WorldWideScience

Sample records for transport properties due

  1. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  2. Transport due to ion pressure gradient turbulence

    International Nuclear Information System (INIS)

    Connor, J.W.

    1986-01-01

    Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)

  3. Electronic transport properties

    International Nuclear Information System (INIS)

    Young, W.H.

    1985-01-01

    The theory of the electron transport properties of liquid alkali metals is described. Conductivity coefficients, Boltzmann theory, Ziman theory, alkali form factors, Ziman theory and alkalis, Faber-Ziman alloy theory, Faber-Ziman theory and alkali-alkali methods, status of Ziman theory, and other transport properties, are all discussed. (UK)

  4. Moisture transport properties of mortar and mortar joint: A NMR study

    OpenAIRE

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  5. Moisture transport properties of mortar and mortar joint: a NMR study

    OpenAIRE

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  6. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  7. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    Science.gov (United States)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  8. Moisture transport properties of mortar and mortar joint: A NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  9. Moisture transport properties of mortar and mortar joint: a NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  10. Low-temperature localization in the transport properties of self ...

    Indian Academy of Sciences (India)

    Transport properties; scattering mechanisms; low temperature localization. 1. Introduction ... Mn4+ appears in these compounds due to the La defi- ciency, leading ... microscopy (SEM) image in figure 1 shows the size and mor- phology of the ...

  11. Turbulent momentum transport due to neoclassical flows

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  12. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  13. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  14. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  15. Magnetothermoelectric transport properties in phosphorene

    Science.gov (United States)

    Ma, R.; Liu, S. W.; Deng, M. X.; Sheng, L.; Xing, D. Y.; Sheng, D. N.

    2018-02-01

    We numerically study the electrical and thermoelectric transport properties in phosphorene in the presence of both a magnetic field and disorder. The quantized Hall conductivity is similar to that of a conventional two-dimensional electron gas, but the positions of all the Hall plateaus shift to the left due to the spectral asymmetry, in agreement with the experimental observations. The thermoelectric conductivity and Nernst signal exhibit remarkable anisotropy, and the thermopower is nearly isotropic. When a bias voltage is applied between top and bottom layers of phosphorene, both thermopower and Nernst signal are enhanced and their peak values become large.

  16. Synthesis, transport and dielectric properties of polyaniline/Co3O4 ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites ... Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess .... Figure 3 displays the scanning electron micrograph of.

  17. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    Science.gov (United States)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  18. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  19. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  20. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  1. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2017-09-01

    Full Text Available Based on the density functional theory combined with the nonequilibrium Green’s function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs and the composite of AGNRs and single walled carbon nanotubes (SWCNTs were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6 increases in the presence of the wrinkle, which is opposite to that of AGNR(5 and AGNR(7. The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  2. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Science.gov (United States)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  3. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  4. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    2017-05-15

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.

  5. Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    International Nuclear Information System (INIS)

    Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M.

    2009-01-01

    We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Tuning transport properties of graphene three-terminal structures by mechanical deformation

    Science.gov (United States)

    Torres, V.; Faria, D.; Latgé, A.

    2018-04-01

    Straintronic devices made of carbon-based materials have been pushed up due to the graphene high mechanical flexibility and the possibility of interesting changes in transport properties. Properly designed strained systems have been proposed to allow optimized transport responses that can be explored in experimental realizations. In multiterminal systems, comparisons between schemes with different geometries are important to characterize the modifications introduced by mechanical deformations, especially if the deformations are localized at a central part of the system or extended in a large region. Then, in the present analysis, we study the strain effects on the transport properties of triangular and hexagonal graphene flakes, with zigzag and armchair edges, connected to three electronic terminals, formed by semi-infinite graphene nanoribbons. Using the Green's function formalism with circular renormalization schemes, and a single band tight-binding approximation, we find that resonant tunneling transport becomes relevant and is more affected by localized deformations in the hexagonal graphene flakes. Moreover, triangular systems with deformation extended to the leads, like longitudinal three-folded type, are shown as an interesting scenario for building nanoscale waveguides for electronic current.

  7. Electronic transport properties of nanostructured MnSi-films

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  8. Electron transport properties of indium oxide - indium nitride metal-oxide-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Wang, C.Y.; Hauguth, S.; Polyakov, V.; Schwierz, F.; Cimalla, V.; Kups, T.; Himmerlich, M.; Schaefer, J.A.; Krischok, S.; Ambacher, O.; Morales, F.M.; Lozano, J.G.; Gonzalez, D.; Lebedev, V.

    2008-01-01

    The structural, chemical and electron transport properties of In 2 O 3 /InN heterostructures and oxidized InN epilayers are reported. It is shown that the accumulation of electrons at the InN surface can be manipulated by the formation of a thin surface oxide layer. The epitaxial In 2 O 3 /InN heterojunctions show an increase in the electron concentration due to the increasing band banding at the heterointerface. The oxidation of InN results in improved transport properties and in a reduction of the sheet carrier concentration of the InN epilayer very likely caused by a passivation of surface donors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  10. Transport Properties in Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  11. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas

    International Nuclear Information System (INIS)

    Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui

    2015-01-01

    SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)

  12. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G. R. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Bahlouli, H. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Saudi Center for Theoretical Physics, 31261 Dhahran (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-06-14

    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  13. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  14. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  15. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  16. Nonlinear transport properties of non-ideal systems

    International Nuclear Information System (INIS)

    Pavlov, G A

    2009-01-01

    The theory of nonlinear transport is elaborated to determine the Burnett transport properties of non-ideal multi-element plasma and neutral systems. The procedure for the comparison of the phenomenological conservation equations of a continuous dense medium and the microscopic equations for dynamical variable operators is used for the definition of these properties. The Mori algorithm is developed to derive the equations of motion of dynamical value operators of a non-ideal system in the form of the generalized nonlinear Langevin equations. In consequence, the microscopic expressions of transport coefficients corresponding to second-order thermal disturbances (temperature, mass velocity, etc) have been found in the long wavelength and low frequency limits

  17. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  18. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  19. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  20. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    International Nuclear Information System (INIS)

    Bierwagen, O.

    2007-01-01

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  1. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  2. Particle transport due to magnetic fluctuations

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  3. Transport due to ion temperature gradient mode vortex turbulence

    International Nuclear Information System (INIS)

    Pavlenko, V.P.; Weiland, J.

    1991-01-01

    The ion energy transport due to an ensemble of nonlinear vortices is calculated in the test particle approximation for a strongly turbulent plasma. A diffusion coefficient proportional to the root of the stationary turbulence level is obtained. (au)

  4. Simultaneous measurements of transport and poroelastic properties of rocks.

    Science.gov (United States)

    Hasanov, Azar K; Prasad, Manika; Batzle, Michael L

    2017-12-01

    A novel laboratory apparatus has been developed for simultaneous measurements of transport and poroelastic rock properties. These transport and poroelastic properties at reservoir pressure and temperature conditions are required inputs for various geoscience applications, such as reservoir simulation, basin modeling, or modeling of pore pressure generation. Traditionally, the transport and poroelastic properties are measured separately using, for example, the oscillating pore pressure method to measure hydraulic transport properties, static strain measurements for elastic properties, and pore volumometry for storage capacity. In addition to time, the separate set of measurements require either aliquot cores or subjecting the same core to multiple pressure tests. We modified the oscillating pore pressure method to build an experimental setup, capable of measuring permeability, storage capacity, and pseudo-bulk modulus of rocks simultaneously. We present here the test method, calibration measurements (capillary tube), and sample measurements (sandstone) of permeability and storage capacity at reservoir conditions. We establish that hydraulically measured storage capacities were overestimated by an order of magnitude when compared to elastically derived ones. Our concurrent measurement of elastic properties during the hydraulic experiment provides an independent constraint on storage capacity.

  5. Lifetime-Enhanced Transport in Silicon due to Spin and Valley Blockade

    NARCIS (Netherlands)

    Lansbergen, G.P.; Rahman, R.; Verduijn, J.; Tettamanzi, G.C.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    We report the observation of lifetime-enhanced transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition

  6. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  7. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  8. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media

    DEFF Research Database (Denmark)

    Seifert, Dorte; Engesgaard, Peter Knudegaard

    2007-01-01

    by up to three orders of magnitude. The hydraulic conductivity and dispersivity parameters were almost recovered after disinfection of the columns. Different models relating the changes of the hydraulic conductivity to the changes in the mobile porosity due to bioclogging were reviewed......Tracer tests were conducted in three laboratory columns to study changes in the hydraulic properties of a porous medium due to bioclogging. About 30 breakthrough curves (BTCs) for each column were obtained. The BTCs were analyzed using analytical equilibrium and dual-porosity models, and estimates...

  9. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  10. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  11. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  12. Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu X. [Department of Physics, Hong Kong Baptist University, Kowloon (China); Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Lo, W.; Salama, Kamel [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Tang, Tong B. [Department of Physics, Hong Kong Baptist University, Kowloon (China)

    2002-05-01

    A significant research effort has been made worldwide to introduce nanometre-scale weak superconducting regions into seeded melt-textured superconductors to enhance their critical current density, trapped magnetic field and levitation force. The enhancement in these properties is dependent on the pinning forces exerted on the magnetic flux lines. In this paper we present a substantial improvement in the transport properties of these materials by optimizing the fabrication conditions, controlling the oxygen deficiency, as well as adjusting the doping level of Zn in YBa{sub 2}(Cu{sub 1-x}Zn{sub x}){sub 3}O{sub 7-}{delta} large grains. The enhancement is found to be as much as 30% by doping between about x=0.001 25 and 0.002 53. The results strongly indicate that the introduction of local nanometre-scale weak superconducting regions by Zn substitution for Cu in the CuO{sub 2} plane enhances the transport properties. Due to the simplicity of the processing conditions, these doping techniques can have a significant potential for a variety of engineering applications. (author)

  13. Nanostructured ZnO films: A study of molecular influence on transport properties by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sappia, Luciano D.; Trujillo, Matias R. [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Lorite, Israel [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, Linnéstrasse 5, 04103 Leipzig (Germany); Madrid, Rossana E., E-mail: rmadrid@herrera.unt.edu.ar [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Tirado, Monica [NanoProject and Laboratorio de Nanomateriales y Propiedades Dieléctricas, Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, Tucumán (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); and others

    2015-10-15

    Graphical abstract: - Highlights: • We study electrical transport in nanostructured ZnO films by impedance spectroscopy. • Bioaggregates on the surface produce strong changes in film transport properties. • This behavior is explained by modeling data with RC parallel circuits. • Electrical responses of ZnO films to aggregates are promising for biosensing. - Abstract: Nanomaterials based on ZnO have been used to build glucose sensors due to its high isoelectric point, which is important when a protein like Glucose Oxidase (GOx) is attached to a surface. It also creates a biologically friendly environment to preserve the activity of the enzyme. In this work we study the electrical transport properties of ZnO thin films (TFs) and single crystals (SC) in contact with different solutions by using impedance spectroscopy. We have found that the composition of the liquid, by means of the charge of the ions, produces strong changes in the transport properties of the TF. The enzyme GOx and phosphate buffer solutions have the major effect in the conduction through the films, which can be explained by the entrapment of carriers at the grain boundaries of the TFs. These results can help to design a new concept in glucose biosensing.

  14. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  15. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  16. The phase diagram and transport properties of MgO from theory and experiment

    Science.gov (United States)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Songhi

    2014-01-01

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm 3 . The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  18. Defect chemistry of ''BaCuO2''. Pt. 2. Transport properties and nature of defects

    International Nuclear Information System (INIS)

    Chiodelli, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia

    1995-01-01

    The charge transport properties of ''BaCuO 2 '' with 88:90 (Ba:Cu) cation ratio were characterized by thermopower, electrical conductivity and ionic transport number measurements in a wide range of temperature and oxygen partial pressure conditions. The nature of carriers is always represented by small polarons due to self-trapping of the electronic holes generated by the oxygen non-stoichiometry equilibrium. Some anomalies in carrier mobility as a function of temperature are shown not to be related to incomplete ionization of oxygen atoms on interstitial sites (orig.)

  19. Oxygen transport properties estimation by DSMC-CT simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche - Via G. Amendola, 122 - 70125 Bari (Italy); Frezzotti, Aldo; Ghiroldi, Gian Pietro [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa, 34 - 20156 Milano (Italy)

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  20. Transport properties of quasi-free Fermions

    CERN Document Server

    Aschbacher, W; Pautrat, Y; Pillet, C A

    2006-01-01

    Using the scattering approach to the construction of Non-Equilibrium Steady States proposed by Ruelle we study the transport properties of systems of independent electrons. We show that Landauer-Buttiker and Green-Kubo formulas hold under very general conditions.

  1. Elastic and transport properties of topological semimetal ZrTe

    Science.gov (United States)

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  2. Ionic structures and transport properties of hot dense W and U plasmas

    Science.gov (United States)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  3. PHREEQC modelling of concrete/clay interactions in a 2D geometry with explicit effect of porosity evolution on transport properties due to mineralogical changes

    International Nuclear Information System (INIS)

    Claret, F.; Marty, N.C.M.; Tournassat, C.; Gaboreau, S.; Burnol, A.; Chiaberge, C.; Gaucher, E.C.; Munier, I.; Cochepin, B.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of deep repository for radioactive waste, significant use of concrete will be made. This material constitutes a compromise between properties, technical uses and costs. Within the French concepts, concrete will be used to build access structures, drifts as well as waste disposal cells and waste packages for Intermediate Level Wastes (ILW). With this design, concrete will be at the interface with either/both the host rock, Callovo-Oxfordian argillites in our case, and/or the clay plug built with swelling clay such as bentonite. Due to the chemical disequilibrium between concrete and clay, chemical reactions can modify both chemical and physical properties of these materials (e.g. mineralogical composition, diffusion coefficient...). In order to assess the long term behaviour of concrete/clay interfaces and the evolution of their properties with time, predictive modelling have to be performed. The high chemical contrast (e.g. pH or pe at the interface) often leads to problems of numerical convergence. Our own experience showed that PHREEQC is very successful in handling such difficulties in 1D geometry. PHREEQC is also able to handle 2D geometries as presented hereafter thanks to the MIX option as well as feedback on porosity thanks to the MCD option (multi component diffusion). Indeed, 2D simulation of a drift sealing concept developed by Andra was attempted using PHREEQC with the MIX option which allows the use of different transport properties in the different cells. A basic program was developed to generate this complex 2D mesh and another one to treat the outputs under TECPLOT R . The mesh is composed of 3081 cells with a refinement of 3 cm at each interface. Such a simulation was already conducted under ALLIANCES geochemistry transport tools, but in our cases the mesh refinement and the chemistry of the system are extended and the feedback on porosity is now considered. Furthermore, the new multi

  4. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  5. Pressure tuning of the electrical transport properties of the Weyl semimetal NbP

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Ricardo dos; Ajeesh, M.O.; Sun, Yan; Shekhar, Chandra; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nicklas, Michael [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    Recently enormous attention has been given to a class of material called Weyl semimetal (WSM) due to the prediction of many exotic phenomena, in particular exceptional transport properties, making these systems not only interesting for fundamental research, but also promising materials for novel applications. WSM can be viewed as the hybrid of 3D graphene and topological insulators. The band crossing point, the so-called Weyl point, acts as a magnetic monopole (a singular point of Berry curvature) in momentum space, which always comes in a pairs. If the time-reversal and inversion symmetries are respected, a pair of Weyl points is degenerate in energy, forming another topological phase called Dirac semimetal. Owing this complex band structure the details of the electronic structure can play a significant role in the electrical transport properties of these materials. In this context, external pressure is an important control parameter to effectively tune lattice structures and the corresponding electronic states in a systematic fashion, avoiding the complexity brought by chemical doping. Here, we present a high pressure study of the magnetotransport properties of the Weyl semimetal NbP, which are particularly important to explore novel phenomena and understand the physics behind.

  6. Transport properties of high-temperature superconductors: Surface vs bulk effect

    International Nuclear Information System (INIS)

    Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.

    1996-01-01

    We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society

  7. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2016-02-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling

  8. Node-node correlations and transport properties in scale-free networks

    Science.gov (United States)

    Obregon, Bibiana; Guzman, Lev

    2011-03-01

    We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model

  9. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    Science.gov (United States)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective

  10. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  11. Effect of spin reorientation on magnetocaloric and transport properties of NdAl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.V. de, E-mail: marcos_vinicios@hotmail.com [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, J.A. da [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, L.S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Instituto Federal de Tocantins, IFTO – Campus Colinas do Tocantins, AV. Bernardo Sayao S/N, Chácara Raio de Sol, Setor Santa Maria, CEP 77760-000 Colinas do Tocantins, TO (Brazil)

    2017-01-01

    We report the magneto-thermal and resistive properties of rare-earth dialuminide NdAl{sub 2}, including spin reorientation transition. To this purpose, we used a theoretical model that considers the interactions of exchange and Zeeman, besides the anisotropy due to the electrical crystal field. The theoretical results obtained were compared to experimental data of the NdAl{sub 2} in single crystal and bulk forms. Explicitly, we have calculated the anisotropic variation of magnetic entropy with the magnetic field oriented along the three principal crystallographic directions: [100], [110], and [111] of NdAl{sub 2} single crystal, where a signature of the spin reorientation is observed in the [110] and [111] directions. Moreover, of magnetoresistivity we consider the applied magnetic field along the crystallographic directions [100] and [110]. In turn, for the polycrystalline form, the good agreement between theory and experiment confirms the presence of spin reorientation, which was predicted theoretically in magnetization curves. - Highlights: • Modeling of the thermodynamics quantities in NdAl{sub 2} single crystal and policrystal. • Modeling of the transport properties in NdAl{sub 2} single crystal. • Effect of reorientation of spin on caloric and transport properties.

  12. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  13. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S

    1971-01-01

    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  14. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  15. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  16. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  17. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H., E-mail: wenhong.wang@iphy.ac.cn; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, H. G. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  18. Structural, electronic transport and optical properties of functionalized quasi-2D TiC{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G.R., E-mail: gberdiyorov@qf.org.qa; Madjet, M.E., E-mail: mmadjet@qf.org.qa

    2016-12-30

    Highlights: • Effect of surface termination on the optoelectronic properties of TiC{sub 2} is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Partial charges are calculated. • Absorption of the system increases by surface passivation. • Electronic transport reduces considerably due to the termination. - Abstract: Using the first-principles density functional theory, we study the effect of surface functionalization on the structural and optoelectronic properties of recently proposed quasi-two-dimensional material TiC{sub 2} [T. Zhao, S. Zhang, Y. Guo, Q. Wang, Nanoscale 8 (2016) 233]. Hydrogenated, fluorinated, oxidized and hydroxylated surfaces are considered. Significant changes in the lattice parameters and partial charge distributions are found due to the surface termination. Direct contribution of the adatoms to the system density of states near the Fermi level is obtained, which has a major impact on the optoelectronic properties of the material. For example, surface termination results in larger absorption in the visible range of the spectrum. The electronic transport is also affected by the surface functionalization: the current in the system can be reduced by an order of magnitude. These findings indicate the importance of the effects of surface passivation on optoelectronic properties of this quasi-2D material.

  19. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  20. Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes

    International Nuclear Information System (INIS)

    Akhukov, M A; Yuan Shengjun; Fasolino, A; Katsnelson, M I

    2012-01-01

    We study, by density functional and large-scale tight-binding transport calculations, the electronic structure, magnetism and transport properties of the recently proposed graphene ribbons with edges rolled to form nanotubes. Edges with armchair nanotubes present magnetic moments localized either in the tube or the ribbon and of metallic or half-metallic character, depending on the symmetry of the junction. These properties have potential for spin valve and spin filter devices with advantages over other proposed systems. Edges with zigzag nanotubes are either metallic or semiconducting without affecting the intrinsic mobility of the ribbon. Varying the type and size of the nanotubes and ribbons offers the possibility to tailor the magnetic and transport properties, making these systems very promising for applications. (paper)

  1. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  2. Novel electrical transport properties in conducting polymers such as polythiophene and Poly(3-Methylthiophene)

    International Nuclear Information System (INIS)

    Kazama, Shigeo; Masubuchi, Shin-ichi; Matsuyama, Tomochika; Matsushita, Rokuji.

    1994-01-01

    Electric transport properties in most of the conducting organic polymers have provided a riddle that prevents a thorough physical understanding of the conduction mechanism. Major difficulties for approaching the most substantial aspect in the electrical transport properties underlie in complicated higher order structure inherent to polymeric materials consisting of crystalline regions entangled with disordered amorphous regions. In order to clearly understand the origin of the metallic nature of conducting polymers, we have to extract the proper transport properties characteristics of the ordered crystalline regions. We have made a series of experimental studies of the transport properties in conductive polythiophene and poly(3-methylthiophene) obtained with the electrochemical polymerization. For polythiophene, we have investigated both the as-grown samples and the ones that contain controlled amount of dopant species exchanged after the neutralization aiming to see the effect of dopant concentration on the transport properties. (author)

  3. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  4. Transport Properties Of Van Der Waals Hybrid Heterostructures.

    Science.gov (United States)

    Pacheco, M.; Orellana, P. A.; Felix, A. B.; Latge, A.

    Here we study transport properties of van der Waals heterostructures composed of carbon nanotubes adsorbed on nanoribbons of distinct 2D materials. Calculations of the electronic density of states and conductance of the hybrid systems are obtained in single band tight-binding approximation in the Green function formalism by adopting real-space renormalization schemes. We show that an analytical approach may be derived when both systems are formed by the same type of atoms. In the coupled structures the different electronic paths along the ribbons and finite nanotubes lead to quantum interference effects which are reflected as Fano antiresonances in the conductance. The electronic and transport properties of these materials are modulated by changing geometrical and structural parameters, such as the nanotube diameter and the widths and edge type of the ribbons. FONDECYT 1151316-1140571.

  5. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  6. Landau levels and magneto-transport property of monolayer phosphorene

    Science.gov (United States)

    Zhou, X. Y.; Zhang, R.; Sun, J. P.; Zou, Y. L.; Zhang, D.; Lou, W. K.; Cheng, F.; Zhou, G. H.; Zhai, F.; Chang, Kai

    2015-01-01

    We investigate theoretically the Landau levels (LLs) and magneto-transport properties of phosphorene under a perpendicular magnetic field within the framework of the effective k·p Hamiltonian and tight-binding (TB) model. At low field regime, we find that the LLs linearly depend both on the LL index n and magnetic field B, which is similar with that of conventional semiconductor two-dimensional electron gas. The Landau splittings of conduction and valence band are different and the wavefunctions corresponding to the LLs are strongly anisotropic due to the different anisotropic effective masses. An analytical expression for the LLs in low energy regime is obtained via solving the decoupled Hamiltonian, which agrees well with the numerical calculations. At high magnetic regime, a self-similar Hofstadter butterfly (HB) spectrum is obtained by using the TB model. The HB spectrum is consistent with the LL fan calculated from the effective k·p theory in a wide regime of magnetic fields. We find the LLs of phosphorene nanoribbon depend strongly on the ribbon orientation due to the anisotropic hopping parameters. The Hall and the longitudinal conductances (resistances) clearly reveal the structure of LLs. PMID:26159856

  7. Transport properties of a discrete helical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.

    1991-01-01

    The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs

  8. Investigation of transport properties of colossal magnetoresistive materials

    International Nuclear Information System (INIS)

    Kaurav, Netram

    2006-01-01

    The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)

  9. Rigorous upper bounds for fluid and plasma transport due to passive advection

    International Nuclear Information System (INIS)

    Krommes, J.A.; Smith, R.A.; Kim, C.B.

