0.8 hours but then stopped similar to natural bacterial communities supporting the above relationship of IFP to prokaryote respiration. Our method implies adding 0.5 mM INT to a plankton sample and incubating for less than 1 hour. After prokaryote separation by size filtration (0.8 mm), the formazan crystals are collected by filtration (0.2 mm) and dissolved in propanol. The absorbance at 485 nm per sample volume yields the formazan potential that is related to prokaryote respiration in the sample.

  10. Excretion pattern of enrofloxacin after oral treatment of chicken broilers.

    Science.gov (United States)

    Slana, M; Pahor, V; Cvitkovič Maričič, L; Sollner-Dolenc, M

    2014-12-01

    The metabolism and excretion of enrofloxacin were studied when applied as oral solution to chicken broilers for five consecutive days. Sixty 9-day-old broilers were isolated within an intensively rearing poultry farm during enrofloxacin therapy (15.5 mg/kg per day). The excreta of the isolated broilers were collected daily, 9 days after therapy termination, for 13 consecutive days, and analyzed for the presence of enrofloxacin and its metabolites [ciprofloxacin, desethylene-enrofloxacin (DES-EF) and desethylene-ciprofloxacin (DES-CF)]. Enrofloxacin was excreted predominantly in the form of the parent compound between days 1 and 13. Ciprofloxacin was detected in the excreta between days 1 and 6, whereas minor amounts of DES-EF and DES-CF were excreted only between days 1-7 and 1-6, respectively. In conclusion, the analysis of the excreta showed that approximately 74% of orally applied enrofloxacin was excreted as the parent compound, approximately 25% as the main metabolite ciprofloxacin, and approximately 1% as the minor metabolites desethylene-enrofloxacin and desethylene-ciprofloxacin. © 2014 John Wiley & Sons Ltd.

  11. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  12. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  13. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  14. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  15. Effects of simulated warming on soil respiration to XiaoPo lake

    Science.gov (United States)

    Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui

    2018-02-01

    The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p main influencing factor of soil respiration in this region.

  16. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  17. Phloem transport in trees

    Science.gov (United States)

    Michael G. Ryan; Shinichi. Asao

    2014-01-01

    Phloem is like an enigmatic central banker: we know how important phloem is to plant function, but very little about how phloem functions as part of a whole-plant economy. Phloem transports carbohydrates, produced by photosynthesis and hydrolysis of reserve compounds, to sink tissues for growth, respiration and storage. At photosynthetic tissues, carbohydrates are...

  18. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    International Nuclear Information System (INIS)

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.

    1990-01-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients

  19. Use of respirators for protection of workers against airborne radioactive materials

    International Nuclear Information System (INIS)

    Revoir, W.H.

    1990-01-01

    The various types of respirators and the requirements for an effective respirator program are outlined. The use of specific types of respirators to protect workers against inhalation of airborne radioactive materials is discussed. Problems encountered in using respirators in the nuclear industry which have resulted in worker injury and death are described

  20. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  1. The effect of taurocholate on canine bile flow, biliary excretion and concentration of ioglycamide

    International Nuclear Information System (INIS)

    Toetterman, S.; Santavirta, S.; Mankinen, P.; Antila, H.; Lukkari, E.; Goethlin, J.; Korpi-Tommola, T.

    1983-01-01

    The bile acid taurocholate increases the biliary excretion of organic anions, such as sulfobromophthalein (BSP), bilirubin and iopanoic acid. In the present study has been investigated the effect of taurocholate on 1. Canine biliary excretion and concentration of the i.v. contrast medium ioglycamide and 2. Canine bile flow. The experimental model consisted of cholecystectomized, anaesthetized dogs with a fistula, through which the common bile duct could be catheterized and drained. One hour after cannulation, i.v. infusion of ioglycamide at a rate of 4 μmol/min./kg. was started. Two hours after the infusion start a control group received i.v. infusion of saline, while in another a 1.5% sodium taurocholate infusion was started with stepwise increases with 30 min. intervals from 0.4 to 0.8, 1.6 and 3.2 μmol/min./kg. Compared with control, all rates of taurocholate infusion increased bile flow and decreased biliary ioglycamide concentration. Although the bile flow with increasing taurocholate infusion rates was enhanced, the biliary ioglycamide excretion did not increase. The results indicate that ioglycamide and taurocholate are excreted into bile by separate excretion mechanisms. As taurocholate increases the biliary excretion of some other organic anions, it supports the hypothesis that organic anions are excreted into bile by more than two excretion mechanisms, taurocholate affecting only some of them. (orig.)

  2. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    Directory of Open Access Journals (Sweden)

    Fendt Sarah-Maria

    2010-02-01

    Full Text Available Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Conclusions Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential

  3. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates.

    Science.gov (United States)

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-02-18

    Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential for respiration.

  4. Distribution and Excretion of Am-241 in Rats

    International Nuclear Information System (INIS)

    Alatas, Z; Nurhayati, S; Rahardjo, T

    1996-01-01

    Determination of the activity content of Am-241 administered oral y in several organs and tissues of white rats including the excretion had been carried out. The observation of Am-241 activity was carried out through surgery and for the excretion of the radionuclide by collecting urine and faces. The surgeries were conducted on the 0 (6 hours), 1, 2, 3, 4, 5, 15 and 30th day post administration of 2.965 kBq Am-241, whereas the urine and faces collections were done every other day for 30 days using metabolism cage. The result indicated that the distribution of Am-241 which found in all tested organs/tissues with various fraction is considered as the initial distribution of Am-241 in rats. The content of americium in gastrointestinal tract and lung is relatively high within the first week post contamination. And, americium activities in other organs/tissues are various with time. The excretion of Am-241 is higher via feces than that of urin, i.e up to 20% in 30 days

  5. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  6. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  7. Changes in urinary taurine and hypotaurine excretion after two-thirds hepatectomy in the rat

    NARCIS (Netherlands)

    Brand, H. S.; Jörning, G. G.; Chamuleau, R. A.

    1998-01-01

    This study followed the time course of urinary taurine and hypotaurine excretion after two-thirds hepatectomy in rats. The excretion of both taurine and hypotaurine was elevated during 18 h following the hepatectomy, with maximal excretion during the first 6 h. Twelve and 24 h after partial

  8. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.

    Science.gov (United States)

    Guessous, Idris; Pruijm, Menno; Ponte, Belén; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Vuistiner, Philippe; Staessen, Jan; Gu, Yumei; Paccaud, Fred; Mohaupt, Markus; Vogt, Bruno; Pechère-Bertschi, Antoinette; Pechère-Berstchi, Antoinette; Martin, Pierre-Yves; Burnier, Michel; Eap, Chin B; Bochud, Murielle

    2015-03-01

    Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure. © 2014 American Heart Association, Inc.

  9. Urinary growth hormone excretion in acromegaly

    DEFF Research Database (Denmark)

    Main, K M; Lindholm, J; Vandeweghe, M

    1993-01-01

    The biochemical assessment of disease activity in acromegaly still presents a problem, especially in treated patients with mild clinical symptoms. We therefore examined the diagnostic value of the measurement of urinary growth hormone (GH) excretion in seventy unselected patients with acromegaly...

  10. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  11. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    Science.gov (United States)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  12. Development of an Advanced Respirator Fit Test Headform (Postprint)

    Science.gov (United States)

    2012-11-01

    N95 filtering facepiece respirators (FFRs) for pro - tection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking...requiredto wear respirators to reduce their exposure to air- borne hazards.(1) The U.S. Occupational Safety and Health Administration ( OSHA ) Respiratory...13 workplace protection factors.(9,10). Inward leakage (IL) of con - taminants into a respirator facepiece has been described as a combination of

  13. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    Science.gov (United States)

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  14. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tian, J. E-mail: tianjun@public.lz.gs.cn; Yin, X.M.; Zhang, X.; Wang, Q.Z

    2000-12-15

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon {sup 40}Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  15. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice

    International Nuclear Information System (INIS)

    Wang, X.; Tian, J.; Yin, X.M.; Zhang, X.; Wang, Q.Z.

    2000-01-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40 Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice

  16. Quantitation of phosphorus excretion in sheep by compartmental analysis

    International Nuclear Information System (INIS)

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-01-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of 32 P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney

  17. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  18. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    Science.gov (United States)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  19. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  20. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  1. Respirator studies for the Nuclear Regulatory Commission (NRC)

    International Nuclear Information System (INIS)

    Skaggs, B.J.; Fairchild, C.I.; DeField, J.D.; Hack, A.L.

    1985-01-01

    A project of the Health, Safety and Environment Division is described. The project provides the NRC with information of respiratory protective devices and programs for their licensee personnel. The following activities were performed during FY 1983: selection of alternate test aerosols for quality assurance testing of high-efficiency particulate air respirator filters; evaluation of MAG-1 spectacles for use with positive and negative-pressure respirators; development of a Manual of Respiratory Protection in Emergencies Involving Airborne Radioactive Materials, and technical assistance to NRC licensees regarding respirator applications. 2 references, 1 figure

  2. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons.

    Science.gov (United States)

    Llorente-Folch, Irene; Rueda, Carlos B; Amigo, Ignacio; del Arco, Araceli; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina

    2013-08-28

    Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol). Respiration in nonstimulated neurons on 2.5-5 mm glucose depends on ARALAR-malate aspartate shuttle (MAS), with a 46% drop in aralar KO neurons. All stimulation conditions induced increased OCR (oxygen consumption rate) in the presence of Ca2+, which was prevented by BAPTA-AM loading (to preserve the workload), or in Ca2+-free medium (which also lowers cell workload). SCaMC-3 limits respiration only in response to high workloads and robust Ca2+ signals. In every condition tested Ca2+ activation of ARALAR-MAS was required to fully stimulate coupled respiration by promoting pyruvate entry into mitochondria. In aralar KO neurons, respiration was stimulated by veratridine, but not by KCl or carbachol, indicating that the Ca2+ uniporter pathway played a role in the first, but not in the second condition, even though KCl caused an increase in [Ca2+]mit. The results suggest a requirement for ARALAR-MAS in priming pyruvate entry in mitochondria as a step needed to activate respiration by Ca2+ in response to moderate workloads.

  3. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  4. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  5. Sodium and potassium urinary excretion levels of preschool children: Individual, daily, and seasonal differences.

    Science.gov (United States)

    Yasutake, Kenichiro; Nagafuchi, Mikako; Izu, Ryoji; Kajiyama, Tomomi; Imai, Katsumi; Murata, Yusuke; Ohe, Kenji; Enjoji, Munechika; Tsuchihashi, Takuya

    2017-06-01

    In this study, the authors measured sodium and potassium concentrations in spot urine samples of preschool children on multiple days, and evaluated individual, daily, and seasonal effects. A total of 104 healthy preschool children aged 4 to 5 years were studied. Urine samples were collected from the first urine of the day after waking for three consecutive days (Monday-Wednesday) four times a year (spring, summer, autumn, winter). The authors estimated the daily urine volume as 500 mL and daily creatinine excretion as 300 mg, and used these to calculate daily sodium and potassium excretion levels. Daily sodium and potassium excretion levels and sodium to potassium ratios were highly variable. The coefficient variant in the children's excretion levels were also high within and between individuals. Sodium excretion levels and sodium to potassium ratios were higher on Monday (weekend sodium intakes) than Tuesday. Season had no effect on sodium or potassium excretion levels, but the sodium to potassium ratio was higher in summer than in winter. In conclusion, levels of urinary sodium excretion are comparatively high and those of potassium are low in preschool students, with high variability within and between individuals. ©2017 Wiley Periodicals, Inc.

  6. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  7. The influence of dietary and whole-body nutrient content on the excretion of a vertebrate consumer.

    Directory of Open Access Journals (Sweden)

    Christopher M Dalton

    Full Text Available In many contexts, nutrient excretion by consumers can impact ecosystems by altering the availability of limiting nutrients. Variation in nutrient excretion can be predicted by mass balance models, most of which are premised on two key ideas: (1 consumers maintain fixed whole-body nutrient content (i.e., %N and %P, so-called fixed homeostasis; (2 if dietary nutrients are not matched to whole-body nutrients, excesses of any nutrient are released as excretion to maintain fixed homeostasis. Mass balance models thus predict that consumer excretion should be positively correlated with diet nutrients and negatively correlated with whole-body nutrients. Recent meta-analyses and field studies, however, have often failed to find these expected patterns, potentially because of a confounding influence-flexibility in whole-body nutrient content with diet quality (flexible homeostasis. Here, we explore the impact of flexible homeostasis on nutrient excretion by comparing the N and P excretion of four genetically diverged Trinidadian guppy (Poecilia reticulata populations when reared on diets of variable P content. As predicted by mass balance, P excretion increased on the high-P diet, but, contrary to the notion of fixed homeostasis, guppy whole-body %P also increased on the high-P diet. While there was no overall correlation between excretion nutrients and whole-body nutrients, when the effect of diet on both whole-body and excretion nutrients was included, we detected the expected negative correlation between whole-body N:P and excretion N:P. This last result suggests that mass balance can predict excretion rates within species, but only if dietary effects on whole-body nutrient content are controlled. Flexible homeostasis can obscure patterns predicted by mass balance, creating an imperative to accurately capture an organism's diet quality in predicting its excretion rate.

  8. The absorption, tissue distribution and excretion of Di-n-Octylten dichloride in rats

    International Nuclear Information System (INIS)

    Penninks, A.H.; Hilgers, Luuk; Seinen, Willem

    1987-01-01

    In this study the absorption, tissue distribution and excretion of 14 C-labeled di-n-octyltin dichloride ([ 14 C] DOTC) in rats were investigated after oral and intravenous (i.v.) administration with 6.3 mg [ 14 C] DOTC/Kg body weight, the relative tissue accumulation was found to be the same after oral and i.v. dosage. The highest amount of radioactivity was found in liver and kidney, and to a lesser degree in adrenal, pituitary and thyroid glands. The lowest activity was recovered from blood and brain. No selective accumulation was observed in thymus, although it has been reported that thymus atrophy is the most sensitive parameter of DOTC toxicity in rats. For all tissues a time dependent decrease in radioactivity was found, except for kidney. The excretion of radioactivity in feces and urine was determined after a single i.v. or oral dose of l.2 and 2 mg [ 14 C] DOTC, respectively. After i.v. administration most of the radioactivity was excreted in the feces which was characterized by a biphasic excretion pattern. In orally treated rats more than 80% of the radioactivity was already excreted in the feces during the first day after administration. This indicated that only a small part of the DOTC was absorbed, which was calculated to be approximately 20% of the dose. Similar half-life values of 8.3 and 8.9 days were obtained from the fecal excretion of radioactivity after the i.v. and oral administration, respectively. The urinary excretion of radioactivity appeared to be independent of the body burden, since the daily amount of radioactivity excreted in urine was nearly the same independent of the route of administration as well as the time after administration. 26 refs. (author)

  9. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  10. Determination of bioequivalence of lomefloxacin tablets using urinary excretion data.

    Science.gov (United States)

    Shah, Shailesh A; Rathod, Ishwarsinh S; Savale, Shrinivas S; Patel, Dharmesh B

    2002-11-07

    The present study describes development of a sensitive and simple HPTLC method for estimation of lomefloxacin (LMF) in human urine. The drug was extracted using chloroform after adjusting the pH of urine to 7.0. Chloroform extract was spotted on silica gel 60 F(254) TLC plate and was developed in a mixture of n-butanol-methanol-ethyl acetate-6 M ammonia (4:2:3:2, v/v/v/v) as the mobile phase and scanned at 290 nm. The peak for LMF resolved at R(F) of 0.40+/-0.02. The method was validated in terms of linearity (50-600 microgram/ml), precision, specificity and accuracy. The limit of detection and limit of quantification for LMF in urine were found to be 20 and 50 microgram/ml, respectively. The average recovery of LMF from urine was 91.93%. The proposed method was applied to generate urinary excretion data for LMF after administration of two market LMF tablet formulations (400 mg, Formulation R and Formulation T) to six healthy human volunteers in a two-treatment, open, crossover design. Various pharmacokinetic parameters like peak excretion rate ((dAU/dt)(max)), time for peak excretion rate (t(max)), AUC(0-48), AUC(0- infinity ), cumulative amount and % cumulative amount of LMF excreted, elimination half-life (t(1/2)), terminal elimination rate constant (k(el)) and overall elimination rate constant (K), were calculated for both the formulations. The average cumulative amounts of LMF excreted in urine after administration of Formulation R and Formulation T were found to be 321.60 mg (80.40% of dose) and 296.51 mg (74.13% of dose), respectively. The urinary excretion profiles of LMF upto 48 h for both the formulations were found to be similar. Statistical comparison (90% confidence intervals of ratio) of various pharmacokinetic parameters of Formulation T with that of Formulation R revealed that Formulation T is bioequivalent with Formulation R.

  11. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO₂.

    Directory of Open Access Journals (Sweden)

    Grace K Saba

    Full Text Available Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill by conducting a CO(2 perturbation experiment at ambient and elevated atmospheric CO(2 levels in January 2011 along the West Antarctic Peninsula (WAP. Under elevated CO(2 conditions (∼672 ppm, ingestion rates of krill averaged 78 µg C individual(-1 d(-1 and were 3.5 times higher than krill ingestion rates at ambient, present day CO(2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO(2 treatment than at ambient CO(2 concentrations. Excretion of urea, however, was ∼17% lower in the high CO(2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH and lactate dehydrogenase (LDH, were consistently higher in the high CO(2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

  12. Improvement of ballistocardiogram processing by inclusion of respiration information

    International Nuclear Information System (INIS)

    Tavakolian, Kouhyar; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel methodology for processing of a ballistocardiogram (BCG) is proposed in which the respiration signal is utilized to improve the averaging of the BCG signal and ultimately the annotation and interpretation of the signal. Previous research works filtered out the respiration signal while the novelty of the current research is that, rather than removing the respiration effect from the signal, we utilize the respiration information to improve the averaging and thus analysis and interpretation of the BCG signal in diagnosis of cardiac malfunctions. This methodology is based on our investigation that BCG cycles corresponding to the inspiration and expiration phases of the respiration cycle are different in morphology. BCG cycles corresponding to the expiration phase of respiration have been proved to be more closely related to each other when compared to cycles corresponding to inspiration, and therefore expiration cycles are better candidates to be selected for the calculation of the averaged BCG signal. The new BCG average calculated based on this methodology is then considered as the representative and a template of the BCG signal for further processing. This template can be considered as the output of a clinical BCG instrument with higher reliability and accuracy compared to the previous processing methods

  13. Urinary excretion of purine derivatives in Yerli Kara cattle

    International Nuclear Information System (INIS)

    Cetinkaya, N.; Guecues, A. I.; Oezcan, H.; Ulutuerk, S.; Yaman, S.

    2000-01-01

    The urinary excretion of purine derivatives (PD) was measured in four Yerli Kara bulls in two experiments, a fasting experiment lasting for 7 days and the other , where animals were given a diet containing 30% wheat straw and 70% compounded feed at four levels of intake (40,60,80 and 95% of voluntary feed intake). In the second experiment, which was carried out according to a 4x4 Latin Square design, four animals receiving 60 and 95% levels of intake were also given a single injection of 8- ''1''4C - uric acid via a jugular catheter. In Addition to the above two experiments the activity of xanthine oxidase and uricase in plasma, liver and intestinal mucosa obtained from Yerli Kara cattle was also determined.In the first experiment,fasting PD excretion averaged 0.691 (±0.053) mmol/kgW''0''.''7''5/d. Glomerular filtration rate GFR), tubular load and net re-absorption of allantoin between pre fasting and fasting were statistically significant (P<0.05). In the second experiment the recovery of injected 8 - ''1''4C - uric acid as total PD was 72.5 and 89.9% for 60 and 95% feeding levels, respectively. The average recovery was 81%. Plasma kinetics measured by 8 - ''1''4C - uric acid indicated that the total compartment pool size was 214.0 (±43.8) and 250.3 L (±29.5) for 60 and 95% feeding levels, respectively. GFR, tubular load and net re-absorption of uric acid and allantoin were not affected by feed intake. The allantoin : PD molar ratios changed between 0.78 to 0.93 for the four levels feed intake. There were significant correlations between PD excretion (expressed as mmol/d and μmol/kg W''0''.''7''5/d) and DDMI (kg/d and kg/kg W''0''.''7''5/d) and DOMI (kg/d)(r=0.99, P<0.01). The rate of PD excretion as a linear function of feed intake was 16.4 mmol/kg W''0''.''7''5 DDMI, 19.8 mmol/kg DDMI and 22.7 mmol/kg DOMI. Xanthine oxidase and uricase activities were; 1.34 (±0.72) and .44 (±0.05) and 0.13 (±0.03) and 0.08 (±0.03) unit/g fresh tissue in liver and

  14. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  15. Excretion and intestinal absorption of tritiated glutamic acid by carp, Cyprinus Carpio

    International Nuclear Information System (INIS)

    Watabe, Terushia; Kistner, G.

    1986-01-01

    Excretion and intestinal absorption of tritiated glutamic acid by carp was investigated. Approximately 80% of orally administered tritium was excreted at a half life value of 1.4 h and an observed slower excretion of 7 days for the remainder. Tritium incorporated in glutamic acid was efficiently retained at the site of absorption, i.e. intestine, liver, gill, kidney, blood and muscle. A dual marking experiment using tritiated glutamic acid and 14 C-market glutamic acid showed higher excretion of tritium by factors 2.0 to 4.9 than that of 14 C. Tritiated glutamic acid is considered to be mainly incorporated in the citric acid cycle soon after administration and the release of tritium in tritiated water through the cycle is assumed as causing the initial rapid excretion of tritium in carp. The intestinal absorption of glutamic acid was likely to depend on its concentration in the administered solution. The maximum level of absorption is estimated to be 0.1 m mol/0.5 h for one year old carp. The results obtained here would make it possible to estimate the tritium contamination of fish due to tritiated glutamic acid entering the food chain. (orig.)

  16. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  17. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  18. Water metabolism and modification of tritium excretion in the rat

    International Nuclear Information System (INIS)

    Ichimasa, Y.; Akita, Y.

    1982-01-01

    1. The intake and excretion of tritium were studied in rats exposed to tritiated water vapor. The metabolism of tritium was also investigated in rats given single administrations of tritiated water and in rats given daily administrations (per os or i.p.). The results were essentially in accord with those reported previously. 2. Amounts of drinking water consumed and urine excreted by rats drinking water with 0.15% saccharin were 1.5 to 2 times higher than in rats drinking tap water. The tritium activity in various tissues of rats drinking water with 0.15% saccharin decreased to about half of that of rats drinking tap water. A similar tendency was observed also in rats drinking beer. The diuretic agent sodium acetazolamide also enhanced the urinary excretion of tritium. (author)

  19. [Renal excretion of methylene-diphosphate-technium-99m. Preliminary observations].

    Science.gov (United States)

    Vattimo, A; Martini, G

    1983-11-30

    The purpose of this study is to elucidate the mechanism of the renal excretion of 99mTc-MDP in man. We compared the renal clearance of 99mTc-MDP and 51Cr-EDTA (glomerular filtration rate agent). Since the 99mTc-MDP is bound to the plasma protein, the free fraction was calculated by dialysis. The clearances were obtained by single-injection technique. The plasma disappearance of the tracers was resolved into three exponential functions and area was calculated. The clearance was calculated by dividing the amount of the tracers excreted during the first four hours and the plasma area. In this study no difference was found in the clearance of the two agents. These findings suggest that the renal excretion of diphosphonate is related to the glomerular filtration rate.

  20. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems

    OpenAIRE

    Zhixiang Wu; Limin Guan; Bangqian Chen; Chuan Yang; Guoyu Lan; Guishui Xie; Zhaode Zhou

    2014-01-01

    Aim: Our objective was to quantify four components and study effect factors of soil respiration in rubber plantation ecosystems. Providing the basic data support for the establishment of the trade of rubber plantation ecosystem carbon source/sink. Methods: We used Li-6400 (IRGA, Li-COR) to quantitate four components of soil respiration in rubber plantation ecosystems at different ages. Soil respiration can be separated as four components: heterotrophic respiration (Rh), Respiration of roots (...

  1. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    Science.gov (United States)

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.

  2. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  3. Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Mushak, P.; Hall, L.L.

    1987-01-01

    Adult male and female Long Evans rats received 1 mumole of methyl ( 203 Hg) mercuric chloride per kilogram sc. Whole-body retention of mercury and excretion of organic and inorganic mercury in urine and feces were monitored for 98 days after dosing. Females cleared mercury from the body more rapidly than did males. The major route of mercury excretion was feces. By 98 days after dosing, cumulative mercury excretion in feces accounted for about 51% of the dose in males and about 54% of the dose in females. For both sexes, about 33% of the dose was excreted in feces as inorganic mercury. Cumulative excretion of organic mercury in feces accounted for about 18 and 21% of the dose in males and females, respectively. Urinary excretion of mercury was quantitatively a smaller route for mercury clearance but important sexual differences in loss by this route were found. Over the 98-day experimental period, males excreted in urine about 3.2% of the dose and females excreted 7.5%. Cumulative organic Hg excretion in urine accounted for 1.8% of the dose in males and 5.3% of the dose in females. These sexual differences in urinary and fecal excretion of organic and inorganic mercury following methyl mercury treatment were consistent with previous reports of sexual differences in mercury distribution and retention in methyl mercury-treated rats, particularly sexual differences in organic mercury uptake and retention in the kidney. Relationships between body burdens of organic or inorganic Hg and output of these forms of Hg in urine and feces were also found to be influenced by the interval after MeHg treatment and by sex. Relationship between concentration of Hg in liver and feces and in kidney and urine differed for organic and inorganic Hg and depended upon sexual status and interval after MeHg treatment

  4. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Comparison of peritoneal equilibration test(PET) with Tc99m-DTPA excretion in the assessment of peritoneal permeability

    International Nuclear Information System (INIS)

    Das, B.K.; Senthilnathan, M.S.; Pradhan, P.K.; Jeloka, T.K.; Nagabhushan, S.; Sharma, R.K.

    2002-01-01

    Aim: Assessment of peritoneal permeability is necessary for successful management of End Stage Renal Disease (ESRD) patients by Continuous Ambulatory Peritoneal Dialysis (CAPD). Twardowski in 1987 described for the first time a method know as Peritoneal Equilibration Test (PET ) to determine peritoneal membrane characteristics. However, this test is not only cumbersome but is associated with several limitations. The objective of this study was to develop an alternative method of assessing the peritoneal permeability and compare this method with the conventional PET. Method: Twenty patients under going regular CAPD were included in this study. Before starting the peritoneal dialysis 370 MBq (10 mCi) 99mTc-DTPA was injected intravenously in the same standard precondition as for PET evaluation. A standard dose of same quantity was kept and used later for calculations. At the end of four hours a dialysate fluid sample (1 ml) was collected and the total dialysis effluent fluid volume was measured. Excretion of 99mTc-DTPA into the dialysate fluid as percentage of injected dose was calculated. Simultaneously standard PET values were recorded for comparison. Results: Peritoneal excretion of 99mTc-DTPA ranged from 8 % to 16 % of the injected dose depending upon the peritoneal membrane permeability. Depending upon the DTPA excretion the patients were divided into 4 groups: High Transporter (15% and above; High Average (12 to 15 %); Low Average (10 to 12%); Low Average (10% and less). When the results were compared with the conventional PET values, a good correlation (r=0.79) could be found. Conclusion: Determining the excretion of 99mTc-DTPA in the dialysate fluid after 4 hrs as percentage of the injected dose is a simple and convenient method to assess the peritoneal membrane permeability and can be used as an alternative technique to conventional PET which is very cumbersome and associated with many limitations

  6. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  7. Molecular enzymology of carnitine transfer and transport

    NARCIS (Netherlands)

    Ramsay, RR; Gandour, RD; van der Leij, FR

    2001-01-01

    Carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid) forms esters with a wide range of acyl groups and functions to transport and excrete these groups. It is found in most cells at millimolar levels after uptake via the sodium-dependent carrier, OCTN2. The acylation state of the mobile carnitine

  8. Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition

    DEFF Research Database (Denmark)

    Therwani, Safa Al; Rosenbæk, Jeppe Bakkestrøm; Mose, Frank Holden

    2017-01-01

    BACKGROUND: Tolvaptan is a selective vasopressin receptor antagonist. Nitric Oxide (NO) promotes renal water and sodium excretion, but the effect is unknown in the nephron's principal cells. In a dose-response study, we measured the effect of tolvaptan on renal handling of water and sodium....... CONCLUSIONS: During baseline, fractional excretion of sodium was unchanged. During tolvaptan with NO-inhibition, renal water excretion was reduced dose dependently, and renal sodium excretion was reduced unrelated to the dose, partly via an AVP dependent mechanism. Thus, tolvaptan antagonized the reduction...... in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP....

  9. Dosing-time-dependent variation in biliary excretion of flomoxef in rats.

    Science.gov (United States)

    Hishikawa, Shuji; Sugimoto, Koh-ichi; Kobayashi, Eiji; Kumagai, Yuji; Fujimura, Akio

    2003-05-01

    We previously reported that the biliary excretion of flomoxef, an oxacephem antibiotic, was greater after dosing at 21:00 than at 09:00 h in diurnally active human subjects. The present study was undertaken to examine whether the biliary excretion of flomoxef is also dependent on its dosing time in rats. Adult male Wistar rats were housed under light on at 07:00 h and off at 19:00 h. Bile fluid was completely drained through a polyethylene catheter from conscious animals. Flomoxef (20 mg/kg) was injected into the tail vein at 09:00 or 21:00 h by a cross-over design, and drained bile fluid was collected for 8 h after each dosing. The maximum concentration of biliary flomoxef was significantly greater and its total excretion tended to be greater after dosing at 09:00 than 21:00 h. These results suggest the biliary excretion of flomoxef is enhanced after dosing at the beginning of the rest period in rats, as it is in humans.

  10. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  11. Decrease in urinary creatinine excretion in early stage chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Elena Tynkevich

    Full Text Available BACKGROUND: Little is known about muscle mass loss in early stage chronic kidney disease (CKD. We used 24-hour urinary creatinine excretion rate to assess determinants of muscle mass and its evolution with kidney function decline. We also described the range of urinary creatinine concentration in this population. METHODS: We included 1072 men and 537 women with non-dialysis CKD stages 1 to 5, all of them with repeated measurements of glomerular filtration rate (mGFR by (51Cr-EDTA renal clearance and several nutritional markers. In those with stage 1 to 4 at baseline, we used a mixed model to study factors associated with urinary creatinine excretion rate and its change over time. RESULTS: Baseline mean urinary creatinine excretion decreased from 15.3 ± 3.1 to 12.1 ± 3.3 mmol/24 h (0.20 ± 0.03 to 0.15 ± 0.04 mmol/kg/24 h in men, with mGFR falling from ≥ 60 to <15 mL/min/1.73 m(2, and from 9.6 ± 1.9 to 7.6 ± 2.5 (0.16 ± 0.03 to 0.12 ± 0.03 in women. In addition to mGFR, an older age, diabetes, and lower levels of body mass index, proteinuria, and protein intake assessed by urinary urea were associated with lower mean urinary creatinine excretion at baseline. Mean annual decline in mGFR was 1.53 ± 0.12 mL/min/1.73 m(2 per year and that of urinary creatinine excretion rate, 0.28 ± 0.02 mmol/24 h per year. Patients with fast annual decline in mGFR of 5 mL/min/1.73 m(2 had a decrease in urinary creatinine excretion more than twice as big as in those with stable mGFR, independent of changes in urinary urea as well as of other determinants of low muscle mass. CONCLUSIONS: Decrease in 24-hour urinary creatinine excretion rate may appear early in CKD patients, and is greater the more mGFR declines independent of lowering protein intake assessed by 24-hour urinary urea. Normalizing urine analytes for creatininuria may overestimate their concentration in patients with reduced kidney function and low muscle mass.

  12. Insulin resistance in HIV-infected youth is associated with decreased mitochondrial respiration.

    Science.gov (United States)

    Takemoto, Jody K; Miller, Tracie L; Wang, Jiajia; Jacobson, Denise L; Geffner, Mitchell E; Van Dyke, Russell B; Gerschenson, Mariana

    2017-01-02

    To identify relationships between insulin resistance (IR) and mitochondrial respiration in perinatally HIV-infected youth. Case-control study. Mitochondrial respiration was assessed in perinatally HIV-infected youth in Tanner stages 2-5, 25 youth with IR (IR+) and 50 without IR (IR-) who were enrolled in the Pediatric HIV/AIDS Cohort Study. IR was defined as a homeostatic model of assessment for IR value at least 4.0. A novel, high-throughput oximetry method was used to evaluate cellular respiration in peripheral blood mononuclear cells. Unadjusted and adjusted differences in mitochondrial respiration markers between IR+ and IR- were evaluated, as were correlations between mitochondrial respiration markers and biochemical measurements. IR+ and IR- youth were similar on age, sex, and race/ethnicity. Mean age was 16.5 and 15.6 years in IR+ and IR-, respectively. The IR+ group had significantly higher mean BMI and metabolic analytes (fasting glucose, insulin, cholesterol, triglycerides, and venous lactate and pyruvate) compared with the IR-. Mitochondrial respiration markers were, on average, lower in the IR+ compared with IR-, including basal respiration (417.5 vs. 597.5 pmol, P = 0.074), ATP production (11 513 vs. 15 202 pmol, P = 0.078), proton leak (584.6 vs. 790.0 pmol, P = 0.033), maximal respiration (1815 vs. 2399 pmol, P = 0.025), and spare respiration capacity (1162 vs. 2017 pmol, P = 0.032). Nonmitochondrial respiration did not differ by IR status. The results did not change when adjusted for age. HIV-infected youth with IR have lower mitochondrial respiration markers when compared to youth without IR. Disordered mitochondrial respiration may be a potential mechanism for IR in this population.

  13. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    Science.gov (United States)

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  14. Predicting transporter-mediated drug interactions: Commentary on: "Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin" and "Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A".

    Science.gov (United States)

    Zhang, L; Sparreboom, A

    2017-04-01

    Transporters, expressed in various tissues, govern the absorption, distribution, metabolism, and excretion of drugs, and consequently their inherent safety and efficacy profiles. Drugs may interact with a transporter as a substrate and/or an inhibitor. Understanding transporter-mediated drug-drug interactions (DDIs), in addition to enzyme-mediated DDIs, is an integral part of risk assessment in drug development and regulatory review because the concomitant use of more than one medication in patients is common. © 2016 ASCPT.

  15. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  16. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  17. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    Directory of Open Access Journals (Sweden)

    Ana Queiroz

    2017-08-01

    Full Text Available This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium. Salt added during culinary preparations (discretionary sodium was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation urinary sodium excretion was 4220 (1830 mg/day, and 92% of the participants were above the World Health Organization (WHO recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0% and naturally occurring sodium (10.9%. The mean (standard deviation urinary potassium excretion was 1909 (778 mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation sodium to potassium molar ratio was 4.2 (2.4. Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  18. Quantitative aspects of phosphorus absorption and excretion in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Ives Claudio da Silva; Abdalla, Adibe Luiz; Vitti, Dorinha Miriam Silber Schmidt [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Nutricao Animal]. E-mails: icsbueno@cena.usp.br; abdalla@cena.usp.br; dovitti@cena.usp.br; Furtado, Carlos Eduardo [Universidade Estadual de Maringa, PR (Brazil). Dept. de Zootecnia]. E-mail: cefurtado@uem.br

    2007-07-01

    Phosphorus (P) is one of the most polluting nutrients because of high husbandry concentrations in restricted areas. The present study compiles data from previous studies dealing with true digestibility of different P levels in diets for horses. Database consisted of results from two experiments carried out at the Centre for Nuclear Energy in Agriculture (CENA/USP), using horses fed different levels of P (n=28). True absorption of phosphorus was determined by isotopic dilution technique, using {sup 32}P as tracer. All parameters (P{sub ING}: ingested P; P{sub ABS}: absorbed P; P{sub FECTOT}: total faecal P excretion; P{sub FECENDO}: endogenous faecal P; P{sub URI}: total urinary excretion; and P{sub RET}: retained P) were normalized according to body weight (BW) and linear and quadratic regressions between P{sub ING} and the other parameters were tested. No quadratic effect was observed. P{sub ING} ranged from 41 to 264 mg/kg BW. Faecal P excretion was affected by intake, analysing by total (P{sub FECTOT} = 0.888 (S.E. 0.058) P{sub ING} - 29.40 (S.E. 8.14) (P<0.0001; RMSE=20.37; R{sup 2}=0.90) or by endogenous fraction (P{sub FECENDO} = 0.095 (S.E. 0.029) P{sub ING} + 12.10 (S.E. 4.16) (P=0.0034; RMSE=10.41; {sup R}2=0.29). Urinary P excretion was not affected by intake (P=0.35), although ranging from 0.06 to 59.20 mg/kg BW. The same occurred for P{sub RET} (P=0.25) ranging from -13.69 to 88.78 mg/kg BW. P absorption also was affect by P intake (P{sub ABS} = 0.195 (S.E. 0.060) P{sub ING} + 42.19 (S.E. 8.45) (P=0.0031; RMSE=21.15; R{sup 2}=0.29). The present study showed that only a small part of ingested P was absorbed, i.e. most of ingested P was excreted via faeces, contributing for environmental pollution. (author)

  19. Effects of water deprivation on renal hydroelectrolytic excretion in chronically Trypanosoma cruzi-infected rats

    Directory of Open Access Journals (Sweden)

    T.T. Rosa

    1995-03-01

    Full Text Available The effect of an 8 hour-period of water deprivation on fluid and electrolyte renal excretion was investigated in male Wistar rats infected with the strain São Felipe (12SF of Trypanosoma cruzi, in comparison with age and sex matched non-infected controls. The median percent reductions in the urinary flow (-40% v -63% and excretion ofsodium (-57% v-79% were smaller in chagasic than in control rats, respectively. So, chagasic rats excreted more than controls. On the other hand, the median percent decrement in the clearance of creatinine was higher in chagasic (-51% than in controls (-39%. Thus, chagasic rats showed some disturbed renal hydroelectrolytic responses to water deprivation, expressed by smaller conservation, or higher excretion of water and sodium in association with smaller glomerularfiltration rate. This fact denoted an elevation in the fractional excretion of sodium and water.