    1987-07-01

    The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs

  10. Impurity band effects on transport and thermoelectric properties of Fe2 -xNixVAl

    Science.gov (United States)

    Knapp, I.; Budinska, B.; Milosavljevic, D.; Heinrich, P.; Khmelevskyi, S.; Moser, R.; Podloucky, R.; Prenninger, P.; Bauer, E.

    2017-07-01

    Full Heusler alloys of the series Fe2 -xNixVAl ,0 ≤x ≤0.2 , were prepared and characterized, and their physical properties, relevant to the thermoelectric performance of such materials, were studied in a wide temperature range. The starting material Fe2VAl is characterized by a pseudogap of the electronic density of states near the Fermi energy, with a gap width of the order of 1 eV. Density functional theory calculations were performed by application of two approaches. In the framework of the local-spin-density approximation and coherent potential approximation, the electronic densities of states of substitutional alloys were calculated, revealing that with increasing Ni content the Fermi energy moves toward the conduction band, and consequently, the nature of electronic transport changes from p type to n type. It appears that Ni, due to its extra electrons, provides a narrow impurity band near the Fermi level. These states can be made responsible for the experimentally observed evolution of transport properties. Furthermore, the Vienna ab initio Simulation package (vasp) was utilized for deriving electronic, structural, and vibrational properties of ordered Fe2VAl and Fe1.75Ni0.25VAl . In particular, it is found that due to Ni substitution there is a general shift to lower phonon frequencies by about 2 THz as compared to the undoped case. Associated to these modifications, the electrical resistivity, ρ (T ) , changes from a semiconducting-like behavior to a nonsimple metallic behavior, while the Seebeck coefficient reaches values of the order of -80 μ V /K around room temperature for the sample x =0.2 . The increase of the Ni content, in addition, goes along with a substantial reduction of the lattice part of the thermal conductivity. This change is analyzed in detail in terms of a disorder parameter Γ , characterizing the derangement of the crystalline lattice due to the substitution of Fe by Ni. Ab initio calculations of the phonon dynamics carried out

  11. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  12. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    Science.gov (United States)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  13. Local transport properties, morphology and microstructure of ZnO decorated SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joseph E [Air Force Research Laboratory, Information Directorate, Rome, NY (United States); Cortez, Rebecca [Union College, Schenectady, NY (United States); Rice, Zachary P; Cady, Nathaniel C; Bergkvist, Magnus, E-mail: Joseph.VanNostrand@rl.af.mil [Albany College of Nanoscale Science and Engineering, Albany, NY (United States)

    2010-10-15

    We report on a novel, surfactant free method for achieving nanocrystalline ZnO decoration of an SiO{sub 2} nanoparticle at ambient temperature. The size distributions of the naked and decorated SiO{sub 2} nanoparticles are measured by means of dynamic light scattering, and a monodisperse distribution is observed for each. The morphology and microstructure of the nanoparticles are explored using atomic force microscopy and high resolution transmission electron microscopy. Investigation of the optical properties of the ZnO decorated SiO{sub 2} nanoparticles shows absorption at 350 nm. This blue shift in absorption as compared to bulk ZnO is shown to be consistent with quantum confinement effects due to the small size of the ZnO nanocrystals. Finally, the local electronic transport properties of the nanoparticles are explored by scanning conductance atomic force microscopy. A memristive hysteresis in the transport properties of the individual ZnO decorated SiO{sub 2} nanoparticles is observed. Optical absorption measurements suggest the presence of oxygen vacancies, whose migration and annihilation appear to contribute to the dynamic conduction properties of the ZnO decorated nanoparticles. We believe this to be the first demonstration of a ZnO decorated SiO{sub 2} nanoparticle, and this represents a simple yet powerful way of achieving the optical and electrical properties of ZnO in combination with the simplicity of SiO{sub 2} synthesis.

  14. Calculations of the transport properties within the PAW formalism

    Energy Technology Data Exchange (ETDEWEB)

    Mazevet, S.; Torrent, M.; Recoules, V.; Jollet, F. [CEA Bruyeres-le-Chatel, DIF, 91 (France)

    2010-07-01

    We implemented the calculation of the transport properties within the PAW formalism in the ABINIT code. This feature allows the calculation of the electrical and optical properties, including the XANES spectrum, as well as the electronic contribution to the thermal conductivity. We present here the details of the implementation and results obtained for warm dense aluminum plasma. (authors)

  15. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  16. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  17. Effect of microstructure on the electronic transport properties of epitaxial CaRuO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daptary, Gopi Nath; Sow, Chanchal; Sarkar, Suman; Chiniwar, Santosh; Kumar, P.S. Anil [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sil, Anomitra [Center For Nano Science And Engineering, Indian Institute of Science, Bangalore 560012 (India); Bid, Aveek, E-mail: aveek.bid@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2017-04-15

    We have carried out extensive comparative studies of the structural and transport properties of CaRuO{sub 3} thin films grown under various oxygen pressure. We find that the preferred orientation and surface roughness of the films are strongly affected by the oxygen partial pressure during growth. This in turn affects the electrical and magnetic properties of the films. Films grown under high oxygen pressure have the least surface roughness and show transport characteristics of a good metal down to the lowest temperature measured. On the other hand, films grown under low oxygen pressures have high degree of surface roughness and show signatures of ferromagnetism. We could verify that the low frequency resistance fluctuations (noise) in these films arise due to thermally activated fluctuations of local defects and that the defect density matches with the level of disorder seen in the films through structural characterizations.

  18. Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Gu, Yaxu; Rong, Caicai; Xu, Yadong; Shen, Hao; Zha, Gangqiang; Wang, Ning; Lv, Haoyan; Li, Xinyi; Wei, Dengke; Jie, Wanqi

    2015-01-01

    Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high

  19. Electronic transport properties of 1D-defects in graphene and other 2D-systems

    Energy Technology Data Exchange (ETDEWEB)

    Willke, P.; Wenderoth, M. [IV. Physical Institute, Solids and Nanostructures, Georg-August-University Goettingen (Germany); Schneider, M.A. [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2017-11-15

    The continuous progress in device miniaturization demands a thorough understanding of the electron transport processes involved. The influence of defects - discontinuities in the perfect and translational invariant crystal lattice - plays a crucial role here. For graphene in particular, they limit the carrier mobility often demanded for applications by contributing additional sources of scattering to the sample. Due to its two-dimensional nature graphene serves as an ideal system to study electron transport in the presence of defects, because one-dimensional defects like steps, grain boundaries and interfaces are easy to characterize and have profound effects on the transport properties. While their contribution to the resistance of a sample can be extracted by carefully conducted transport experiments, scanning probe methods are excellent tools to study the influence of defects locally. In this letter, the authors review the results of scattering at local defects in graphene and other 2D systems by scanning tunneling potentiometry, 4-point-probe microscopy, Kelvin probe force microscopy and conventional transport measurements. Besides the comparison of the different defect resistances important for device fabrication, the underlying scattering mechanisms are discussed giving insight into the general physics of electron scattering at defects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.

    2016-01-01

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  1. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardia, R. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy); Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Bosin, A.; Serra, G. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Cappellini, G., E-mail: giancarlo.cappellini@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy)

    2016-10-20

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  2. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  3. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  4. Relaxation and transport properties of liquid n-triacontane

    International Nuclear Information System (INIS)

    Kondratyuk, N D; Lankin, A V; Norman, G E; Stegailov, V V

    2015-01-01

    Molecular modelling is used to calculate transport properties and to study relaxation of liquid n-triacontane (C 30 H 62 ). The problem is important in connection with the behavior of liquid isolators in a pre-breakdown state. Two all-atom models and a united-atom model are used. Shear viscosity is calculated using the Green-Kubo formula. The force fields are compared with each other using the following criteria: the required time for one molecular dynamics step, the compliance of the main physical and transport properties with experimental values. The problem of the system equilibration is considered. The united-atom potential is used to model the n-triacontane liquid with an initial directional orientation. The time of relaxation to the disordered state, when all molecules orientations are randomized, are obtained. The influence of the molecules orientations on the shear viscosity value and the shear viscosity relaxation are treated. (paper)

  5. Transport properties in GaTe under hydrostatic pressure

    International Nuclear Information System (INIS)

    Gouskov, L.; Carvalho, M.

    1980-01-01

    First results of the resistivity rho(perpendicular) and rho(parallel)(perpendicular and parallel to the normal to the cleavage plane) under hydrostatic pressure (1 bar <= P <= 3 kbar) on GaTe grown by the Bridgman method, are given and discussed. The analysis of electrical transport properties of GaTe under pressure, indicates a complex nature of the acceptor level in this material. The activation energy Esub(a) has a negative pressure coefficient which is sample dependent. The comparison of the variations of rho(parallel) and rho(perpendicular) versus pressure shows that the activation energy E of the rho(parallel)/rho(perpendicular) ratio has also a negative pressure coefficient which can be justified in the frame of a one-dimensional disorder model proposed by Maschke and Schmid, in order to explain the transport properties in the direction of the normal to the cleavage plane. (author)

  6. A comparative study of the proton transport properties of metal (IV ...

    Indian Academy of Sciences (India)

    Unknown

    study the transport properties of these materials.5,6 The mechanism of diffusion and ionic transport in crystalline ... Cu-Kα radiation with a nickel filter. Chemical ... All the tungstates were hard and white except TiW which is yellow. The chemical.

  7. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  8. Transport and Fatigue Properties of Ferroelectric Polymer P(VDF-TrFE) For Nonvolatile Memory Applications

    KAUST Repository

    Hanna, Amir

    2012-06-01

    Organic ferroelectrics polymers have recently received much interest for use in nonvolatile memory devices. The ferroelectric copolymer poly(vinylidene fluoride- trifluoroethylene) , P(VDF-TrFE), is a promising candidate due to its relatively high remnant polarization, low coercive field, fast switching times, easy processability, and low Curie transition. However, no detailed study of charge injection and current transport properties in P(VDF-TrFE) have been reported in the literature yet. Charge injection and transport are believed to affect various properties of ferroelectric films such as remnant polarization values and polarization fatigue behavior.. Thus, this thesis aims to study charge injection in P(VDF-TrFE) and its transport properties as a function of electrode material. Injection was studied for Al, Ag, Au and Pt electrodes. Higher work function metals such as Pt have shown less leakage current compared to lower work function metals such as Al for more than an order of magnitude. That implied n-type conduction behavior for P(VDF-TrFE), as well as electrons being the dominant injected carrier type. Charge transport was also studied as a function of temperature, and two major transport regimes were identified: 1) Thermionic emission over a Schottky barrier for low fields (E < 25 MV/m). 2) Space-Charge-Limited regime at higher fields (25 < E <120 MV/m). We have also studied the optical imprint phenomenon, the polarization fatigue resulting from a combination of broad band optical illumination and DC bias near the switching field. A setup was designed for the experiment, and validated by reproducing the reported effect in polycrystalline Pb(Zr,Ti)O3 , PZT, film. On the other hand, P(VDF-TrFE) film showed no polarization fatigue as a result of optical imprint test, which could be attributed to the large band gap of the material, and the low intensity of the UV portion of the arc lamp white light used for the experiment. Results suggest using high work

  9. Transport properties of organic liquids

    CERN Document Server

    Latini, G; Passerini, G

    2006-01-01

    The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. It concentrates on applicability of models.This book is organized into five chapters plus a data collection. The chapters discuss the following topics: the liquid state and some well-know theories able to explain the behaviour of liquids; a rather complete review of models, based on theoretical assumptions and/or upon physical paradigms, to evaluate heat transfer in organic liquids; a review of several well-known semi-empirical methods to predict the thermal conductivity coe...

  10. Influence of the introduction and formation of artificial pinning centers on the transport properties of nanostructured Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L B S; Rodrigues, C A; Bormio-Nunes, C; Oliveira, N F Jr; Rodrigues, D Jr, E-mail: lucas_sarno@ppgem.eel.usp.b, E-mail: durval@demar.eel.usp.b [Superconductivity Group, Department of Materials Engineering (DEMAR) Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP Polo Urbo-Industrial, Gleba AI-6 - PO Box 116 - Lorena, SP (Brazil)

    2009-05-01

    The formation of nanostructures projected to act as pinning centers is presented as a highly promising technique for the transport properties optimization of superconductors. However, due to the necessity of nanometric dimensions of these pinning centers, the heat treatment (HT) profiles must be carefully analyzed. The present work describes a methodology to optimize the HT profiles in respect to diffusion, reaction and formation of the superconducting phases. After the HT, samples were removed for micro structural characterization. Measurements of transport properties were performed to analyze the influence of the introduction of artificial pinning centers (APC) on the superconducting phase and to find the flux pinning mechanism acting in these wires. Fitting the volumetric pinning force vs. applied magnetic field (F{sub p} vs. mu{sub o}H) curves of transport properties, we could determine the type and influence of flux pinning mechanism acting in the global behavior of the samples. It was concluded that the maximum current densities were obtained when normal phases (due to the introduction of the APCs) are the most efficient pinning centers in the global behavior of the samples. The use of HT with profile 220{sup 0}C/100h+575{sup 0}C/50h+650{sup 0}C/100h was found as the best treatment for these nanostructured superconducting wires.

  11. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  12. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  13. Core transport properties in JT-60U and JET identity plasmas

    NARCIS (Netherlands)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombe, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.

    2011-01-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma

  14. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    Science.gov (United States)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  15. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  16. Review and assessment of thermodynamic and transport properties for the CONTAIN Code

    International Nuclear Information System (INIS)

    Valdez, G.D.

    1988-12-01

    A study was carried out to review available data and correlations on the thermodynamic and transport properties of materials applicable to the CONTAIN computer code. CONTAIN is the NRC's best-estimate, mechanistic computer code for modeling containment response to a severe accident. Where appropriate, recommendations have been made for suitable approximations for material properties of interests. Based on a modified Benedict-Webb-Rubin (BWR) equation of state, a procedure is introduced for calculating thermodynamic properties for common gases in the CONTAIN code. These gases are nitrogen, oxygen, hydrogen, carbon dioxide, carbon monoxide, steam, helium, and argon. The thermodynamic equations for density, currently represented in CONTAIN by relatively simple fits, were independently checked and are recommended to be replaced by the Lee-Kesler equation of state which substantially improves accuracy without too much sacrifice in computational efficiency. The accuracy of the calculated values have been found to be generally acceptable. Various correlations and models for single component gas transport properties, viscosity and thermal conductivity, were also assessed with available experimental data. When a suitable correlation or model was not available, transport properties were obtained by performing least-squares fit on experimental data. 50 refs., 126 figs., 3 tabs

  17. Fabrication and Transport Properties of Manganite-Polyacrylamide-Based Composites

    Directory of Open Access Journals (Sweden)

    Viorel Sandu

    2009-01-01

    Full Text Available We present the fabrication and transport properties of a series of composites made of La2/3Sr1/3MnO3 and acrylamide-based copolymers. The most important result is the very narrow transition, of only 27 K, displayed by the peak that appears around the metal-insulator transition of the composites made with poly(acrylamide-vinylacetate. Although the amount of polymer is rather low, different copolymers change drastically the electric transport characteristics.

  18. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  19. Enhancement of charge transport properties of small molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic solar cells and perovskite solar cells.

    Science.gov (United States)

    Yun, Jae Hoon; Park, Sungmin; Heo, Jin Hyuck; Lee, Hyo-Sang; Yoon, Seongwon; Kang, Jinback; Im, Sang Hyuk; Kim, Hyunjung; Lee, Wonmok; Kim, BongSoo; Ko, Min Jae; Chung, Dae Sung; Son, Hae Jung

    2016-11-01

    We prepared a series of small molecules based on 7,7'-(4,4-bis(2-ethylhexyl)-4 H -silolo[3,2- b :4,5- b ']dithiophene-2,6-diyl)bis(4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[ c ][1,2,5]thiadiazole) with different fluorine substitution patterns ( 0F-4F ). Depending on symmetricity and numbers of fluorine atoms incorporated in the benzo[ c ][1,2,5]thiadiazole unit, they show very different optical and morphological properties in a film. 2F and 4F , which featured symmetric and even-numbered fluorine substitution patterns, display improved molecular packing structures and higher crystalline properties in a film compared with 1F and 3F and thus, 2F achieved the highest OTFT mobility, which is followed by 4F . In the bulk heterojunction solar cell fabricated with PC 71 BM, 2F achieves the highest photovoltaic performance with an 8.14% efficiency and 0F shows the lowest efficiency of 1.28%. Moreover, the planar-type perovskite solar cell (PSC) prepared with 2F as a dopant-free hole transport material shows a high power conversion efficiency of 14.5% due to its high charge transporting properties, which were significantly improved compared with the corresponding PSC device obtained from 0F (8.5%). From the studies, it is demonstrated that low variation in the local dipole moment and the narrow distribution of 2F conformers make intermolecular interactions favorable, which may effectively drive crystal formations in the solid state and thus, higher charge transport properties compared with 1F and 3F .

  20. Numerical study of divertor plasma transport with thermal force due to temperature gradient

    International Nuclear Information System (INIS)

    Ohtsu, Shigeki; Tanaka, Satoru; Yamawaki, Michio

    1992-01-01

    A one-dimensional, steady state divertor plasma model is developed in order to study the carbon impurity transport phenomena considering thermal force. The divertor plasma is composed of four regions in terms of momentum transport between hydrogen and carbon impurity: Momentum transferring region, equilibrium region, hydrogen recycling region and carbon recycling region. In the equilibrium region where the friction force is counterbalanced by the thermal force, the localization of carbon impurity occurs. The sufficient condition to avoid the reverse of carbon velocity due to the thermal force is evaluated. (orig.)

  1. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They

  2. Transport of runaway and thermal electrons due to magnetic microturbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Strachan, J.D.

    1981-01-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy

  3. CO{sub 2} emissions due to the air transportation in Brazil; Emissoes de CO{sub 2} devido ao transporte aereo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Andre Felipe; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: afsimoes@antares.com.br; roberto@ppe.ufrj.br

    2002-07-01

    This work intends to to insert and understand the participation of the brazilian air transportation in the ambit of the global climate changes. Firstly an introduction is presented for positioning the Brazil, in the proposed subject; an approach of the tenuous relationship between the air transportation sector and atmospheric environment medium; the energy consumption associated to the growing demand; and the inventory of the CO{sub 2} emissions (Calculated by using the top-down methodology) due to the Brazilian air transportation activities. The work is globally discussed and analysed.

  4. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  5. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They are

  6. Electronic transport properties of pentacene single crystals upon exposure to air

    NARCIS (Netherlands)

    Jurchescu, OD; Baas, J; Palstra, TTM; Jurchescu, Oana D.

    2005-01-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases

  7. Electronic transport properties of nano-scale Si films: an ab initio study

    Science.gov (United States)

    Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong

    2010-03-01

    Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.

  8. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  9. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  10. Thermodynamic and transport properties of two-temperature SF6 plasmas

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua

    2012-01-01

    This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.

  11. Transport and Fatigue Properties of Ferroelectric Polymer P(VDF-TrFE) For Nonvolatile Memory Applications

    KAUST Repository

    Hanna, Amir

    2012-01-01

    injection and transport are believed to affect various properties of ferroelectric films such as remnant polarization values and polarization fatigue behavior.. Thus, this thesis aims to study charge injection in P(VDF-TrFE) and its transport properties as a

  12. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  13. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  14. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  15. High temperature properties and processes in ceramics: thermomigration

    International Nuclear Information System (INIS)

    1978-01-01

    The focus of this program is on the effects of large temperature gradients on the transport processes, the defect structure and resulting physical properties of ceramics. In particular, the transport of ions due to thermal gradients is one of the least understood phenomenon in materials science and is presumably based on fundamental understanding of thermodynamics, atomistic kinetic processes, and structure-property relationships. The purpose of this research is to systematically consider each of the elements of atomic transport due to driving forces other than composition gradients in a model ceramic system

  16. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    International Nuclear Information System (INIS)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A.

    2005-01-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E 1 ∼1.55 eV (fundamental gap) and E 2 ∼2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness ≥300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt)

    2005-08-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E{sub 1} {approx}1.55 eV (fundamental gap) and E{sub 2}{approx}2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness {>=}300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Sensitivity of Process Design due to Uncertainties in Property Estimates

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sarup, Bent

    2012-01-01

    The objective of this paper is to present a systematic methodology for performing analysis of sensitivity of process design due to uncertainties in property estimates. The methodology provides the following results: a) list of properties with critical importance on design; b) acceptable levels of...... in chemical processes. Among others vapour pressure accuracy for azeotropic mixtures is critical and needs to be measured or estimated with a ±0.25% accuracy to satisfy acceptable safety levels in design....

  19. State-specific transport properties of electronically excited Ar and C

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  20. Formulation of confinement matrices and characterization of their transport properties from solid to melt state

    International Nuclear Information System (INIS)

    Grandjean, A.

    2006-07-01

    The author gives an overview of his research activity during which she worked on three main subjects. The first one dealt with the investigation of transport mechanisms in metal alloys (experimental investigation of diffusion in amorphous alloys, oxidation mechanism of Zircaloy-4 under temperature and in water or in dry oxygen). The second one dealt with the synthesis and properties of specific confinement matrices (effect of chemical composition on sintering of a carbonate powder, effect of microstructure of high Mo and P content vitro-crystals on lixiviation properties, incorporation of fluorine compounds in the case of borosilicate systems). The third one dealt with the transport in borosilicate glasses and melts (ionic transport, properties, and electrical transport glass-RuO 2 particles composites)

  1. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  2. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  3. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  4. Studies of Transport Properties of Fractures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  5. Radiation doses due to long-range transport of airborne radionuclides

    International Nuclear Information System (INIS)

    Nordlund, G.; Valkama, I.; Rossi, J.; Savolainen, I.

    1985-12-01

    Within the framework of this study a model for estimating the long range transport of radioactive material and for calculating the resultant doses is developed. In the model initially the dispersion paths, i.e. trajectories, of the radioactive matter are calculated from the assumed source areas as well as the dispersion conditions along the trajectories. The trajectories are calculated at three-hour intervals in a two-dimensional grid using numerically analysed winds at a constant pressure level of 850 mb. The dispersion condition parameters applied are: the stability of the atmospheric boundary layer, the so-called mixing height, occurrence of precipitation and the character of the terrain. For each trajectory a type-index value is computed, describing the severity of the possible effects of radioactivity transported by the particular trajectory. The dispersion model uses the information on dispersion conditions provided by the trajectory model to compute the remaining radioactivity in the cloud, the deposition, as well as the doses due to different dose pathways. The pathways used are the external radiation from the cloud and from the activity deposited on the ground, inhalation of radioactive material and ingestion of contaminated food products (milk, meat, green vegetables, grain and roots). In addition to the effects of individual transport incidents, the cumulative probability distributions of the effects of accidental releases of radioactive matter can also be calculated using trajectory statistics and the trajectory type index

  6. Thermophysical Properties of Ammonium-Based Bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids: Volumetric and Transport Properties

    Czech Academy of Sciences Publication Activity Database

    Machanová, Karolina; Boisset, A.; Sedláková, Zuzana; Anouti, M.; Bendová, Magdalena; Jacquemin, J.

    2012-01-01

    Roč. 57, č. 8 (2012), s. 2227-2235 ISSN 0021-9568. [European Conference on Thermophysical Properties /19./. Thessaloniki, 28.08.2011-01.09.2011] R&D Projects: GA ČR GP203/09/P141; GA MŠk(CZ) MEB021009 Grant - others:Égide PHC(FR) 22000XB Institutional support: RVO:67985858 Keywords : ionic liquids * density * transport properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.004, year: 2012

  7. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    Science.gov (United States)

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  8. Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach

    International Nuclear Information System (INIS)

    Liu, Shuanglong; Feng, Yuan Ping; Zhang, Chun

    2013-01-01

    We show that when a molecular junction is under an external bias, its properties cannot be uniquely determined by the total electron density in the same manner as the density functional theory for ground state properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived. Calculations for a graphene nanoribbon junction show that compared with the commonly used ab initio transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region

  9. Influence of biofilms on transport properties in porous media

    Science.gov (United States)

    Davit, Y.