  20. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    Science.gov (United States)

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  1. Stimulation of respiration in rat thymocytes induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gudz, T.I.; Pandelova, I.G.; Novgorodov, S.A.

    1994-01-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O 2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La 3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation. 43 refs., 2 figs., 3 tabs

  2. Diagnostic Value of the Cobalt (58Co) Excretion Test in Iron Deficiency Anemia

    International Nuclear Information System (INIS)

    Sihn, Hyun Chung; Hong, Kee Suck; Cho, Kyung Sam; Song, In Kyung; Koh, Chang Soon; Lee, Mun Ho

    1976-01-01

    The diagnosis of iron deficiency rests upon the correct evaluation of body iron stores. Morphological interpretation of blood film and the red cell indices are not reliable and often absent in mild iron deficiency. Serum iron levels and iron-binding capacity are more sensitive indices of iron deficiency, but they are often normal in iron depletion and mild iron deficiency anemia. They are also subject ro many variables which may introduce substantial errors and influenced by many pathologic and physiologic states. Examination of the bone marrow aspirate for stainable iron has been regarded as one of the most sensitive and reliable diagnostic method for detecting iron deficiency, but this also has limitations. Thus, there is still need for a more practical, but sensitive and reliable substitute as a screening test of iron deficiency. Pollack et al. (1965) observed that the intestinal absorption of cobalt was raised in iron, deficient rats and Valberg et al. (1969) found that cobalt absorption was elevated in patients with iron deficiency. A direct correlation was demonstrated between the amounts of radioiron and radiocobalt absorbed. Unlike iron, excess cobalt was excreted by the kidney, the percentage of radioactivity in the urine being directly related to the percentage absorbed from the gastro-intestinal tract. Recently a test based on the urinary excretion of an oral dose of 57 Co has been proposed as a method for detecting iron deficiency. To assess the diagnostic value of urinary cobalt excretion test cobaltous chloride labelled with 1 μCi of 58 Co was given by mouth and the percentage of the test dose excreted in the urine was measured by a gamma counter. The mean 24 hour urinary cobalt excretion in control subjects with normal iron stores was 6.1%(1.9-15.2%). Cobalt excretion was markedly increased in patients with iron deficiency and excreted more than 29% of the dose. In contrast, patients with anemia due to causes other than iron deficiency excreted less

  3. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, E A; Feldt-Rasmussen, B

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... urinary albumin excretion (less than 30 mg/24 h), group 2 comprised 10 with incipient diabetic nephropathy (urinary albumin excretion 30-300 mg/24 h, and group 3 comprised 10 with clinical diabetic nephropathy (urinary albumin excretion greater than 300 mg/24 h). Ten non-diabetic subjects matched for sex...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...

  4. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  6. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice

    NARCIS (Netherlands)

    Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M.; Gautier, Emmanuel L.; Westerterp, Marit; Bittman, Robert; Tall, Alan R.; Chen, Shu-Hsia; Thomas, Michael J.; Kreisel, Daniel; Swartz, Melody A.; Sorci-Thomas, Mary G.; Randolph, Gwendalyn J.

    2013-01-01

    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic

  7. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Comparison of the inhibition of biliary excretion produced by certain inducing agents including 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E.F.; Schaus, P.; Fujimoto, J.M.

    1986-01-01

    Rats were treated with chlordecone, mirex, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and respective solvent vehicle. Under urethane or pentobarbital anesthesia, the bile duct was cannulated and radioactive morphine, imipramine, or ouabain was given by segmented retrograde intrabiliary injection. The spectrum of inhibition of biliary excretion by chlordecone and mirex were similar in that morphine glucuronide and in part polar imipramine metabolite recoveries in bile were decreased; ouabain recovery was unaffected. TCDD was different in that it markedly decreased the recovery of ouabain. Thus, it appears that chlordecone, mirex, and TCDD inhibit the canalicular transport of the glucuronide metabolites of morphine and imipramine into bile, and TCDD affects in addition the canalicular transport of ouabain into bile.

  9. Evaluation of 14C abundance in soil respiration using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Moriizumi, Jun; Asano, Tomohiro

    2004-01-01

    To clarify the behavior of 14 C in terrestrial ecosystems, 14 C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14 C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Δ 14 C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14 C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14 C addition and re-emission from soil. On the other hand, δ 14 C in soil respiration demonstrated that 14 C abundance ratio itself in soil-respired CO 2 is not always high compared with that in atmospheric CO 2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Δ 14 C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14 C-depleted soil organic matter to the total soil respiration in August

  10. Separation of pair housed roosters is associated with transient increased corticosteroid excretion

    DEFF Research Database (Denmark)

    Hau, Jann; Carlsson, H E; Royo, F

    2009-01-01

    the second day after separation indicating that the separation and relocation is associated with an activation of the hypothalamic-pituitary-adrenal axis. The excretion of ICCM in droppings was not correlated to the concentration of ICCM in droppings. It is thus important that excretion of ICCM be expressed...

  11. Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats.

    Science.gov (United States)

    Yokota, Tokunori; Mikata, Kazuki; Nagasaki, Hiromi; Ohta, Kazunari

    2003-11-19

    Absorption, distribution, excretion, and metabolism of clothianidin [(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine] were investigated after a single oral administration of [nitroimino-(14)C]- or [thiazolyl-2-(14)C]clothianidin to male and female rats at a dose of 5 mg/kg of body weight (bw) (low dose) or 250 mg/kg of bw (high dose). The maximum concentration of carbon-14 in blood occurred 2 h after administration of the low oral dose for both labeled clothianidins, and then the concentration of carbon-14 in blood decreased with a half-life of 2.9-4.0 h. The orally administered carbon-14 was rapidly and extensively distributed to all tissues and organs within 2 h after administration, especially to the kidney and liver, but was rapidly and almost completely eliminated from all tissues and organs with no evidence of accumulation. The orally administered carbon-14 was almost completely excreted into urine and feces within 2 days after administration, and approximately 90% of the administered dose was excreted via urine. The major compound in excreta was clothianidin, accounting for >60% of the administered dose. The major metabolic reactions of clothianidin in rats were oxidative demethylation to form N-(2-chlorothiazol-5-ylmethyl)-N'-nitroguanidine and the cleavage of the carbon-nitrogen bond between the thiazolylmethyl moiety and the nitroguanidine moiety. The part of the molecule containing the nitroguanidine moiety was transformed mainly to N-methyl-N'-nitroguanidine, whereas the thiazol moiety was further metabolized to 2-(methylthio)thiazole-5-carboxylic acid. With the exception of the transiently delayed excretion of carbon-14 at the high-dose level, the rates of biokinetics, excretion, distribution, and metabolism of clothianidin were not markedly influenced by dose level and sex.

  12. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  13. Distribution and excretion of anthraquinone in the male F-344 rat

    International Nuclear Information System (INIS)

    Steup, M.B.; Winter, S.M.; Sipes, I.G.

    1990-01-01

    Anthraquinone (AQ) is used extensively in the synthesis of anthraquinone dyes and has recently found application in the production of wood pulp for making paper. This has raised concern about potential environmental exposure from discharge of AQ into surface waters and sediments. In this study, the excretion and tissue distribution of radioactivity were examined in male F-344 rats following a single oral dose of radiolabelled AQ. 14 C-AQ was administered by gavage at 3.5 and 35 mg/kg in corn oil (5 ml/kg) and excretion of the radiolabel in the urine and feces was monitored over a period of 96 hr. The animals were then terminated and tissues were sampled and analyzed for radioactivity. Cumulative excretion was similar at both dose levels with approximately 41% and 55% of the dosed radioactivity appearing in the urine and feces respectively. The majority of the radiolabel was excreted within 48 hr of dose administration. Less than 3% of the administered radioactivity remained in the tissues. Highest tissue concentrations of AQ derived radioactivity were found in the liver, kidney and blood. Preliminary HPLC analyses of the urine revealed little unchanged parent compound, but several metabolites

  14. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  15. Excretion of 14C-labeled cyanide in rats exposed to chronic intake of potassium cyanide

    International Nuclear Information System (INIS)

    Okoh, P.N.

    1983-01-01

    The excretion of an acute dose of 14C-labeled cyanide in urine, feces, and expired air was studied in rats exposed to daily intake of unlabeled KCN in the diet for 6 weeks. Urinary excretion was the main route of elimination of cyanide carbon in these rats, accounting for 83% of the total excreted radioactivity in 12 hr and 89% of the total excreted radioactivity in 24 hr. The major excretion metabolite of cyanide in urine was thiocyanate, and this metabolite accounted for 71 and 79% of the total urinary activity in 12 hr and 24 hr, respectively. The mean total activity excreted in expired air after 12 hr was only 4%, and this value did not change after 24 hr. Of the total activity in expired air in 24 hr, 90% was present as carbon dioxide and 9% as cyanide. When these results were compared with those observed for control rats, it was clear that the mode of elimination of cyanide carbon in both urine and breath was not altered by the chronic intake of cyanide

  16. Intake and excretion

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi

    1979-01-01

    Of radioiodine metabolism in man, the relations between intake, thyroidal uptake and excretion are explained. The internal radiation dose to the thyroid for public population is mainly given through the intake of contaminated food in all the ages. In the gestation, the fetus is exposed most to radioiodine immediately before delivery and the dose is estimated to amount a few times higher than the maternal thyroid. Importance of both the cow's milk and the breast milk as the sources of contaminant, is emphasized. Babyhood for 6 months after delivery, in this age are estiperiod as to the thyroidal exposure by radioiodine because the dose in his age are estimated to be over 30 times for 131 I and about 9 times for 129 I as compared with that to the adult. Because of its long-term residence in the environment, 129 I is incorporated into cereals, leafy vegetables and meat besides milk. However, the critical age is still in the babyhood for 6 months after birth. Radioiodine given in a form of sodium iodide is actually completely absorbed in the intestines. However, the thyroidal uptake rate and the biological half-life are depresesed by administration of inorganic iodide. Radioiodine given in the form of sodium iodide is actually completely absorbed in the intestines. However, the thyroids uptake rate and the biological half-life are depressed by administration of inorganic iodide. Radioiodine both in the protein-binding fraction and in the total fraction of metabolised cow's milk, reaches the thyroid in the same manner as that given in a form of inorganic iodide. While, rats given radioiodine incorporated into seaweed, excreted tremendous amount of the nuclide into feces which resulted in very low uptake of the nuclide by the thyroid. To estimate population dose from radioiodine, the absorption rate of radioiodine may be one of the most important parameters. (author)

  17. Effect of test exercises and mask donning on measured respirator fit.

    Science.gov (United States)

    Crutchfield, C D; Fairbank, E O; Greenstein, S L

    1999-12-01

    Quantitative respirator fit test protocols are typically defined by a series of fit test exercises. A rationale for the protocols that have been developed is generally not available. There also is little information available that describes the effect or effectiveness of the fit test exercises currently specified in respiratory protection standards. This study was designed to assess the relative impact of fit test exercises and mask donning on respirator fit as measured by a controlled negative pressure and an ambient aerosol fit test system. Multiple donnings of two different sizes of identical respirator models by each of 14 test subjects showed that donning affects respirator fit to a greater degree than fit test exercises. Currently specified fit test protocols emphasize test exercises, and the determination of fit is based on a single mask donning. A rationale for a modified fit test protocol based on fewer, more targeted test exercises and multiple mask donnings is presented. The modified protocol identified inadequately fitting respirators as effectively as the currently specified Occupational Safety and Health Administration (OSHA) quantitative fit test protocol. The controlled negative pressure system measured significantly (p < 0.0001) more respirator leakage than the ambient aerosol fit test system. The bend over fit test exercise was found to be predictive of poor respirator fit by both fit test systems. For the better fitting respirators, only the talking exercise generated aerosol fit factors that were significantly lower (p < 0.0001) than corresponding donning fit factors.

  18. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  19. ECG-derived respiration methods: adapted ICA and PCA.

    Science.gov (United States)

    Tiinanen, Suvi; Noponen, Kai; Tulppo, Mikko; Kiviniemi, Antti; Seppänen, Tapio

    2015-05-01

    Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover, a growing trend toward ambulatory measurements outside laboratory environments encourages developing indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA, APCA and KPCA, respectively. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Steroid hormone excretion is enhanced by sucrose feeding to rats

    International Nuclear Information System (INIS)

    Kruger, T.C.; Hsu, H.; Saunders, J.P.; Kim, S.S.; Given-Proctor, J.; Ahrens, R.A.

    1986-01-01

    The hypothesis tested was that feeding rats sucrose rather than invert sugar (50:50 mixture of glucose and fructose) or cornstarch would result in a more rapid excretion of intravenously injected 1,2- 3 H aldosterone or 1,2,6,7- 3 H cortisol. The three carbohydrate sources provided 45% of dietary energy when fed, respectively, to one of three groups of 10 male, Sprague Dawley rats. After 4 or 8 weeks of ad lib feeding of the three diets 5 μCI of 3 H-labeled hormones were injected intravenously and % recovery in urine and feces was measured for 4 days by liquid scintillation counting. Nearly 90% of the 3 H injected as 1,2- 3 H aldosterone was recovered over 4 days in the excreta of the sucrose fed rats. This recovery of 3 H from aldosterone was significantly greater (P 3 H from intravenously injected 1,2,6,7- 3 H cortisol followed a similar pattern. The authors anticipate that the excretion of all metabolic end products and xenobiotics excreted as glucuronides would be enhanced by sucrose feeding. Oxocarbonium ions from the glucose portion of sucrose digestion in the mammalian small intestine are thought to compete with oxocarbonium ions from the glucuronic acid portion of glucuronide hydrolysis. Such competition may slow glucuronide hydrolysis and promote glucuronide excretion, including the glucuronides derived from aldosterone and cortisol

  1. Urinary Excretion of Niacin Metabolites in Humans After Coffee Consumption.

    Science.gov (United States)

    Kremer, Jonathan Isaak; Gömpel, Katharina; Bakuradze, Tamara; Eisenbrand, Gerhard; Richling, Elke

    2018-04-01

    Coffee is a major natural source of niacin in the human diet, as it is formed during coffee roasting from the alkaloid trigonelline. The intention of our study was to monitor the urinary excretion of niacin metabolites after coffee consumption under controlled diet. We performed a 4-day human intervention study on the excretion of major niacin metabolites in the urine of volunteers after ingestion of 500 mL regular coffee containing 34.8 μmol nicotinic acid (NA) and 0.58 μmol nicotinamide (NAM). In addition to NA and NAM, the metabolites N 1 -methylnicotinamide (NMNAM), N 1 -methyl-2-pyridone-5-carboxamide (2-Py), and nicotinuric acid (NUA) were identified and quantified in the collected urine samples by stable isotope dilution analysis (SIVA) using HPLC-ESI-MS/MS. Rapid urinary excretion was observed for the main metabolites (NA, NAM, NMNAM, and 2-Py), with t max values within the first hour after ingestion. NUA appeared in traces even more rapidly. In sum, 972 nmol h -1 of NA, NAM, NMNAM, and 2-Py were excreted within 12 h after coffee consumption, corresponding to 6% of the ingested NA and NAM. The results indicate regular coffee consumption to be a source of niacin in human diet. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Circadian rhythmicity of the urinary excretion of mercury, potassium and catecholamines in unconventional shift-work systems.

    Science.gov (United States)

    Vokac, Z; Gundersen, N; Magnus, P; Jebens, E; Bakka, T

    1980-09-01

    The round the clock urinary excretion rates of mercury were assessed for two series of unconventional patterns of activity and sleep in subjects who were not exposed to occupational, medical, or other obvious sources of mercury. In the first series the urine was collected in 3-h periods from six subjects during the first and last 2 d of a four-week, continuous 6-h shift (car ferry, watches either 0800--1400 and 2000--0200 or 1400--2000 and 0200--0800). In the second series the urine was collected in 4-h periods from five subjects working an 8-h experimental rotation shift compressed into 5 d (work two mornings--8-h interval--work two nights--8-h interval--work two afternoons). The mean daily excretion rate of the 11 subjects (48 investigation days, 334 urine samples) was 14.5 pmol of mercury/min (range 5.5--24.4 pmol of mercury/min). The mercury excretion oscillated regularly during 24 h by +/- 20--25% of the individual's daily mean excretion rates. The peak excretion rates were found at 0652 in the first and 0642 in the second series (cosinor treatment). Due to the circadian rhythm the mean 24-h excretion rates were best represented (correlation coefficient 0.92) by analyses of urine produced around noon (spot samples, collection periods 1100--1400 and 1000-1400, respectively). The circadian oscillations of mercury excretion were not influenced by the widely different and varying activity-sleep patterns of the two series. The rhythmicity of potassium excretion (peaks at around 1400) was more irregular. The stable oscillations of mercury excretion contrasted most with the excretion of adrenaline and noradrenaline, which, without losing the basic 24-h rhythmicity, closely followed the unconventional patterns of activity and sleep.

  3. Association between 24-h urinary sodium excretion and obesity in Korean adults: A multicenter study.

    Science.gov (United States)

    Nam, Ga Eun; Kim, Seon Mee; Choi, Mi-Kyeong; Heo, Young-Ran; Hyun, Tai-Sun; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Ro, Hee-Kyong; Han, Kyungdo; Lee, Yeon Kyung

    2017-09-01

    The aim of this study was to explore the association between sodium intake, as assessed by 24-h urinary sodium excretion, and various obesity parameters among South Korean adults. The associations of 24-h urinary sodium excretion and sodium intake calculated from the dietary questionnaire with obesity parameters also were compared. This multicenter, cross-sectional study analyzed data of 640 healthy adults from eight provinces in South Korea. Obesity was assessed by body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). Mean 24-h urinary sodium excretion was calculated from repeatedly collected 24-h urine samples. Participants' dietary intake was assessed by 24-h dietary recall interview on the days before 24-h urine collection. In both sexes, the means of all anthropometric measurements tended to increase proportionally with 24-h urinary sodium excretion quartiles, regardless of adjustment. Men in the highest quartile (Q4) of 24-h urinary sodium excretion had increased odds of obesity (as assessed by BMI, WC, WHR, and WHtR) compared with men in the three lower quartiles (Q1-Q3) of 24-h urinary sodium excretion. Women in Q4 of 24-h urinary sodium excretion exhibited a higher chance of general obesity and abdominal obesity. Sodium intake calculated from the dietary questionnaire was not significantly associated with obesity in either sex. In Korean adults, there was a positive association between higher sodium intake as assessed by 24-h urinary sodium excretion and obesity independent of energy intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Differential soil respiration responses to changing hydrologic regimes

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  5. Respirator studies for the Nuclear Regulatory Commission. Protection factors for supplied-air respirators. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Hack, A.; Bradley, O.D.; Trujillo, A.

    1977-12-01

    This report describes the work performed during FY 1977 for the Nuclear Regulatory Commission. The Protection Factors (efficiency) provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of anthropometrically selected test subjects. The major recommendation was that demand-type respirators should neither be used nor approved

  6. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  7. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Measurement of lung tumor motion using respiration-correlated CT

    International Nuclear Information System (INIS)

    Mageras, Gig S.; Pevsner, Alex; Yorke, Ellen D.; Rosenzweig, Kenneth E.; Ford, Eric C.; Hertanto, Agung; Larson, Steven M.; Lovelock, D. Michael; Erdi, Yusuf E.; Nehmeh, Sadek A.; Humm, John L.; Ling, C. Clifton

    2004-01-01

    Purpose: We investigate the characteristics of lung tumor motion measured with respiration-correlated computed tomography (RCCT) and examine the method's applicability to radiotherapy planning and treatment. Methods and materials: Six patients treated for non-small-cell lung carcinoma received a helical single-slice computed tomography (CT) scan with a slow couch movement (1 mm/s), while simultaneously respiration is recorded with an external position-sensitive monitor. Another 6 patients receive a 4-slice CT scan in a cine mode, in which sequential images are acquired for a complete respiratory cycle at each couch position while respiration is recorded. The images are retrospectively resorted into different respiration phases as measured with the external monitor (4-slice data) or patient surface displacement observed in the images (single-slice data). The gross tumor volume (GTV) in lung is delineated at one phase and serves as a visual guide for delineation at other phases. Interfractional GTV variation is estimated by scaling diaphragm position variations measured in gated radiographs at treatment with the ratio of GTV:diaphragm displacement observed in the RCCT data. Results: Seven out of 12 patients show GTV displacement with respiration of more than 1 cm, primarily in the superior-inferior (SI) direction; 2 patients show anterior-posterior displacement of more than 1 cm. In all cases, extremes in GTV position in the SI direction are consistent with externally measured extremes in respiration. Three patients show evidence of hysteresis in GTV motion, in which the tumor trajectory is displaced 0.2 to 0.5 cm anteriorly during expiration relative to inspiration. Significant (>1 cm) expansion of the GTV in the SI direction with respiration is observed in 1 patient. Estimated intrafractional GTV motion for gated treatment at end expiration is 0.6 cm or less in all cases; however; interfraction variation estimates (systematic plus random) are more than 1 cm in 3

  9. Urinary excretion of creatine and creatinine in gamma irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S K; Srinivasan, M N; Chuttani, K; Bhatnagar, A; Ghose, A

    1985-06-01

    Dose response relationships of creatine, creatinine excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained up to the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels up to the 4th day and for creatine creatinine ratio up to the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body ..gamma..-irradiation have not been of help for reducing creatinineurea. (author).

  10. Urinary excretion of creatine and creatinine in gamma irradiated rats

    International Nuclear Information System (INIS)

    Basu, S.K.; Srinivasan, M.N.; Chuttani, K.; Bhatnagar, A.; Ghose, A.

    1985-01-01

    Dose response relationships of creatine, creatinie excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained upto the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels upto the 4th day and for creatine creatinine ratio upto the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body γ-irradiation have not been of help for reducing creatinineurea. (author)

  11. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  12. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    Science.gov (United States)

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  13. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism

    DEFF Research Database (Denmark)

    Rao, Fangwen; Wessel, Jennifer; Wen, Gen

    2007-01-01

    biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine...... hydroxylase, chromogranin A, and sorting nexin 13. Dopamine D1 receptor polymorphism showed pleiotropic effects on both albumin and dopamine excretion. These studies establish new roles for heredity and environment in albumin excretion. Urinary excretions of albumin and catecholamines are highly heritable......, and their parallel suggests adrenergic mediation of early glomerular permeability alterations. Albumin excretion is influenced by multiple adrenergic pathway genes and is, thus, polygenic. Such functional links between adrenergic activity and glomerular injury suggest novel approaches to its prediction, prevention...

  14. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    Science.gov (United States)

    Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2014-01-01

    Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict

  15. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  16. Ivermectin excreted in cattle dung after subcutaneous injection or pour-on treatment

    DEFF Research Database (Denmark)

    Sommer, C.; Steffansen, B.; Nielsen, B. Overgaard

    1992-01-01

    Heifers were treated with the recommended doses of ivermectin: 0.2 mg/kg bw by subcutaneous injection or 0.5 mg/kg bw by pour-on. An analytic procedure is described and used for the detection of ivermectin residues excreted in dung. A large amount of the higher pour-on dose was excreted during th...

  17. Time profile of abamectin and doramectin excretion and degradation in sheep faeces

    Energy Technology Data Exchange (ETDEWEB)

    Kolar, Lucija [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: lucija.kolar@vf.uni-lj.si; Flajs, Vesna Cerkvenik [Institute of Food Hygiene and Bromatology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: vesna.cerkvenik@vf.uni-lj.si; Kuzner, Jernej [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: jernej.kuzner@vf.uni-lj.si; Marc, Irena [Centre for Sustainable Recultivation at Vremscica, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: irena.marc@vf.uni-lj.si; Pogacnik, Milan [Institute of Pathology, Forensic and Administrative Veterinary Medicine, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: milan.pogacnik@vf.uni-lj.si; Bidovec, Andrej [Institute of Breeding and Health Care of Wild Animals, Fishes and Bees, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: andrej.bidovec@vf.uni-lj.si; Gestel, Cornelis A.M. van [Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)]. E-mail: kees.van.gestel@ecology.falw.vu.nl; Erzen, Nevenka Kozuh [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana (Slovenia)]. E-mail: nevenka.kozuh@vf.uni-lj.si

    2006-11-15

    We studied abamectin and doramectin excretion and their degradation in sheep faeces under field conditions on pasture after a single subcutaneous dose (0.2 mg/kg body weight). In the excretion experiment, maximal abamectin concentration (1277 ng/g dry faeces) was detected on day 3, while doramectin concentration showed two peaks (2186 and 1780 ng/g dry faeces on days 2 and 5, respectively). Both avermectins were excreted at approximately the same rate (k = 0.23 day{sup -1} for abamectin and 0.19 day{sup -1} for doramectin). In the field, a rapid loss of abamectin and doramectin from sheep faeces was seen during the first 32 days after which concentrations remained constant at approximately 77 ng/g and 300 ng/g, respectively. The half life values (DT{sub 5}) for abamectin and doramectin dissipation from sheep faeces were 23 and 22 days, respectively, during the first 32 days. Dissipation of both avermectins was strongly correlated with moisture content of the faeces. - Abamectin and doramectin show similar excretion and degradation behaviour in sheep faeces.

  18. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  19. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  20. Biliary excretion and distribution of 51Cr(III) and 51Cr(VI) in rats

    International Nuclear Information System (INIS)

    Cikrt, M.; Bencko, V.

    1979-01-01

    The biliary excretion and distribution of 51 Cr after intravenous administration of 51 Cr(III) ( 51 CrCl 3 ) or 51 Cr(VI) (Na 2 51 CrO 4 .4H 2 O) were studied in rats. The cumulative biliary excretion of 51 Cr 24 hrs after the injection was significantly higher after administration of 51 Cr(VI) than of 51 Cr(III) (3.51+-0.7% and 0.51+-0.05% of administered dose, respectively). This difference was especially due to a higher rate of biliary excretion of 51 Cr in the first hours after 51 Cr(VI) administration. The excretion of 51 Cr via feces was also higher after administration of 51 Cr(VI) (7.35+-0.45%) of administered dose, as against 4.23+-0.23% after 51 Cr(III). On the other hand, no significant difference in urinary excretion of 51 Cr was found. Statistically significant differences were also observed in the distribution of 51 Cr in the organism after administration of both valence states of the metal. (author)

  1. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    Directory of Open Access Journals (Sweden)

    M. Kalim Akhtar

    2015-12-01

    Full Text Available The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3 by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase and one maturation factor (phosphopantetheinyl transferase. Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73% of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. Keywords: 1-Octanol, Fatty alcohol, Diesel, Biofuel, Excretion

  2. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1997-01-01

    Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...

  3. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

    Directory of Open Access Journals (Sweden)

    Linda A. Villani

    2016-10-01

    Full Text Available Objective: The sodium-glucose transporter 2 (SGLT2 inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1 was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. Keywords: AMP

  4. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kolodkin-Gal, I; Elsholz, AKW; Muth, C; Girguis, PR; Kolter, R; Losick, R

    2013-04-29

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa(3) and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.

  5. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Elsholz, Alexander K.W.; Muth, Christine; Girguis, Peter R.; Kolter, Roberto; Losick, Richard

    2013-01-01

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa3 and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio via binding of NAD+ to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration. PMID:23599347

  6. Q Fever in Pregnant Goats: Pathogenesis and Excretion of Coxiella burnetii

    Science.gov (United States)

    Roest, Hendrik-Jan; van Gelderen, Betty; Dinkla, Annemieke; Frangoulidis, Dimitrios; van Zijderveld, Fred; Rebel, Johanna; van Keulen, Lucien

    2012-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans. PMID:23152826

  7. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  8. Automatic patient respiration failure detection system with wireless transmission

    Science.gov (United States)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  9. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  10. Redefinition and global estimation of basal ecosystem respiration rate

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  11. Disclosure and Fit Capability of the Filtering Facepiece Respirator.

    Science.gov (United States)

    Lofgren, Don J

    2018-05-01

    The filtering facepiece air-purifying respirator is annually purchased in the tens of millions and widely used for worker protection from harmful airborne particulates. The workplace consumers of this safety product, i.e., employers, workers, and safety and health professionals, have assurances of its effectiveness through the respirator certification and disclosure requirements of the National Institute for Occupational Safety and Health. However, the certification of a critical performance requirement has been missing for the approved filtering facepiece respirator since 1995: fit capability. Without this certification, consumers continue to be at risk of purchasing a respirator model that may fit a small percentage of the intended users. This commentary updates and expands an earlier one by this author, addresses the consequences of poorly fitting certified models on the market and lack of disclosure, and calls for further action by National Institute for Occupational Safety and Health to meet the needs and expectations of the consumer.

  12. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish.

    Science.gov (United States)

    El-Sabaawi, Rana W; Warbanski, Misha L; Rudman, Seth M; Hovel, Rachel; Matthews, Blake

    2016-08-01

    Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.

  13. DIETARY PROTEIN INTAKE IS INDEPENDENTLY ASSOCIATED WITH THE URINARY EXCRETION OF PHOSPHATE

    Directory of Open Access Journals (Sweden)

    Vladimir Dobronravov

    2012-06-01

    Full Text Available Decrease of urinary phosphate (P excretion and P retention triggers activation of phosphotonins and subsequent development of secondary hyperparathyroidism in progressing of chronic kidney disease (CKD. The main source of P is dietary protein. No large studies are presented to-date to evaluate the relationship between dietary protein intake and parameters of P metabolism in CKD patients. This was a goal of the cross-sectional cohort study .11315 CKD patients were entered (males 43%. Median (10th-90th percentile of age and estimated glomerular filtration rate (GFR were 46 (24-69 and 64 (24-104. The analyzed data were: age, gender, body mass index (BMI serum albumin, creatinine, calcium and phosphate; 24-h urine creatinine, phosphate (P,proteinuria (DP. Estimated parameters includes: eGFR, fractional P excretion (FEP, 24-h P excretion (24-h UP, and P clearance (CP. Dietary protein intake (DPI was based on 24-h urinary urea excretion. No significant differences in serum phosphate were found in groups with various DPI. FEP, 24-h UP and CP were significantly higher in higher DPI range. DPI was positively associated with 24-h UP (β=0,287, p<0.000001 in multivariate model adjusted for age, gender, DP, eGFR, serum P, FEP, BMI, and Ca. Thus, DPI is considered to be the independent factor influencing urinary P excretion and hence contributing to progression of mineral and bone disease in renal dysfunction.

  14. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  15. Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)

    Science.gov (United States)

    Forshee, Jay Lance, II

    Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity

  16. Distribution and time course of corticosterone excretion in faeces and urine of female mice with varying systemic concentrations

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Hau, Jann; Jacobsen, Kirsten R

    2010-01-01

    distribution and time course of corticosterone excretion, after intravenous injection of varying corticosterone concentrations, was investigated in female mice. Female BALB/c mice excreted 60% of all corticosterone in the urine with an approximate delay of 5h from tail vein administration. The remaining 40......% were excreted in faeces, with an approximate delay of 9h from administration. The faecal/urinary excretion ratio, as well as time course of excretion, remained unaltered by administration of various doses of corticosterone covering the entire physiological range of serum corticosterone. Although...

  17. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  18. Urinary excretion of Tamm-Horsfall protein and epidermal growth factor in chronic nephropathy

    DEFF Research Database (Denmark)

    Torffvit, O; Jørgensen, P E; Kamper, A L

    1998-01-01

    rate (GFR) as an indicator for the general renal function, lithium clearance (C(Li)) as an indicator for proximal tubular function, and absolute distal reabsorption of sodium (ADR(Na)) as an indicator for distal tubular function. The excretion rate of EGF was rather closely correlated with GFR, C......(Li) and ADR(Na) (Spearman coefficients of variation 0.88, 0.69, and 0.74, respectively). The correlations between the excretion rate of THP and GFR, C(Li) and ADR(Na) were weaker (Spearman coefficients of variation 0.68, 0.42, and 0.44). When the effect of GFR had been accounted for by multiple variance...... analyses, the excretion rates of the two peptides were still associated with ADR(Na) but not with C(Li). In conclusion, the urinary excretion rates of especially EGF but also those of THP were correlated with renal function and distal tubular reabsorption of sodium in patients with chronic nephropathy....

  19. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  20. Diagnostic value of determination of amount of urinary excretion of proteins for early diabetic nephropathy

    International Nuclear Information System (INIS)

    Li Zhuocheng; Chen Jianxiong; Yan Dewen

    2007-01-01

    Objective: To investigate the value of detection of changes of the amount of usinary excretion of albumin, β 2 -m, Tamm- Horsfall protein and α 1 -m for diagnosis of early diabetic nephropathy. Methods: The amounts of 24h urinary excretion of albumin, β 2 -m, Tamm-Horsfall protein and α 1 -m were determined with RIA in 78 patients with diabetes mellitus and 40 controls. Results: The amounts of 24h urinary excretion of albumin, β 2 -m, α 1 -m in patients with diabetes mellitus were significantly higher than those in controls (P<0.01 ), while the amount of Tamm-Horsfall protein was significantly lower (P<0.01). Among the diabetic patients, the changes of the amount of protein excretion were more pronounced in those with advanced impairment of renal function. Conclusion: Determination of amount of urinary excretion of proteins was helpful for diagnosis and assessment of early diabetic nephropathy. (authors)

  1. Biliary excretion of essential trace elements in rats under oxidative stress caused by selenium deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Kosuke; Tsukada, Masamichi [Meiji University, School of Agriculture, Kawasaki, Kanagawa (Japan); Sakuma, Yasunobu; Sasaki, Junya; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo [Showa Pharmaceutical University, Department of Physical Chemistry, Machida, Tokyo (Japan); Matsumoto, Ken-ichiro; Anzai, Kazunori [National Institute of Radiological Science, Research Center for Charged Particle Therapy, Chiba (Japan); Enomoto, Shuichi [The Institute of Physical and Chemical Research (RIKEN), Radioisotope Technology Division, Cyclotron Center, Wako, Saitama (Japan); Okayama University, Department of Analytical Chemistry, School of Pharmacy, Okayama (Japan)

    2011-11-15

    The excretion of essential trace elements, namely, Se, Sr, As, Mn, Co, V, Fe, and Zn into the bile of Se-deficient (SeD) Wistar male rats was studied using the multitracer (MT) technique, and instrumental neutron activation analysis (INAA). Normal and Se-control (SeC) rat groups were used as reference groups to compare the effects of Se levels on the behaviors of the essential trace elements. The excretion (% dose) of Se, Sr, As, Mn, Co, and V increased with Se levels in the liver. The biliary excretion of Mn and As dramatically enhanced for SeC rats compared with SeD rats, while that of V accelerated a little for SeC rats. The radioactivity levels of {sup 59}Fe and {sup 65}Zn in the MT tracer solution were insufficient to measure their excretion into bile. The role of glutathione and bilirubin for biliary excretion of the metals was discussed in relation to Se levels in rat liver. (orig.)

  2. Relationship between plasma uridine and urinary urea excretion.

    Science.gov (United States)

    Ka, Tuneyoshi; Inokuchi, Taku; Tamada, Daisuke; Suda, Michio; Tsutsumi, Zenta; Okuda, Chihiro; Yamamoto, Asako; Takahashi, Sumio; Moriwaki, Yuji; Yamamoto, Tetsuya

    2010-03-01

    To investigate whether the concentration of uridine in plasma is related to the urinary excretion of urea, 45 healthy male subjects with normouricemia and normal blood pressure were studied after providing informed consent. Immediately after collection of 24-hour urine, blood samples were drawn after an overnight fast except for water. The contents of ingested foods during the 24-hour urine collection period were described by the subjects and analyzed by a dietician. Simple regression analysis showed that plasma uridine was correlated with the urinary excretions of urea (R = 0.41, P urea. These results suggest that an increase in de novo pyrimidine synthesis leads to an increased concentration of uridine in plasma via nitrogen catabolism in healthy subjects with normouricemia and normal blood pressure. (c) 2010 Elsevier Inc. All rights reserved.