    2015-12-01

    Microbial activity and biofilm growth in porous media can drastically modify transport properties such as permeability, longitudinal and transverse dispersion or effective reaction rates. Understanding these effects has proven to be a considerable challenge. Advances in this field have been hindered by the difficulty of modeling and visualizing these multi-phase non-linear effects across a broad range of spatial and temporal scales. To address these issues, we are developing a strategy that combines imaging techniques based on x-ray micro-tomography with homogenization of pore-scale transport equations. Here, we review recent progress in x-ray imaging of biofilms in porous media, with a particular focus on the contrast agents that are used to differentiate between the fluid and biofilm phases. We further show how the 3D distribution of the different phases can be used to extract specific information about the biofilm and how effective properties can be calculated via the resolution of closure problems. These closure problems are obtained using the method of volume averaging and must be adapted to the problem of interest. In hydrological systems, we show that a generic formulation for reactive solute transport is based on a domain decomposition approach at the micro-scale yielding macro-scale models reminiscent of multi-rate mass transfer approaches.

  10. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  11. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  12. Charge transport properties of metal/metal-phthalocyanine/n-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal

    2010-12-16

    In present work the charge transport properties of metal/metal-phthalocyanine/n-Si structures with low (N{sub D} = 4 x 10{sup 14} cm{sup -3}), medium (N{sub D}=1 x 10{sup 16} cm{sup -3}) and high (N{sub D}=2 x 10{sup 19} cm{sup -3}) doped n-Si as injecting electrode and the effect of air exposure of the vacuum evaporated metal-phthalocyanine film in these structures is investigated. The results obtained through temperature dependent electrical characterizations of the structures suggest that in terms of dominant conduction mechanism in the corresponding devices Schottky-type conduction mechanism dominates the charge transport in low-bias region of these devices up to 0.8 V, 0.302 V and 0.15 V in case of low, medium and high doped n-Silicon devices. For higher voltages, in each case of devices, the space-charge-limited conduction, controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices. The interface density of states at the CuPc/n-Si interface of the devices are found to be lower in case of lower work function difference at the CuPc/n-Si interface of the devices. The results also suggest that the work function difference at the CuPc/n-Si interface of these devices causes charge transfer at the interface and these phenomena results in formation of interface dipole. The width of the Schottky depletion region at the CuPc/n-Si interface of these devices is found to be higher with higher work function difference at the interface. The investigation of charge transport properties of Al/ZnPc/medium n-Si and Au/ZnPc/ medium n-Si devices suggest that the Schottky depletion region formed at the ZnPc/n-Si interface of these devices determines the charge transport in the low-bias region of both the devices. Therefore, the Schottky-type (injection limited) and the space-charge-limited (bulk limited) conduction are observed in the low and the high bias regions of these devices, respectively. The determined width of the

  13. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  14. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  15. Hydration effect on the electronic transport properties of oligomeric phenylene ethynylene molecular junctions

    International Nuclear Information System (INIS)

    Zong-Liang, Li; Huai-Zhi, Li; Yong, Ma; Guang-Ping, Zhang; Chuan-Kui, Wang

    2010-01-01

    A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H 2 O molecules accumulated in the vicinity as recently reported by Na et al. [Nanotechnology 18 424001 (2007)]. The numerical results show that the hydrogen bonds between the oxygen atoms of the oligomeric phenylene ethynylene molecule and H 2 O molecules result in the localisation of the molecular orbitals and lead to the lower transition peaks. The H 2 O molecular chains accumulated in the vicinity of the molecular junction can not only change the electronic structure of the molecular junctions, but also open additional electronic transport pathways. The obvious influence of H 2 O molecules on the electronic structure of the molecular junction and its electronic transport properties is thus demonstrated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  17. Electronic structure and transport properties of zigzag MoS2 nanoribbons

    Science.gov (United States)

    Sharma, Uma Shankar; Shah, Rashmi; Mishra, Pankaj Kumar

    2018-05-01

    In present study, electronic and transport properties of the 8zigzag MoS2 nanoribbons (8ZMoS2NRs) are investigated using ab-initio density functional theory [DFT]. The calculations were performed using nonequilibrium Green's function (NEGF) formalism based on DFT as implemented in the TranSiesta code. Results show that the defect can introduces few extra states into the energy gap, which lead nanoribbons to reveal a metallic characteristic. The voltage-current (VI) graph of 8ZMoS2NRs show a threshold current increases after introducing Mo defect in the devices. when introducing a Mo vacancy under low biases, the current will be suppressed—whereas under high biases, the current through the defected 8ZMoS2NRs will increases rapidly, due to the other channel being opened, that make possibility of 8ZMoS2NRs application in electronic devices such as voltage regulation.

  18. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  19. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  20. High-pressure transport properties of CrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Regnat, Alexander; Becker, Julian; Spallek, Jan; Bauer, Andreas; Chacon, Alfonso; Ritz, Robert; Pfleiderer, Christian [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Blum, Christian; Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research IFW, D-01171 Dresden (Germany)

    2015-07-01

    High quality single crystals of the itinerant antiferromagnet CrB{sub 2}, T{sub N} = 88 K, were grown by means of optical float zoning. Bulk, transport and de Haas-van Alphen measurements were carried out. Here, we present a comprehensive study of the high-pressure transport properties. Samples were investigated under hydrostatic, uniaxial and quasi-hydrostatic conditions. As a result we are able to attribute contradictory reports for the pressure dependence of T{sub N} to uniaxial strain. Perhaps most interestingly, we find a pronounced low temperature resistivity anomaly around 3 GPa in the quasi-hydrostatic case.

  1. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  2. Magneto-transport properties of a random distribution of few-layer graphene patches

    International Nuclear Information System (INIS)

    Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte; Conédéra, Véronique

    2014-01-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime

  3. Textured Na x CoO2 Ceramics Sintered from Hydrothermal Platelet Nanocrystals: Growth Mechanism and Transport Properties

    Science.gov (United States)

    Zhang, Wei; Liu, Pengcheng; Wang, Yifeng; Zhu, Kongjun; Tai, Guoan; Liu, Jinsong; Wang, Jing; Yan, Kang; Zhang, Jianhui

    2018-05-01

    Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution-recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.

  4. The heat and moisture transport properties of wet porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.; Yu, W.P.

    1989-01-01

    Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements

  5. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  6. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  7. Dc-transport properties of ferromagnetic (Ga,Mn)As semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Sinova, J.; Wang, K. Y.; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.; Foxon, C. T.; Niu, Q.; MacDonald, A. H.

    2003-01-01

    Roč. 83, č. 2 (2003), s. 320-322 ISSN 0003-6951 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * dc transport properties * (Ga, Mn)As Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.049, year: 2003

  8. Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Caire, Benjamin R. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Tsai, Tsung-Han [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Zeng, Di [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Vandiver, Melissa A. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Kusoglu, Ahmet [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Seifert, Soenke [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Hayward, Ryan C. [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Weber, Adam Z. [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Herring, Andrew M. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Coughlin, E. Bryan [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Liberatore, Matthew W. [Department of Chemical Engineering Department, University of Toledo, 2801 W Bancroft Street MS305 Toledo Ohio 43606

    2017-02-07

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  9. Transport and magnetic properties of CezLa1-zFe4Sb12

    International Nuclear Information System (INIS)

    Viennois, R; Charar, S; Ravot, D; Mauger, A; Haen, P; Tedenac, J C

    2006-01-01

    Transport and magnetic properties of Ce z La 1-z Fe 4 Sb 12 have been investigated in the whole range of substitution 0 Ce to the resistivity goes through a maximum at temperature ∼ 140K, close to the spin fluctuation temperature T sf for CeFe 4 Sb 12 . T sf is the single magnetic energy scale which accounts for the magnetic properties of the Ce Kondo lattice. At low temperature, the resistivity shows a T 2 -deviation from saturation. At z≤0.7 this is the behaviour expected for Ce impurities in metals in the Kondo limit. At z = 1, however, Hall effect measurements show that this behaviour is due to a decrease of the free carrier concentration which we can attribute to the formation of a hybridization pseudogap E g ∼ 25 meV. Upon dilution of the cerium, E g decreases and this pseudogap is smeared out, replaced by the Kondo resonance at the Fermi level characteristic of Kondo impurities in the small z limit

  10. Internal electron transport barrier due to neoclassical ambipolarity in the Helically Symmetric Experiment

    International Nuclear Information System (INIS)

    Lore, J.; Briesemeister, A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.; Zhai, K.; Guttenfelder, W.; Deng, C. B.; Spong, D. A.

    2010-01-01

    Electron cyclotron heated plasmas in the Helically Symmetric Experiment (HSX) feature strongly peaked electron temperature profiles; central temperatures are 2.5 keV with 100 kW injected power. These measurements, coupled with neoclassical predictions of large 'electron root' radial electric fields with strong radial shear, are evidence of a neoclassically driven thermal transport barrier. Neoclassical transport quantities are calculated using the PENTA code [D. A. Spong, Phys. Plasmas 12, 056114 (2005)], in which momentum is conserved and parallel flow is included. Unlike a conventional stellarator, which exhibits strong flow damping in all directions on a flux surface, quasisymmetric stellarators are free to rotate in the direction of symmetry, and the effect of momentum conservation in neoclassical calculations may therefore be significant. Momentum conservation is shown to modify the neoclassical ion flux and ambipolar ion root radial electric fields in the quasisymmetric configuration. The effect is much smaller in a HSX configuration where the symmetry is spoiled. In addition to neoclassical transport, a model of trapped electron mode turbulence is used to calculate the turbulent-driven electron thermal diffusivity. Turbulent transport quenching due to the neoclassically predicted radial electric field profile is needed in predictive transport simulations to reproduce the peaking of the measured electron temperature profile [Guttenfelder et al., Phys. Rev. Lett. 101, 215002 (2008)].

  11. Integrated framework to capture the interdependencies between transportation and energy sectors due to policy decisions.

    Science.gov (United States)

    2014-05-01

    Currently, transportation and energy sectors are developed, managed, and operated independently of : one another. Due to the non-renewable nature of fossil fuels, energy security has evolved into a : strategic goal for the United States. The transpor...

  12. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  13. Electronic transport properties of phenylacetylene molecular junctions

    International Nuclear Information System (INIS)

    Liu Wen; Cheng Jie; Yan Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound— (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism. The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V. The rectification effect is attributed to the asymmetry of the interface contacts. Moreover, at a bias voltage larger than 2.0 V, which is not referred to in a relevant experiment [Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522], we find a negative differential resistance phenomenon. The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitals induced by the bias. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. 78 FR 9451 - Academy Express, L.L.C.-Acquisition of Property-Golden Ring Travel & Transportation, Inc.

    Science.gov (United States)

    2013-02-08

    ..., L.L.C.--Acquisition of Property--Golden Ring Travel & Transportation, Inc. AGENCY: Surface... authority under 49 U.S.C. 14303 to acquire the property of Golden Ring Travel & Transportation, Inc. (Golden... approximately 400 motor coaches and more than 500 drivers. Academy is indirectly controlled by the Tedesco...

  15. Transport properties near the superfluid transition in helium

    International Nuclear Information System (INIS)

    Ikushima, Akira

    1980-01-01

    Description are given primarily on recent experimental results and related topics of acoustic attenuation and dispersion, and of thermal transport properties near the superfluid transition in pure 4 He and 3 He- 4 He mixtures ( 3 He). Attenuation and dispersion of sound above the lambda point T sub(lambda) can well be understood fundamentally from the dynamic scaling hypothesis with the mode coupling theory. Attenuation and dispersion at T sub(lambda) as a function of frequency is expressed with the exponent which is slightly dependent on frequency and on 3 He concentration. The situation below T sub(lambda) would still have problems since at higher frequencies the simple splitting of observed attenuation and dispersion into that due to order-parameter fluctuation and that due to order-parameter relaxation proposed by Pokrovskii and Khalatnikov does not work. The possibility that the recent theory of Ferrell and Bhattacharjee offers explanations for the results above and below T sub(lambda) is discussed. Thermal conductivity in 4 He and mixtures, and thermo-diffusion ratio in mixtures are measured near the superfluid transition points. Thermal conductivity in the absence of a concentration gradient and its corresponding thermal diffusivity are then calculated. The critical exponent of this thermal diffusivity is approximately 1/3, irrespective of 3 He concentration. The thermo-diffusion ratio has very weak divergence, if any, when T sub(lambda) is approached. Two damping modes in mixtures in non-stationary condition are then calculated. Only the mode corresponding to the Brillouin linewidth does diverge with critical exponent approximately equal to 1/3, irrespective of 3 He concentration. (author)

  16. Structure and magnetic transport properties of GdIn{sub 3−x}Mn{sub x} intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Guo, Yongquan, E-mail: yqguo@ncepu.edu.cn; Liu, Hanyuan

    2016-03-01

    The crystal structures and magneto-transport properties of GdIn{sub 3−x}Mn{sub x} have been investigated using X-ray diffraction and magnetic and electric measurements. GdIn{sub 3−x}Mn{sub x} crystallize in cubic structure, and their lattice parameters tend to decrease with increasing Mn content due to the size effect at In site by Mn substitution for In. Mn doped GdIn{sub 3−x}Mn{sub x} order antiferromagnetically at low temperature. However, Mn doping into GdIn{sub 3} causes the decrease of Néel temperature due to the distortion of Gd(In,Mn){sub 3} tetrahedron formed by Gd at corners and (In,Mn) at face centers in unit cell. The resistivities of GdIn{sub 3−x}Mn{sub x} are going up with increasing Mn content. The electric phase transition is associated with the magnetic transition, and the magneto-transport follows electron–magnon scattering model in low temperature region and the Stoner spin fluctuation model in high temperature region, respectively. - Highlights: • Novel GdIn{sub 3−x}Mn{sub x} intermetallic compounds have been successfully prepared. • The lattice parameters tend to decrease with increasing Mn content. • GdIn{sub 3−x}Mn{sub x} orders antiferromagnetically at low temperature. • The strong correlation between the electric transport and magnetic state is observed.

  17. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  18. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan; Diemer, Peter J.; Niazi, Muhammad Rizwan; Hallani, Rawad K.; Jarolimek, Karol; Day, Cynthia S.; Risko, Chad; Anthony, John E.; Amassian, Aram; Jurchescu, Oana D.

    2017-01-01

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials

  19. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry

    Science.gov (United States)

    Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.

    2016-06-01

    As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.

  20. Magnetic and transport properties of Co–Cu microwires with granular structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Garcia, C. [Bogazici Univ., Dept Phys, TR-34342 Istanbul (Turkey); Departamento de Fisica, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaiso (Chile); Val, J.J. del; Ilyn, M. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Granovsky, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Moscow State University, Moscow, Phys. Faculty, 119991 (Russian Federation); Zhukov, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2013-09-30

    Magnetic, transport and structural properties of granular Co{sub x}–Cu{sub 100−x} (5 < x < 40 at.%) glass-coated microwires were studied. Co–Cu microwires exhibited giant magnetoresistance (GMR) effect. For x = 5% we observed the resistivity minimum at 40 K associated with the Kondo effect. For x > 10 partial evidences of granular structure have been observed. For x ≥ 30 anisotropic contribution to GMR has been observed giving rise to non-monotonic dependence of GMR on the field. Temperature dependence of magnetization measured during a cooling regime without external magnetic field and in the presence of the field shows considerable difference at low temperatures, being attributed to the presence of small Co grains embedded in the Cu matrix. By X-ray diffraction we found, that the structure of the metallic nucleus is granular consisting of two phases: fcc Cu appearing in all the samples and fcc α-Co presented only in microwires with higher Co content. For low Co content (x ≤ 10%) X-ray diffraction technique indicates that Co atoms are distributed within the Cu crystals. The quantity and the crystallite size of the formed phases strongly depend on the geometry of the microwire. The structure, magnetic and transport properties were affected by the glass coating inducing the internal stresses and affecting the quenching rate. - Highlights: ► Systematic study of magnetic and transport properties of Co-Cu microwires. ► Observation of Giant Magnetoresistance effect in Co{sub x}Cu100{sub −x} microwires. ► Observation of Kondo-like behavior in Co{sub x}Cu100{sub −x} at lower Co content (5%). ► Discussions of the effect of internal stresses on the properties of Co-Cu microwires. ► Discussion of the effect of composition on the properties of Co-Cu microwires.

  1. Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kishi, T.; Kasai, H.; Komori, F.; Okiji, A.

    2003-01-01

    We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length

  2. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    Science.gov (United States)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  3. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  4. Optical imaging of the transport properties of S-Sm-S junctions

    International Nuclear Information System (INIS)

    Tsumura, K; Nomura, S; Akazaki, T; Takayanagi, H

    2009-01-01

    We study the optical effects on superconductor-normal metal superconductor (S-Sm-S) junctions composed of two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure and NbN superconducting electrodes. When the whole junction area was illuminated at λ = 800 nm, we observe a reduction in the normal resistance due to an increase in the sheet carrier density of the 2DEG, and the enhancement of the Andreev reflection probability. To reveal its origin, we performed scanning photo-voltage measurement by employing an optical microscope. The obtained image plots show maxima and minima of the photo-voltage change along the S-Sm interfaces. Those structures are considered to reflect the modulation of the barrier height at S-Sm interface and the increase in the scattering by photo-generated carriers. It is demonstrated that the scanning photo-voltage measurement is one of the most powerful tools as a local probe of the transport properties of S-Sm-S junctions.

  5. Transport properties of the topological Kondo insulator SmB6 under the irradiation of light

    International Nuclear Information System (INIS)

    Zhu Guo-Bao; Yang Hui-Min

    2016-01-01

    In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB 6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio ( κ ) of the Dresselhaus-like and Rashba-like spin–orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ . Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. (paper)

  6. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    Science.gov (United States)

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    Science.gov (United States)

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  8. Thermodynamic and transport properties of liquid gallium

    International Nuclear Information System (INIS)

    Park, H.Y.; Jhon, M.S.

    1982-01-01

    The significant structure theory of liquids has been successfully applied to liquid gallium. In this work, we have assumed that two structures exist simultaneously in liquid gallium. One is considerec as loosely close packed β-Ga-like structure and the other is remainder of solid α-Ga or α-Ga-like structure. This two structural model is introduced to construct the liquid partition function. Using the partition function, the thermodynamic and transport properties are calculated ever a wide temperature range. The calculated results are quite satisfactory when compared with the experimental results. (Author)

  9. Anomalous transport due to shear-Alfven waves

    International Nuclear Information System (INIS)

    Lee, W.W.; Chance, M.S.; Okuda, H.

    1980-10-01

    The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed

  10. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  11. Response matrix method for neutron transport in reactor lattices using group symmetry properties

    International Nuclear Information System (INIS)

    Mund, E.H.

    1991-01-01

    This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions

  12. Public radiation exposure due to radon transport from a uranium mine

    International Nuclear Information System (INIS)

    Akber, R.A.; Johnston, A.; Pfitzner, J.

    1992-01-01

    Radon and radon daughter concentrations at locations several kilometres away from a uranium mine are due both to the background sources and the mine-related sources. The contribution of these two types of sources should be distinguished because the authorised limits on public radiation dose apply only to the mine-related sources. Such a distinction can be achieved by measuring radon and radon daughter concentration in the wind sectors containing only the background sources and those in the wind sectors containing both the background and the mine-related sources. This approach has been used to make estimates of public radiation dose due to radon transport from the Ranger Uranium Mine in Australia. The residential town of Jabiru, the non-residential working town of Jabiru East, and the aboriginal camp sites in the vicinity of the mine were considered. The results indicate that, for the groups of population considered, the annual mine-related dose varies between 0.04 and 0.2 mSv. (author)

  13. Strain effect on the magnetic and transport properties of LaCoO3 thin films

    Science.gov (United States)

    Li, Y.; Peng, S. J.; Wang, D. J.; Wu, K. M.; Wang, S. H.

    2018-05-01

    LaCoO3 (LCO) has attracted much attention due to the unique magnetic transition and spin transition of Co3+ ions. Epitaxial LCO film exhibits an unexpected ferromagnetism, in contrast to the non-magnetism of bulk LCO. An in-depth study on the property of strained LCO film is of great importance. We have fabricated 30 nm LCO films on various substrates and studied the magnetic and transport properties of films in different strain states (compressed strain for LCO/LaAlO3, tensile strain for LCO/(LaAlO3)0.3(Sr2TaAlO6)0.35, SrTiO3). The in-plane tensiled LCO films exhibit ferromagnetic ground state at 5K and magnetic transition with TC around 85K, while compressed LCO/LaAlO3 film has a negligibly small moment signal. Our results reveal that in-plane tensile strain and tetragonal distortion are much more favorable for stabilizing the FM order in LCO films.

  14. Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)

    1997-05-01

    The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.

  15. Structural and robustness properties of smart-city transportation networks

    International Nuclear Information System (INIS)

    Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min

    2015-01-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)

  16. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  17. Studies on transport properties of copper doped tungsten diselenide single crystals

    Science.gov (United States)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  18. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  19. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  20. Transport properties of partially-filled Ce{sub y}Co{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Uher, C; Chen, B; Hu, S; Morelli, D T; Meisner, G P

    1997-07-01

    The authors have investigated the magnetic and transport properties of Ce{sub y}Co{sub 4}Sb{sub 12} filled skutterudites with the filling fraction y {le} 0.1. These compounds are n-type materials that develop a magnetic moment upon the presence of trivalent cerium. Cerium has a strong influence on all transport properties and even in small amounts it drastically reduces the lattice thermal conductivity. The resulting figures of merit are comparable to the values established previously for the p-type filled skutterudites.

  1. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  2. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  3. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  4. Public Opinion shifts to the favour of nuclear energy due to steam generator transport

    International Nuclear Information System (INIS)

    Lengar, I.; Nemec, T.

    2000-01-01

    In late August and early September of 1999, nuclear energy topics occupied a central place in the Slovenian media because of the transport of two new steam generators to the Krsko nuclear power plant, and also due to the protest action of an Austrian Green peace group. Before these events, the public opinion in Slovenia was not in favour or nuclear energy ;and Green peace had a good reputation. In September it has lost much credibility because of their clumsy :action of protest, and in just one month this caused a shift of public opinion in Slovenia towards support of Slovenian's only nuclear power plant. The Green peace protest action occurred during the transport of the two new steam generators to Krsko. By replacement of the old steam generators the operation of the Krsko NPP will be extended until 2023. The transport envoy travelled during the first half of September '99 across a considerable part of Slovene territory, passing by the capital of Ljubljana. (authors)

  5. Dihedral angle control to improve the charge transport properties of conjugated polymers in organic field effect transistors

    Science.gov (United States)

    Dharmapurikar, Satej S.; Chithiravel, Sundaresan; Mane, Manoj V.; Deshmukh, Gunvant; Krishnamoorthy, Kothandam

    2018-03-01

    Diketopyrrolopyrrole (DPP) and i-Indigo (i-Ind) are two monomers that are widely explored as active materials in organic field effect transistor and solar cells. These two molecules showed impressive charge carrier mobility due to better packing that are facilitated by quadrupoles. We hypothesized that the copolymers of these monomers would also exhibit high charge carrier mobility. However, we envisioned that the dihedral angle at the connecting point between the monomers will play a crucial role in packing as well as charge transport. To understand the impact of dihedral angle on charge transport, we synthesized three copolymers, wherein the DPP was sandwiched between benzenes, thiophenes and furans. The copolymer of i-Indigo and furan comprising DPP showed a band gap of 1.4 eV with a very high dihedral angle of 179°. The polymer was found to pack better and the coherence length was found to be 112 Å. The hole carrier mobility of these polymer was found to be highest among the synthesized polymer i.e. 0.01 cm2/vs. The copolymer comprising benzene did not transport hole and electrons. The dihedral angle at the connecting point between i and Indigo and benzene DPP was 143 Å, which the packing and consequently charge transport properties.