  3. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  4. Selective renal vasoconstriction, exaggerated natriuresis and excretion rates of exosomic proteins in essential hypertension

    DEFF Research Database (Denmark)

    Damkjaer, M.; Jensen, Pia Hønnerup; Schwämmle, Veit

    2014-01-01

    AimIn essential hypertension (EH), the regulation of renal sodium excretion is aberrant. We hypothesized that in mild EH, (i) abnormal dynamics of plasma renin concentration (PRC) and atrial natriuretic peptide (ANP) are responsible for the exaggerated natriuresis, and (ii) exosomic protein...... patterns reflect the renal tubular abnormality involved in the dysregulation of sodium excretion. MethodsAfter 2-week drug washout and 4-day diet, systemic and renal hemodynamics, cardio-renal hormones, glomerular filtration and renal excretion were studied in male patients during saline loading (SL...

  5. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  6. Subcellular localization of ammonium transporters in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Davis Carter T

    2008-12-01

    Full Text Available Abstract Background With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. Results Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. Conclusion Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not

  7. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    OpenAIRE

    Cheng Zhu; Yiping Ma; Honghui Wu; Tao Sun; Kimberly J. La Pierre; Zewei Sun; Qiang Yu

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4?mol N m?2 yr?1 vs 1.6?mol N m?2 yr?1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plan...

  8. Human urinary excretion profile after smoking and oral administration of [14C]delta 1-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Johansson, E.; Gillespie, H.K.; Halldin, M.M.

    1990-01-01

    The urinary excretion profiles of delta 1-tetrahydrocannabinol (delta 1-THC) metabolites have been evaluated in two chronic and two naive marijuana users after smoking and oral administration of [ 14 C]delta 1-THC. Urine was collected for five days after each administration route and analyzed for total delta 1-THC metabolites by radioactivity determination, for delta 1-THC-7-oic acid by high-performance liquid chromatography, and for cross-reacting cannabinoids by the EMIT d.a.u. cannabinoid assay. The average urinary excretion half-life of 14 C-labeled delta 1-THC metabolites was calculated to be 18.2 +/- 4.9 h (+/- SD). The excretion profiles of delta 1-THC-7-oic acid and EMIT readings were similar to the excretion profile of 14 C-labeled metabolites in the naive users. However, in the chronic users the excretion profiles of delta 1-THC-7-oic acid and EMIT readings did not resemble the radioactive excretion due to the heavy influence from previous Cannabis use. Between 8-14% of the radioactive dose was recovered in the urine in both user groups after oral administration. Lower urinary recovery was obtained both in the chronic and naive users after smoking--5 and 2%, respectively

  9. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    NARCIS (Netherlands)

    Masereeuw, R.; Notenboom, S.; Smeets, P.H.E.; Wouterse, A.C.; Russel, F.G.M.

    2003-01-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is

  10. Studies on distribution and excretion of 14C-glycerol in rats, rabbits and mice

    International Nuclear Information System (INIS)

    Takanashi, Shigeru; Kamiyama, Hiroshi; Suzuki, Hidetaka; Tohira, Yasuo; Ogawa, Machiko

    1978-01-01

    Tissue distribution and excretion of uniformly labeled 14 C-glycerol were investigated using rats, rabbits and mice. Blood disappearance half life of 14 W/V% 14 C-glycerol in mice (1 ml/head), rats (1 ml/head) and rabbits (2 ml/head) given intravenously was 0.4, 1.8 and 2.4 hours, respectively. When 14 W/V% 14 C-glycerol was injected in rats (1 ml/head) and rabbits (2 ml/head), 65% of administered radioactivity was excreted in to expired air within 48 hrs. This suggests that glycerol is mostly metabolised via the Embden-Meyehof pathway and the TCA cycle, and finally converted to CO 2 and H 2 O. At a low dose, the conversion ratio to CO 2 was greater than the case of a high dose, and a inverse relationship was observed between the CO 2 -conversion ratio and the dose. At levels above 1 ml of 56 W/V% glycerol, an approximately constant portion of the administered dose appeared to be oxidized. The results of the whole body autoradiogram showed the distribution of the radioactivity throughout the body. Disappearance of radioactivity from liver and blood was rapid, but transport to brain, excretion to the salivary gland, and secretion to Harder's gland were slow. The distribution in tissues showed that the highest distribution of 14 C-glycerol was found in the carcass; liver showed the next highest distribution; high distribution was also found initially in the kidneys; brain, heart, lung and spleen showed low distribution, but they decreased with time elapsed. Disappearance of radioactivity from the brain was relatively slower than the liver. Besides, another result indicated that in pregnant mice 14 C-glycerol did not cross the placenta very quickly. The fact that the apparent disappearance rate from the foetuses does not seem to parallel that of the placenta is suggestive of selective accumulation in foetal tissues. (auth.)

  11. Short-term effects of carbon dioxide on carnation callus cell respiration

    International Nuclear Information System (INIS)

    Palet, A.; Ribas-Carbo, M.; Argiles, J.M.; Azcon-Bieto, J.

    1991-01-01

    The addition of potassium bicarbonate to the electrode cuvette immediately stimulated the rate of dark O 2 uptake of photomixotrophic and heterotrophic carnation (Dianthus caryophyllus L.) callus, of Elodea canadensis (Minchx) leaves, and of other plant tissues. This phenomenon occurred at pH values lower than 7.2 to 7.8, and the stimulation depended on the concentration of gaseous CO 2 in the solution. These stimulatory responses lasted several minutes and then decreased, but additional bicarbonate or gaseous CO 2 again stimulated respiration, suggesting a reversible effect. Carbonic anhydrase in the solution increased the stimulatory effect of potassium bicarbonate. The CO 2 /bicarbonate dependent stimulation of respiration did not occur in animal tissues such as rat diaphragm and isolated hepatocytes, and was inhibited by salicylhydroxamic acid in carnation callus cells and E. canadensis leaves. This suggested that the alternative oxidase was engaged during the stimulation in plant tissues. The cytochrome pathway was severely inhibited by CO 2 /bicarbonate either in the absence or in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone. The activity of cytochrome c oxidase of callus tissue homogenates was also inhibited by CO 2 /bicarbonate. The results suggested that high carbon dioxide levels (mainly free CO 2 ) partially inhibited the cytochrome pathway (apparently at the oxidase level), and this block in electron transport elicited a large transient engagement of the alternative oxidase when present uninhibited

  12. Correlation between dietary nitrogen, level of plasma urea and urea excretion in urine of buffalo calves

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.

    1978-01-01

    Two experiments were conducted with 6 male buffalo calves of Murrah breed, aged 1.5 years, to determine whether blood urea nitrogen and urea excretion in urine were associated with protein intake. The animals were fed different amounts of crude protein in their diet. The levels of urea-N in the blood, excretion of 14 C from urea and urea-N in the urine were estimated. Close relationships were observed between nitrogen intake, blood urea nitrogen and urea excretion in the urine. The observations indicated that blood urea-N and urea excretion in urine could be quantitated with the protein intake. (author)

  13. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Science.gov (United States)

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  14. Renal thorium and uranium excretion in non-exposed subjects: influence of age and gender

    International Nuclear Information System (INIS)

    Werner, E.; Roth, P.; Wendler, I.; Schramel, P.

    1998-01-01

    The excretion of 238 U and 232 Th was investigated by ICP-MS in a group of 30 males (mean age 41 ± 18 years, range 7 to 73 years) and 33 females (43 ± 21 years, 11 to 84 years). For the thorium excretion, the geometric mean is 34 μBq/day (SD 1.90) for the whole group, 40 μBq/day (SD 2.01) for the males and 30 μBq/day (SD 1.78) for the females. The difference between the males and females is statistically insignificant. A certain increase in the excretion was observed with increasing age but the correlation coefficient of the linear relationship is statistically insignificant. For uranium, the geometric means (SD) for the whole group, the male subgroup, and the female subgroup, in μBq/day, are 237 (2.50), 287 (2.09), and 200 (2.81). The difference between the two subgroups is statistically insignificant. The excretion increases slightly with age; the correlation coefficient of the linear relationship is statistically significant. The day-to-day fluctuations in the excretion of both Th and U are considerable. (P.A.)

  15. Transfer of plutonium across the human gut and its urinary excretion

    International Nuclear Information System (INIS)

    Popplewell, D.S.; Ham, G.J.; McCarthy, W.; Lands, C.

    1994-01-01

    The gastrointestinal absorption of 244 Pu(IV) has been measured in three male adult volunteers. The plutonium was in citrate solution and was taken with food. The work was carried out in two stages. The first stage measured urinary plutonium excretion up to 8 or 9 d after the oral intake. The second stage commenced about six months later with an intravenous injection of plutonium citrate and measurements of the urinary plutonium excretion. Results from the two routes of intake were used to calculate the fractional absorption (f 1 ) of ingested plutonium. The f 1 values were in the range (2-9) x 10 -4 . In theory it should be possible to measure the plutonium in the volunteers' urine throughout their lives. Measurements are continuing and the results show the excretion pattern up to nearly 2 y for one subject, and 6 months for the other two volunteers. (author)

  16. Diminished renal urea excretion in the llama at reduced food intake

    International Nuclear Information System (INIS)

    Engelhardt, W.; Engelhardt, W. von

    1976-01-01

    Renal urea excretion was studied in three llamas under various feeding conditions. Glomerular filtration rate (GFR) was estimated from inulin clearance. Tubular reabsorbed urea was the difference between glomerular filtered and renal excreted urea. Plasma urea concentration increased significantly when feeding was reduced by 40% and 60%, not applicable to a straw diet. With reduced hay feeding and on a straw diet only a slight and insignificant decrease was observed in renal urea excretion, with only a 3% lowering in GFR and glomerular filtered urea. With a straw diet, the glomerular filtered urea was significantly below the controls. The fraction of filtered urea reabsorbed in the tubules was constant (36%-47%). Very high reabsorption (87%) on a supplemented straw dietwas observed in one llama which after nearly 6 months on this low protein diet - could be shown to have lost only 5% of its body weight

  17. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  18. Organ burdens and excretion rates of inhaled uranium - computations using ICRP model

    International Nuclear Information System (INIS)

    Abani, M.C.; Murthy, K.B.S.; Sunta, C.M.

    1988-01-01

    Uranium being a highly toxic material, proper estimation of the body burden is very important. During manufacture of uranium fuel, it is likely to enter the body by inhalation. By the body burden and excretion measurements, one should be able to assess whether the intake is within the safe limits or not. This is possible if one performs theoretical calculations and estimates the amount of uranium which builds up in the body as a function of time. Similarly theoretical estimates in case of excretion have to be made. For this purpose, a computer programme has been developed to find out organ burdens and excretion rates resulting from exposure to a radioactive nuclide. ICRP-30 lung model has been used and cases of single instantaneous inhalation of 1 ALI as well as inhalation at a steady rate of ALI/365 per day have been considered. Using this programme, results for uranium aerosols of classes D, W and Y and sizes 0.2, 1 and 5 microns are generated by ND computers in tabular as well as graphical forms. These will be useful in conjunction with body burden measurements by direct counting or excretion analysis. (author). 7 tabs., 56 figs

  19. Carbon dioxide titration method for soil respiration measurements

    OpenAIRE

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  20. Genetic variation underlying renal uric acid excretion in Hispanic children: the Viva La Familia Study.

    Science.gov (United States)

    Chittoor, Geetha; Haack, Karin; Mehta, Nitesh R; Laston, Sandra; Cole, Shelley A; Comuzzie, Anthony G; Butte, Nancy F; Voruganti, V Saroja

    2017-01-17

    Reduced renal excretion of uric acid plays a significant role in the development of hyperuricemia and gout in adults. Hyperuricemia has been associated with chronic kidney disease and cardiovascular disease in children and adults. There are limited genome-wide association studies associating genetic polymorphisms with renal urate excretion measures. Therefore, we investigated the genetic factors that influence the excretion of uric acid and related indices in 768 Hispanic children of the Viva La Familia Study. We performed a genome-wide association analysis for 24-h urinary excretion measures such as urinary uric acid/urinary creatinine ratio, uric acid clearance, fractional excretion of uric acid, and glomerular load of uric acid in SOLAR, while accounting for non-independence among family members. All renal urate excretion measures were significantly heritable (p uric acid clearance with a single nucleotide polymorphism (SNP) in zinc finger protein 446 (ZNF446) (rs2033711 (A/G), MAF: 0.30). The minor allele (G) was associated with increased uric acid clearance. Also, we found suggestive associations of uric acid clearance with SNPs in ZNF324, ZNF584, and ZNF132 (in a 72 kb region of 19q13; p <1 × 10 -6 , MAFs: 0.28-0.31). For the first time, we showed the importance of 19q13 region in the regulation of renal urate excretion in Hispanic children. Our findings indicate differences in inherent genetic architecture and shared environmental risk factors between our cohort and other pediatric and adult populations.

  1. [Soil respiration characteristics in winter wheat field in North China Plain].

    Science.gov (United States)

    Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang

    2004-09-01

    Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship

  2. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  3. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Science.gov (United States)

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  4. Bilary and urinary excretion of five cardiac glycosides and its correlation with their physical and chemical properties.

    Science.gov (United States)

    Marzo, A; Ghirardi, P

    1977-05-01

    Biliary and urinary excretion of five tritium-labelled cardiac glycosides, i.e. Ouabain, K-strophanthoside, Digoxin, Digitoxin and Deslanatoside C, were investigated in anaesthetized guinea-pigs 5 h after i.v. or enteral administration. Urinary excretion is the main route of elimination in the case of Ouabain and Deslanatoside C. Conversely, biliary excretion is predominant in the case of Digoxin and Digitoxin. K-strophanthoside is excreted both via bile and urine. In conscious guinea-pigs treated i.v. with the same cardiac glycosides the highest levels were observed in urine, bile, kidneys and liver. The relative values of those levels were in agreement with the excretion pattern observed in anaesthetized animals. An inverse linear relation (P less than 0.05) was encountered between biliary excretion rate and polarity of glycoside molecula. This correlation has been previously observed by other authors in other species, but not in the rabbit. This suggests that the correlation may not be considered generally applicable at present.

  5. Herd protection effect of N95 respirators in healthcare workers.

    Science.gov (United States)

    Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina

    2017-12-01

    Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (protection from use of N95 respirators by colleagues within a hospital ward.

  6. Action of γ-rays on the respiration and growth of perilla

    International Nuclear Information System (INIS)

    Sergeeva, E.A.

    1976-01-01

    The respiration rate of leaves of different stroyes and the growth rate of the main steam of perilla plants have been studied after irradiation with γ-rays (3 and 6 kR). Three periods have been distinguished in the rate of the processes under study. The growth and respiration were inhibited in the initial post-irradiation period, then their rate increased till it exceeded the control values at the end of the restoration period. During the subsequent third period, the rate of growth and respiration processes decreased reaching the values observed in unirradiated plants. Changes in the radiosensitive process of growth of irradiated plants are suggested to be the cause for changes in the respiration rate

  7. Effects of Gentamicin on Urinary Electrolyte Excretion in Admitted Neonate

    Directory of Open Access Journals (Sweden)

    B. Falakolaflaki

    2008-01-01

    Full Text Available Introduction & Objective: Gentamicin is an aminoglycoside antibiotic widely used during the neonatal period. It is associated with nephrotoxic effects in neonates, including glomerular impairment and renal tubular dysfunction. Electrolyte balance is very important, especially in the sick premature neonate receiving aminoglycosides. The purpose of this study was early diagnosis of gentamicin nephrotoxicity. Materials & Methods: This quasi-experimental study was performed on 23 neonates (11 full – term and 12 preterm with suspected sepsis who were admitted and treated with gentamicin. Blood and urine samples were collected before infusion and on the 3rd day of treatment. Serum and urine concentration of Na, K, creatinine (Cr and urine concentration of Ca were measured. Then fractional excretion of Na and K were estimated. Ca excretion was estimated as the UCa/UCr ratio. Then the collected data were analyzed using SPSS package.Results: In all neonates, increase in fractional excretion of Na and UCa/UCr, in the 3rd day of treatment were observed as compared to those of before infusion (P=0.01 and P=0.02 respectively. Serum creatinine levels decreased in all patients. Serum level of electrolytes during therapy was normal.Conclusion: The results of this study clearly demonstrate an effect of gentamicin infusion on renal sodium and calcium excretion. These results may be of clinical importance especially for sick preterm neonates receiving treatment with gentamicin. These babies are usually salt-losers and are also more susceptible to early onset hypocalcemia. Gentamicin can aggravate these complications.

  8. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  9. Evaluation of respiration-correlated digital tomosynthesis in lung.

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  10. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  11. Video-based respiration monitoring with automatic region of interest detection

    NARCIS (Netherlands)

    Janssen, R.J.M.; Wang, Wenjin; Moço, A.; de Haan, G.

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration

  12. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia

    International Nuclear Information System (INIS)

    Shibistova, O.; Zrazhevskaya, G.; Astrakhantceva, N.; Shijneva, I.; Lloyd, J.; Arneth, A.; Kolle, J.; Knohl, A.; Schmerler, J.

    2002-01-01

    Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO 2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q 10 of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C/m 2 /a. Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18

  13. Inductively coupled plasma mass-spectrometric determination of platinum in excretion products of client-owned pet dogs.

    Science.gov (United States)

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-06-01

    Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples were collected before and up to 21 days after administration of carboplatin. We used validated, ultra-sensitive, inductively coupled plasma-mass spectrometry assays to measure Pt in canine urine, faeces, saliva, sebum and cerumen. Results showed that urine is the major route of elimination of Pt in dogs. In addition, excretion occurs via faeces and saliva, with the highest amounts eliminated during the first 5 days. The amount of excreted Pt decreased over time but was still quantifiable at 21 days after administration of carboplatin. In conclusion, increased Pt levels were found in all measured excretion products up to 21 days after administration of carboplatin to pet dogs, with urine as the main route of excretion. These findings may be used to further adapt current veterinary guidelines on safe handling of antineoplastic drugs and treated animals. © 2013 Blackwell Publishing Ltd.

  14. Amplification and dampening of soil respiration by changes in temperature variability

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  15. Gastrocnemius mitochondrial respiration: are there any differences between men and women?

    Science.gov (United States)

    Thompson, Jonathan R; Swanson, Stanley A; Casale, George P; Johanning, Jason M; Papoutsi, Evlampia; Koutakis, Panagiotis; Miserlis, Dimitrios; Zhu, Zhen; Pipinos, Iraklis I

    2013-11-01

    Work on human and mouse skeletal muscle by our group and others has demonstrated that aging and age-related degenerative diseases are associated with mitochondrial dysfunction, which may be more prevalent in males. There have been, however, no studies that specifically examine the influence of male or female sex on human skeletal muscle mitochondrial respiration. The purpose of this study was to compare mitochondrial respiration in the gastrocnemius of adult men and women. Gastrocnemius muscle was obtained from male (n = 19) and female (n = 11) human subjects with healthy lower-extremity musculoskeletal and arterial systems and normal ambulatory function. All patients were undergoing operations for the treatment of varicose veins in their legs. Mitochondrial respiration was determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Complex I-, II-, III-, and IV-dependent respiration was measured individually and normalized to muscle weight, total protein content, and citrate synthase (CS, index of mitochondrial content). Male and female patients had no evidence of musculoskeletal or arterial disease and did not differ with regard to age, race, body mass index, or other clinical characteristics. Complex I-, II-, III-, and IV-dependent respiration normalized to muscle weight, total protein content, and CS did not statistically differ for males compared with females. Our study evaluates, for the first time, gastrocnemius mitochondrial respiration of adult men and women who have healthy musculoskeletal and arterial systems and normal ambulatory function. Our data demonstrate there are no differences in the respiration of gastrocnemius mitochondria between men and women. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  17. Excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Zulfiya Raisovna Alimetova

    2010-12-01

    Full Text Available Aim. To study excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus depending on gestational ageand albuminuria level. Materials and methods. A total of 60 pregnant women with type 1 diabetes mellitus were examined. Proximal and distal tubular function was estimatedfrom daily excretion of amine nitrogen and ammonia respectively. Results. Daily excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus was lower than in healthycontrols in the 2nd trimester regardless of albuminuria and in the 3rd trimester in patients with microalbuminuria (MAU and proteinuria (PU.Ammonia excretion was twice lower than normal in the 2nd trimester in women with MAU and PU, and in the 3rd trimester in patients with PU.Healthy pregnant women showed significant correlation between ammonia and amine nitrogen excretion throughout pregnancy (r?0.833,p

  18. Absorption and excretion of black currant anthocyanins in human and Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L.. F.; Ravn-Haren, Gitte; Dragsted, L. O.

    2003-01-01

    Anthocyanins are thought to protect against cardiovascular diseases. Watanabe heritable hyperlipidemic (WHHL) rabbits are hypercholesterolemic and used as a model of the development of atherosclerosis. To compare the uptake and excretion of anthocyanins in humans and WHHL rabbits, single-dose black......). The excretion and absorption of anthocyanins from black currant juice were found to be within the same order of magnitude in the two species regarding urinary excretion within the first 4 h (rabbits, 0.035%; humans, 0.072%) and t(ma)x (rabbits, similar to30 min; humans, similar to45 min). A food matrix effect...... was detected in rabbits, resulting in the absorption of a higher proportion of the anthocyanins from black currant juice than from an aqueous citric acid matrix. In humans the absorption and urinary excretion of anthocyanins from black currant juice were found to be proportional with dose and not influenced...

  19. Relationship Between Serum Adiponectin and Urinary Albumin Excretion Rate in Patients with Diabetes Nephropathy

    International Nuclear Information System (INIS)

    Duan Yongqiang; Yu Hui; Wang Zuobing

    2010-01-01

    To explore the relationship between the levels of serum adiponectin and urinary albumin excretion rate in patients with type 2 diabetes nephropathy, the serum levels of adiponectin and the levels of urinary albumin excretion rate in diabetes patients before and after treatment with pioglitazone were tested by ELISA and automatic biochemical analyzer respectively. The results showed that the serum levels of adiponectin in DM and DN group were lower than that of normal controls(P<0.01), but they gradually increased with progression (P<0.01). The serum adiponectin level was positively correlated with urinary albumin excretion rate (r= 0.284, P<0.05). The urinary albumin level decreased (P<0.01) and the serum levels of adiponectin increased after treatment with pioglitazone in DN group. The serum levels of adiponectin and urinary albumin excretion rate may play important role in the indication of treatment of diabetes. (authors)

  20. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  1. Effects of light on respiration and development of photosynthetic cells. Renewal application and progress report, March 1-November 1, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, M.

    1980-11-20

    The oxyhydrogen reaction in the presence and absence of CO/sub 2/ was studied in H/sub 2/- adapted Scenedesmus obliquus by monitoring the initial rates of H/sub 2/, O/sub 2/, and /sup 14/CO/sub 2/ uptake and the effect of inhibitors on these rates. Glucose and acetate respiration was competitive with H/sub 2/ uptake. KCN inhibited equally respiration and the oxyhydrogen reaction in the presence and absence of CO/sub 2/. It was concluded that the oxyhydrogen reaction both in the absence and presence of CO/sub 2/ has properties in common with components of respiration and photosynthesis. Participation of these two processes in the oxyhydrogen reaction would require a closely linked shuttle between mitochondrion and chloroplast. Protoplasts and chloroplasts will be isolated from a H/sub 2/-adapted alga in order to elucidate the cooperation between the two organelles. Acetate was shown to stimulate H/sub 2/ photoproduction in H/sub 2/-adapted algae even more so than an uncoupler of electron transport. The role of these compounds will be evaluated either in terms of the glyoxylate cycle or electron acceptors resulting in formation of alcohols. The term chloroplast respiration was proposed to account for the breakdown of polyglucan within the chloroplast. A means of reoxidizing reduced pyridine nucleotide was required to complete the cycle. A new enzyme ascorbic acid reduced pyridine nucleotide peroxidase was isolated from the chloroplast. The characterization of this enzyme will continue.

  2. Clinical significance of segmental parenchymal excretion delay on Tc-99m DISIDA hepatobiliary scan

    International Nuclear Information System (INIS)

    Kang, D. Y.; Ryu, J. S.; Moon, D. H.; Lee, S. K.; Kim, M. H.; Lee, H. K.

    1998-01-01

    Segmental parenchymal excretion delay on Tc-99m DISIDA scan in caused by intrahepatic bile duct obstruction. However, the diagnostic value for intrahepatic bile duct obstruction is unknown. We conducted this study to assess the positive predictive value of segmental excretion delay for the diagnosis of intrahepatic bile duct obstruction, and additional benefit over other noninvasive radiologic studies. The study population consisted of 43 patients (48 scans) who showed segmental parenchymal excretion delay on Tc-99m DISIDA scan. The results of abdominal CT or ultrasonography, which was done within 1 month of Tc-99m DISIDA scan, were compared with scintigraphic findings. The etiology of segmental parenchymal excretion delay was determined by ERC or PTC in 31 scans, and follow-up studies in 13 scans. No causes were identified in 4 scans. The positive predictive value of segmental parenchymal excretion delay for intrahepatic bile duct obstruction was 92% (44/48). On the other hand, 13% (5/38) of CT and 28% (5/18) of ultrasonography were normal. In 18% *7/38) of CT and 17% (3/18) of ultrasonography, only intrahepatic bile duct dilatation was noted without any diagnostic findings of intrahepatic bile duct obstruction. Segmental parenchymal excretion delay on Tc-99m DISIDA scan had a high positive predictive value for the diagnosis of intrahepatic bile duct obstruction. Tc-99m DISIDA scan may be useful for the diagnosis of intrahepatic bile duct obstruction, especially in patients with nondiagnostic CT or ultrasonography. The diagnostic usefulness need to be confirmed by further prospective studies

  3. Automated applications of sandwich-cultured hepatocytes in the evaluation of hepatic drug transport.

    Science.gov (United States)

    Perry, Cassandra H; Smith, William R; St Claire, Robert L; Brouwer, Kenneth R

    2011-04-01

    Predictions of the absorption, distribution, metabolism, excretion, and toxicity of compounds in pharmaceutical development are essential aspects of the drug discovery process. B-CLEAR is an in vitro system that uses sandwich-cultured hepatocytes to evaluate and predict in vivo hepatobiliary disposition (hepatic uptake, biliary excretion, and biliary clearance), transporter-based hepatic drug-drug interactions, and potential drug-induced hepatotoxicity. Automation of predictive technologies is an advantageous and preferred format in drug discovery. In this study, manual and automated studies are investigated and equivalence is demonstrated. In addition, automated applications using model probe substrates and inhibitors to assess the cholestatic potential of drugs and evaluate hepatic drug transport are examined. The successful automation of this technology provides a more reproducible and less labor-intensive approach, reducing potential operator error in complex studies and facilitating technology transfer.

  4. A study of the comparison between human and animal excretion data following inhalation exposure to plutonium 238 oxide aerosols

    International Nuclear Information System (INIS)

    Moss, W.D.; Martinez, G.; Gautier, M.A.

    1985-01-01

    Bioassay urine samples obtained since 1971 from eight Los Alamos employees, accidentally exposed by inhalation to high-fired plutonium-238 oxide aerosols, were studied and compared with excretion data obtained from Beagle dogs exposed to /sup 238/PuO/sub 2/ aerosols. The early period Pu human excretion data from the inhalation exposure were unexpected and were unlike previously studied occupational exposure urinary data obtained at Los Alamos. The initial urine samples collected on day one were below the detection limits of the analytical method (0.01 pCi). Within thirty days, however, detectible concentrations of Pu were measured in the urine for several of the exposed personnel. The amounts of Pu excreted continued to increase in each of the cases throughout the first year and the individual patterns of Pu excretion were similar. The human urinary excretion data was compared with similar excretion data obtained from an animal study conducted by the Inhalation Toxicology Research Institute (Me81). In the animal study, Beagle dogs received inhalation exposure to one of three sizes of monodisperse of polydisperse aerosol of /sup 238/PuO/sub 2/. Periodic sacrifice of pairs of dogs during the 4 years after the inhalation exposure provided data on the retention, translocation and mode of excretion of /sup 238/Pu. The comparison of human and animal /sup 238/Pu excretion data supported the observation that the excretion data were similar between the two species and that the animal excretion models can be applied to predict the human /sup 238/Pu excretion following inhalation exposure to high-fired oxides of /sup 238/Pu

  5. Increased urinary orosomucoid excretion predicts preeclampsia in pregnant women with pregestational type 1 diabetes

    DEFF Research Database (Denmark)

    Christiansen, MS; Hesse, D; Ekbom, P

    2010-01-01

    We evaluated the urinary orosomucoid excretion (UOE) as a biomarker of preeclampsia and preterm delivery in pregnant women with type 1 diabetes.......We evaluated the urinary orosomucoid excretion (UOE) as a biomarker of preeclampsia and preterm delivery in pregnant women with type 1 diabetes....

  6. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  7. Classification of soil respiration in areas of sugarcane renewal using decision tree

    Directory of Open Access Journals (Sweden)

    Camila Viana Vieira Farhate

    Full Text Available ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response variable. The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS, chisquare method (χ2 and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.

  8. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  9. Estimation of exposure to 222Rn from the excretion rates of 21πPb

    International Nuclear Information System (INIS)

    Holtzman, R.B.; Rundo, J.

    1981-01-01

    A model is proposed with which estimates of exposure to 227 Rn and its daughter products may be made from urinary excretion rates of 210 Pb. It is assumed that 20% of all the 210 Pb inhaled reaches the blood and that 50% of the endogenous excretion is through the urine. The estimates from the model are compared with the results of measurements on a subject residing in a house with high levels of radon. Whole body radioactivity and excretion data were consistent with the model, but the estimates of exposure (WL) were higher than those measured with an Environmental Working Level Monitor

  10. Additional short-term plutonium urinary excretion data from the 1945-1947 plutonium injection studies

    International Nuclear Information System (INIS)

    Moss, W.D.; Gautier, M.A.

    1985-01-01

    A review of original injection experimental records at LASL suggest that the power function fit is a good choice to describe early plutonium excretion; however, the later period (300-, 500-, and 1600-day) results along with 10,000 day results show a significant departure from the Langham power function model used to describe long-term Pu excretion. The authors suggest that since the 523- and 1600-day data in question influenced the mathematical development of the Langham power function equation, its use in predicting Pu body burdens from long-term excretion data should be discouraged. 9 references, 2 figures, 2 tables

  11. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  12. Respiration climacteric in tomato fruits elucidated by constraint-based modelling.

    Science.gov (United States)

    Colombié, Sophie; Beauvoit, Bertrand; Nazaret, Christine; Bénard, Camille; Vercambre, Gilles; Le Gall, Sophie; Biais, Benoit; Cabasson, Cécile; Maucourt, Mickaël; Bernillon, Stéphane; Moing, Annick; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Gibon, Yves

    2017-03-01

    Tomato is a model organism to study the development of fleshy fruit including ripening initiation. Unfortunately, few studies deal with the brief phase of accelerated ripening associated with the respiration climacteric because of practical problems involved in measuring fruit respiration. Because constraint-based modelling allows predicting accurate metabolic fluxes, we investigated the respiration and energy dissipation of fruit pericarp at the breaker stage using a detailed stoichiometric model of the respiratory pathway, including alternative oxidase and uncoupling proteins. Assuming steady-state, a metabolic dataset was transformed into constraints to solve the model on a daily basis throughout tomato fruit development. We detected a peak of CO 2 released and an excess of energy dissipated at 40 d post anthesis (DPA) just before the onset of ripening coinciding with the respiration climacteric. We demonstrated the unbalanced carbon allocation with the sharp slowdown of accumulation (for syntheses and storage) and the beginning of the degradation of starch and cell wall polysaccharides. Experiments with fruits harvested from plants cultivated under stress conditions confirmed the concept. We conclude that modelling with an accurate metabolic dataset is an efficient tool to bypass the difficulty of measuring fruit respiration and to elucidate the underlying mechanisms of ripening. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  14. Sustained stimulation of soil respiration after 10 years of experimental warming

    International Nuclear Information System (INIS)

    Reth, S; Graf, W; Reichstein, M; Munch, J C

    2009-01-01

    A number of forest and grassland studies indicated that stimulation of the soil respiration by soil warming ceases after a couple of years (Luo et al 2001 Nature 413 622-5). Here we present results from a long-term soil warming lysimeter experiment in southern Germany showing sustained stimulation of soil respiration after 10 years. Moreover, both warmed and control treatments exhibited a similar temperature response of soil respiration, indicating that adaptation in terms of temperature sensitivity was absent. Carbon dioxide concentration measurements within the profiles are supporting these findings. The increased soil respiration occurred although vegetation productivity in the warmed treatment was not higher than in the control plots. These findings strongly contrast with current soil carbon modeling concepts, where carbon pools decay according to first-order kinetics, and thus a depletion of labile soil carbon pools leads to an apparent down-regulation of microbial respiration (Knorr et al 2005 Nature 433 298-301). Consequently, the potential for positive climate carbon cycle feedback may be larger than represented in current models of soil carbon turnover.

  15. The effect of plane of nutrition on the urinary purine derivative excretion in sheep and goats

    International Nuclear Information System (INIS)

    Poshiwa, X.; Tigere, A.; Ngongoni, N.T.; Manyuchi, B.; Chakoma, C.

    2004-01-01

    An experiment was conducted to determine the effect of plane of nutrition on purine derivative excretion and to develop a set of model equations that relate intake to the purine derivative (PD) excretion in sheep and goats. Four male Sabi sheep and four male Small-East African goats (four months old) were used. The trial was a 4 x 4 Latin square cross-over design to examine the response of PD excretion to feed intake. The four diets consisted of star grass (Cynodon nlemfuensis) hay fed ad libitum, and at 85, 70 or 55% of ad libitum. Total PD excretion increased with the increase in feed intake for both sheep and goats. However, the increase did not reach statistical significance (P > 0.05). The model equations relating digestible organic matter intake (X) to PD excretion (Y) were Y = 2.97 X + 0.15 (R 2 =0.72) and Y = 5.86 X - 0.33 (R 2 =0.99) for sheep and goats respectively. (author)

  16. Self-monitoring urinary salt excretion in adults: A novel education program for restricting dietary salt intake.

    Science.gov (United States)

    Yasutake, Kenichiro; Sawano, Kayoko; Yamaguchi, Shoko; Sakai, Hiroko; Amadera, Hatsumi; Tsuchihashi, Takuya

    2011-07-01

    This study aimed to examine the usefulness of the self-monitoring of urinary salt excretion for educating individuals about the risk of excessive dietary salt intake. The subjects were 30 volunteers (15 men and 15 women) not consuming anti-hypertensive medication. The subjects measured urinary salt excretion at home for 4 weeks using a self-monitoring device. Blood pressure (BP), anthropometric variables and nutritional variables (by a dietary-habits questionnaire) were measured before and after the measurement of urinary salt excretion. Statistical analyses were performed, including paired t-tests, Chi-square test, Pearson's product moment correlation coefficient and multiple linear regression analysis. In all subjects, the average urinary salt excretion over 4 weeks was 8.05±1.61 g/day and the range (maximum-minimum value) was 5.58±2.15 g/day. Salt excretion decreased significantly in weeks 3 and 4 (Pself-monitoring device appears to be an effective educational tool for improving the quality of life of healthy adults.

  17. Relationship Between Urinary Nitrate Excretion and Blood Pressure in the InChianti Cohort.

    Science.gov (United States)

    Smallwood, Miranda J; Ble, Alessandro; Melzer, David; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark

    2017-07-01

    Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Evaluation of nutrient excretion and retention in broilers submitted to different nutritional strategies

    Directory of Open Access Journals (Sweden)

    AL Graña

    2013-06-01

    Full Text Available An experiment was carried out to evaluate the effects of different nutritional strategies on nitrogen (N, phosphorus (P and calcium (Ca balance and on copper (Cu, manganese (Mn and zinc (Zn excretion in broilers during the periods of 1 to 21 days and 1 to 46 days of age. Four hundred male Cobb-500 broilers were used. A randomized block experimental design was applied, including five treatments with eight replicates of 10 birds each. A five-phase feeding program was adopted (1-8, 9-21, 22-33, 34-40 and 41-46 days of age. Treatments consisted of a control diet (C with typical protein level and low amino acid supplementation; a reduced-protein diet supplemented with synthetic amino acids formulated on ideal protein concept (IP; C with phytase (C+PHY supplementation; C with inorganic-organic mineral supplementation (C+MIN; and a diet formulated on ideal protein (IP basis, and supplemented with phytase and organic and inorganic minerals (IP+PHY+MIN. IP and IP+PHY+MIN diets reduced nitrogen excretion in 13.6 and 13.1% respectively, and promoted the same nitrogen retention (g/bird and retention efficiency as compared to the diet with typical crude protein level. C+PHY and IP+PHY+MIN reduced phosphorus, calcium and manganese excretion, and improved phosphorus retention. C+MIN and IP+PHY+MIN reduced manganese excretion, but did not influence copper or zinc excretion.