  6. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  7. Modulation of transport properties of RuO2 with 3d transition metals

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Geyer, Richard W; Bliem, Pascal; Schneider, Jochen M

    2014-01-01

    Using density functional theory, we have demonstrated that alloying of RuO 2 (P4 2 /mnm) with 3d transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) gives rise to a substantial increase in the Seebeck coefficient probably due to quantum confinement. As Fe yields the largest enhancement, it was selected for experimental verification. We synthesized combinatorial Ru–Fe–O thin films and subsequently measured their transport properties at elevated temperatures. The Fe-alloyed samples increase the Seebeck coefficient threefold with respect to the unalloyed RuO 2 specimen thereby verifying the theoretical prediction. The here obtained power factor of 274 μW K −2 m −1 is not only the largest reported value for RuO 2 based compounds but it also occurs at ∼600 °C thus increasing the Carnot efficiency significantly. (paper)

  8. Electronic and transport properties of kinked graphene

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter

    2013-01-01

    Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the ads......Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction...... for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...

  9. Tunable electronic transport properties of silicon-fullerene-linked nanowires: Semiconductor, conducting wire, and tunnel diode

    OpenAIRE

    Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro

    2010-01-01

    We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum ...

  10. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    Science.gov (United States)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  11. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    Science.gov (United States)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  12. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  13. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  14. Transport Properties of operational gas mixtures used at LHC

    CERN Document Server

    Assran, Yasser

    2011-01-01

    This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.

  15. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  16. Computational simulation of lithium ion transport through polymer nanocomposite membranes

    International Nuclear Information System (INIS)

    Moon, P.; Sandi, G.; Kizilel, R.; Stevens, D.

    2003-01-01

    We think of membranes as simple devices to facilitate filtration. In fact, membranes play a role in chemical, biological, and engineering processes such as catalysis, separation, and sensing by control of molecular transport and recognition. Critical factors that influence membrane discrimination properties include composition, pore size (as well as homogeneity), chemical functionalization, and electrical transport properties. There is increasing interest in using nanomaterials for the production of novel membranes due to the unique selectivity that can be achieved. Clay-polymer nanocomposites show particular promise due to their ease of manufacture (large sheets), their rigidity (self supporting), and their excellent mechanical properties. However, the process of lithium ion transport through the clay-polymer nanocomposite and mechanisms of pore size selection are poorly understood at the ionic and molecular level. In addition, manufacturing of clay-polymer nanocomposite membranes with desirable properties has proved challenging. We have built a general membrane-modeling tool (simulation system) to assist in developing improved membranes for selection, electromigration, and other electrochemical applications. Of particular interest are the recently formulated clay-polymer membranes. The transport mechanisms of the lithium ions membranes are not well understood and, therefore, they make an interesting test case for the model. In order to validate the model, we synthesized polymer nanocomposites membranes.

  17. Electronic, optical and transport properties of {alpha}-, {beta}- and {gamma}-phases of spinel indium sulphide: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Department of Physics, Feroze Gandhi College, Rae Bareli 229001, U.P. (India); Srivastava, Pankaj [Department of Physics, Feroze Gandhi College, Rae Bareli 229001, U.P. (India)

    2012-08-15

    Spinel indium sulphide exists in three phases. The tetragonal {beta}-phase transforms to the cubic {alpha}-phase at 420 Degree-Sign C which further transforms to the trigonal {gamma}-phase at 754 Degree-Sign C. Due to wide energy bandgap, the phases of indium sulphide have possibilities of applications in photo-electrochemical solar cell devices as a replacement of toxic CdS. The electronic, optical and transport properties of the three phases have therefore been investigated using full potential linear augmented plane wave (FP-LAPW) + local orbitals (lo) scheme, in the framework of density functional theory (DFT) with generalized gradient approximation (GGA) for the purpose of exchange-correlation energy functional. We present the structure, energy bands and density of states (DOS) for {alpha}-, {beta}- and {gamma}-phases. The partial density of states (PDOS) of {beta}-In{sub 2}S{sub 3} is in good agreement with experiment and earlier ab initio calculations. To obtain the fundamental characteristics of these phases we have analysed their linear optical properties such as the dynamic dielectric function in the energy range of 0-15 eV. From the dynamic dielectric function it is seen that there is no directional anisotropy for {alpha}-phase since the longitudinal and transverse components are almost identical, however the {beta} and {gamma}-phases show birefringence. The optical absorption profiles clearly indicate that {beta}-phase has possibility of greater multiple direct and indirect interband transitions in the visible regions compared to the other phases. To study the existence of interesting thermoelectric properties, transport properties like electrical and thermal conductivities, Seebeck and Hall coefficients etc. are also calculated. Good agreements are found with the available experimental results. -- Highlights: Black-Right-Pointing-Pointer The electronic properties of phases of In{sub 2}S{sub 3} have been investigated. Black-Right-Pointing-Pointer The

  18. Spatial and temporal variations of the callus mechanical properties during bone transport

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.

    2016-07-01

    Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)

  19. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Barrufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  20. Electro-Thermal Transport in Nanotube Based Composites for Macroelectronic Applications

    OpenAIRE

    Kumar, Satish

    2007-01-01

    Dispersions of particles of different shapes and sizes in fluids or solids modify the transport properties of the underlying matrix. A remarkable enhancement in the electrical, thermal and other transport properties of the matrix due to the long aspect ratio dispersions like nanotube/nanowires has been observed my many research groups. This has motivated tremendous research to explore these composites for various macro-electronic and micro-electronic applications in the last decade. Carbon na...

  1. Linear elastic properties derivation from microstructures representative of transport parameters.

    Science.gov (United States)

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  2. Structural and transport properties of nanocrystalline MnFe/sub 2/O/sub 4/ synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Akhtar, M.J.; Younas, M.

    2012-01-01

    The nanocrystalline ferrites with spinel structures have been the focus of scientific investigation and received continuous interest in recent decades. The structural and electrical properties of these materials have become an important area of research and are attracting considerable interest due to broad range of applications. Spinel ferrites have been shown to exhibit interesting dielectric properties in the nanocrystalline form in comparison to the corresponding bulk materials. Structural and electrical properties of nanocrystalline MnFe/sub 2/O/sub 4/ were investigated. X-ray diffraction and X-ray absorption fine structure spectroscopy results showed that nanocrystalline MnFe/sub 2/O/sub 4/ had cubic symmetry with 80% inversion. shows the X-ray absorption near edge structure (XANES) spectra of MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/, used as model compounds. The electrical transport properties were investigated by employing impedance spectroscopy. It was observed that the dielectric constant decreased with the increase in frequency. The effects of frequency on dielectric properties were more prominent in the low frequency region, where dielectric constant increased as temperature was increased. (Orig./A.B.)

  3. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    Science.gov (United States)

    Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong

    2018-05-14

    Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.

  4. Charge transport properties of a twisted DNA molecule: A renormalization approach

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-10-20

    In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.

  5. Interface disorder and transport properties in HTC/CMR superlattices

    International Nuclear Information System (INIS)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E.

    2004-01-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T c RBa 2 Cu 3 O 7 (RBCO) and colossal magnetoresistance La x A 1-x MnO 3 (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La 2/3 Ca 1/3 MnO 3 and GdBCO/La 0.6 Sr 0.04 MnO 3 superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness

  6. Conduction band splitting and transport properties of Bi2Se3

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Jiří; Horák, Jaromír; Plecháček, T.; Kamba, Stanislav; Lošťák, P.; Dyck, J. S.; Chen, W.; Uher, C.

    2004-01-01

    Roč. 177, č. 4-5 (2004), s. 1704-1712 ISSN 0022-4596 R&D Projects: GA AV ČR KSK2050602; GA AV ČR KSK1010104 Keywords : transport properties * carrier scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 1.815, year: 2004

  7. Study of structural and electronic transport properties of Ce-doped ...

    Indian Academy of Sciences (India)

    Abstract. The structural and electronic transport properties of La1−x Cex MnO3 (x =0.0–1.0) have been studied. All the samples exhibit orthorhombic crystal symmetry and the unit cell volume de- creases with Ce doping. They also make a metal–insulator transition (MIT) and transition temper- ature increases with increase in ...

  8. Nuclide Release Behavior from a Repository for a Pyro-process HLW and SF due to Variation of the MWCF Properties

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo

    2009-01-01

    An assessment program for an optional evaluation of a repository both for disposal of such high-level wastes (HLWs) from various steps of pyro-processes of PWR spent nuclear fuel (SF) and for direct disposal of PWR and CANDU SFs has been developed by utilizing general purpose GoldSim developing tool, by which nuclide transports in the near- and far-field of a repository as well as a transport through a biosphere under various natural and manmade disruptive events affecting a nuclide release could be modeled and evaluated. KAERI has been in charge of modeling and developing assessment tools by which the above mentioned repository system could be assessed in accordance with various features, events, and processes (FEPs) that could happen in and around the repository system. To cope with such various natural and manmade disruptive FEPs as well as normal release scenarios, all the possible cases in view of the Korean circumstances should be modeled and have been evaluated even though we have not yet have any repository. A possible case, among many others, with the variation of such physical properties as the fracture width and the rock matrix diffusion depth, associated with the natural fractures in the geological rock media, along which nuclide could be transported preferentially with the flow of groundwater is considered in the current study. Due to whatever the reason, such as e,g., the earthquake or human intrusion, it is assumed that the physical properties of the major water conducting fault (MWCF) is changed resulting in the size of fracture width and the matrix diffusion depth. For such case another illustration is made for probabilistic evaluation of a hypothetical Korean HLW repository, as similarly done in the previous studies

  9. Transport properties of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Puhr, Matthias

    2017-04-26

    Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume

  10. Structural and robustness properties of smart-city transportation networks

    Science.gov (United States)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  11. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  12. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    Science.gov (United States)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  13. Spintronic and transport properties of linear atomic strings of transition metals (Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Neha, E-mail: nehatyagi.phy@gmail.com [Department of Applied Physics, Delhi Technological University, New Delhi (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design & Manufacturing, Jabalpur (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior (India)

    2016-05-06

    In the present work, first-principles investigations have been performed to study the spintronic and transport properties of linear atomic strings of Fe, Co and Ni. The structural stabilities of the considered strings were compared on the basis of binding energies which revealed that all the strings are energetically feasible to be achieved. Further, all the considered strings are found to be ferromagnetic and the observed magnetic moment ranges from 1.38 to 1.71 μ{sub B}. The observed transport properties and high spin polarization points towards their potential for nano interconnects and spintronic applications.

  14. Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Cuchet, Lea

    2015-01-01

    Due to their advantageous properties in terms of data retention, storage density and critical current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with perpendicular anisotropy have become predominant in the developments for MRAM applications. The aim of this thesis is to improve the anisotropy and transport properties of such structures and to realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic properties and Tunnel Magnetoresistance (TMR) measurements showed that to optimize the performances of the junctions, all the thicknesses of the different layers constituting the stack have to be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom reference and the top storage layer in structures capped with Ta. This type of junction could be tested electrically after patterning the sample into nano-pillars. Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to a huge increase in the anisotropy of the free layer. A second top reference was then added on such a stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic antiferromagnetic storage layers could be developed and were proved to be stable enough to replace the standard Co/Pt-based reference layers. (author) [fr

  15. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  16. Simulating liquid water for determining its structural and transport properties

    International Nuclear Information System (INIS)

    Arismendi-Arrieta, Daniel; Medina, Juan S.; Fanourgakis, George S.; Prosmiti, Rita; Delgado-Barrio, Gerardo

    2014-01-01

    Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green–Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion–dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated. - Highlights: ► Transport properties of liquid water are important in bio-simulations. ► Self-diffusion coefficient, shear and bulk viscosities calculations from NVE molecular dynamics simulations. ► Their comparison with experimental data provides information on intermolecular forces, and serve to develop water

  17. Kinetic transport properties of a bumpy torus with finite radial ambipolar field

    International Nuclear Information System (INIS)

    Spong, D.A.; Harris, E.G.; Hedrick, C.L.

    1978-04-01

    Bumpy torus neoclassical transport coefficients have been calculted including finite values of the radial ambipolar field. These are obtained by solving a bounce-averaged drift kinetic equation in a local approximation for perturbations in the distribution function (away from a stationary Maxwellian) caused by toroidicity and radial gradients in plasma density, temperature, and potential. Particle and energy fluxes along with the associated transport coefficients are then calculated by taking appropriate moments of the distribution function. Particle orbits are treated by breaking them up into a vertical drift component (due to toroidicity) and a theta precessional drift (as a result of Vector E x Vector B and drifts due to the bumpy toroidal field). The kinetic equation has been solved using both a functional expansion method and finite difference techniques [Alternating-Direction-Implicit (ADI)]. The resulting transport coefficients exhibit a strong dependence on the ambipolar electric field and plasma collisionality. In the large electric field limit, our results are in close agreement with the earlier work of Kovrizhnykh

  18. Investigation of thermodynamic and transport properties of liquid transition metals using Wills-Harrison potentials

    International Nuclear Information System (INIS)

    Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.

    1998-01-01

    Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)

  19. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...

  20. Interface disorder and transport properties in HTC/CMR superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E

    2004-08-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.

  1. Mixing rules for optical and transport properties of warm, dense matter

    International Nuclear Information System (INIS)

    Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  2. Romanian experience in a assessment of the risk and environmental consequences due to radioactive materials transportation

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2006-01-01

    Full text: The transport of radioactive materials (RAM) is a very important problem taking into consideration its potential risks over the environment and the radiological consequences of this activity. Romania as a Member State of the International Atomic Energy Agency has implemented national regulations for a safe transport of RAM in complying with the Agency's recommendations as well as other international specialized organizations. The paper will present the main sources of radioactive materials in Romania, and their transportation routes with a particular focus on the radioactive wastes (very low level and mixed low-level radioactive materials), radioactive isotopes and sources, and natural uranium ore. Starting from the fact that the safety in the transport of radioactive materials is dependent on packaging appropriate for the contents being shipped, rather than operational and/or administrative actions required for the package, the paper presents, very briefly, the qualification tests for the main packages used for transport and storage of RAM in Romania. There are presented also specific problems related to the identification and evaluation of the environmental risks and impacts as well as the potential radiological consequences associated with the transport of radioactive materials, for all those three possible situations: routine transport (without incidents), normal transport (with minor incidents) and during potential accidents. As a conclusion, it is stated that the evaluated annual collective dose for the population due to RAM transport is less than those received by natural radiation sources. At the same time it is concluded that Romanian made packages are safe and prevent loss of its radioactive contents into environment. (author)

  3. Static transport properties of random alloys: Vertex corrections in conserving approximations

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja

    2016-01-01

    Roč. 93, č. 24 (2016), 245114-1-245114-6 ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 Keywords : transport properties * random alloys * coherent-potential approximation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  4. How much due diligence is enough? (in oil and gas property transactions)

    International Nuclear Information System (INIS)

    Edie, D.C.

    1999-01-01

    The issue of due diligence for oil and gas property transactions was discussed, with particular emphasis on how to find an appropriate balance between cost and protection (risk aversion) within an available time period. The paper focused primarily on oil and gas reserves transactions comprised of petroleum and natural gas rights, leases, operating and title documents, tangibles and the regulatory authorizations needed to acquire, hold and operate these assets. Various concerns related to gas processing plants and pipeline facilities were also treated. Issues of due diligence that should always be raised were emphasized. These are: (1) acceptability of the purchaser to the Alberta Energy and Utilities Board or other regulators as an operator for the purposes of transfer of well and facility licenses, (2) assessment of the purchaser's financial status for environmental liabilities relating to the assets following closing, (3) in an asset swap, property due diligence will be the same for both parties, and (4) where the assets are sold in exchange for stock, the purchaser should at least address concerns about the purchaser's liquidity, the purchaser's underlying asset value, and necessary regulatory authorizations to issue the stock. 10 refs

  5. Controlling In–Ga–Zn–O thin films transport properties through density changes

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarski, Jakub, E-mail: kaczmarski@ite.waw.pl [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Boll, Torben [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Borysiewicz, Michał A. [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Taube, Andrzej [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Thuvander, Mattias; Law, Jia Yan [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Kamińska, Eliana [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden)

    2016-06-01

    In the following study we investigate the effect of the magnetron cathode current (I{sub c}) during reactive sputtering of In–Ga–Zn–O (a-IGZO) on thin-films nanostructure and transport properties. All fabricated films are amorphous, according to X-ray diffraction measurements. However, High Resolution Transmission Electron Microscopy revealed the a-IGZO fabricated at I{sub C} = 70 mA to contain randomly-oriented nanocrystals dispersed in amorphous matrix, which disappear in films deposited at higher cathode current. These nanocrystals have the same composition as the amorphous matrix. One can observe that, while I{sub C} is increased from 70 to 150 mA, the carrier mobility improves from μ{sub Hall} = 6.9 cm{sup 2}/Vs to μ{sub Hall} = 9.1 cm{sup 2}/Vs. Additionally, the increase of I{sub C} caused a reduction of the depletion region trap states density of the Ru–Si–O/In–Ga–Zn–O Schottky barrier. This enhancement in transport properties is attributed to the greater overlapping of s-orbitals of the film-forming cations caused by increased density, evidenced by X-ray reflectivity, at a fixed chemical composition, regardless nanostructure of thin films. - Highlights: • Magnetron cathode current (I{sub C}) controls the transport properties of In–Ga–Zn–O (IGZO). • Low I{sub C} results in IGZO films with nanocrystalline inclusions in amorphous matrix. • High I{sub C} reduces the number of trap states in depletion region of Schottky contacts.

  6. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    Science.gov (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  7. Poly(o-aminophenol) film electrodes synthesis, transport properties and practical applications

    CERN Document Server

    Tucceri, Ricardo

    2014-01-01

    This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.

  8. Transport properties of a ladder with two random dimer chains

    International Nuclear Information System (INIS)

    Hu Dong-Sheng; Zhu Chen-Ping; Zhang Yong-Mei

    2011-01-01

    We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Magnetic and magneto-transport properties of double perovskite Ba{sub 2-x}Sr{sub x}FeMoO{sub 6} system

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vibhav; Verma, Vivek; Aloysius, R.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Bhalla, G.L. [Department of Physics and Astrophysics, Delhi University, Delhi (India); Awana, V.P.S.; Kishan, H. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Kotnala, R.K. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India)], E-mail: rkkotnala@gmail.com

    2009-07-15

    The structural magnetic and magneto-transport properties of double perovskite system Ba{sub 2-x}Sr{sub x}FeMoO{sub 6} (0{<=}x{<=}1.0) prepared in bulk polycrystalline form are reported in this paper. X-ray diffraction analysis showed that samples are single phase and the lattice constants decreases with increase in the Sr content. The degree of Fe-Mo ordering has been found decreasing in the series with an increase in the Sr content. Parent compound Ba{sub 2}FeMoO{sub 6} exhibits saturation magnetic moment value of 3.54 {mu}{sub B}/f.u. at 85 K in a magnetic field of 6000 Oe. Temperature dependence of resistivity shows metallic behavior for all the samples. The magneto-resistance (MR) of the compound with x=0.4 is higher than that of the other samples. At room temperature this system shows a saturation magnetization value of 1.73 {mu}{sub B}/f.u. and MR value of 7.08% (1 T). The observed variations in the structural and magnetic properties are attributed to the change of chemical pressure due to the substitution of Sr in place of Ba. The effect of antisite disorder (ASD) defects on magneto-transport properties is studied in more detail.

  10. Transport Properties of the Metallic State of TMTSF-DMTCNQ

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Andersen, Jan Rud; Andrieux, A.

    1979-01-01

    The authors report the transport properties (longitudinal and transverse conductivity, magnetoresistance and thermopower) of TMTSF-DMTCNQ for pressures up to 13 kbar and temperatures down to 1.2K together with the phase diagram which results from these measurements. The most striking results...... at any temperature (σ∥≳105 (Ωcm)-1) and an enormous magnetoresistance Δρ/ρ≈15) is found for a field of 75 kOe perpendicular to the conducting chains...

  11. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  12. Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock

    International Nuclear Information System (INIS)

    Widestrand, Henrik; Byegaard, Johan; Ohlsson, Yvonne; Tullborg, Eva-Lena

    2003-06-01

    This report comprises a strategy for the handling of laboratory investigations of diffusivity and sorption characteristics within the discipline-specific programme 'Transport Properties of the Rock' in the SKB site investigations. The aim of the transport programme is to investigate the solute transport properties at a site in order to acquire data that are required for an assessment of the long-term performance and radiological safety of the deep repository. The result of the transport programme is the Transport Properties Site Descriptive Model, i.e. a description of the site-specific properties for the transport of solutes in the groundwater at a site. A strategy for the methodology, control of sampling and characterisation programme and interpretation of the results, is proposed. The basis for the laboratory investigations is a conceptual geological model based on the geological model produced in the geology programme. Major and minor types of rock and fractures are defined and characterised according to the quality of the general database and site-specific needs. The selection of samples and analyses is determined in close co-operation with the geology, hydrogeology, hydrogeochemistry and rock mechanics programmes. The result of the laboratory investigations is a retardation model, which is used as an input in the Transport Properties Site Descriptive Model. The interpretation and production of a retardation model is described and exemplified. Lastly, method-specific strategies and recommendations are given, including strategies for the selection of tracers in the experiments and for the treatment of the sampled geologic materials

  13. Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock

    Energy Technology Data Exchange (ETDEWEB)

    Widestrand, Henrik; Byegaard, Johan [Geosigma AB, Kungaelv (Sweden); Ohlsson, Yvonne [SWECO VIAK AB, Stockholm (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2003-06-01

    This report comprises a strategy for the handling of laboratory investigations of diffusivity and sorption characteristics within the discipline-specific programme 'Transport Properties of the Rock' in the SKB site investigations. The aim of the transport programme is to investigate the solute transport properties at a site in order to acquire data that are required for an assessment of the long-term performance and radiological safety of the deep repository. The result of the transport programme is the Transport Properties Site Descriptive Model, i.e. a description of the site-specific properties for the transport of solutes in the groundwater at a site. A strategy for the methodology, control of sampling and characterisation programme and interpretation of the results, is proposed. The basis for the laboratory investigations is a conceptual geological model based on the geological model produced in the geology programme. Major and minor types of rock and fractures are defined and characterised according to the quality of the general database and site-specific needs. The selection of samples and analyses is determined in close co-operation with the geology, hydrogeology, hydrogeochemistry and rock mechanics programmes. The result of the laboratory investigations is a retardation model, which is used as an input in the Transport Properties Site Descriptive Model. The interpretation and production of a retardation model is described and exemplified. Lastly, method-specific strategies and recommendations are given, including strategies for the selection of tracers in the experiments and for the treatment of the sampled geologic materials.

  14. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan

    2017-08-02

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  15. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps.

    Science.gov (United States)

    Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D

    2017-08-15

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  16. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens

    2013-01-01

    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility...

  17. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  18. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  19. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  20. Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2016-05-01

    Full Text Available We designed novel derivatives of 4,6-di(thiophen-2-ylpyrimidine (DTP. Two benchmark strategies including mesomerically deactivating group, as well as the extension of π-conjugation bridge (acene-fusion have been employed to enhance the electrical and charge transport properties. The density functional theory (DFT and time dependent DFT methods have been used to get optimized geometries in ground and first excited state, respectively. The structural properties (geometric parameters, electronic properties (frontier molecular orbitals; highest occupied and lowest unoccupied molecular orbitals, photophysical properties (absorption, fluorescence and phosphorescence, and important charge transport properties are discussed to establish a molecular level structure–property relationship among these derivatives. Our calculated electronic spectra i.e., absorption, fluorescence and phosphorescence have been found in good semi-quantitative agreement with available experimental data. All the newly designed derivatives displayed significantly improved electron injection ability than those of the parent molecule. The values of reorganization energy and transfer integral elucidate that DTP is a potential hole transport material. Based on our present investigation, it is expected that the naphtho and anthra derivatives of DTP are better hole transporters than those of some well-known charge transporter materials like naphthalene, anthracene, tetracene and pentacene.

  1. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2017-01-01

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green's function method. The influence of the surface termination

  2. Effect of spin-orbit interactions on the structural stability, thermodynamic properties, and transport properties of lead under pressure

    Science.gov (United States)

    Smirnov, N. A.

    2018-03-01

    The paper investigates the role of spin-orbit interaction in the prediction of structural stability, lattice dynamics, elasticity, thermodynamic and transport properties (electrical resistivity and thermal conductivity) of lead under pressure with the FP-LMTO (full-potential linear-muffin-tin orbital) method for the first-principles band structure calculations. Our calculations were carried out for three polymorphous lead modifications (fcc, hcp, and bcc) in generalized gradient approximation with the exchange-correlation functional PBEsol. They suggest that compared to the scalar-relativistic calculation, the account for the SO effects insignificantly influences the compressibility of Pb. At the same time, in the calculation of phonon spectra and transport properties, the role of SO interaction is important, at least, for P ≲150 GPa. At higher pressures, the contribution from SO interaction reduces but not vanishes. As for the relative structural stability, our studies show that SO effects influence weakly the pressure of the fcc →hcp transition and much higher the pressure of the hcp →bcc transition.

  3. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.

    Science.gov (United States)

    Dermol-Cerne, Janja; Miklavcic, Damijan

    2018-02-01

    Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.

  4. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  5. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  6. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    Science.gov (United States)

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-01

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  7. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Luketa, Anay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wocken, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schlasner, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aulich, Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allen, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  8. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros

    2011-01-01

    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  9. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  10. Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Shu-Fang; Wei, Hao Han; Liu, Chuan-Pu; Hsu, C Y; Huang, J C A

    2010-01-01

    The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.

  11. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  12. The influence of Ga{sup +} irradiation on the transport properties of mesoscopic conducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, J; Dusari, S; Bridoux, G; Bern, F; Molle, A; Esquinazi, P, E-mail: j.barzola@physik.uni-leipzig.de, E-mail: esquin@physik.uni-leipzig.de [Division of Superconductivity and Magnetism, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany)

    2010-04-09

    We studied the influence of 30 keV Ga{sup +}-ions-commonly used in focused-ion-beam (FIB) devices-on the transport properties of thin crystalline graphite flakes, and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Co thin films. The changes in electrical resistance were measured in situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga{sup +} fluences much below those used for patterning and ion-beam-induced deposition (IBID), seriously limiting the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.

  13. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, Jorge A. [Universidad Nacional de Colombia – Bogotá, Dpto. de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Cra. 30 No. 45-03 Edificio 404 Lab. 121C Ciudad Universitaria, Bogotá (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. 24 No. 63C-69, Bogotá (Colombia); Dussan, A. [Universidad Nacional de Colombia – Bogotá, Dpto. de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Cra. 30 No. 45-03 Edificio 404 Lab. 121C Ciudad Universitaria, Bogotá (Colombia)

    2017-02-28

    Highlights: • (GaMn)Sb thin films were fabricated using the direct current (DC) magnetron co-sputtering. • Presence of ferrimagnetic (Mn{sub 2}Sb) and ferromagnetic (Mn{sub 2}Sb{sub 2}) phases. • A minor difference of 1% was found with respect to percolation theory, which confirmed the validity of the diffusional model in semiconductor alloys with magnetic properties. • Increase in the localized states density (N{sub F}) with increasing substrate temperature. - Abstract: We studied the electrical, magnetic, and transport properties of (GaMn)Sb thin films fabricated by the direct current magnetron co-sputtering method. Using X-ray powder diffraction measurements, we identified the presence of ferrimagnetic (Mn{sub 2}Sb) and ferromagnetic (Mn{sub 2}Sb{sub 2}) phases within the films. We also measured the magnetization of the films versus an applied magnetic field as well as their hysteresis curves at room temperature. We determined the electrical and transport properties of the films through temperature-dependent resistivity measurements using the Van Der Pauw method. The main contribution to the transport process was variable range hopping. Hopping parameters were calculated using percolation theory and refined using the diffusional model. In addition, we determined that all samples had p type semiconductor behavior, that there was an increase in the density of localized states near the Fermi level, and that the binary magnetic phases influenced the electrical properties and transport mechanisms.

  14. The ESASSI-08 cruise in the South Scotia Ridge region: An inverse model property-transport analysis over the Ridge

    Science.gov (United States)

    Palmer, Margarita; Gomis, Damià; Del Mar Flexas, Maria; Jordà, Gabriel; Naveira-Garabato, Alberto; Jullion, Loic; Tsubouchi, Takamasa

    2010-05-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the most significant milestone of the ESASSI project. ESASSI is the Spanish component of the Synoptic Antarctic Shelf-Slope Interactions (SASSI) study, one of the core projects of the International Polar Year. Hydrographical and biochemical (oxygen, CFCs, nutrients, chlorophyll content, alkalinity, pH, DOC) data were obtained along 11 sections in the South Scotia Ridge (SSR) region, between Elephant and South Orkney Islands. One of the aims of the ESASSI project is to determine the northward outflow of cold and ventilated waters from the Weddell Sea into the Scotia Sea. For that purpose, the accurate estimation of mass, heat, salt, and oxygen transport over the Ridge is requested. An initial analysis of transports across the different sections was first obtained from CTD and ADCP data. The following step has been the application of an inverse method, in order to obtain a better estimation of the net flow for the different water masses present in the region. The set of property-conservation equations considered by the inverse model includes mass, heat and salinity fluxes. The "box" is delimited by the sections along the northern flank of the SSR, between Elephant Island and 50°W, the southern flank of the Ridge, between 51.5°W and 50°W, the 50°W meridian and a diagonal line between Elephant Island and 51.5°W, 61.75°S. Results show that the initial calculations of transports suffered of a significant volume imbalance, due to the inherent errors of ship-ADCP data, the complicated topography and the presence of strong tidal currents in some sections. We present the post-inversion property transports across the rim of the box (and their error bars) for the different water masses.

  15. Electron scattering in graphene by defects in underlying h-BN layer: First-principles transport calculations

    Science.gov (United States)

    Kaneko, Tomoaki; Ohno, Takahisa

    2018-03-01

    We investigate the electronic structure and the transport properties of graphene adsorbed onto h-BN with carbon impurities or atomic vacancies using density functional theory and the non-equilibrium Green's function method. We find that the transport properties are degraded due to carrier doping and scattering off of localized defect states in h-BN. When graphene is doped by introducing defects in h-BN, the transmission spectra become asymmetric owing to the reduction of the electronic density of states, which contributes significantly to the degradation of graphene transport properties as compared with the effect of defect levels.

  16. Proton transport properties in zwitterion blends with Brønsted acids.

    Science.gov (United States)

    Yoshizawa-Fujita, Masahiro; Byrne, Nolene; Forsyth, Maria; MacFarlane, Douglas R; Ohno, Hiroyuki

    2010-12-16

    We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)(2)) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)(2) concentration up to 50 mol %. The Tg remained constant at -55 °C with further acid doping. The ionic conductivity of HN(Tf)(2) mixtures increased with the HN(Tf)(2) content up to 50 mol %. Beyond that ratio, the mixtures showed no increase in ionic conductivity (10(-4) S cm(-1) at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)(2) content even above 50 mol % for all component ions. At HN(Tf)(2) 50 mol %, the proton diffusion of HN(Tf)(2) was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)(2), that is, the excess HN(Tf)(2) exists as molecular HN(Tf)(2) in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)(2) and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH(3)SO(3)H and CF(3)SO(3)H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)(2) system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.

  17. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kohei [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  18. Spin-dependent transport properties of oleic acid molecule self-assembled La0.7Sr0.3MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Xi, L.; Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S.

    2013-01-01

    Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La 0.7 Sr 0.3 MnO 3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.

  19. Transport Properties of the Organic Conductor (TMTSF)2BrO4: Evidence of Variable Range Hopping

    DEFF Research Database (Denmark)

    Mortensen, Kell; Jacobsen, Claus Schelde; Bechgaard, Klaus

    1984-01-01

    A study of d.c. and microwave conductivity and thermoelectric power of the organic conductor (TMTSF)2BrO4 is presented. The transport properties are in qualitative agreement with charge transport via variable-range hopping among localized states. The localization is attributed to the anions, which...

  20. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions

    International Nuclear Information System (INIS)

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-01-01

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)

  1. Red cell properties after different modes of blood transportation

    Directory of Open Access Journals (Sweden)

    Asya Makhro

    2016-07-01

    Full Text Available Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extend has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 hours of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin and citrate-based CPDA for two temperatures (4oC and room temperature were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination, red blood cell (RBC volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations and formation of micro vesicles, Ca2+ handling, RBC metabolism, activity of numerous enzymes and O2 transport capacity. Our findings indicate that individual sets of parameter may require different shipment settings (anticoagulants, temperature. Most of the parameters except for ion (Na+, K+, Ca2+ handling and, possibly, reticulocytes counts, tend to favor transportation at 4oC. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using optimized shipment protocol the majority of parameters were stable within 24 hours, the condition that may not hold for the samples of patients with rare anemias. This implies for the as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  2. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    International Nuclear Information System (INIS)

    Mukhopadhyay, Banibrata; Saha, Kanak

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T > or approx. 10 5 . However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ∼ t ∼< 0.1, which can explain transport in accretion flows.

  3. Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).

    Science.gov (United States)

    Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill

    2015-01-28

    (Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed.

  4. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  5. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  6. Study of transport properties of bodies with a perovskite structure: application to the MgSiO3 perovskite

    International Nuclear Information System (INIS)

    Kapusta, Benedicte

    1990-01-01

    After some recalls on transport in ionic solids (Nernst-Einstein relationship, variation of ionic conductivity, hybrid conduction, fast ionic conduction), this research thesis presents the physical properties of perovskites and more particularly the structure and stability of the MgSiO 3 perovskite: structure and elastic properties, electric conductivity and transport properties in compounds with a perovskite structure. Then, the author reports the experimental study of the KZnF 3 perovskite (a structural analogous of MgSiO 3 ): measurements of electric conductivity under pressure, measurements under atmospheric pressure, result discussion. The next part addresses the numerical simulation of MgSiO 3 : simulation techniques (generalities on molecular dynamics, model description), investigation of structural, elastic and thermodynamic properties, diffusion properties in quadratic phase [fr

  7. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    Science.gov (United States)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  8. Local transport analysis of L-mode plasmas in JT-60 tokamak

    International Nuclear Information System (INIS)

    Hirayama, Toshio; Kikuchi, Mitsuru; Shirai, Hiroshi; Shimizu, Katsuhiro; Yagi, Masatoshi; Koide, Yoshihiko; Ishida, Shinichi; Azumi, Masafumi.

    1991-03-01

    Local heat transport has been studied in auxiliary heated JT-60 plasmas with emphasis on understanding the deteriorated confinement observed in L-mode plasmas. The systematic experiment and analysis have been carried out in L-mode phase of divertor (single null, lower X-point), and limiter discharges with hydrogen neutral beam heating into hydrogen plasmas, based on sets of consistent experimental data including ion temperature profiles from CXR measurements. The deterioration in the energy confinement time with increasing the auxiliary heating power, so-called the power scaling, is mainly due to the degradation in ion energy transport. The confinement improvement as the plasma current increases is followed by both improvement in ion and electron transport properties. It is found that the ion thermal diffusivity has an approval dependence on the density. High ion temperature (T i (0) ≤ 12 keV) L-mode plasmas are attained at high β p up to 3.5. The centrally peaked ion temperature is significantly due to the improvement in ion transport property, which is reduced to the level of the electron thermal diffusivities. (author)

  9. The use of modern data about the composition and properties of soils for the development of transport infrastructure of Tyumen

    Science.gov (United States)

    Eremin, Dmitry

    2017-10-01

    Sedimentary properties territory Tura-Pyshma interfluve, where Tyumen is located are determined by the general course of ancient and especially the newest tectonic movements. Active development of the transport network on the territory of the Tour-Pyshma interfluve has created the need for a contemporary study of regional peculiarities of grounds. This will allow you to create roads with the quality meet the international standards. The use of average values of indicators of the properties of silty-clay soils during the development of the transport infrastructure projects of the city of Tyumen and its environs is ineffective due to the genetic characteristics of the rocks located at the depth of 1.5-5.0 meters. Detailed analysis showed that the studied soil belongs to the covering carbonate loams and clays, differing in its characteristics from loess-like sediments of the European part of Russia. The thickness of the covering rocks is not more than 5 meters. It’s low-carbonate, non-saline and often has a layered structure. The upper three meters of sediments contain the minimum quantity of water-soluble salts (dry residue less than 0.1%). Studied covering loams are characterized by favorable physical properties: the density of the bulk and the particle is 1.44 to 1.62 and 2.70-2.78 g/cm3, respectively. Water permeability is high - the filtration coefficient varies from 3.4 to 6.4 m/day, the minimum water velocity observed in the clay types of soil. The presence of sand layers adversely affects the permeability of soil. Therefore, the design and construction of transport infrastructure of the city and the surrounding territories it is necessary to consider regional features of grounds.

  10. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    Science.gov (United States)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  11. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  12. Normal Condition on Transport Thermal Analysis and Testing of a Type B Drum Package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; van Alstine, M.N.; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance

  13. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    Science.gov (United States)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  14. Molecular structure, photoluminescent and electroluminescent properties of bis(2-(4-methyl-2-hydroxyphenyl)benzothiazolate) zinc with excellent electron-transport characteristics

    International Nuclear Information System (INIS)

    Xu Huixia; Xu Bingshe; Fang Xiaohong; Yue Yan; Chen Liuqing; Wang Hua; Hao Yuying

    2011-01-01

    Highlights: → The synthesis, crystal structure and photophysical properties of Zn(4-MeBTZ) 2 were reported. → The electron-transport property was investigated by theoretical calculations and experimental. → We found that Zn(4-MeBTZ) 2 has a higher electron mobility than that of [Zn(BTZ) 2 ] 2 and the devices based on it have a lower turn-on voltage. - Abstract: In this article, the molecular structure, photoluminescent and electroluminescent properties of bis(2-(4-methyl-2-hydroxyphenyl) benzothiazolate) zinc (Zn(4-MeBTZ) 2 ) with good electron-transport characteristics were reported. This complex was identified as triclinic structure with the strong intermolecular π-π stacking interactions between the benzothiazolate/phenoxido rings and weak intramolecular hydrogen bonds by X-ray single-crystal diffraction. Quantum chemical method has been employed to investigate electron structure and charge transport property. The blue-green light emission was observed by fabricating double-layer devices using Zn(4-MeBTZ) 2 as electron-transport and NPB as hole-transport material. The performance of organic light-emitting devices based on Zn(4-MeBTZ) 2 is much better than that of the devices based on [Zn(BTZ) 2 ] 2 .

  15. Bedrock transport properties. Preliminary site description Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, Johan; Gustavsson, Eva [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-06-01

    This report presents the site descriptive model of transport properties developed as a part of the Simpevarp 1.2 site description. The main parameters included in the model, referred to as retardation parameters, are the matrix porosity and diffusivity, and the matrix sorption coefficient K{sub d}. The model is based on the presently available site investigation data, mainly obtained from laboratory investigations of core samples from boreholes within the Simpevarp subarea, and on data from previous studies at the Aespoe Hard Rock Laboratory (Aespoe HRL). The modelling is a first attempt, based on limited data, to obtain a description of the retardation parameters. Further refinement of the model is foreseen when more data becomes available for future versions of the Simpevarp site description. The modelling work included descriptions of rock mass geology, the fractures and deformation zones, the hydrogeochemistry and also the available results from the site specific porosity, sorption and diffusivity measurements. The description of the transport related aspects of the data and models presented by other modelling disciplines is an important part of the transport description. In accordance with the strategy for the modelling of transport properties, the results are presented as a 'retardation model', in which a summary of the transport data for the different geological compartments is given. Concerning the major rock types, Aevroe granite, quartz monzodiorite and fine-grained dioritoid are identified as the rock types dominating the main rock domains identified and described in the site descriptive model of the bedrock geology. However, relatively large parts of the rock consist of altered rock and the open fracture frequency appears to be correlated to the altered/oxidised parts of the rock. This implies that transport in open fractures to a large extent takes place in the altered parts of the rock. For the fracture mineralogy, it is found that the

  16. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    Science.gov (United States)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  17. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    The effect of plasma fluctuations due to turbulence at the outboard midplane on parallel transport properties is investigated. Time-dependent fluctuating signals at different radial locations are used to study the effect of signal statistics. Further, a computational analysis of parallel transport...... to a comparison of steady-state and time-dependent modelling....

  18. Optimizing sales areas of combined transport chains

    Directory of Open Access Journals (Sweden)

    Philip Michalk

    2013-12-01

    Full Text Available Background: Combined transport chains (such as intermodal transport, have certain advantages. The main advantage from customer points of view is the possibility to bundle freight and thereby decrease transport costs. On the other hand, a combined transport chain can cause longer transport times, due to the necessary transshipment processes. Methods: The area around a terminal, in which a combined service has favourable properties to a customer in comparison to a direct transport, can be understood as a sales-area, in which a combined transport product is marketable. The aim of this paper was to find a method to determine the best shape and size of this area. Results and conclusions: The paper at hand lined out a method in order to calculate such a sales area and determine which geographical points around a terminal have an advantage in comparison to a direct transport service.

  19. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  20. Public exposure due to the transport of radiopharmaceuticals; Exposicao do publico devido ao transporte de radiofarmacos

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Demerval L.; Carneiro, Janete C.G.G.; Sanches, Matias P.; Sordi, Gian Maria A.A., E-mail: dlrodri@ipen.b, E-mail: janetegc@ipen.b, E-mail: msanches@ipen.b, E-mail: gsordi@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper estimate the radiological impact resulting from radiopharmaceuticals transport from the IPEN to some destinations defined a priori. So, doses were estimated in the public individuals, which are in the streets and vehicles that transit near the public transport, alongside the itinerary went through by packages, during the realization of radiopharmaceuticals transport

  1. Oxygen transport and degradation properties of high-temperature membranes for CO{sub 2}-free power plants; Sauerstofftransport und Degradationsverhalten von Hochtemperaturmembranen fuer CO{sub 2}-freie Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Schlehuber, Dominic

    2010-07-01

    This thesis deals with membranes for oxygen separation from air for high temperature application in fossil power plants within the scope of the oxyfuel-process. Different perovskite membrane materials (ABO3-ae) were investigated concerning the oxygen transport and their chemical stability under operation condition. The association between oxygen transport properties and both the thermodynamic boundary conditions as well as the material properties (membrane thickness and surface properties) was studied. One possibility to achieve higher oxygen fluxes through the membrane is to reduce the thickness. In this case the influence of surface processes on the overall permeation becomes noteworthy. The effect of different membrane surface modifications on the permeation rate was investigated. For example it could be confirmed, that a porous layer on the membrane surface significantly increases the permeation flux due to the compensation of surface exchange limitations. Beyond that, degradation processes during the operation under power plant condition were investigated. Special attention was attached to the influence of degradation on the permeation flux during long term operation. Thereby kinetic demixing of the membrane material was observed. (orig.)

  2. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  3. Investigation of transport properties of FeTe compound

    Science.gov (United States)

    Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.

  4. In-Plane Magnetic Field Effect on the Transport Properties in a Quasi-3D Quantum Well Structure

    International Nuclear Information System (INIS)

    Brooks, J.; Clark, R.; Lumpkin, N.; O'Brien, J.; Reno, J.; Simmons, J.; Wang, Z.; Zhang, B.

    1999-01-01

    The transport properties of a quasi-three-dimensional, 200 layer quantum well structure are investigated at integer filling in the quantum Hall state. We find that the transverse magnetoresistance R xx , the Hall resistance R xy , and the vertical resistance R zz all follow a similar behavior with both temperature and in-plane magnetic field. A general feature of the influence of increasing in-plane field B in is that the Hall conductance quantization first improves, but above a characteristic value B C in , the quantization is systematically removed. We consider the interplay of the chid edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band structure energies. A comparison of the resuIts with existing theories of the chiral edge state transport with in-plane field is also discussed

  5. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air

    Science.gov (United States)

    Solovieva, A. A.; Kulbakin, I. V.

    2018-04-01

    The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.

  6. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  7. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  8. Mass Transport Properties of LiD-U Mixtures from Orbital FreeMolecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    International Nuclear Information System (INIS)

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-01-01

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD) x U (1-x) compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, ρ, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk B T/V + P e , is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species α, D α , the mutual diffusion coefficient for species α and β, Dαβ, and the shear viscosity, η, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  9. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  10. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M; Eckern, U; Romero, A H; Schwingenschlö gl, Udo

    2015-01-01

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  11. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  12. Electrical transport and pinning properties of Nb films with washboard-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskiy, Oleksandr V. [Physikalisches Institut Goethe-University, Frankfurt am Main (Germany); Department of Physics, Kharkiv National University (Ukraine); Begun, Evgeniya; Huth, Michael [Physikalisches Institut Goethe-University, Frankfurt am Main (Germany); Shklovskij, Valerij A. [Department of Physics, Kharkiv National University (Ukraine); Institute for Theoretical Physics NSC-KIPT, Kharkiv (Ukraine)

    2013-07-01

    A careful analysis of the magneto-transport properties of epitaxial nanostructured Nb thin films in the normal and the mixed state is performed. The nanopatterns were prepared by focused ion beam (FIB) milling. They provide a washboard-like pinning potential landscape for vortices in the mixed state and simultaneously cause a resistivity anisotropy in the normal state. Two matching magnetic fields for the vortex lattice with the underlying nanostructures have been observed. By applying these fields, the most likely pinning sites along which the flux lines move through the samples have been selected. By this, either the background isotropic pinning of the pristine film or the enhanced isotropic pinning originating from the nanoprocessing have been probed. Via an Arrhenius analysis of the resistivity data the pinning activation energies for three vortex lattice parameters have been quantified. The changes in the electrical transport and the pinning properties have been correlated with the results of the microstructural and topographical characterization of the FIB-patterned samples. The obtained results provide further insight into the pinning mechanisms at work in FIB-nanopatterned superconductors for fluxonic applications.

  13. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  14. Lightning generation in Titan due to the electrical self-polarization properties of Methane

    Science.gov (United States)

    Quintero, A.; Falcón, N.

    2009-05-01

    We describe an electrical charge process in Titan's thunderclouds, due to the self-polarization properties or pyroelectricity of methane, which increases the internal electric field in thunderclouds and facilitates the charge generation and separation processes. Microphysics that generates lightning flashes is associated with the physical and chemical properties of the local atmosphere, so methane could be the principal agent of the electrical activity because of its great concentration in Titan's atmosphere. Besides, Titan's electrical activity should not be very influenced by Saturn's magnetosphere because lightning occurs at very low altitude above Titan's surface, compared with the greater distance of Saturn's magnetosphere and Titan's troposphere. Using an electrostatic treatment, we calculate the internal electric field of Titan's thunderclouds due to methane's pyroelectrical properties, 7.05×10^11 Vm^-1; and using the telluric capacitor approximation for thunderclouds, we calculate the total charge obtained for a typical Titan thundercloud, 2.67×10^9 C. However, it is not right to use an electrostatic treatment because charge times are very fast due to the large methane concentration in Titan's clouds and the life time of thunderclouds is very low (around 2 hours). We consider a time dependent mechanism, employing common Earth atmospheric approaches, because of the similitude in chemical composition of both atmospheres (mainly nitrogen), so the typical charge of a thundercloud in Titan should reach between 20 C to 40 C, like on Earth. We obtain that lightning occurs with a frequency between 2 and 6 KHz. In Titan's atmosphere, methane concentration is higher than on Earth, and atmospheric electrical activity is stronger, so this model could be consistent with the observed phenomenology.

  15. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  16. Transport properties of Lu.sub.2./sub.Fe.sub.17./sub. single crystals under extreme conditions

    Czech Academy of Sciences Publication Activity Database

    Skorokhod, Yuriy; Arnold, Zdeněk; Kamarád, Jiří; Andreev, Alexander V.

    2004-01-01

    Roč. 11, č. 3 (2004), s. 471-475 ISSN 1027-5495 R&D Projects: GA ČR(CZ) GA106/02/0943 Institutional research plan: CEZ:AV0Z1010914 Keywords : transport properties * magnetotransport properties * pressure effect * single crystals * intermetallic compounds Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1981-01-01

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr

  18. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.

    2014-01-01

    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia LopesPadua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids....

  19. Synthesis and properties of a spirobifluorene-based hole-transporting material containingtert-butyl group

    Directory of Open Access Journals (Sweden)

    DING Ning

    2016-12-01

    Full Text Available A spirobifluorene-based compound SPF-BMO was developed as hole transporters for green phosphorescent organic light-emitting diodes(PhOLEDs.The synthesized material showed sufficient HOMO/LUMO bandgap and triplet energy for green emitting bis[2-(2-pyridinyl-Nphenyl-C] (acetylacetonato iridium(III [Ir (ppy2(acac].The addition of a thin layer of 4,4′,4″-tri(N-carbazolyltriphenylamine (TCTAwith a high triplet energy as an exciton-blockinglayer at hole transporter/emitter interface seems to be unnecessary.SPF-BMO showed high thermal stability due to its spiro-annulated structure.Compared with the standard green PhOLEDs,organic light-emitting diodes with SPF-BMO as the hole-transport material have improved performances such as enhanced device power efficiency andlonger stability.These results clearly demonstrate that SPF-BMO is among the best hole-transporting materials reported for green PhOLEDs and utilizing anappropriate hole transporter to construct a simplified device is a promising method to enhance the power efficiency of PhOLEDs.

  20. Effect of Secondary Doping Using Sorbitol on Structure and Transport Properties of PEDOT-PSS Thin Films

    Science.gov (United States)

    Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer

    2017-07-01

    Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in

  1. Quantum transport in defective phosphorene nanoribbons: Effects of atomic vacancies

    Science.gov (United States)

    Li, L. L.; Peeters, F. M.

    2018-02-01

    Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.

  2. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  3. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    International Nuclear Information System (INIS)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-01-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co 2 FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization

  4. Equation of state and transport properties of uranium and plutonium carbides in the liquid region

    International Nuclear Information System (INIS)

    Sheth, A.; Leibowitz, L.

    1975-09-01

    By the use of available low-temperature data for various thermophysical and transport properties for uranium and plutonium carbides, values above the melting point were estimated. Sets of recommended values have been prepared for the compounds UC, PuC, and (U,Pu)C. The properties that have been evaluated are density, heat capacity, enthalpy, vapor pressure, thermal conductivity, viscosity, and emissivity

  5. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  6. Optical and transport properties of single crystal rubrene: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.

  7. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  8. Magneto-ballistic transport in GaN nanowires

    International Nuclear Information System (INIS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-01-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  9. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  10. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  11. Metal transport across biomembranes: emerging models for a distinct chemistry.

    Science.gov (United States)

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  12. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  13. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  14. Assessing the transfer of risk due to transportation of agricultural products.

    Science.gov (United States)

    Li, Pei-Chiun; Shih, Hsiu-Ching; Ma, Hwong-Wen

    2015-02-01

    Health risk assessment (HRA) is the process used to estimate adverse health effects on humans. The importance and sensitivity of food chains to HRA have been observed, but the impact of the transportation of food has generally been ignored. This study developed an exposure assessment to demonstrate the significance of the transportation of agricultural products in HRA. The associated case study estimated the health risks derived from various sources of arsenic emissions in Taiwan. Two assessment scenarios, self-sufficiency and transportation of agricultural products, were compared to calculate risk transfer ratios that show the impact of agriculture transportation. The risk transfer ratios found by the study range from 0.22 to 42.10, indicating that the quantity of transportation of agricultural products is the critical factor. High air deposition and high agricultural production are the two main contributors to the effect of the transportation of agricultural products on HRA. Risk reduction measures could be applied to high-pollution areas as well as to areas with high agricultural productivity to reduce ingestion risks to residents. Certain areas that are sensitive to the transportation of agricultural products may incur more risks if emissions increase in agriculturally productive counties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations

    Science.gov (United States)

    Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.

    2018-01-01

    Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.

  16. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    International Nuclear Information System (INIS)

    Orozco, Gustavo A.; Nieto-Draghi, Carlos; Lachet, Veronique; Mackie, Allan D.

    2014-01-01

    Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-Butylamine, di-n-Butylamine, tri-n-Butylamine and 1,4-Butanediamine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-Butylamine and n-heptane-n-Butylamine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-Butylamine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N 2 O) and nitrogen (N 2 ) in an aqueous solutions of n-Butylamine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines. (authors)

  17. Transport properties of a piecewise linear transformation and deterministic Levy flights

    International Nuclear Information System (INIS)

    Miyaguchi, Tomoshige

    2006-01-01

    The transport properties of a 1-dimensional piecewise linear dynamical system are investigated through the spectrum of its Frobenius-Perron operator. For a class of initial densities, eigenvalues and eigenfunctions of the Frobenius-Perron operator are obtained explicitly. It is also found that in the long length wave limit, this system exhibits normal diffusion and super diffusion called Levy flight. The diffusion constant and stable index are derived from the eigenvalues. (author)

  18. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  19. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  20. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol

    Directory of Open Access Journals (Sweden)

    Iwona S. Stachlewska

    2018-03-01

    Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

  1. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5 +/- 1.0 mV (n = 149). It was investigated whether the effect of HCO3- was due to a Na+-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively...... was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO3(-)-free and HCO3(-)-containing solution was -0.8 and -2.6 mV, respectively. The equivalent...... short circuit current (Isc) under similar conditions was 26 and 50 microA . cm-2. The specific transepithelial resistance (Rte) was 88 omega cm2. In control solutions the PD across the basolateral membrane (PDbl) was -63 +/- 1 mV (n = 314). Ouabain (3 mmol/l) depolarized PDbl by 4.8 +/- 1.1 mV (n = 6...

  2. Structural, electronic and transport properties of armorphous/crystalline silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tim Ferdinand

    2011-06-15

    The present dissertation is concerned with the physical aspects of the a-Si:H/c-Si heterojunction in the context of PV research. In a first step, the technological development which took place in the framework of the thesis is summarized. Its main constituent was the development and implementation of ultrathin ({<=}10 nm) undoped a-Si:H[(i)a-Si:H] layers to improve the passivation of the c-Si surface with the goal of increasing the open-circuit voltage of the solar cell. It is shown that the effect of (i)a-Si:H interlayers depends on the c-Si substrate doping type, and that challenges exist particularly on the technologically more relevant (n)c-Si substrate. A precise optimization of (i)a-Si:H thickness and the doping level of the following a-Si:H top layers is required to realize an efficiency gain in the solar cell. In this chapter, the key scientific questions to be tackled in the main part of the thesis are brought up by the technological development. In the next chapter, the charge carrier transport through a-Si:H/c-Si heterojunctions is investigated making use of current-voltage (I/V) characteristics taken at different temperatures. The dominant transport mechanisms in a-Si:H/c-Si heterojunctions are identified, and the relevance for solar cell operation is discussed. It is found that in the bias regime relevant for solar cell operation, the theoretical framework for the description of carrier transport in classical c-Si solar cells applies as well, which enables to use I/V curves for a simple characterization of a-Si:H/c-Si structures. The next chapter deals with the microscopic characterization of ultrathin a-Si:H layers. Employing infrared spectroscopy, spectroscopic ellipsometry, photoelectron spectroscopy and secondary ion mass spectroscopy, the structural, electronic and optical properties of (i)a-Si:H are analyzed. It is found that ultrathin a-Si:H essentially behaves like layers of 10..100 times the thickness. This represents the basis for the

  3. Thermoelectric properties control due to doping level and sintering conditions for FGM thermoelectric element

    CERN Document Server

    Kajikawa, T; Shiraishi, K; Ohmori, M; Hirai, T

    1999-01-01

    Thermoelectric performance is determined with three factors, namely, Seebeck coefficient, electrical resistivity and thermal conductivity. For metal and single crystalline semiconductor, those factors have close interrelation each $9 other. However, as the sintered thermoelectric element has various levels of superstructure from macro scale and micro scale in terms of the thermoelectric mechanism, the relationship among them is more complex than that for the $9 melt- grown element, so it is suggested that the control of the temperature dependence of thermoelectric properties is possible to enhance the thermoelectric performance for wide temperature range due to FGM approach. The research $9 objective is to investigate the characteristics of the thermoelectric properties for various doping levels and hot-pressed conditions to make the thermoelectric elements for which the temperature dependence of the performance is $9 controlled due to FGM approach varying the doping levels and sintering conditions. By usage ...

  4. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  5. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  6. Influence of short range ordering and clustering on transport properties

    International Nuclear Information System (INIS)

    Vigier, G.; Pelletier, J.M.

    1982-01-01

    The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations

  7. Soil properties and preferential solute transport at the field scale

    DEFF Research Database (Denmark)

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...

  8. Influence of intermartensitic transitions on transport properties of Ni$_{2.16}Mn_{0.84}$Ga alloy

    CERN Document Server

    Khovailo, V V; Wedel, C; Takagi, T; Abe, T; Sugiyama, K

    2004-01-01

    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni$_{2.16}$Mn$_{0.84}$Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity $\\rho$ and magnetization $M$. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, $(\\rho_{\\mathrm{5M}} - \\rho_{\\mathrm{7M}})/\\rho _{\\mathrm{5M}} \\approx 15%$, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase ...

  9. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  10. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  11. Elastic and transport properties of steam-cured pozzolanic-lime rock composites upon CO2 injection

    Science.gov (United States)

    Emery, Dan; Vanorio, Tiziana

    2016-04-01

    transport and elastic properties of the samples and how the properties of the rock may change in response to microstructural changes due to potential chemical instabilities such as possible new flux of CO2 into a volcanic-hydrothermal system.

  12. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.; AbuElela, Ayman; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M.; Buttner, Ulrich; Majid, Mohammed Abdul; Ng, Tien Khee; Merzaban, Jasmeen; Ooi, Boon S.

    2016-01-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  13. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.

    2016-11-23

    Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  14. Confinement and transport properties during current ramps in the ASDEX Upgrade tokamak

    Science.gov (United States)

    Fable, E.; Angioni, C.; Hobirk, J.; Pereverzev, G.; Fietz, S.; Hein, T.; ASDEX Upgrade Team

    2011-04-01

    A detailed analysis of experimental data from the ASDEX Upgrade tokamak is carried out to shed light on the properties of confinement and transport in the current ramp-up and ramp-down phases of the plasma discharge. The experimental database is used to identify the relevant ranges of parameters explored during the ramp-up and the ramp-down. The energy confinement time observed in the two ramps displays interesting evolution, in many cases attaining different values at the same current level between ramp-up and ramp-down. The possible reasons for this behaviour are investigated. Interpretative transport simulations are used as a tool to clarify the interplay between different parameters, which are coupled in a non-linear way. In addition, a theory-based transport model is used to understand the behaviour of confinement as observed in the experiment, evidencing the role of both turbulent and neoclassical transport. Linear gyrokinetic calculations are performed to identify the relevant turbulence regime, showing that a broad range of frequencies, in the trapped electron modes (TEMs) and in the ion temperature gradient modes (ITGs) regimes, is explored during both the ramp-up and ramp-down. In the same framework, a quasi-linear model is applied to calculate the value of the local logarithmic density gradient and compare it with the experimental value. Finally, first non-linear simulations of heat transport during the current ramps are presented.

  15. Empirical investigation of topological and weighted properties of a bus transport network from China

    Science.gov (United States)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  16. Metallic insulation transport and strainer clogging tests

    International Nuclear Information System (INIS)

    Hyvaerinen, J.; Hongisto, O.

    1994-06-01

    Experiments to probe the transport and clogging properties of metallic (metal reflective) insulation have been carried out in order to provide data for evaluation of their influence on the emergency core cooling and containment spray systems of the Finnish boiling water reactors in the event of a design basis accident. The specific metallic insulation tested was DARMET, provided by Darchem Engineering Ltd. The inner foils of Darmet are dimped. Available literature on the metallic insulation performance under design basis accident conditions has been reviewed. On the basis of the review a parametric approach has been chosen for the transport and clogging experiments. This approach involves testing a wide size range of various shapes of foil pieces. Five sets of experiments have been carried out. The first three sets investigate transport properties of the foil pieces, starting from sedimentation in stagnant waste pool and proceeding to transport in horizontal and vertically circulating flows. The clogging experiments have been addressed the differential pressures obtained due to accumulation of both pure and metallic and a mixture of metallic and fibrous (mineral wool) depris. (4 refs., 24 figs., 2 tabs.)

  17. Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Shy, S.S.; Chien, C.W. [Department of Mechanical Engineering, National Central University, 300 Jhong-da Road, Jhong-li 32001 (China); Lee, C.H. [Institute of Nuclear Energy Research, Lung-tan, Tao-yuan 32546 (China)

    2010-04-15

    This study reports effects of porosity ({epsilon}), permeability (k) and tortuosity ({tau}) of anodic microstructures to peak power density (PPD) of a single-unit planar anode-supported SOFC based on 3D electrochemical flow models using measured porous transport properties. Applying particle image velocimetry, a transparent porous rib-channel with different {epsilon} is applied to measure an effective viscosity ({mu}{sub e}) in the Brinkman equation commonly used to predict flow properties in porous electrodes. It is found that, contrary to the popular scenario, {mu}{sub e} is not equal to the fluid viscosity ({mu}{sub f}), but it is several orders in magnitude smaller than {mu}{sub f} resulting in more than 10% difference on values of PPD. Numerical analyses show: (1) while keeping k and {tau} fixed with {epsilon} varying from 0.2 to 0.6, the highest PPD occurs at {epsilon} = 0.3 where the corresponding triple-phase-boundary length is a maximum; (2) PPD increases slightly with k when k{<=}10{sup -11} m{sup 2} due to the diffusion limitation in anode; and (3) PPD decreases with {tau} when {tau}>1.5 due to the accumulation of non-depleted products. Hence, a combination of {epsilon}=0.3, k=10{sup -11}m{sup 2}, and {tau}=1.5 is suggested for achieving higher cell performance of planar SOFC. (author)

  18. Calculation of the coherent transport properties of a symmetric spin nanocontact

    International Nuclear Information System (INIS)

    Bourahla, B.; Khater, A.; Tigrine, R.

    2009-01-01

    A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.

  19. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  20. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  1. Structural, magnetic and transport properties of Co{sub 2}FeAl Heusler films with varying thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yueqing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Du, Yin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xuefang; Liu, Guodong [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Liu, Enke [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhongyuan [State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, Wenhong, E-mail: wenhong.wang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co{sub 2}FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization.

  2. Transport properties and Raman spectra of impurity substituted MgB2

    International Nuclear Information System (INIS)

    Masui, T.

    2007-01-01

    Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed

  3. Symmetry-Dependent Spin Transport Properties and Spin-Filter Effects in Zigzag-Edged Germanene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Can Cao

    2015-01-01

    Full Text Available We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs. We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although the σ mirror plane is absent in ZGeNRs. Furthermore, even-N and odd-N ZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.

  4. Fluid and ionic transport properties of deformed salt rock

    International Nuclear Information System (INIS)

    Peach, C.J.; Spiers, C.J.; Tankink, A.J.; Zwart, H.J.

    1987-01-01

    This is a final report on work done on the transport properties of salt during the period 1 January 1984 to 30 June 1985. This work was directed largely at the measurement of creep-induced permeability in salt rock, at determining the permeability persistence/decay characteristics of creep-dilated salt rock under hydrostatic conditions, and at ion migration/retention experiments on both deformed and undeformed material. The permeability work was carried out using both gas (argon) and brine, and involved the design and construction of corresponding permeametry systems for use in conjunction with dilatometric triaxial testing apparatus. Ion migration/retention studies involved the use of contaminant species such as Sr 2+ , Cs + , Fe 3+ and TcO 4

  5. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  6. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  7. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  8. Polarization and charge-transfer effect on the transport properties in two-dimensional electron gases/LaNiO3 heterostructure

    Science.gov (United States)

    Chen, M. J.; Ning, X. K.; Wang, Z. J.; Liu, P.; Wang, S. F.; Wang, J. L.; Fu, G. S.; Ma, S.; Liu, W.; Zhang, Z. D.

    2018-01-01

    The film thickness dependent transport properties of the LaNiO3 (LNO) layer epitaxially grown on LaAlO3/SrTiO3 (LAO) 2-dimensional electronic gas (2DEG) have been investigated. The ultrathin LNO films grown on the 2DEG have a sheet resistance below the values of h/e2 in all temperature ranges. The electron density is enhanced by more than one order of magnitude by capping LNO films. X-ray photoelectron spectroscopy shows that the interface undergoes unambiguous charge transfer and electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. The polar-catastrophe of the 2DEG is directly linked to the electronic structure and transport properties of the LNO. The transport properties can be well modulated by the thickness of the LAO in the 2DEG, and the data can be well fitted with the polar-catastrophe scenario. These results suggest a general approach to tunable functional films in oxide heterostructures with the 2DEG.

  9. Effects of interfacial Fe electronic structures on magnetic and electronic transport properties in oxide/NiFe/oxide heterostructures

    International Nuclear Information System (INIS)

    Liu, Qianqian; Chen, Xi; Zhang, Jing-Yan; Yang, Meiyin; Li, Xu-Jing; Jiang, Shao-Long; Liu, Yi-Wei; Cao, Yi; Wu, Zheng-Long; Feng, Chun; Ding, Lei; Yu, Guang-Hua

    2015-01-01

    Highlights: • The magnetic and transport properties of oxide/NiFe/oxide films were studied. • The oxide (SiO 2 , MgO and HfO 2 ) has different elemental electronegativity. • Redox reaction at different NiFe/oxide interface is dependent on the oxide layer. • Different interfacial electronic structures shown by XPS influence the properties. - Abstract: We report that the magnetic and electronic transport properties in oxide/NiFe(2 nm)/oxide film (oxide = SiO 2 , MgO or HfO 2 ) are strongly influenced by the electronic structure of NiFe/oxide interface. Magnetic measurements show that there exist magnetic dead layers in the SiO 2 sandwiched film and MgO sandwiched film, whereas there is no magnetic dead layer in the HfO 2 sandwiched film. Furthermore, in the ultrathin SiO 2 sandwiched film no magnetoresistance (MR) is detected, while in the ultrathin MgO sandwiched film and HfO 2 sandwiched film the MR ratios reach 0.35% and 0.88%, respectively. The investigation by X-ray photoelectron spectroscopy reveals that the distinct interfacial redox reactions, which are dependent on the oxide layers, lead to the variation of magnetic and transport properties in different oxide/NiFe/oxide heterostructures

  10. Structure and transport properties of the electronically correlated thiospinel CuV2S4

    International Nuclear Information System (INIS)

    Horny, R.

    2005-01-01

    This work deals with the single crystal growth and the characterization of crystallographic, magnetic and mainly electronic transport properties of the metallic thiospinel CuV 2 S 4 , which is isostructural and isoelectronic to the heavy fermion system LiV 2 O 4 . Former reports of an enhanced Sommerfeld-coefficient of the specific heat indicated that electronic correlations are present in CuV 2 S 4 as well. Additionally CuV 2 S 4 shows a phase transition at 90 K, which has been associated with the formation of a charge density wave (CDW), whose propagation vector changes its length at two additional phase transitions close to 75 K and 55 K. The formation of a CDW is a typical low dimensional order phenomenon and very unusual for a three dimensional system with a cubic crystal symmetry in the high temperature phase. An additional motivation for the efforts to grow single crystals of this compound was a sample dependency which seemed to correlate with the type of transport agent (iodine or chlorine) used in the chemical transport reaction as the preferred preparation procedure for the single crystal growth. Due to the direct comparison of single crystals grown by both types of transport agents it could be shown that a very low concentration of chlorine is the origin for the almost complete suppression of the phase transitions in the corresponding type of single crystals. The strong sensitivity of the CDW-formation to disorder is also reflected by the huge increase of the residual resistivity ratio of more than one order of magnitude which could only be achieved by annealing procedures in the case of single crystals grown with iodine as transport agent. The high quality of the samples allowed for the first time to detect all three phase transition signatures in resistivity measurements. Their almost identical temperature dependence as a function of external hydrostatic pressure emphasizes their common physical origin. The coefficient of the T 2 behavior of the

  11. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  12. Thermal transport properties of niobium and some niobium-based alloys from 80 to 1600 K

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J P; Graves, R S; Williams, R K [Oak Ridge National Lab., TN (USA)

    1980-01-01

    The electric resistivity, rho, and Seebeck coefficient, S, of 99.8 at% niobium, and Nb-4.8 at% W, Nb-5 at% Mo, Nb-10 at% Mo, and Nb-2.4 at% Mo-2.4 at% Zr alloys were measured from 80 to 1600 K, and the thermal conductivity, lambda, of the niobium and the Nb-5 at% W alloy was measured from 80 to 1300 K. A technique is described for measuring rho and S of a specimen during radial-heat-flow measurements of lambda. The transport property results, which had uncertainties of +-0.4% for rho and +-1.4% for lambda, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.

  13. Research Update: Structural and transport properties of (Ca,La)FeAs{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Caglieris, F.; Pallecchi, I.; Lamura, G.; Putti, M. [CNR-SPIN and Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Sala, A. [CNR-SPIN and Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Fujioka, M. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Hummel, F.; Johrendt, D. [Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstr. 5-13, 81377 München (Germany); Takano, Y. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Ishida, S.; Iyo, A.; Eisaki, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Ogino, H.; Yakita, H. [Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, J. [Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258 (Japan)

    2016-02-01

    Structural and transport properties in the normal and superconducting states are investigated in a Ca{sub 0.8}La{sub 0.2}FeAs{sub 2} single crystal with T{sub c} = 27 K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J{sub c} for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as J{sub c}(B = 0) ∼ 10{sup 5} A/cm{sup 2}. This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly, this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresistivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.

  14. The local structure, magnetic, and transport properties of Cr-doped In2O3 films

    International Nuclear Information System (INIS)

    Wang Shiqi; An Yukai; Feng Deqiang; Liu Jiwen; Wu Zhonghua

    2013-01-01

    Cr-doped In 2 O 3 films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The local structure, magnetic, and transport properties of films are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure, Hall effect, R-T, and magnetic measurements. Structural analysis clearly indicates that Cr ions substitute for In 3+ sites of the In 2 O 3 lattice in the valence of +2 states and Cr-related secondary phases or clusters as the source of ferromagnetism is safely ruled out. The films with low Cr concentration show a crossover from semiconducting to metallic transport behavior, whereas only semiconducting behavior is observed in high Cr concentration films. The transport property of all films is governed by Mott variable range hopping behavior, suggesting that the carriers are strongly localized. Magnetic characterizations show that the saturated magnetization of films increases first, and then decreases with Cr doping, while carrier concentration n c decreases monotonically, implying that the ferromagnetism is not directly induced by the mediated carriers. It can be concluded the ferromagnetism of films is intrinsic and originates from electrons bound in defect states associated with oxygen vacancies.

  15. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  16. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...

  17. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

    Directory of Open Access Journals (Sweden)

    J. Jung

    2010-06-01

    Full Text Available As a part of the IGAC (International Global Atmospheric Chemistry Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP events. Satellite aerosol optical thickness (AOT and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.

  18. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007-2014

    Science.gov (United States)

    Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz

    2017-11-01

    Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48

  19. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    Science.gov (United States)

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  20. The shielding properties of the newly developed container for transport of samples contaminated with CBRN substances

    International Nuclear Information System (INIS)

    Fisera, O.; Kares, J.

    2014-01-01

    A container for transport of environmental samples to the analytical laboratory is being developed as part of the development of system for collection and transport of samples contaminated with chemical, biological, radioactive and nuclear (CBRN) substances after CBRN incidents. The proposed system corresponds with current requirements of NATO publication AEP-66. The proposed container will meet the requirements of mechanical stability and tightness for the packaging of the chemical, biological and radioactive substances. Verification of shielding properties and satisfaction of requirements of radiation protection during transport of potentially relatively high active samples was the aim of this part of research. The results, together with a wall thickness of the inner steel container, the inner lining and the outer transport package, give excellent assumption that the radiation protection requirements for the proposed container and transport package will be satisfied. (authors)

  1. Neoclassical transport of impurtities in tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Sigmar, D.J.

    1981-05-01

    Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small concentrations of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever n/sub I/e/sub I/ 2 /n/sub H/e 2 greater than or equal to (m/sub e//m/sub H/)/sup 1/2/. The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e., gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two dimensional motion of the magnetic flux surface geometry. The effects of neutral beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included

  2. Electronic structure, magnetic and transport properties of the Heusler shape memory alloy Mn{sub 2}NiGa

    Energy Technology Data Exchange (ETDEWEB)

    Blum, C.G.F. [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Institute of Solid State Research, IFW Dresden, D-01171 Dresden (Germany); Ouardi, S.; Fecher, G.H.; Balke, B.; Felser, C. [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Wurmehl, S.; Buechner, B. [Institute of Solid State Research, IFW Dresden, D-01171 Dresden (Germany); Ueda, S.; Kobayashi, K. [NIMS Beamline Station, National Institute for Materials Science, Hyogo 679-5148, Japan. (Germany)

    2011-07-01

    Magnetic shape memory based on Heusler compounds have received increasing interest, due their potential use for actuator and sensor applications. The single crystals Mn{sub 2}NiGa were grown by the optical floating zone method using a image furnace with vertical setup under a purified argon atmosphere. The both cubic (austenite) and tetragonal (martensite) phases of the sample were determined using temperature dependence powder x-ray diffraction XRD. The effect of martensitic transitions on the magnetic and transport properties of the compound was investigated by measuring the saturation magnetization, electrical resistivity {rho}(T), the Seebeck coefficient S(T) and magnetoresistance R{sub M}. All measurements detect clear signatures of the martensitic transition around room temperature with a thermal hysteresis up to 30 K. The electronic structures of the martensitic as well the austenitic phase were investigated using bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES).

  3. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  4. Thermal transport properties of niobium and some niobium base alloys from 80 to 16000K

    International Nuclear Information System (INIS)

    Moore, J.P.; Graves, R.S.; Williams, R.K.

    1980-01-01

    The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600 0 K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300 0 K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures

  5. properties of the SN - equivalent integral transport operator in slab geometry and the iterative acceleration of neutron transport methods

    International Nuclear Information System (INIS)

    Massimiliano, Rosa; Azmy, Y.Y.; Morel, J.E.

    2005-01-01

    The general expressions for the matrix elements of the discrete Sn-equivalent integral transport operator have been derived in slab geometry. Their asymptotic behavior has been investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in a diffusive limit obtained as the thick limit of computational cell size for a highly scattering medium, has shown that the discretized integral transport operator is approximated by a sparse matrix characterized by a tri-diagonal diffusion-like coupling stencil. Also, the tri-diagonal matrix structure, characteristic of the diffusion coupling stencil, is approached at a fast exponential rate. In the case of periodically heterogeneous slab configurations, the asymptotic behavior investigated is that in which the cells' optical thicknesses are pushed apart, i.e. the thick is made thicker while the thin is made thinner at a prescribed rate. It has been shown that in this limit the discretized integral transport operator is approximated by a penta-diagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tri-diagonal structure at a fast exponential rate. The existence of a low order tri-diagonal approximation to the full discrete integral transport operator in the case of a periodically heterogeneous slab might provide a basic understanding of the superior convergence properties of diffusion-based acceleration schemes observed in slab geometry, even in the presence of sharp material discontinuities. The obtained results also suggest that a sparse approximation to the S n -equivalent integral transport operator might itself be used as the low-order operator in an acceleration scheme for the

  6. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  7. Laser patterning: A new approach to measure local magneto-transport properties in multifilamentary superconducting tapes

    International Nuclear Information System (INIS)

    Sanchez Valdes, C.F.; Perez-Penichet, C.; Noda, C.; Arronte, M.; Batista-Leyva, A.J.; Haugen, O.; Johansen, T.H.; Han, Z.; Altshuler, E.

    2007-01-01

    The determination of inter- and intra-filament characteristics in superconducting composites such as BSCCO-Ag tapes is of great importance for material evaluation towards applications. Most attempts to separate the two contributions have relied on indirect methods based on magnetic measurements such as SQUID or magneto-optic imaging techniques. Here we show that laser patterning of superconducting BSCCO-Ag tapes constitutes a simple approach to measure local transport properties in a direct way, even able to separate inter- and intra-filament contributions to the overall transport behavior of the sample

  8. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  9. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  10. Modeling charge transport properties of cyano-substituted PPV

    International Nuclear Information System (INIS)

    Correia, Helena M.G.; Ramos, Marta M.D.

    2003-01-01

    In recent years, poly (p-phenylenevinylene) (PPV) and its derivatives have attracted much interest due to their applications in light-emitting diodes (LEDs). One of the issues that determine device performance is the transport of charge carriers along the polymer strands. For that reason, we investigate the influence of cyano substitution on geometry and electronic behaviour of PPV chains using self-consistent quantum molecular dynamics simulations. Our results suggest that substitution by cyano groups induce distortion in the PPV chains and a charge rearrangement among the polymer atoms. Specifically addressed is the issue concerning estimates of charge (electron and hole) mobility by computer experiments. Significant differences have been found both in the strength of the electric field needed to move positive and negative charge carriers along the polymer chain as well as in charge mobility

  11. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics.

    Science.gov (United States)

    Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J

    2015-01-01

    A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.

  12. A whole range hygric material model: Modelling liquid and vapour transport properties in porous media

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2010-01-01

    This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model wit...

  13. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    Science.gov (United States)

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  14. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Goc, K., E-mail: Kamil.Goc@fis.agh.edu.pl [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Rybak, A.; Kmita, G. [ABB Corporate Research Center, 13A Starowislna Street, 31-038 Krakow (Poland); Kapusta, Cz. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland)

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained. - Highlights: • Influence of magnetic field on the particle chains in epoxy composites is analysed. • Strontium ferrite fillers with good thermal and low electrical conductivity. • Influence of interparticle interactions for agglomeration efficiency. • The impact of chains formed on the heat transfer by creating conductive paths. • Connection between structural anisotropy and transport properties anisotropy.

  15. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  17. Quantum oscillations and the electronic transport properties in multichain nanorings

    International Nuclear Information System (INIS)

    Racolta, D.

    2009-01-01

    We consider a system of multichain nanorings in static electric and magnetic field. The magnetic field induces characteristic phase changes. These phase shifts produce interference phenomena in the case of nanosystems for which the coherence length is larger than the sample dimension. We obtain energy solutions that are dependent on the number of sites N α characterizing a chain, of phase on the phase φ α and on the applied voltage. We found rich oscillations structures exhibited by the magnetic flux and we established the transmission probability. This proceeds by applying Landauer conductance formulae which opens the way to study electronic transport properties. (authors)

  18. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  19. Interrelationship between structural, optical and transport properties of InP.sub.1-x./sub.Bi.sub.x./sub.: DFT approach

    Czech Academy of Sciences Publication Activity Database

    Khan, S.A.; Azam, S.; Šipr, Ondřej

    2016-01-01

    Roč. 41, Jan (2016), 45-53 ISSN 1369-8001 Institutional support: RVO:68378271 Keywords : electronic structure * optical properties * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.359, year: 2016

  20. A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels

    Directory of Open Access Journals (Sweden)

    Jerome A. Ramirez

    2015-07-01

    Full Text Available Hydrothermal liquefaction (HTL presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.

  1. Transport properties of liquids

    International Nuclear Information System (INIS)

    Rajagopal, K.

    1976-07-01

    The transport coefficients, self diffusivity, dinamical viscosity,total viscosity (i.e., the first and second viscosity coefficient) and thermal conductivity, are calculated at several temperatures and saturation pressures for the Argon, Krypton and Xenon liquids, from the Mie otential and the hard sphere theory. (L.C.) [pt

  2. Magnetic and transport properties of PrRu.sub.2./sub.Si.sub.2./sub. single crystal under high pressure

    Czech Academy of Sciences Publication Activity Database

    Vejpravová, J.; Kamarád, Jiří; Prchal, J.; Sechovsky, V.

    2007-01-01

    Roč. 76, suppl. A (2007), s. 49-50 ISSN 0031-9015 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * magnetic properties * transport properties * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.212, year: 2007

  3. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    Science.gov (United States)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  4. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñoz, Enrique

    2017-01-24

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green\\'s function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.

  5. Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films

    Science.gov (United States)

    Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari

    We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.

  6. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  7. Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites

    Science.gov (United States)

    Hamim, Salah Uddin Ahmed

    2011-12-01

    Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).

  8. Semiclassical electronic transport in MnAs thin films

    International Nuclear Information System (INIS)

    Helman, C.; Milano, J.; Steren, L.; Llois, A.M.

    2008-01-01

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface

  9. Semiclassical electronic transport in MnAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Helman, C. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)], E-mail: helman@tandar.cnea.gov.ar; Milano, J.; Steren, L. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, S.C. Bariloche (Argentina); Llois, A.M. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2008-07-15

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface.

  10. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  11. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: Julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  12. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  13. Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

    Directory of Open Access Journals (Sweden)

    Odziomek Marcin

    2017-06-01

    Full Text Available Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a rheological properties and (b mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method. First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

  14. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  15. Calculation of electrical transport properties and electron entanglement in inhomogeneous quantum wires

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2013-10-01

    Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.

  16. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  17. Transport of sulfonamide antibiotics in crop fields during monsoon season.

    Science.gov (United States)

    Park, Jong Yol; Ruidisch, Marianne; Huwe, Bernd

    2016-11-01

    Previous studies have documented the occurrence of veterinary sulfonamide antibiotics in groundwater and rivers located far from pollution sources, although their transport and fate is relatively unknown. In mountainous agricultural fields, the transport behaviour can be influenced by climate, slope and physico-chemical properties of the sulfonamides. The objective of this research is to describe the transport behaviour of three sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in sloped agricultural fields located in the Haean catchment, South Korea. During dry and monsoon seasons, a solute transport experiment was conducted in two typical sandy loam agricultural fields after application of antibiotics and potassium bromide as conservative tracers. Field measurement and modelling revealed that frequency and amount of runoff generation indicate a relation between slope and rain intensity during monsoon season. Since the steepness of slope influenced partitioning of precipitation between runoff and subsurface flow, higher loss of sulfonamide antibiotics and bromide by runoff was observed at the steeper sloped field. Bromide on topsoil rapidly infiltrated at high infiltration rates. On the contrary, the sulfonamides were relatively retarded in the upper soil layer due to adsorption onto soil particles. Presence of furrows and ridges affected the distribution of sulfonamide antibiotics in the subsurface due to gradient from wetter furrows to drier ridges induced by topography. Modelling results with HydroGeoSphere matched with background studies that describe physico-chemical properties of the sulfonamides interaction between soil and the antibiotic group, solute transport through vadose zone and runoff generation by storm events.

  18. Effect of molecular topology on the transport properties of dendrimers in dilute solution at Θ temperature: A Brownian dynamics study

    Science.gov (United States)

    Bosko, Jaroslaw T.; Ravi Prakash, J.

    2008-01-01

    Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Θ conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.

  19. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  20. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition.

    Science.gov (United States)

    Hanna, Imad; Alexander, Natalya; Crouthamel, Matthew H; Davis, John; Natrillo, Adrienne; Tran, Phi; Vapurcuyan, Arpine; Zhu, Bing

    2018-03-01

    1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.

  1. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    Directory of Open Access Journals (Sweden)

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  2. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films

    Science.gov (United States)

    Mendels, Dan; Tessler, Nir

    2016-07-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system’s mobility by more than 5 orders of magnitude with respect to ‘standard’ amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered.

  3. Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells.

    Science.gov (United States)

    Blatt, Michael R; Wang, Yizhou; Leonhardt, Nathalie; Hills, Adrian

    2014-05-15

    It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward 'reverse engineering' of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual 'mindset' of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the 'communication' evident between the plasma membrane and tonoplast of the guard cell. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  5. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  6. Efficient method for computing the electronic transport properties of a multiterminal system

    Science.gov (United States)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  7. Forest residue baling due diligence assessment, proving and transport trials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Transport is known to be the most significant cost element to wood fuel supply cost, with the cost of comminution being the most variable depending on the method chosen. It has been shown in previous studies that wood fuel compaction in the form of compression can significantly increase the net load capability of the transport systems currently available, thereby leading to significant savings in delivered price. The study identified the Fiberpac residue compression machine suitable for use under UK conditions. The Fiberpac machine was trialled for a period of approximately 6 months to gain information on productivity, reliability and production costs. (author)

  8. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  9. Analysis of aerosol absorption properties and transport over North Africa and the Middle East using AERONET data

    Directory of Open Access Journals (Sweden)

    A. Farahat

    2016-11-01

    Full Text Available In this paper particle categorization and absorption properties were discussed to understand transport mechanisms at different geographic locations and possible radiative impacts on climate. The long-term Aerosol Robotic Network (AERONET data set (1999–2015 is used to estimate aerosol optical depth (AOD, single scattering albedo (SSA, and the absorption Ångström exponent (αabs at eight locations in North Africa and the Middle East. Average variation in SSA is calculated at four wavelengths (440, 675, 870, and 1020 nm, and the relationship between aerosol absorption and physical properties is used to infer dominant aerosol types at different locations. It was found that seasonality and geographic location play a major role in identifying dominant aerosol types at each location. Analyzing aerosol characteristics among different sites using AERONET Version 2, Level 2.0 data retrievals and the Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT backward trajectories shows possible aerosol particle transport among different locations indicating the importance of understanding transport mechanisms in identifying aerosol sources.

  10. Finite beta effects on turbulent transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Hein, Tobias

    2011-01-01

    The research on the transport properties of magnetically confined plasmas plays an essential role towards the achievement of practical nuclear fusion energy. An economically viable fusion reactor is expected to operate at high plasma pressure. This implies that the detailed study of the impact of electromagnetic effects, whose strength increases with increasing pressure, is of critical importance. In the present work, the electromagnetic effects on the particle, momentum and heat transport channels have been investigated, with both analytical and numerical calculations. Transport processes due to a finite plasma pressure have been identified, their physical mechanisms have been explained, and their contributions have been quantified, showing that they can be significant under experimentally relevant conditions.

  11. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    International Nuclear Information System (INIS)

    Storace, Eleonora

    2009-01-01

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  12. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    Energy Technology Data Exchange (ETDEWEB)

    Storace, Eleonora

    2009-07-08

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  13. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.; Cha, Dong Kyu; Alshareef, Husam N.

    2011-01-01

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single

  14. FRACTEX: an experiment aiming at characterizing the transport properties of a secondary fault

    International Nuclear Information System (INIS)

    Wittebroodt, C.; Matray, J.M.; Dick, P.; Cabrera, J.; Barnichon, J.D.

    2012-01-01

    Document available in extended abstract form only. Because of their favourable transport and retention properties, argillaceous rocks are considered as potential host rocks for radioactive waste repositories. At the request of the French Authority of Nuclear Safety (ASN), the French Institute for Radioprotection and Nuclear Safety (IRSN) is in charge of an independent expertise of the French industrial (Andra's) project. Therefore, IRSN develops experimental research programs in such geological formations at the Tournemire Underground Research Laboratory (URL, Aveyron, France). One of the objectives of this project is to evaluate the occurrence and the driving processes controlling the radionuclide migration through an argillaceous formation similar to those studied elsewhere for nuclear waste disposal. Since undisturbed argillaceous rocks display very low values for both hydraulic conductivity (K h ) and water content (θ e ), diffusion is considered to be the main transport mechanism governing radionuclide migration through the argillite. On the other hand, in the presence of fracture in the argillaceous formation, the flux of water through this preferential pathway could dramatically accelerate the migration of the radionuclide it contains. Thus, the implementation of a radwaste disposal facility requires a precise sedimentary and structural characterization of the preselected site to guarantee the presence of a regular, homogenous and fault-free clay layer over a large area and so to determine its ability to ensure an effective radionuclide confinement. The site characterization and fracture detection can be performed using complementary approaches such as geological studies, in situ measurements and non-destructive geophysical methods. In order to evaluate both the capacity and the limit of these seismic methods to detect a secondary fault in an argillaceous media, IRSN performed a 3D HR seismic survey from the surface of its Tournemire URL. Due to the weak

  15. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT

    International Nuclear Information System (INIS)

    Lenka, T. R.; Panda, A. K.

    2011-01-01

    Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

  16. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure

    International Nuclear Information System (INIS)

    Cheng Ke; Cheng Gang; Wang Shujie; Fu Dongwei; Zou Bingsuo; Du Zuliang

    2010-01-01

    The ZnO nanowires (NWs) array/poly(3-hexylthiophene) (P3HT) hybrid prototype device was fabricated. An ultraviolet (UV) light of λ = 350 nm is used to investigate the photo-electric properties of the ZnO NWs array and hybrid structure. In this way, we can avoid the excitation of P3HT, which can give us a real electron transport ability of ZnO NWs itself. Our results demonstrated a higher and faster photo-electric response of 3 s for the hybrid structure while 9 s for the ZnO NWs array. The surface states related slow photo-electric response was also observed for them. The charge transfer mechanism and the influence of surface states were discussed. The current work provides us profound understandings on the electron transport ability of ZnO NWs array in a working hybrid polymer solar cell, which is crucial for optimizing the device performance.

  17. Transport property of novel sono-catalysed LiCF sub 3 SO sub 3 doped SiO sub 2 -PEG ormolyte

    CERN Document Server

    Jung, H Y; Wi, C J; Whang, C M

    2003-01-01

    Transport property of a novel sono-catalysed LiCF sub 3 SO sub 3 doped SiO sub 2 -10 wt% PEG ormolyte is reported. The ormolyte was synthesized by sol-gel method by varying the LiCF sub 3 SO sub 3 concentration [Li/O] from 0 to 0.1 in mole. The composition with [Li/O] = 0.05 exhibited the highest conductivity (sigma sub 2 sub 5 sub d eg sub C = 2.4x10 sup - sup 4 S cm sup - sup 1) with an enhancement of 10 sup 3 from that of the host matrix: SiO sub 2 -10 wt% PEG sono gel and has been referred to as 'optimum conducting composition (OCC)'. The direct determination of Li sup + ion mobility (mu)/mobile ion concentration (n) indicated that the enhancement was due to the increase in mu and n both. The temperature dependence of sigma, mu and n were carried out for the OCC samples in order to evaluate the respective energies involved in different thermally activated processes and to understand the ion transport mechanism. The ion transference number (t sub i sub o sub n) measurement inferred the ions as the sole cha...

  18. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    Full Text Available Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in soil, but our understanding and knowledge is still poor of the site factors and soil properties that promote it. To investigate these relationships, we assembled a database from the peer-reviewed literature containing information on 733 breakthrough curve experiments under steady-state flow conditions. Most of the collected experiments (585 of the 733 datasets had been conducted on undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass beads were also included. In addition to the apparent dispersivity, we focused our attention on three indicators of preferential solute transport: namely the 5%-arrival time, the holdback factor, and the ratio of piston-flow and average transport velocities. Our results suggest that, in contrast to the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not related to preferential macropore transport but rather to the exclusion or retardation of the applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer, our results also illustrate that this relationship is refined if the normalized 5%-tracer arrival time is also taken into account. In particular, we found that the degree of preferential solute transport increases with apparent dispersivity and decreases with travel distance. A similar but weaker relationship was observed between apparent dispersivity, 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport increases with lateral observation scale. However, we also found that the travel distance and the lateral observation scale in the investigated dataset are correlated, which makes it difficult to distinguish their influence on these transport characteristics. We also found that the strength of preferential transport

  19. Magnetic and transport properties of Fe-based nanocrystalline materials

    Science.gov (United States)

    Barandiarán, J. M.

    1994-01-01

    Fe-rich amorphous alloys containing late transition metals like Nb, V, Zr,..., sometimes with the addition of Cu, can crystallize in ultrafine grains of a crystalline phase, a few nanometers in diameter, embedded in a disordered matrix. In such state they have shown excellent soft magnetic properties for technical applications, rising the interest for deep studies. In this paper, recent work on some Fe-Nb and Fe-Zr based alloys both in amorphous state and after several degrees of nanocrystallization is presented. The nanocrystallization process has been achieved by conventional heat treatments (about 1 h at temperatures around 400-500 °C in a controlled atmosphere furnance) as well as by Joule heating using an electrical current flowing through the sample. Magnetic measurements, electrical resistivity, x-rays diffraction and 57Fe Mössbauer spectroscopy were used in the study of the crystalline phases appearing after the thermal treatments. The basic magnetic and transport properties of the nanocrystals do not differ appreciably from their bulk values. The magnetic anisotropy, however, is very sensitive to grain size and to the intergranular magnetic coupling. The effect of such coupling is deduced from the coercivity changes at the Curie Temperature of the amorphous matrix remaining after nanocrystallization.

  20. Charge transport properties in microcrystalline KDyFe(China)6

    International Nuclear Information System (INIS)

    Aubert, P.H.; Goubard, F.; Chevrot, C.; Tabuteau, A.

    2007-01-01

    Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures. - Graphical abstract: Dy and Fe polyhedra packing in the cell of KDyFe(China) 6 .3.5H 2 O shows occluded water molecules and potassium ions forming a pseudohexagonal 2D sub-lattice connected to each other by diffusion channels

  1. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Directory of Open Access Journals (Sweden)

    Sylvia Dundeková

    2014-11-01

    Full Text Available Mechanical and fatigue properties of material are dependent on its microstructure. The microstructure of AISI 316L stainless steel commonly used for the production of medical tools, equipment and implants can be easily influenced by its heat treatment. Microstructural changes and fatigue properties of AISI 316L stainless steel due to the heat treatment consisted of annealing at the temperature of 815°C with the dwell time of 500 hours were analyzed in the present paper. Precipitation of intermetallic phases and carbides was observed as a response of the material to the applied heat treatment. Small negative influence was observed in the case of fatigue region bellow 105 cycles; however the fatigue limit remains unchanged due to the structural sensitization.

  2. Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Qi, Yabing; Ratera, Imma; Park, Jeong Y.; Ashby, Paul D.; Quek, Su Ying; Neaton, J. B.; Salmeron, Miquel

    2007-11-12

    The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAM) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant {beta} = 0.57 {+-} 0.03 {angstrom}{sup -1} was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of {approx} 1 {angstrom}{sup -1} found when the separation is changed by changing the length of the alkanethiol molecules. Calculations indicate that for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

  3. Transport in aluminized RDX under shock compression explored using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Losada, M; Chaudhuri, S

    2014-01-01

    Shock response of energetic materials is controlled by a combination of mechanical response, thermal, transport, and chemical properties. How these properties interplay in condensed-phase energetic materials is of fundamental interest for improving predictive capabilities. Due to unknown nature of chemistry during the evolution and growth of high-temperature regions within the energetic material (so called hot spots), the connection between reactive and unreactive equations of state contain a high degree of empiricism. In particular, chemistry in materials with high degree of heterogeneity such as aluminized HE is of interest. In order to identify shock compression states and transport properties in high-pressure/temperature (HP-HT) conditions, we use molecular dynamics (MD) simulations in conjunction with the multi-scale shock technique (MSST). Mean square displacement calculations enabled us to track the diffusivity of stable gas products. Among decomposition products, H 2 O and CO 2 are found to be the dominant diffusing species under compression conditions. Heat transport and diffusion rates in decomposed RDX are compared and the comparison shows that around 2000 K, transport can be a major contribution during propagation of the reaction front.

  4. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP

  5. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  6. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    NARCIS (Netherlands)

    Moreira, Paulo H S; Van Genuchten, Martinus Th; Orlande, Helcio R B; Cotta, Renato M.

    2016-01-01

    In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical

  7. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    Science.gov (United States)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  8. Turbulent transport in 2D collisionless guide field reconnection

    Science.gov (United States)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  9. ANALYISIS OF TRANSPORTATION SYSTEMS AND TRANSPORTATION POLICIES IN TURKEY

    OpenAIRE

    Ali Payıdar AKGÜNGÖR; Abdulmuttalip DEMİREL

    2004-01-01

    Transportation systems have to be considered and analysed as a whole while transportation demand, becoming as a natural outcome of socioeconomic and socio-cultural structure, is being evaluated. It is desired that transportation system, which will be selected for both passenger and freight transport, should be rapid, economic, safe, causing least harm to environment and appropriate for the conditions of a country. However, it is difficult for a transportation system to have all these properti...

  10. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    International Nuclear Information System (INIS)

    Berdiyorov, G.R.

    2015-01-01

    Highlights: • Effect of Li and Na ion adsorption on the electronic transport in Ti 3 C 2 MXene is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Enhanced charge transport is obtained for fluorinated and hydroxylated samples. • Electronic transmission is reduced in the oxidized sample. • The pristine and oxidized MXene samples are found to be sensitive to the ions adsorption. - Abstract: MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti 3 C 2 . Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  11. Spin transport in oxygen adsorbed graphene nanoribbon

    Science.gov (United States)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  12. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  13. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dimitrios Bikiaris

    2010-04-01

    Full Text Available In the last few years, great attention has been paid to the preparation of polypropylene (PP nanocomposites using carbon nanotubes (CNTs due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  14. Electron transport due to inhomogeneous broadening and its potential impact on modulation speed in p-doped quantum dot lasers

    International Nuclear Information System (INIS)

    Deppe, D G; Freisem, S; Huang, H; Lipson, S

    2005-01-01

    Data are first presented on spontaneous and laser emission of p-doped and undoped quantum dot (QD) heterostructures to characterize the increase in optical gain in p-type modulation doped QD lasers. Because the increase in gain due to p-doping should also increase the differential gain, but does not greatly increase the modulation speed in present p-doped QD lasers, we further examine nonequilibrium electron transport effects in p-doped active material that may still limit the modulation speed. Electron transport through the dot wetting layer caused by the nonlasing QDs of the active ensemble is shown to be capable of substantially reducing the modulation speed, independent of the differential gain. This nonequilibrium limitation can be eliminated by reducing the inhomogeneous broadening in the QD ensemble

  15. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  16. Triphenylamine-Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties.

    Science.gov (United States)

    Le, Thi Huong; Dao, Quang-Duy; Nghiêm, Mai-Phuong; Péralta, Sébastien; Guillot, Regis; Pham, Quoc Nghi; Fujii, Akihiko; Ozaki, Masanori; Goubard, Fabrice; Bui, Thanh-Tuân

    2018-04-25

    Two readily accessible thienothiophene-triphenylamine charge-transport materials have been synthesized by simply varying the substitution pattern of the triphenylamine groups on a central thienothiophene π-linker. The impact of the substitution pattern on the thermal, photoelectrochemical, and photovoltaic properties of these materials was evaluated and, based on theoretical and experimental studies, we found that the isomer in which the triphenylamine groups were located at the 2,5-positions of the thienothiophene core (TT-2,5-TPA) had better π-conjugation than the 3,6-isomer (TT-3,6-TPA). Whilst the thermal, morphological, and hydrophobic properties of the two materials were similar, their optoelectrochemical and photovoltaic properties were noticeably impacted. When applied as hole-transport materials in hybrid perovskite solar cells, the 2,5-isomer exhibited a power-conversion efficiency of 13.6 %, much higher than that of its 3,6-counterpart (0.7 %) under the same standard conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermophysical properties of lignocellulose: a cell-scale study down to 41 K.

    Science.gov (United States)

    Cheng, Zhe; Xu, Zaoli; Zhang, Lei; Wang, Xinwei

    2014-01-01

    Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells) is prepared to characterize their thermal properties from room temperature down to ∼ 40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change.

  18. Thermophysical properties of lignocellulose: a cell-scale study down to 41 K.

    Directory of Open Access Journals (Sweden)

    Zhe Cheng

    Full Text Available Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells is prepared to characterize their thermal properties from room temperature down to ∼ 40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change.

  19. Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires

    International Nuclear Information System (INIS)

    Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability

  20. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  1. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    Science.gov (United States)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  2. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low

  3. Variation in thermal conductivity of porous media due to temperature and pressure

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2003-01-01

    In the last decade, a great amount of attention has been paid to the study of the temperature dependence of the thermal transport properties of insulating materials. Thermal insulators constitute one of the major areas of the porous ceramic consumption. Measurements of thermal transport properties are important tools in this field. In the present work a set of synthetic porous insulating foams, used as insulating materials is studied. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials in air and then volumetric heat capacity is calculated. The study of thermal transport properties of three synthetic porous insulators that are foam, closed cell foam and fiberglass, under different conditions of temperature pressure and with corresponding densities was done. Due to this research it is possible to work out the material with optimum performance, lower thermal expansion and conductivity, high temperature use, low as well as high-pressure use, so that the insulation with high margin of safety and space with lower cost could be obtained. As a result the proper type of insulation can be recommended in accordance with the specific application. The change in the temperature and pressure causes different behavior on the samples, even then all these samples are suitable for insulation purposes in scientific and commercial fields. Foam is the best choice because of its lowest thermal conductivity values, fiberglass is a better choice because of its consistency, and closed cell foam is the third choice because of its plastic nature and high density. (author)

  4. Materials with engineered mesoporosity for programmed mass transport

    Science.gov (United States)

    Gough, Dara V.

    relative to the unswollen template. Electroless plating and cation exchange were explored as methods to vary the shell material of MHS. Mesoporous Ni MHS were obtained by the reduction of Ni2+ with dimethylamine borane onto a CML latex core. However, the resultant MHS were damaged due to core swelling during etch. To successfully obtain undeformed MHS, a silica core must be utilized; one possible route to explore, in order to reach this goal, is the surface chemistry/ligand effects on Ni2+. Cation exchange was performed in order to obtain CuS MHS; however, it proved an unsuccessful route to PbS, S and HgS. CdS-ZnS, Bi2S3 and Ag2S MHS were obtained only with significant defects. A novel hierarchically structured material, porous opal, was prepared using a colloidal crystal template and the dealloying of silver from gold and possed porosity on length scales range from 10s of nanometers (due to the colloidal crystal template) down to ca. 10 nm (due to dealloying). The transport properties of the material were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The porous opal was found to posses enhanced charge transport properties relative to a unimodal porous gold film and a higher surface area than a gold opal. An equivalent circuit model was presented to explain the enhanced charge transport properties. A biomimetic system for studying the translocation of polymers through a channel and into a spherical cavity was developed based on inspiration from the gamma-bacteriophage. The nanocavity system was synthesized using two template length scales: 250 nm and 1.2 mum. Fabrication challenges that arose when using 1.2 mum colloidal templates were addressed, and the system was optimized for confinement studies of plasmid dsDNA.

  5. Property impacts on Carbon Capture and Storage (CCS) processes: A review

    International Nuclear Information System (INIS)

    Tan, Yuting; Nookuea, Worrada; Li, Hailong; Thorin, Eva; Yan, Jinyue

    2016-01-01

    knowledge gap about the property impact. In addition, due to the lack of experimental data and process complexity, little information is available about the influence of liquid phase properties on the design of the absorber and desorber for chemical absorption process. In the CO_2 conditioning process, knowledge of the impacts of properties beyond density and enthalpy is insufficient. In the transport process, greater attention should focus on property impacts on transient transport processes and ship transport systems. In the storage process, additional research is required on the dispersion process in enhanced oil recovery and the dissolution process in ocean and saline aquifer storage.

  6. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  7. Manipulation of magnetic and magneto-transport properties of amorphous CoO1–v films

    International Nuclear Information System (INIS)

    Cao, Yan-ling; Zhang, Kun; Li, Huan-huan; Tian, Yu-feng; Yan, Shi-shen; Xiao, Shu-qin; Chen, Yan-xue; Kang, Shi-shou; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    The magnetic and magneto-transport properties of amorphous CoO 1−v films have been systematically studied and manipulated by changing the concentration of oxygen vacancies. A giant exchange bias field H E ≈4380 Oe and a large coercivity H C ≈8500 Oe are observed at 5 K for the composite films. And, a metal to insulator transition has been demonstrated in CoO 1−v films by decreasing the concentration of oxygen vacancies. Moreover, a remarkable decrease of the exchange bias and a slight increase of the saturation magnetization can be obtained by modifying the microstructures through post-thermal annealing. - Highlights: • Magnetic and magneto-transport properties of amorphous CoO 1−v are studied. • A giant exchange bias effect with H E ≈4380 Oe and H C ≈8500 Oe is observed at 5 K. • A metal–insulator transition is observed in CoO 1−v by changing the oxygen pressure. • The exchange bias decreases while saturation magnetization increases with annealing

  8. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  9. Electrical transport properties of large, individual NiCo{sub 2}O{sub 4} nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Linfeng; Wu, Limin; Hu, Xinhua; Fang, Xiaosheng [Department of Materials Science, Fudan University, Shanghai (China); Liao, Meiyong [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki (Japan)

    2012-03-07

    Understanding the electrical transport properties of individual semiconductor nanostructures is crucial to advancing their practical applications in high-performance nanodevices. Large-sized individual nanostructures with smooth surfaces are preferred because they can be easily made into nanodevices using conventional photolithography procedures rather than having to rely on costly and complex electron-beam lithography techniques. In this study, micrometer-sized NiCo{sub 2}O{sub 4} nanoplates are successfully prepared from their corresponding hydroxide precursor using a quasi-topotactic transformation. The Co/Ni atomic arrangement shows no changes during the transformation from the rhombohedral LDH precursor (space group R anti 3 m) to the cubic NiCo{sub 2}O{sub 4} spinel (space group Fd anti 3 m), and the nanoplate retains its initial morphology during the conversion process. In particular, electrical transport within an individual NiCo{sub 2}O{sub 4} nanoplate is further investigated. The mechanisms of electrical conduction in the low-temperature range (T < 100 K) can be explained in terms of the Mott's variable-range hopping model. At high temperatures (T > 100 K), both the variable-range hopping and nearest-neighbor hopping mechanisms contribute to the electrical transport properties of the NiCo{sub 2}O{sub 4} nanoplate. These initial results will be useful to understanding the fundamental characteristics of these nanoplates and to designing functional nanodevices from NiCo{sub 2}O{sub 4} nanostructures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  11. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  12. 41 CFR 302-2.10 - Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  13. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    Science.gov (United States)

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.

  14. First-principles study on the electronic, optical, and transport properties of monolayer α - and β -GeSe

    Science.gov (United States)

    Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; Ni, Gang; Li, Jing; Lu, Hongliang; Zhang, Rongjun; Peng, Bo; Zhu, Yongyuan; Zhu, Heyuan; Soukoulis, Costas M.

    2017-12-01

    The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α - and β -GeSe, revealing a direct band gap of 1.61 eV for monolayer α -GeSe and an indirect band gap of 2.47 eV for monolayer β -GeSe. For monolayer β -GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93 ×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. Furthermore, for β -GeSe, robust band gaps nearly independent of the applied tensile strain along the armchair direction are observed. Both monolayer α - and β -GeSe exhibit anisotropic optical absorption in the visible spectrum.

  15. Transport in stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Kick, M.; Kuehner, G.; Ringler, H.; Sardei, F.; Stroth, U.; Weller, A.

    1993-01-01

    The local electron and ion heat transport as well as the particle and impurity transport properties in stellarators are reviewed. In this context, neoclassical theory is used as a guideline for the comparison of the experimental results of the quite different confinement concepts. At sufficiently high temperatures depending on the specific magnetic configuration, neoclassical predictions are confirmed by experimental findings. The confinement properties in the LMFP collisionality regime are discussed with respect to the next stellarator generation, for which at higher temperatures the neoclassical transport is expected to become more important. (orig.)

  16. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  17. Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon

    International Nuclear Information System (INIS)

    Zeng, Hui; Zhao, Jun; Wei, Jianwei; Zeng, Xianliang; Xu, Yang

    2012-01-01

    We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. -- Highlights: ► M–S transition induced by tailoring nanostructure. ► Asymmetric I–V curve due to symmetry breaking. ► Controllable electron transport by designing nanofiguration.

  18. Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zhao, Jun, E-mail: zhaojun@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Zeng, Xianliang [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Xu, Yang [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2012-10-01

    We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. -- Highlights: ► M–S transition induced by tailoring nanostructure. ► Asymmetric I–V curve due to symmetry breaking. ► Controllable electron transport by designing nanofiguration.

  19. Influence of co-deposited active layers on carrier transport and luminescent properties in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Masaya; Yamamoto, Takayuki; Haishi, Motoki; Ohtani, Naoki [Department of Electronics, Doshisha University, Tatara-Miyakodani, Kyotanabe-shi, Kyoto (Japan); Ando, Taro [Central Research Laboratory, Hamamatsu Photonics, Hirakuchi, Hamakita-ku, Hamamatsu-shi, Shizuoka (Japan)

    2009-01-15

    We have investigated the influence of a co-deposited active layer in organic light-emitting diodes (OLEDs) on carrier transport and optical properties to improve radiative characteristics of OLEDs. The co-deposited layer consists of two organic materials; one is a hole transport material (TPD) and the other is an electron transport/emissive material (Alq3). We evaluated current-voltage characteristics and electroluminescence (EL) properties of various samples in which the thicknesses and compound ratios of the co-deposited layers are different. The results indicate that the devices consisting of TPD:Alq3 co-deposited layer sandwiched between TPD and Alq3 layers exhibit lower starting voltages for the light emission than the sample of simple TPD/Alq3 heterojunction structure. In addition, the starting voltage is independent of the thickness of TPD:Alq3 co-deposited layer. These samples have two interfaces at both surfaces of TPD:Alq3 co-deposited layer. Thus, we estimated the radiative recombination occurs at the interfaces. Nevertheless, we found that the radiative recombination occurs only at the interface of TPD:Alq3 co-deposited layer and Alq3 layer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Glucose transporters: expression, regulation and cancer

    Directory of Open Access Journals (Sweden)

    RODOLFO A. MEDINA

    2002-01-01

    Full Text Available Mammalian cells depend on glucose as a major substrate for energy production. Glucose is transported into the cell via facilitative glucose transporters (GLUT present in all cell types. Many GLUT isoforms have been described and their expression is cell-specific and subject to hormonal and environmental control. The kinetic properties and substrate specificities of the different isoforms are specifically suited to the energy requirements of the particular cell types. Due to the ubiquitousness of these transporters, their differential expression is involved in various disease states such as diabetes, ischemia and cancer. The majority of cancers and isolated cancer cell lines over-express the GLUT family members which are present in the respective tissue of origin under non-cancerous conditions. Moreover, due to the requirement of energy to feed uncontrolled proliferation, cancer cells often express GLUTs which under normal conditions would not be present in these tissues. This over-expression is predominantly associated with the likelihood of metastasis and hence poor patient prognosis. This article presents a review of the current literature on the regulation and expression of GLUT family members and has compiled clinical and research data on GLUT expression in human cancers and in isolated human cancer cell lines.

  1. Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels

    Science.gov (United States)

    Osintsev, D.; Sverdlov, V.; Stanojević, Z.; Makarov, A.; Selberherr, S.

    2012-05-01

    We study the transport properties of the Datta-Das spin field-effect transistor built on InAs and Si. First, we demonstrate that the amplitude of the magnetoresistance oscillations as a function of the band mismatch between the ferromagnetic contacts and the semiconductor channel made of InAs decreases dramatically with increasing temperature. A shorter InAs channel is needed to create an InAs-based SpinFET which will operate at higher temperatures. Second, we show that the [1 0 0] orientation of the fin is preferable for silicon SpinFETs due to stronger modulation of the conductance as a function of spin-orbit interaction and magnetic field. Short silicon fins can be used for current modulation as a function of the conduction band mismatch between the channel and the ferromagnetic contacts only at relatively low temperatures. In contrast, longer silicon channels allow a TMR modulation at room temperature by changing the strength of the spin-orbit interaction through the gate bias.

  2. Influence of spin correlations in the transport properties of a double quantum dot system

    Science.gov (United States)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2013-03-01

    In this work we study the influence of spin correlations in the transport properties of a system consisting of two quantum dots (QDs) with high Coulomb interaction U which are interconnected through a chain of N non-interacting sites and individually coupled to two metallic leads. Using both the finite U slave boson mean field approach (FUSBMFA) and the Logarithmic-discretization-embedded-cluster approximation (LDECA) we studied the system in different regions of the parameter space for which we calculate many physical quantities, namely local density of states, conductance, total spin, spin correlations, in addition to the renormalization parameters associated with the FUSBMFA. The results reveled a very rich physical scenario which is manifested by at least two different Kondo regimes, the well-known spin s = 1/2 and some other type of Kondo effect which appears as a result of the coupling between the QDs and the non-interacting central sites. We also consider the possibility of accessing some kind of Kondo box effect due to the discrete nature of the central chain and study how this regime is affected by the magnetic interaction between the local spins of the QD's and by the interaction between these spins and the spins of the conduction electros in the leads.

  3. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  4. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  5. Thermodynamic and transport properties of YbNi 4Cd

    Science.gov (United States)

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  6. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  7. Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir

    NARCIS (Netherlands)

    Bakker, E.; Hangx, S.J.T.|info:eu-repo/dai/nl/30483579X; Niemeijer, A.R.|info:eu-repo/dai/nl/370832132; Spiers, C.J.|info:eu-repo/dai/nl/304829323

    2016-01-01

    We investigated the effects of long-term CO2-brine-rock interactions on the frictional and transport properties of reservoir-derived fault gouges, prepared from both unexposed and CO2-exposed sandstone, and from aragonite-cemented fault rock of an active CO2-leaking conduit, obtained from a natural

  8. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and 6,13-dichloropentacene.

    Science.gov (United States)

    Zhang, Xu; Yang, Xiaodi; Geng, Hua; Nan, Guangjun; Sun, Xingwen; Xi, Jinyang; Xu, Xin

    2015-05-05

    Pentacene derivative 6,13-dichloropentacene (DCP) is one of the latest additions to the family of organic semiconductors with a great potential for use in transistors. We carry out a detailed theoretical calculation for DCP, with systematical comparison to pentacene, pentathienoacene (PTA, the thiophene equivalent of pentacene), to gain insights in the theoretical design of organic transport materials. The charge transport parameters and carrier mobilities are investigated from the first-principles calculations, based on the widely used Marcus electron transfer theory and quantum nuclear tunneling model, coupled with random walk simulation. Molecular structure and the crystal packing type are essential to understand the differences in their transport behaviors. With the effect of molecule modification, significant one-dimensional π-stacks are found within the molecular layer in PTA and DCP crystals. The charge transport along the a-axis plays a dominant role for the carrier mobilities in the DCP crystal due to the strong transfer integrals within the a-axis. Pentacene shows a relatively large 3D mobility. This is attributed to the relatively uniform electronic couplings, which thus provides more transport pathways. PTA has a much smaller 3D mobility than pentacene and DCP for the obvious increase of the reorganization energy with the introduction of thiophene. It is found that PTA and DCP exhibit lower HOMO (highest occupied molecular orbital) levels and better environmental stability, indicating the potential applications in organic electronics. © 2015 Wiley Periodicals, Inc.

  9. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  10. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. A. de Villiers

    2010-06-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4% while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarization together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European

  11. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  12. Transport properties of ruthenophanes – A theoretical insight

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Leone C., E-mail: leoqmc@ifsc.edu.br [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil); Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina – Campus São José, São José, SC 88103-310 (Brazil); Caramori, Giovanni F. [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil); Bergamo, Pedro A.S. [Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP 14404-600 (Brazil); Parreira, Renato L.T., E-mail: renato.parreira@unifran.edu.br [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil)

    2016-10-20

    In this article, the electron transport properties of a series of ruthenophanes, 1–4, containing electron-donor and electron-acceptor substituents are studied. The electronic transmission at zero bias is mainly driven by only one eigenchannel. The substitutions constrain the energies in which the probability of electronic transmission is significant. The results suggest that the conductance at zero bias is dependent on the nature of the employed substituent. The eigenchannel wave functions show that the central molecules are preferentially coupled with right electrode. The calculated molecular projected self-consistent hamiltonian states also suggest that there is a dependence of the conductance at zero bias with the nature of the employed substituent. The current–voltage analyses suggest that the negative differential resistance effect is present in ruthenophanes, but it is dependent on both the nature of the substituent and the bias. Despite the moderate rectification ratio of the ruthenophanes, they present non-ohmic behaviour, indicating that they can be used as potential candidates in electronic molecular devices such as switches, oscillators, and frequency multipliers.

  13. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    International Nuclear Information System (INIS)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-01-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  14. Anomalous transport from holography. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Sharon, Amir [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)

    2016-11-17

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1){sub V}×U(1){sub A} Maxwell theory in Schwarzschild-AdS{sub 5}. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  15. Anomalous transport from holography. Part I

    International Nuclear Information System (INIS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2016-01-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1)_V×U(1)_A Maxwell theory in Schwarzschild-AdS_5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  16. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    Science.gov (United States)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  17. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  18. Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions

    Science.gov (United States)

    Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui

    2017-09-01

    Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.

  19. Room-temperature ballistic transport in III-nitride heterostructures.

    Science.gov (United States)

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  20. Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    Science.gov (United States)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1991-01-01

    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.