  19. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  20. Pinus sylvestris switches respiration substrates under shading but not during drought

    Science.gov (United States)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  1. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Myrup, B; Hansen, P M; Jensen, T

    1995-01-01

    We investigated the effect of heparin on urinary albumin excretion in patients with insulin-dependent diabetes mellitus. 39 patients with persistent urinary albumin excretion of 30-300 mg/24 h were randomly treated for 3 months with subcutaneous injections twice daily of isotonic saline, 5000 IU...

  2. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    Myrup, B.; Hansen, P.M.; Jensen, T.; Kofoed-Enevoldsen, A.; Feldt-Rasmussen, B.; Gram, J.; Kluft, C.; Jespersen, J.; Deckert, T.

    1995-01-01

    We investigated the effect of heparin on urinary albumin excretion in patients with insulin-dependent diabetes mellitus. 39 patients with persistent urinary albumin excretion of 30-300 mg/24 h were randomly treated for 3 months with subcutaneous injections twice daily of isotonic saline, 5000 IU

  3. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Elferink, Ronald P. J. Oude; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux ( TICE) contributes significantly to cholesterol removal in mice. Our aim

  4. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Oude Elferink, Ronald P. J.; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux (TICE) contributes significantly to cholesterol removal in mice. Our aim

  5. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences.

    Science.gov (United States)

    Lorenzi-Filho, Geraldo; Genta, Pedro R; Figueiredo, Adelaide C; Inoue, Daniel

    2005-08-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac output and recurrent hypoxia. The key pathophysiological mechanism triggering Cheyne-Stokes respiration is hyperventilation and low arterial CO2 (PaCO2) that when below the apneic threshold triggers a central apnea. Hyperventilation is associated with pulmonary congestion, and Cheyne-Stokes respiration is more prone to occur during sleep, when the respiratory system is mainly dependent on chemical control. It is associated with recurrent dips in oxygen saturation and arousals from sleep, with oscillations in blood pressure and heart rate, sympathetic activation and increased risk of ventricular tachycardia. Cheyne-Stokes respiration is an independent marker of poor prognosis and may participate in a vicious cycle, further stressing the failing heart.

  6. Fluid electrolyte excretion during different hypokinetic body positions of trained subjects

    Science.gov (United States)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO 2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.

  7. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    Science.gov (United States)

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  8. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  9. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  10. Human urinary excretion profile after smoking and oral administration of ( sup 14 C)delta 1-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Gillespie, H.K.; Halldin, M.M. (BMC, Uppsala (Sweden))

    1990-05-01

    The urinary excretion profiles of delta 1-tetrahydrocannabinol (delta 1-THC) metabolites have been evaluated in two chronic and two naive marijuana users after smoking and oral administration of ({sup 14}C)delta 1-THC. Urine was collected for five days after each administration route and analyzed for total delta 1-THC metabolites by radioactivity determination, for delta 1-THC-7-oic acid by high-performance liquid chromatography, and for cross-reacting cannabinoids by the EMIT d.a.u. cannabinoid assay. The average urinary excretion half-life of {sup 14}C-labeled delta 1-THC metabolites was calculated to be 18.2 +/- 4.9 h (+/- SD). The excretion profiles of delta 1-THC-7-oic acid and EMIT readings were similar to the excretion profile of {sup 14}C-labeled metabolites in the naive users. However, in the chronic users the excretion profiles of delta 1-THC-7-oic acid and EMIT readings did not resemble the radioactive excretion due to the heavy influence from previous Cannabis use. Between 8-14% of the radioactive dose was recovered in the urine in both user groups after oral administration. Lower urinary recovery was obtained both in the chronic and naive users after smoking--5 and 2%, respectively.

  11. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  12. Absorption, Distribution, Metabolism, and Excretion of [14C]-Volixibat in Healthy Men: Phase 1 Open-Label Study.

    Science.gov (United States)

    Siebers, Nicholas; Palmer, Melissa; Silberg, Debra G; Jennings, Lee; Bliss, Caleb; Martin, Patrick T

    2018-02-01

    Volixibat is a potent inhibitor of the apical sodium-dependent bile acid transporter in development for the treatment of nonalcoholic steatohepatitis. This phase 1, open-label study investigated the absorption, distribution, metabolism, and excretion of [ 14 C]-volixibat in heathy men. Eligible men (n = 8) aged 18-50 years (body mass index 18.0-30.0 kg/m 2 ; weight >50 kg) received a single oral dose of [ 14 C]-volixibat 50 mg containing ~5.95 µCi radioactivity. The primary objectives were to assess the pharmacokinetics of [ 14 C]-volixibat and to determine the total radioactivity in whole blood, plasma, urine, and feces at pre-selected time points over 6 days. The secondary objectives were to characterize metabolites and to assess the safety and tolerability. Low concentrations of volixibat (range 0-0.179 ng/mL) were detected in plasma up to 8 h following administration; the pharmacokinetic parameters could not be calculated. No radioactivity was observed in plasma or whole blood. The percentage (mean ± standard deviation) of total radioactivity in urine was 0.01 ± 0.007%. The vast majority (92.3 ± 5.25%) of volixibat was recovered in feces (69.2 ± 33.1% within 24 h). Unchanged volixibat was the only radioactive component detected in feces. Adverse events were mild in severity and mostly gastrointestinal. Changes in laboratory values were not clinically meaningful. Following oral administration, [ 14 C]-volixibat was excreted unchanged from the parent compound almost exclusively via fecal excretion, indicating that the drug is minimally absorbed. Consistent with other studies, adverse events were primarily gastrointestinal in nature. ClinicalTrials.gov identifier NCT02571192.

  13. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  14. Urinary fluoride excretion by children 4-6 years old in a south Texas community

    Directory of Open Access Journals (Sweden)

    Ramon J. Baez

    2000-04-01

    Full Text Available This study evaluated urinary fluoride excretion by school children 4-6 years old who were living in a south Texas rural community that had concentrations of fluoride in drinking water supplies generally around the optimal level. We took supervised collections of urine samples in the morning and afternoon at school, and parents of the participating students collected nocturnal samples. We recorded the beginning and end times of the three collection periods and then determined the urinary volume and urinary flow for each of the periods. We measured urinary fluoride concentrations and calculated the urinary excretion rate per hour. The children had breakfast and lunch provided at the school, where the drinking water contained 1.0-1.3 milligrams/liter (mg/L fluoride. Fluoride concentrations in the tested household water supplies, from wells, ranged from 0.1 to 3.2 mg/L fluoride. The children's average urinary fluoride concentrations found for the day were similar to those for the night, with means ranging from 1.26 mg/L to 1.42 mg/L. Average excretion was 36.4 µg/h in the morning, 45.6 µg/h in the afternoon, and 17.5 µg/h at night. The lower nocturnal excretion rates are easily explained by low urinary flow at night. Based on the 15 hours of urine collected, the extrapolated 24-hour fluoride excretion was 749 µg. In conjunction with similar studies, the data from this study will help in developing upper limits for urinary fluoride excretion that are appropriate for avoiding unsightly fluorosis while providing optimal protection against dental decay.

  15. Whites excrete a water load more rapidly than blacks.

    Science.gov (United States)

    Weder, Alan B; Gleiberman, Lillian; Sachdeva, Amit

    2009-04-01

    A recent report demonstrated a racial difference in response to furosemide compatible with increased ion reabsorption in the thick ascending limb of the loop of Henle in blacks. Urinary dilution is another function of the loop-diuretic-sensitive Na,K,2Cl cotransporter in the thick ascending limb, and racial differences in urinary diluting capacity have not been reported previously. We assessed diluting segment (cortical thick ascending limb and distal convoluted tubule) function in black and white normotensives in 2 studies using a water-loading approach. In both studies, we found that whites excreted a water load more rapidly than blacks. In the first study, the final free water clearance rates (mean+/-SD) were 7.3+/-4.7 mL/min in whites (n=17, 7 females and 10 males) and 3.8+/-3.6 mL/min in blacks (n=14, 9 females and 5 males; Pwater clearance rates were 8.3+/-2.6 mL/min in whites (n=17, 8 females and 9 males) and 6.4+/-1.8 mL/min in blacks (n=11, 8 females and 3 males; Pwater excretion. We conclude that our observations are most consistent with a lower capacity of ion reabsorption in the renal diluting segment in blacks. Slower excretion of an acute water load may have been an advantage during natural selection of humans living in arid, hot climates.

  16. Predictors of angiotensin-converting enzyme inhibitor - Induced reduction of urinary albumin excretion in nondiabetic patients

    NARCIS (Netherlands)

    van de Wal, Ruud M. A.; Gansevoort, Ron T.; van der Harst, Pim; Boomsma, Frans; Thijs Plokker, H. W.; van Veldhuisen, Dirk J.; de Jong, Paul E.; van Gilst, Wiek H.; Voors, Adriaan A.

    2006-01-01

    Urinary albumin excretion is a predictor for cardiovascular mortality and morbidity. We investigated which parameters determine baseline urinary albumin excretion in nondiabetic subjects, without renal disease. In addition, we evaluated the parameters that predict the albuminuria-lowering efficacy

  17. Individual changes of DNA catabolite excretion in the course of antitumor therapy of Hodgkin's disease

    International Nuclear Information System (INIS)

    Dienstbier, Z.; Blehova, Z.; Masopust, J.; Samal, M.

    1980-01-01

    In patients with morbus Hodgkin, treated primarily by the actino- and chemotherapy, the excretion was followed of DNA catabolites (deoxycytidine, deoxyuridine, thymidine and their sum) in the course of the therapy. The dynamics was studied of changes in the time interval of interest and attention was paid to its relation to the clinical and histological type of disease and to the successful character of the therapy defined by reaching a complete remission. The group of patient as a whole was characterized by an increased excretion of catabolites in the time interval of interest. No dependence was demonstrated between the catabolite excretion and extent of the disease similarly as between the excretion and successful character of the therapy. The dynamics of the changes in the time intervals of interest was neither remarkbly nor continuously increased or decreased. The test of the excretion of pyrimidine deoxyribonucleosides possesses sufficient sensitivity for demonstrationg laws in relation to the therapy during group evaluation. With respect to individual variability of values of particular patients and to the absence of the relations mentioned above the test is not suitable to indicate the individual response to the anticancer therapy. (orig.) [de

  18. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    Science.gov (United States)

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8-26%) compared to the control treatment in both community types over all three growing seasons. In years 6-7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15-25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60-80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4-6 per thousand enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil

  19. Tubular transport and metabolism of cimetidine in chicken kidneys

    International Nuclear Information System (INIS)

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-01-01

    Renal tubular transport and renal metabolism of [ 14 C]cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). [ 14 C]CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of [ 14 C]CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of [ 14 C]thiamine, [ 14 C]amiloride and [ 14 C]tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion

  20. Evaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout

    Science.gov (United States)

    Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.

    2013-01-01

    Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916

  1. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    Science.gov (United States)

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  2. Urinary excretion of uranium in adult inhabitants of the Czech Republic

    International Nuclear Information System (INIS)

    Malátová, Irena; Bečková, Věra; Kotík, Lukáš

    2016-01-01

    The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071–0.12 mBq/L (5.7–9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12–0.20 mBq/d (9.5–16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. - Highlights: • Urinary uranium content of the inhabitants was experimentally determined. • Significant difference was found between inhabitants and uranium miners. • Higher uranium urinary content was found at users of private wells. • Dependence of urinary content on the age was not found. • The mean value and range of uranium daily excretion is similar to other countries.

  3. EFFECT OF CASEIN-BASED SEMISYNTHETIC FOOD ON RENAL ACID EXCRETION AND ACID-BASE STATE OF BLOOD IN DOGS

    NARCIS (Netherlands)

    ZIJLSTRA, WG; LANGBROEK, AJM; KRAAN, J; RISPENS, P; NIJMEIJER, A

    1995-01-01

    Urinary acid excretion and blood acid-base stare were determined in dogs fed a casein-based semi-synthetic food (SSF), to which different amounts of salts had been added, in comparison with feeding normal dog food. Net acid excretion (NAE) and inorganic acid excretion (IAE) increased during SSF

  4. [Absence of effect of propranolol on urinary excretion of 3-methylhistidine in hyperthyroidism].

    Science.gov (United States)

    Beylot, M; Riou, J P; Sautot, G; Mornex, R

    Lean body mass and muscle protein breakdown were evaluated in euthyroid and hyperthyroid subjects by measuring the urinary excretion of creatinine and 3-methylhistidine. Since catecholamines probably have an inhibitory effect on muscle protein catabolism through a beta-receptor mechanism, the effects of propranolol on 3-methylhistidine excretion were also evaluated in hyperthyroid subjects. Hyperthyroid subjects had a lower lean body mass (34.9 +/- 6.3 kg versus 47.7 +/- 8.9 kg, p less than 0.001) and a greater 3-methylhistidine excretion (25.1 +/- 7.4 versus 19.0 +/- 4.8 mumol/mmol creatinine, p less than 0.05) than euthyroid subjects. Propranolol administered orally to hyperthyroid subjects decreased pulse rate (p less than 0.01) and plasma triiodothyronine concentrations (from 5.40 +/- 2.28 to 3.61 +/- 1.61 nmol/l, p less than 0.01), but did not modify urinary 3-methylhistidine excretion (24.8 +/- 8.7 versus 25.1 +/- 7.4 mumol/mmol creatinine). These results suggest that muscle wasting in hyperthyroidism is related to increased protein catabolism. This increased protein breakdown is not modified by short term administration of propranolol, a beta-blocking agent widely used in the management of hyperthyroidism.

  5. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli

    International Nuclear Information System (INIS)

    Joshi, J.G.; Swenson, P.A.; Schenley, R.L.

    1977-01-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 J/m 2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O 2 - radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn 2+ and Fe 2+ , inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N 2 for 90 min, the respiration, growth, and viability time-course responses were the same as for cells not exposed to anaerobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation of respiration and cell death and that inadequate aeration or anaerobiosis delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration

  6. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  7. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  8. Patterns of 1-hydroxypyrene excretion in volunteers exposed to pyrene by the dermal route

    Energy Technology Data Exchange (ETDEWEB)

    Viau, C.; Vyskocil, A. [University of Montreal, Montreal, PQ (Canada)

    1995-02-24

    The urinary excretion profiles following exposure to pyrene were established in one psoriasic patient under treatment with a coal tar-based shampoo and in two other volunteers exposed to a single dose of 100{mu}1 creosote and, in a separate experiment, to five consecutive daily dermal applications of 500{mu}g pyrene on 200 cm{sup 2} of the inner face of the forearms. Timed micturitions were collected for up to 48 h following exposure. Both in the psoriasic patient and in the volunteers exposed to creosote, the excretion peaks between 10 and 15 h after application and first-order apparent half lives of 11.5-15 h can be calculated for the elimination phase. Compatible with these observations, repeated exposure to pyrene in the volunteers causes an increase in peak and trough urinary 1-hydroxypyrene (1-OHP) values for the first few days following the first exposure. These results suggest that the difference between beginning-of-shift/beginning of work week and beginning-of-shift/end of work week 1-OHP excretion should reflect the average exposure of the week in workers having a constant exposure to pyrene. The difference between the beginning and end-of-shift excretion values of a given day should reflect the exposure of that day but the maximum excretion would be attained a few hours after termination of exposure.

  9. Nitrogen excretion in rats on a protein-free diet and during starvation

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Niemiec, Tomasz

    2008-01-01

    Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2 x 24), and then during three days of starvation (n = 2 x 12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen...... excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W(0.75)), while it was 444 mg/kg W(0.75) in rats previously fed...... with protein, demonstrating a major influence of protein content in a diet on N excretion during starvation. Consequently, the impact of former protein supply on N losses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life....

  10. Soil respiration sensitivities to water and temperature in a revegetated desert

    Science.gov (United States)

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  11. Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    SHA; Liqing; ZHENG; Zheng; TANG; Jianwei; WANG; Yinghong

    2005-01-01

    With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).

  12. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers.

    Science.gov (United States)

    Pinheiro, Vivian Barbosa; Baxmann, Alessandra Calábria; Tiselius, Hans-Göran; Heilberg, Ita Pfeferman

    2013-07-01

    To evaluate the effects of oral sodium bicarbonate (NaBic) supplementation upon urinary citrate excretion in calcium stone formers (CSFs). Sixteen adult calcium stone formers with hypocitraturia were enrolled in a randomized, double-blind, crossover protocol using 60 mEq/day of NaBic during 3 days compared to the same period and doses of potassium citrate (KCit) supplementation. Blood and 24-hour urine samples were collected at baseline and during the third day of each alkali salt. NaBic, similarly to KCit supplementation, led to an equivalent and significant increase in urinary citrate and pH. Compared to baseline, NaBic led to a significant increase in sodium excretion without concomitant increases in urinary calcium excretion, whereas KCit induced a significant increase in potassium excretion coupled with a significant reduction in urinary calcium. Although NaBic and KCit both reduced calcium oxalate supersaturation (CaOxSS) significantly vs baseline, KCit reduced calcium oxalate supersaturation significantly further vs NaBic. Both KCit and NaBic significantly reduced urinary phosphate and increased calcium phosphate supersaturation (CaPSS) compared to baseline. Finally, a significantly higher sodium urate supersaturation (NaUrSS) was observed after the use of the 2 drugs. This short-term study suggests that NaBic represents an effective alternative for the treatment of hypocitraturic calcium oxalate stone formers who cannot tolerate or afford the cost of KCit. In view of the increased sodium urate supersaturation, patients with pure uric acid stones and high urate excretion may be less suited for treatment with NaBic. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Flood-controlled excess-air formation favors aerobic respiration and limits denitrification activity in riparian groundwater

    Directory of Open Access Journals (Sweden)

    Simone ePeter

    2015-11-01

    Full Text Available The saturated riparian zones of rivers act as spatially and temporally variable biogeochemical reactors. This complicates the assessment of biogeochemical transport and transformation processes. During a flood event, excess-air formation, i.e. the inclusion and dissolution of air bubbles into groundwater, can introduce high amounts of dissolved O2 and thereby affect biogeochemical processes in groundwater. With the help of a field-installed membrane-inlet mass-spectrometer we resolved the effects of flood induced excess-air formationon organic carbon and nitrogen transformations in groundwater of different riparian zones of a restored section of the River Thur, Switzerland. The results show that the flood event triggered high aerobic respiration activity in the groundwater below a zone densely populated with willow plants. The flood introduced high concentrations of O2 (230 µmol L–1 to the groundwater through the formation of excess air and transported up to ~400 µmol L 1 organic carbon from the soil/root layer into groundwater during the movement of the water table. A rapid respiration process, quantified via the measurements of O2, CO2 and noble-gas concentrations, led to fast depletion of the introduced O2 and organic carbon and to high CO2 concentration (590 µmol L–1 in the groundwater shortly after the flood. The synchronous analysis of different nitrogen species allowed studying the importance of denitrification activity. The results indicate that in the willow zone excess-air formation inhibited denitrification through high O2 concentration input. Instead, the observed decrease in nitrate concentration (~50 µmol N L 1 may be related to fostered nitrate uptake by plants. In the other riparian zones closer to the river, no significant excess-air formation and corresponding respiration activity was observed. Overall, analyzing the dissolved gases in the groundwater significantly contributed to deciphering biogeochemical processes in

  14. Temperature dependence of bulk respiration of crop stands. Measurement and model fitting

    International Nuclear Information System (INIS)

    Tani, Takashi; Arai, Ryuji; Tako, Yasuhiro

    2007-01-01

    The objective of the present study was to examine whether the temperature dependence of respiration at a crop-stand scale could be directly represented by an Arrhenius function that was widely used for representing the temperature dependence of leaf respiration. We determined temperature dependences of bulk respiration of monospecific stands of rice and soybean within a range of the air temperature from 15 to 30degC using large closed chambers. Measured responses of respiration rates of the two stands were well fitted by the Arrhenius function (R 2 =0.99). In the existing model to assess the local radiological impact of the anthropogenic carbon-14, effects of the physical environmental factors on photosynthesis and respiration of crop stands are not taken into account for the calculation of the net amount of carbon per cultivation area in crops at harvest which is the crucial parameter for the estimation of the activity concentration of carbon-14 in crops. Our result indicates that the Arrhenius function is useful for incorporating the effect of the temperature on respiration of crop stands into the model which is expected to contribute to a more realistic estimate of the activity concentration of carbon-14 in crops. (author)

  15. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    Science.gov (United States)

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  16. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    Directory of Open Access Journals (Sweden)

    Jakob Jessberger

    2016-01-01

    Full Text Available It is well established that local field potentials (LFP in the rodent olfactory bulb (OB follow respiration. This respiration-related rhythm (RR in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG and nasal temperature (thermocouple; TC. During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  17. Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs

    Science.gov (United States)

    2015-01-01

    Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by thermal energy analysis on days 1–4 after nitrite or hot dog treatment was stopped. For two rats fed 480 mg NaNO2/L drinking water, mean urinary ANC excretion on days 1–4 was 30, 5.2, 2.5, and 0.8 nmol/day, respectively. For two to eight rats/dose given varied NaNO2 doses, mean urinary ANC output on day 1 increased from 0.9 (for no nitrite) to 37 (for 1000 mg NaNO2/L drinking water) nmol ANC/day. Urine samples of four rats fed 40–60% hot dogs contained 12–13 nmol ANC on day 1. Linear regression analysis showed highly significant correlations between urinary ANC excretion on day 1 after stopping treatment and varied (a) NaNO2 level in drinking water for rats fed semipurified or commercials diet and (b) hot dog levels in the diet. Some correlations remained significant up to 4 days after nitrite treatment was stopped. Urinary output of ANC precursors (compounds that yield ANC after mild nitrosation) for rats fed semipurified or commercial diet was 11–17 or 23–48 μmol/day, respectively. Nitrosothiols and iron nitrosyls were not detected in urinary ANC and ANCP. Excretion of urinary ANC was about 60% of fecal ANC excretion for 1 to 2 days after NaNO2 was fed. Administered NaNO2 was not excreted unchanged in rat urine. We conclude that urinary ANC excretion in humans could usefully be surveyed to indicate exposure to N-nitroso compounds. PMID:25183213

  18. Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat

    Directory of Open Access Journals (Sweden)

    Wei-Lun Hung

    2018-04-01

    Full Text Available Tangeretin, 4′,5,6,7,8-pentamethoxyflavone, is one of the major polymethoxyflavones (PMFs existing in citrus fruits, particularly in the peels of sweet oranges and mandarins. Tangeretin has been reported to possess several beneficial bioactivities including anti-inflammatory, anti-proliferative and neuroprotective effects. To achieve a thorough understanding of the biological actions of tangeretin in vivo, our current study is designed to investigate the pharmacokinetics, bioavailability, distribution and excretion of tangeretin in rats. After oral administration of 50 mg/kg bw tangeretin to rats, the Cmax, Tmax and t1/2 were 0.87 ± 0.33 μg/mL, 340.00 ± 48.99 min and 342.43 ± 71.27 min, respectively. Based on the area under the curves (AUC of oral and intravenous administration of tangeretin, calculated absolute oral bioavailability was 27.11%. During tissue distribution, maximum concentrations of tangeretin in the vital organs occurred at 4 or 8 h after oral administration. The highest accumulation of tangeretin was found in the kidney, lung and liver, followed by spleen and heart. In the gastrointestinal tract, maximum concentrations of tangeretin in the stomach and small intestine were found at 4 h, while in the cecum, colon and rectum, tangeretin reached the maximum concentrations at 12 h. Tangeretin excreted in the urine and feces was recovered within 48 h after oral administration, concentrations were only 0.0026% and 7.54%, respectively. These results suggest that tangeretin was mainly eliminated as metabolites. In conclusion, our study provides useful information regarding absorption, distribution, as well as excretion of tangeretin, which will provide a good base for studying the mechanism of its biological effects. Keywords: Tangeretin, Oral bioavailability, Pharmacokinetics, Tissue distribution, Excretion

  19. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  20. [Dynamic changes in soil respiration components and their regulating factors in the Moso bamboo plantation in subtropical China].

    Science.gov (United States)

    Yang, Wen-jia; Li, Yong-fu; Jiang, Pei-kun; Zhou, Guo-mo; Liu, Juan

    2015-10-01

    Dynamic changes (from April 2013 to March 2014) in soil respiration components were investigated by Li-8100 in the Moso bamboo plantation in Lin' an City, Zhejiang Province. Results showed that the average annual values for the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate in the Moso bamboo plantation were 2.93, 1.92 and 1.01 imol CO2 . m-2 . s-1, respectively. The soil respiration rate and its components exhibited strongly a seasonal dynamic pattern. The maximum appeared in July 2013, and the minimum appeared in January 2014. The annual cumulative CO2 emissions through soil respiration, heterotrophic respiration, and autotrophic respiration were 37.25, 24.61 and 12.64 t CO2 . hm-2 . a-1, respectively. The soil respiration and its components showed a close relation with soil temperature of 5 cm depth, and the corresponding Q10, values at 5 cm depth were 2.05, 1.95 and 2.34, respectively. Both the soil respiration and heterotrophic respiration were correlated to soil water soluble organic C (WSOC) content, but no significant relationship between autotrophic respiration and WSOC was observed. There were no significant relationships between soil respiration components and soil moisture content or microbial biomass C. The seasonal changes in soil respiration components in the Moso bamboo plantation were predominantly controlled by the soil temperature, and the soil WSOC content was an important environmental factor controlling total soil respiration and soil heterotrophic respiration.

  1. Stand-scale soil respiration estimates based on chamber methods in a Bornean tropical rainforest

    Science.gov (United States)

    Kume, T.; Katayama, A.; Komatsu, H.; Ohashi, M.; Nakagawa, M.; Yamashita, M.; Otsuki, K.; Suzuki, M.; Kumagai, T.

    2009-12-01

    This study was undertaken to estimate stand-scale soil respiration in an aseasonal tropical rainforest on Borneo Island. To this aim, we identified critical and practical factors explaining spatial variations in soil respiration based on the soil respiration measurements conducted at 25 points in a 40 × 40 m subplot of a 4 ha study plot for five years in relation to soil, root, and forest structural factors. Consequently, we found significant positive correlation between the soil respiration and forest structural parameters. The most important factor was the mean DBH within 6 m of the measurement points, which had a significant linear relationship with soil respiration. Using the derived linear regression and an inventory dataset, we estimated the 4 ha-scale soil respiration. The 4 ha-scale estimation (6.0 μmol m-2 s-1) was nearly identical to the subplot scale measurements (5.7 μmol m-2 s-1), which were roughly comparable to the nocturnal CO2 fluxes calculated using the eddy covariance technique. To confirm the spatial representativeness of soil respiration estimates in the subplot, we performed variogram analysis. Semivariance of DBH(6) in the 4 ha plot showed that there was autocorrelation within the separation distance of about 20 m, and that the spatial dependence was unclear at a separation distance of greater than 20 m. This ascertained that the 40 × 40 m subplot could represent the whole forest structure in the 4 ha plot. In addition, we discuss characteristics of the stand-scale soil respiration at this site by comparing with those of other forests reported in previous literature in terms of the soil C balance. Soil respiration at our site was noticeably greater, relative to the incident litterfall amount, than soil respiration in other tropical and temperate forests probably owing to the larger total belowground C allocation by emergent trees. Overall, this study suggests the arrangement of emergent trees and their bellow ground C allocation could be

  2. Soil respiration dynamics in the middle taiga of Central Siberia region

    Science.gov (United States)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with

  3. Influence of vestibular activation on respiration in humans

    Science.gov (United States)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  4. Early metabolic effects and mechanism of ammonium transport in yeast

    International Nuclear Information System (INIS)

    Pena, A.; Pardo, J.P.; Ramirez, J.

    1987-01-01

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H 2 O 2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  5. Quantitative change of EEG and respiration signals during mindfulness meditation

    Science.gov (United States)

    2014-01-01

    Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519

  6. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  7. Redefinition and global estimation of basal ecosystem respiration rate

    Science.gov (United States)

    Yuan, W.; Luo, Y.; Li, X.; Liu, S.; Yu, G.; Zhou, T.; Bahn, M.; Black, A.; Desai, A.R.; Cescatti, A.; Marcolla, B.; Jacobs, C.; Chen, J.; Aurela, M.; Bernhofer, C.; Gielen, B.; Bohrer, G.; Cook, D.R.; Dragoni, D.; Dunn, A.L.; Gianelle, D.; Grnwald, T.; Ibrom, A.; Leclerc, M.Y.; Lindroth, A.; Liu, H.; Marchesini, L.B.; Montagnani, L.; Pita, G.; Rodeghiero, M.; Rodrigues, A.; Starr, G.; Stoy, Paul C.

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3°S to ∼70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

  8. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    Science.gov (United States)

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  9. Upregulation of PDZK1 by Calculus Bovis Sativus May Play an Important Role in Restoring Biliary Transport Function in Intrahepatic Cholestasis

    Directory of Open Access Journals (Sweden)

    Dong Xiang

    2017-01-01

    Full Text Available Intrahepatic cholestasis is a main cause of hepatic accumulation of bile acids leading to liver injury, fibrosis, and liver failure. Our previous studies proved that Calculus Bovis Sativus (CBS can restore biliary transport function through upregulating the multidrug resistance-associated protein 2 (MRP2 and breast cancer resistance protein (BCRP in 17α-ethynylestradiol- (EE- induced intrahepatic cholestasis rats. The regulation mechanism of CBS on these transporters, however, remains unclear. This study was designed to evaluate the possible relationship between the effect of CBS on transport activities and the regulation of CBS on the expression of PDZK1, a mainly scaffold protein which can regulate MRP2 and BCRP. Intrahepatic cholestasis model was induced in rats with injection of EE for five consecutive days and then the biliary excretion rates and cumulative biliary excretions were measured. The mRNA and protein expression levels of PDZK1 were detected by reverse transcription-quantitative real-time polymerase chain reaction, western blot, and immunohistochemical analysis. When treated with CBS, cumulative biliary excretions and mRNA and protein expressions of PDZK1 were significantly increased in intrahepatic cholestasis rats. This study demonstrated that CBS exerted a beneficial effect on EE-induced intrahepatic cholestasis rats by restoring biliary transport function, which may result from the upregulation of PDZK1 expression.

  10. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    International Nuclear Information System (INIS)

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  11. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  12. Characterization of small-to-medium head-and-face dimensions for developing respirator fit test panels and evaluating fit of filtering facepiece respirators with different faceseal design

    Science.gov (United States)

    Lin, Yi-Chun

    2017-01-01

    A respirator fit test panel (RFTP) with facial size distribution representative of intended users is essential to the evaluation of respirator fit for new models of respirators. In this study an anthropometric survey was conducted among youths representing respirator users in mid-Taiwan to characterize head-and-face dimensions key to RFTPs for application to small-to-medium facial features. The participants were fit-tested for three N95 masks of different facepiece design and the results compared to facial size distribution specified in the RFTPs of bivariate and principal component analysis design developed in this study to realize the influence of facial characteristics to respirator fit in relation to facepiece design. Nineteen dimensions were measured for 206 participants. In fit testing the qualitative fit test (QLFT) procedures prescribed by the U.S. Occupational Safety and Health Administration were adopted. As the results show, the bizygomatic breadth of the male and female participants were 90.1 and 90.8% of their counterparts reported for the U.S. youths (P < 0.001), respectively. Compared to the bivariate distribution, the PCA design better accommodated variation in facial contours among different respirator user groups or populations, with the RFTPs reported in this study and from literature consistently covering over 92% of the participants. Overall, the facial fit of filtering facepieces increased with increasing facial dimensions. The total percentages of the tests wherein the final maneuver being completed was “Moving head up-and-down”, “Talking” or “Bending over” in bivariate and PCA RFTPs were 13.3–61.9% and 22.9–52.8%, respectively. The respirators with a three-panel flat fold structured in the facepiece provided greater fit, particularly when the users moved heads. When the facial size distribution in a bivariate RFTP did not sufficiently represent petite facial size, the fit testing was inclined to overestimate the general fit

  13. Kinetics of Rituximab Excretion into Urine and Peritoneal Fluid in Two Patients with Nephrotic Syndrome.

    Science.gov (United States)

    Stahl, Klaus; Duong, Michelle; Schwarz, Anke; Wagner, A D; Haller, Hermann; Schiffer, Mario; Jacobs, Roland

    2017-01-01

    Clinical observations suggest that treatment of Rituximab might be less effective in patients with nephrotic range proteinuria when compared to nonnephrotic patients. It is conceivable that the reason for this is that significant amounts of Rituximab might be lost in the urine in a nephrotic patient and that these patients require a repeated or higher dosage. However, this has not been systematically studied. In this case report we describe two different patients with nephrotic range proteinuria receiving Rituximab. The first patient received Rituximab for therapy resistant cryoglobulinemic membranoproliferative glomerulonephritis and the other for second line treatment of Felty's syndrome. We employed flow cytometry to determine the amount of Rituximab excretion in both urine and peritoneal fluid specimens in these patients following administration of Rituximab. We found that a significant amount of Rituximab is lost from the circulation by excretion into the urine. Furthermore we saw a close correlation of the excretion of Rituximab to the excretion of IgG molecules suggesting selectivity of proteinuria as the determining factor of Rituximab excretion. Further larger scale clinical studies could have the potential to evaluate an optimal cut-off value of IgG urinary loss before a possible administration of Rituximab therefore contributing to a more individualized treatment approach in patients with nonselective and nephrotic range proteinuria.

  14. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Science.gov (United States)

    2012-09-28

    ... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of...

  15. Economic analysis of implementing respirator program or ventilation system in a manufacturing environment

    International Nuclear Information System (INIS)

    Saidi-Mehrabab, M.

    2000-01-01

    The techniques and methods of developing cost models for respirators are discussed. Models are developed and implemented in this study for nineteen types of respirators in two major classes (air-purifying and supplied-air) and one L EV system. One respirator model is selected for detailed discussion from among the twenty models. The technical cost method is used in constructing the cost models for each of the respirators and the L EV system. In this methodology, the costs of purchasing and using a typical respirator or L EV system are divided into two categories, variable costs and fixed costs. Variable costs consists of the cost of replaceable components and probabilistic mortality cost. Fixed cost is the annualized capital requirement plus interest cost. The criteria for estimating some of the cost elements are based on existing equations in the literature, engineering judgement and manufacturer-provided information. A technical cost model results from the integration of this information into a computerized framework. The cost models for discussion are presented in the order of increasing computational complexity. Through the economic analysis, the lowest cost type in each class of respirator is determined. The determination criteria are based on the minimum total annual cost and highest benefit cost ratio. The selected lowest cost respirators are compared with the L EV system from the economic standpoint to reveal the cost optimal alternative

  16. Urinary magnesium excretion and risk of cardiovascular disease in the general population

    Directory of Open Access Journals (Sweden)

    Michel Joosten

    2012-06-01

    We prospectively followed 7747 adults free of diagnosed cardiovascular diseases or cancer at baseline (1997-1998 from the community-based, observational PREVEND (Prevention of Renal and Vascular End-Stage Disease Study. Urinary magnesium excretion was estimated from two 24-h urine collections and was measured by a xylidyl blue method on a Modular analyzer (Roche. During a median follow-up of 10.5 year, 638 CVD events occurred. After adjustment for age, BMI, sex, smoking status, alcohol consumption and educational attainment, urinary magnesium excretion showed a nonlinear relationship with CVD risk. The hazard ratios (HR for CVD were significantly lower (PIn conclusion, low urinary magnesium excretion was associated with a higher risk of CVD, even after controlling for possible intermediates in the causal pathway such as blood pressure, diabetes and markers of inflammation and atherosclerosis. These results highlight the need to evaluate whether increasing the uptake of dietary magnesium could be effective for primary prevention of CVD.

  17. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    Science.gov (United States)

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  18. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences

    OpenAIRE

    Lorenzi-Filho,Geraldo; Genta,Pedro R; Figueiredo,Adelaide C.; Inoue,Daniel

    2005-01-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac outpu...

  19. Ru(CO)3Cl(Glycinate) (CORM-3): A Carbon Monoxide–Releasing Molecule with Broad-Spectrum Antimicrobial and Photosensitive Activities Against Respiration and Cation Transport in Escherichia coli

    OpenAIRE

    Wilson, Jayne Louise; Jesse, Helen E.; Hughes, Bethan; Lund, Victoria; Naylor, Kathryn; Davidge, Kelly S.; Cook, Gregory M.; Mann, Brian E.; Poole, Robert K.

    2013-01-01

    Aims: Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial\\ud and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent\\ud antimicrobial agent. Here, we established its mode of action. Results: CORM-3 inhibits respiration in several\\ud bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits\\ud respiration, but much higher concentrations of ...

  20. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Davis, T.O.; Shafer, C.; Moore, T.O.; Richards, C.P.; Revoir, W.H.

    1976-08-01

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted