WorldWideScience

Sample records for transport processes revealed

  1. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  2. Revealing the programming process

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2005-01-01

    One of the most important goals of an introductory programming course is that the students learn a systematic approach to the development of computer programs. Revealing the programming process is an important part of this; however, textbooks do not address the issue -- probably because...... the textbook medium is static and therefore ill-suited to expose the process of programming. We have found that process recordings in the form of captured narrated programming sessions are a simple, cheap, and efficient way of providing the revelation.We identify seven different elements of the programming...

  3. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    Science.gov (United States)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  4. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  5. Near field transport processes

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1991-01-01

    In repositories for nuclear waste there are many processes which will be instrumental in corroding the canisters and releasing the nuclides. Based on experiences from studies on the performance of repositories and on an actual design the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix as well as in the mobile water is an important transport process but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include gas generation by iron corrosion and alpha-radiolysis. (au) (19 refs., 2 figs.)

  6. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  7. Regular in situ measurements of HDO/H216O in the northern and southern hemispherical upper troposphere reveal tropospheric transport processes.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Sanati, Shahrokh; Brenninkmeijer, Carl; Zahn, Andreas

    2013-04-01

    Atmospheric water in form of water vapor and clouds is an enormously crucial trace species. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010), carries huge amounts of latent heat, and is the major source of OH in the troposphere. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. In this context, water-isotopologues (here the isotope ratio HDO/H216O) can be used to study the atmospheric transport of water and in-cloud processes. As H216O and HDO differ in vapor pressure and molecular diffusion, fractionation occurs during condensation and rainout events. For that reason the ratio HDO/H216O preserves information about the transport and condensation history of an air mass. The tunable diode-laser absorption spectrometer ISOWAT was developed for airborne measurements of the water-isotopologue concentrations of H216O and HDO, probing fundamental rovibrational water-absorption lines at around 2.66 μm. Since April 2010 the spectrometer is regularly operated aboard the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600), which measures ~100 trace gases and aerosol components in the UTLS (9-12 km altitude) on four long-distance flights per month. During several flights across the equator (Africa) or close to the equator (Venezuela and Malaysia) an increase of HDO/H216O from the subtropics towards the tropics was measured (by more than 100 permil) at an altitude of ~12 km. This isotopic gradient can partly be attributed to differences in humidity. In addition there is a humidity independent latitudinal gradient (by more than 50 permil), revealing the strong

  8. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  9. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  10. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  11. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  12. Kinematics of Mass Transport Deposits revealed by magnetic fabrics

    Science.gov (United States)

    Weinberger, R.; Levi, T.; Alsop, G. I.; Marco, S.

    2017-08-01

    The internal deformation and movement directions of Mass Transport Deposits (MTDs) are key factors in understanding the kinematics and dynamics of their emplacement. Although these are relatively easy to recover from well-bedded sediments, they are more difficult to deduce from massive beds without visible strain markers. In order to test the applicability of using anisotropy of magnetic susceptibility (AMS) to determine MTD movement, we compare AMS fabrics, with structural measurements of visible kinematic indicators. Our case study involves the structural analysis of slumped lake sediments extensively exposed in MTDs within the Dead Sea Basin. Structural analyses of MTDs outcropping for >100 km reveal radial transport directions toward the basin depocenter. We show that the AMS fabrics display the same transport directions as inferred from structural analyses. Based on this similarity, we outline a robust procedure to obtain the transport direction of slumped MTDs from AMS fabrics. Variations in the magnetic fabrics and anisotropies in fold-thrust systems within the slumps match the various structural domains. We therefore suggest that magnetic fabrics and anisotropy variations in drill cores may reflect internal deformation within the slumps rather than different slumps. Obtaining magnetic fabrics from MTDs provides a viable way to infer the transport directions and internal deformation of MTDs and reconstruct the basin depocenter in ancient settings. The present results also have implications beyond the kinematics of MTDs, as their geometry resembles fold-thrust systems in other geological settings, scales, and tectonic environments.

  13. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  14. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  15. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  16. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  17. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  18. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  19. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  20. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  1. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  2. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  3. Calcium transport mechanism in molting crayfish revealed by microanalysis

    International Nuclear Information System (INIS)

    Mizuhira, V.; Ueno, M.

    1983-01-01

    Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the fine precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism

  4. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  5. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  6. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  7. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  8. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  9. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  10. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  11. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  12. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  13. Acting without seeing: eye movements reveal visual processing without awareness.

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2015-04-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Incorporating security into the transportation planning process.

    Science.gov (United States)

    2009-03-01

    The transportation system is an important network established to ensure the mobility of people and goods between destinations. In addition, it also serves a vital role in responding to disasters, and therefore deserves special attention when those di...

  15. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  16. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  17. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+ ion release.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2011-10-01

    Full Text Available Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na(+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs 1 and 6 are identified as the helices involved in the largest movements during transport.

  18. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  19. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  20. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  1. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    Science.gov (United States)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-01

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.

  2. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  3. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  4. Strategies for Processing Semen from Subfertile Stallions for Cooled Transport.

    Science.gov (United States)

    Varner, Dickson D

    2016-12-01

    Subfertility can be a confusing term because some semen of good quality can have reduced fertility following cooled transport if the semen is processed in an improper manner. General procedures aimed at processing stallion semen for cooled transport are well described. An array of factors could exist in reduced fertility of cool-transported semen. This article focuses on centrifugation techniques that can be used to maximize sperm quality of stallions whose semen is intended for cooled transport. Clinical cases are also provided for practical application of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Initiation process of a thrust fault revealed by analog experiments

    Science.gov (United States)

    Yamada, Yasuhiro; Dotare, Tatsuya; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-04-01

    We conducted 2D (cross-sectional) analog experiments with dry sand using a high resolution digital image correlation (DIC) technique to reveal initiation process of a thrust fault in detail, and identified a number of "weak shear bands" and minor uplift prior to the thrust initiation. The observations suggest that the process can be divided into three stages. Stage 1: characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will be generated later. Before initiation of the fault, the area to be the hanging wall starts to uplift. Stage 2: defined by the generation of the new thrust and its active displacement. The location of the new thrust seems to be constrained by its associated back-thrust, produced at the foot of the surface slope (by the previous thrust). The activity of the previous thrust turns to zero once the new thrust is generated, but the timing of these two events is not the same. Stage 3: characterized by a constant displacement along the (new) thrust. Similar minor shear bands can be seen in the toe area of the Nankai accretionary prism, SW Japan and we can correlate the along-strike variations in seismic profiles to the model results that show the characteristic features in each thrust development stage.

  6. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  7. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    DEFF Research Database (Denmark)

    Lotz, Mikkel Rønne; Boll, Mads; Hansen, Ole

    2014-01-01

    to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D...... conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation...

  8. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  9. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  10. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  11. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Science.gov (United States)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  12. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  13. Formation of the Cycle of Business Processes of Management of Marketing Activity of a Transport Enterprise

    Directory of Open Access Journals (Sweden)

    Horielov Dmytro O.

    2014-02-01

    Full Text Available The article is devoted to problems of organisation of the process of management of marketing activity of an enterprise. It specifies the model of services of a transport enterprise and provides levels of services and their structure: basic, real, expanded, expected and prospective. The article offers to differentiate planning and realisation of the transportation service by its levels, each of which would correspond with a separate business process of management. It reveals specific features of use of instruments of the traditional, internal and interactive marketing in the market of transportation services. It identifies the structure of the object when managing marketing activity of a transportation enterprise. The article uses the Deming cycle to formulate general principles of formation of business processes of management of marketing activity: “Motivation – Plan – Do – Check – Act”. The proposed cycle would ensure continuous improvement of the said business processes of an enterprise in accordance with international quality standards (ISO.

  14. The impact of transport processes standardization on supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Maciej Stajniak

    2016-03-01

    Full Text Available Background: During continuous market competition, focusing on the customer service level, lead times and supply flexibility is very important to analyze the efficiency of logistics processes. Analysis of supply chain efficiency is one of the fundamental elements of controlling analysis. Transport processes are a key process that provides physical material flow through the supply chain. Therefore, in this article Authors focus attention on the transport processes efficiency. Methods: The research carried out in the second half of 2014 year, in 210 enterprises of the Wielkopolska Region. Observations and business practice studies conducted by the authors, demonstrate a significant impact of standardization processes on supply chain efficiency. Based on the research results, have been developed standard processes that have been assessed as being necessary to standardize in business practice. Results: Based on these research results and observations, authors have developed standards for transport processes by BPMN notation. BPMN allows authors to conduct multivariate simulation of these processes in further stages of research. Conclusions: Developed standards are the initial stage of research conducted by Authors in the assessment of transport processes efficiency. Further research direction is to analyze the use efficiency of transport processes standards in business practice and their impact on the effectiveness of the entire supply chain.

  15. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  16. Statewide and Metropolitan Transportation Planning Processes : a TPCB Peer Exchange

    Science.gov (United States)

    2016-04-20

    This report highlights key recommendations and noteworthy practices identified at Statewide and Metropolitan Transportation Planning Processes Peer Exchange held on September 9-10, 2015 in Shepherdstown, West Virginia. This event was sponsored ...

  17. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  18. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  19. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  20. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  1. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  2. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  3. Evolutionary pets: offspring numbers reveal speciation process in domesticated chickens.

    Directory of Open Access Journals (Sweden)

    Inga Tiemann

    Full Text Available Since Darwin, the nature of the relationship between evolution and domestication has been debated. Evolution offers different mechanisms of selection that lead to adaptation and may end in the origin of new species as defined by the biological species concept. Domestication has given rise to numerous breeds in almost every domesticated species, including chickens. At the same time, so-called artificial selection seems to exclude mechanisms of sexual selection by the animals themselves. We want to forward the question to the animal itself: With whom do you reproduce successfully? This study focused on the sexual behavior of the domestic chicken Gallus gallus f.dom., particularly the White Crested Polish breed. Experiments on mate choice and the observation of fertilization and hatching rates of mixed-breeding groups revealed breed-specific preferences. In breeding groups containing White Crested Polish and a comparative breed, more purebred chicks hatched than hybrids (number of eggs collected: 1059. Mating was possible in equal shares, but in relation to the number of eggs collected, purebred offspring (62.75% ± 7.10%, M ± SE hatched to a greater extend compared to hybrid offspring (28.75% ± 15.32%, M ± SE. These data demonstrate that the mechanism of sexual selection is still present in domestic chicken breeds, which includes the alteration of gene frequencies typical for domestication and evolutionary speciation. Due to selection and mate choice we state that breeding in principle can generate new species. Therefore, we see domestication as an evolutionary process that integrates human interests of animal breeding with innate mate choice by the animal.

  4. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  5. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  6. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  7. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  8. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  9. Direct structural mapping of organic field-effect transistors reveals bottlenecks to carrier transport

    KAUST Repository

    Li, Ruipeng

    2012-08-10

    X-ray microbeam scattering is used to map the microstructure of the organic semiconductor along the channel length of solution-processed bottom-contact OFET devices. Contact-induced nucleation is known to influence the crystallization behavior within the channel. We find that microstructural inhomogeneities in the center of the channel act as a bottleneck to charge transport. This problem can be overcome by controlling crystallization of the preferable texture, thus favoring more efficient charge transport throughout the channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct structural mapping of organic field-effect transistors reveals bottlenecks to carrier transport

    KAUST Repository

    Li, Ruipeng; Ward, Jeremy W.; Smilgies, Detlef Matthias; Payne, Marcia M.; Anthony, John Edward; Jurchescu, Oana D.; Amassian, Aram

    2012-01-01

    X-ray microbeam scattering is used to map the microstructure of the organic semiconductor along the channel length of solution-processed bottom-contact OFET devices. Contact-induced nucleation is known to influence the crystallization behavior within the channel. We find that microstructural inhomogeneities in the center of the channel act as a bottleneck to charge transport. This problem can be overcome by controlling crystallization of the preferable texture, thus favoring more efficient charge transport throughout the channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  12. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  13. Unexpected high 35S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia

    Science.gov (United States)

    Lin, Mang; Zhang, Zhisheng; Su, Lin; Su, Binbin; Liu, Lanzhong; Tao, Jun; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-03-01

    October is the monsoon transitional period in East Asia (EA) involving a series of synoptic activities that may enhance the downward transport of stratospheric air to the planetary boundary layer (PBL). Here we use cosmogenic 35S in sulfate aerosols (35SO42-) as a tracer for air masses originating from the stratosphere and transported downward to quantify these mixing processes. From 1 year 35SO42- measurements (March 2014 to February 2015) at a background station in EA we find remarkably enhanced 35SO42- concentration (3150 atoms m-3) in October, the highest value ever reported for natural sulfate aerosols. A four-box 1-D model and meteorological analysis reveal that strong downward transport from the free troposphere is a vital process entraining aged stratospheric air masses to the PBL. The aged stratospheric masses are accumulated in the PBL, accelerating the SO2 transformation to SO42-. Implications for the tropospheric O3 budget and the CO2 biogeochemical cycle are discussed.

  14. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  15. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  16. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  17. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  18. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Lara, Julio A., E-mail: j.a.sorialara@uva.nl; Bertolini, Luca, E-mail: l.bertolini@uva.nl; Brömmelstroet, Marco te, E-mail: M.C.G.teBrommelstroet@uva.nl

    2015-01-15

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes.

  19. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    International Nuclear Information System (INIS)

    Soria-Lara, Julio A.; Bertolini, Luca; Brömmelstroet, Marco te

    2015-01-01

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes

  20. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  1. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    International Nuclear Information System (INIS)

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H.; Hansen, Ole; Kjær, Daniel

    2014-01-01

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects

  2. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    Science.gov (United States)

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  3. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  4. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  5. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  6. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  7. Priming paradigm reveals harmonic structure processing in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Gosselin, Nathalie; Bigand, Emmanuel; Peretz, Isabelle

    2012-09-01

    Deficits for pitch structure processing in congenital amusia has been mostly reported for melodic stimuli and explicit judgments. The present study investigated congenital amusia with harmonic stimuli and a priming task. Amusic and control participants performed a speeded phoneme discrimination task on sung chord sequences. The target phoneme was sung either on a functionally important chord (tonic chord, referred to as "related target") or a less important one (subdominant chord, referred to as "less-related target"). Correct response times were faster when the target phoneme was sung on tonic chords rather than on subdominant chords, and this effect was less pronounced, albeit significant, in amusic participants. These data report for the first time a deficit in congenital amusia for chord processing, but also provide evidence that, despite this deficit, amusic individuals have internalized sophisticated syntactic-like functions of chords in the Western tonal musical system. This finding suggests that thanks to this musical knowledge, amusic individuals could develop expectancies for musical events, and, presumably, follow the tension-relaxation schemas in Western tonal music, which also influence emotional responses to music. Copyright © 2012 Elsevier Srl. All rights reserved.

  8. Rheology of transgenic switchgrass reveals practical aspects of biomass processing.

    Science.gov (United States)

    Wan, Guigui; Frazier, Taylor; Jorgensen, Julianne; Zhao, Bingyu; Frazier, Charles E

    2018-01-01

    Mechanical properties of transgenic switchgrass have practical implications for biorefinery technologies. Presented are fundamentals for simple (thermo)mechanical measurements of genetically transformed switchgrass. Experimental basics are provided for the novice, where the intention is to promote collaboration between plant biologists and materials scientists. Stem sections were subjected to two stress modes: (1) torsional oscillation in the linear response region, and (2) unidirectional torsion to failure. Specimens were analyzed while submerged/saturated in ethylene glycol, simulating natural hydration and allowing experimental temperatures above 100 °C for an improved view of the lignin glass transition. Down-regulation of the 4-Coumarate:coenzyme A ligase gene (reduced lignin content and altered monomer composition) generally resulted in less stiff and weaker stems. These observations were associated with a reduction in the temperature and activation energy of the lignin glass transition, but surprisingly with no difference in the breadth and intensity of the tan  δ signal. The results showed promise in further investigations of how rheological methods relate to stem lignin content, composition, and functional properties in the field and in bioprocessing. Measurements such as these are complicated by small specimen size; however, torsional rheometers (relatively common in polymer laboratories) are well suited for this task. As opposed to the expense and complication of relative humidity control, solvent-submersion rheological methods effectively reveal fundamental structure/property relationships in plant tissues. Demonstrated are low-strain linear methods, and also nonlinear yield and failure analysis; the latter is very uncommon for typical rheological equipment.

  9. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  10. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  11. Opacity and Transport Measurements Reveal That Dilute Plasma Models of Sonoluminescence Are Not Valid

    Science.gov (United States)

    Khalid, Shahzad; Kappus, Brian; Weninger, Keith; Putterman, Seth

    2012-03-01

    A strong interaction between a nanosecond laser and a 70 μm radius sonoluminescing plasma is achieved. The overall response of the system results in a factor of 2 increase in temperature as determined by its spectrum. Images of the interaction reveal that light energy is absorbed and trapped in a region smaller than the sonoluminescence emitting region of the bubble for over 100 ns. We interpret this opacity and transport measurement as demonstrating that sonoluminescencing bubbles can be 1000 times more opaque than what follows from the Saha equation of statistical mechanics in the ideal plasma limit. To address this discrepancy, we suggest that the effects of strong Coulomb interactions are an essential component of a first principles theory of sonoluminescence.

  12. Contamination Revealed by Indicator Microorganism Levels during Veal Processing.

    Science.gov (United States)

    Bosilevac, Joseph M; Wang, Rong; Luedtke, Brandon E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2016-08-01

    During site visits of veal processors, the U.S. Department of Agriculture, Food Safety Inspection Service (FSIS) has reported processing deficiencies that likely contribute to increased levels of veal contamination. Here, we report the results of measuring aerobic plate count bacteria (APC), Enterobacteriaceae, coliforms (CF), and Escherichia coli during eight sample collections at five veal processors to assess contamination during the harvest of bob veal and formula-fed veal before (n = 5 plants) and after (n = 3 plants) changes to interventions and processing practices. Hides of veal calves at each plant had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 6.02 to 8.07, 2.95 to 5.24, 3.28 to 5.83, and 3.08 to 5.59, respectively. Preintervention carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 3.08 to 5.22, 1.16 to 3.47, 0.21 to 3.06, and -0.07 to 3.10, respectively, before and 2.72 to 4.50, 0.99 to 2.76, 0.69 to 2.26, and 0.33 to 2.12, respectively, after changes were made to improve sanitary dressing procedures. Final veal carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 0.36 to 2.84, -0.21 to 1.59, -0.23 to 1.59, and -0.38 to 1.45 before and 0.44 to 2.64, -0.16 to 1.33, -0.42 to 1.20, and 0.48 to 1.09 after changes were made to improve carcass-directed interventions. Whereas the improved dressing procedures resulted in improved carcass cleanliness, the changes to carcass-directed interventions were less successful, and veal processors are urged to use techniques that ensure uniform and consistent delivery of antimicrobials to carcasses. Analysis of results comparing bob veal to formula-fed veal found bob veal hides, preintervention carcasses, and final carcasses to have increased (P 0.05) relative to formula fed veal. When both veal categories were harvested at the same plant on the same day, similar results were observed. Since identification by FSIS, the control of

  13. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  14. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Science.gov (United States)

    Polireddy, Kishore; Khan, Mohiuddin Md Taimur; Chavan, Hemantkumar; Young, Susan; Ma, Xiaochao; Waller, Anna; Garcia, Matthew; Perez, Dominique; Chavez, Stephanie; Strouse, Jacob J; Haynes, Mark K; Bologa, Cristian G; Oprea, Tudor I; Tegos, George P; Sklar, Larry A; Krishnamurthy, Partha

    2012-01-01

    ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  15. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  16. Some issues of logistics management applied to the passenger transportation process on suburban routes

    Directory of Open Access Journals (Sweden)

    Тetyana М. Grigorova

    2014-12-01

    Full Text Available Considered are some questions that address the problem of logistic management of suburban transport services. Using the logistic approach to the passenger transportation process management we get possibility to determine the need for consideration of the transport process parameters’ impact on the passengers’ fatigability that affects their productivity in the workplace. Basing on the analysis of the results obtained in-field, we implemented a mathematical description of the functional link between the passenger’s regulatory systems activity index, and the negatively affecting factors. It is revealed that the change in the passenger’s regulatory systems activity index on approaching the suburban line terminal station is described with sufficient accuracy by a non-linear regression equation, which includes as variables the regulatory systems activity index value before approaching to the station, the age of the passenger, the pedestrian walking pace, the time of approaching to the stop station.

  17. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  18. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  19. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.

    Science.gov (United States)

    Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas

    2016-11-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.

  20. Magnetosheath excursion and the relevant transport process at the magnetopause

    Directory of Open Access Journals (Sweden)

    C. L. Cai

    2009-08-01

    Full Text Available A large-amplitude excursion of the magnetosheath (MS in quiet solar wind conditions on 17 March 2004 was recorded simultaneously by the Cluster and TC-1 spacecraft. During this period, the IMF Bz was entirely northward. The coherence between the bow shock motion and magnetopause (MP motion is revealed and the excursion velocities of the bow shock motion are analyzed. In addition, the relevant plasma transport phenomenon in the form of flux fluctuations below the ion gyrofrequency at the MP is exposed and is interpreted as manifestation of the drift instability. Correlated observations on charge accumulation and electrostatic potential perturbation are recorded by electron measurements in high energy regime, and also the eventual cross-field vortex motion in the nonlinear stage and the consequential mass exchange are exhibited. The present investigation gives some new insight into the MS plasma transport mechanism across the subsolar MP region in quiet solar wind conditions during a period of northward IMF.

  1. Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses

    Science.gov (United States)

    Goodwell, A. E.; Kumar, P.

    2017-12-01

    Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of

  2. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    Science.gov (United States)

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  3. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    Science.gov (United States)

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.

  4. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  5. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.

    2011-01-01

    and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture....... Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry...

  6. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  7. Nonlinear closure relations theory for transport processes in nonequilibrium systems

    International Nuclear Information System (INIS)

    Sonnino, Giorgio

    2009-01-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  8. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  9. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  10. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    Science.gov (United States)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  11. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  12. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    Science.gov (United States)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  15. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  16. Simulation of business processes of processing and distribution of orders in transportation

    Directory of Open Access Journals (Sweden)

    Ольга Ігорівна Проніна

    2017-06-01

    Full Text Available Analyzing modern passenger transportation in Ukraine, we can conclude that with the increasing number of urban population the necessity to develop passenger traffic, as well as to improve the quality of transport services is increasing too. The paper examines the three existing models of private passenger transportation (taxi: a model with the use of dispatching service, without dispatching service model and a mixed model. An algorithm of getting an order, processing it, and its implementation according to the given model has been considered. Several arrangements schemes that characterize the operation of the system have been shown in the work as well. The interrelation of the client making an order and the driver who receives the order and executes it has been represented, the server being a connecting link between the customer and the driver and regulating the system as a whole. Business process of private passenger transportation without dispatching service was simulated. Basing on the simulation results it was proposed to supplement the model of private transportation by the making advice system, as well as improving the car selection algorithm. Advice system provides the optimum choice of the car, taking into account a lot of factors. And it will also make it possible to use more efficiently the specific additional services provided by the drivers. Due to the optimization of the order handling process it becomes possible to increase the capacity of the drivers thus increasing their profits. Passenger transportation without the use of dispatching service has some weak points and they were identified. Application of the system will improve transport structure in modern conditions, and improve the transportation basing on modern operating system

  17. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  18. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  19. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe and...

  20. Integrating climate change into the transportation planning process : final report

    Science.gov (United States)

    2008-07-01

    The objective of this study is to advance the practice and application of transportation planning among state, regional, and local transportation planning agencies to successfully meet growing concerns about the relationship between transportation an...

  1. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  2. Transport Infrastructure in the Process of Cataloguing Brownfields

    Science.gov (United States)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  3. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  4. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  5. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  6. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  7. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  8. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all......). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were...

  9. Analysis of suspended solids transport processes in primary settling tanks.

    Science.gov (United States)

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  10. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na+ ion release

    DEFF Research Database (Denmark)

    Koldsø, Heidi; Noer, Pernille Rimmer; Grouleff, Julie

    2011-01-01

    transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer....... The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central...... substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion...

  11. Use of GIS technologies to facilitate the transportation project programming process.

    Science.gov (United States)

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  12. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes.

    Science.gov (United States)

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O'Dowd, Diane K; Gross, Steven P

    2014-07-01

    There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.

  13. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  14. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  15. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  16. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  17. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  18. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  19. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  20. Edge-core interaction revealed with dynamic transport experiment in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Ida, K.; Inagaki, S.

    2010-11-01

    Large scale coherent structures in electron heat transport of both core and edge plasmas are clearly found in plasma with a nonlocal transport phenomenon (NTP, a core electron temperature rise in response to an edge cooling) on Large Helical Device (LHD). At the onset of the NTP, a first order transition of the electron heat transport, which is characterized by a discontinuity of electron temperature gradient, is found to take place over a wide region (at least 6 cm wide) in the periphery of the plasma. At about the same time, over a wide region (about 10 cm wide) of the plasma core, a second order transition of the electron heat transport, which is characterized by a discontinuity of the time derivative of the electron temperature gradient, appears. The both large scale coherent structures are of a scale larger than a typical micro-turbulent eddy size (a few mm in this case). In order to assess dynamic characteristics of the electron heat transport state in the core region during the NTP, a transit time distribution analysis is applied to the temporal behaviors of the electron temperature gradient. The analysis results more clearly show the existence of the large coherent structures in electron heat transport. Thus the NTP observed in LHD is considered to be invoked by the interaction of those structures. (author)

  1. Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign

    Directory of Open Access Journals (Sweden)

    G. Ancellet

    2009-01-01

    Full Text Available The African Monsoon Multidisciplinary Analyses (AMMA fourth airborne campaign was conducted in July–August 2006 to study the chemical composition of the middle and upper troposphere in West Africa with the major objective to better understand the processing of chemical emissions by the West African Monsoon (WAM and its associated regional-scale and vertical transports. In particular, the french airborne experiment was organized around two goals. The first was to characterize the impact of Mesoscale Convective Systems (MCSs on the ozone budget in the upper troposphere and the evolution of the chemical composition of these convective plumes as they move westward toward the Atlantic Ocean. The second objective was to discriminate the impact of remote sources of pollution over West Africa, including transport from the middle east, Europe, Asia and from southern hemispheric fires. Observations of O3, CO, NOx, H2O and hydroperoxide above West Africa along repeated meridional transects were coupled with transport analysis based on the FLEXPART lagrangian model. The cross analysis of trace gas concentrations and transport pathways revealed 5 types of air masses: convective uplift of industrial and urban emissions, convective uplift of biogenic emissions, slow advection from Cotonou polluted plumes near the coast, meridional transport of upper tropospheric air from the subtropical barrier region, and meridional transport of Southern Hemisphere (SH biomass burning emissions. O3/CO correlation plots and the correlation plots of H2O2 with a OH proxy revealed not only a control of the trace gas variability by transport processes but also significant photochemical reactivity in the mid- and upper troposphere. The study of four MCSs outflow showed contrasted chemical composition and air mass origins depending on the MCSs lifetime and latitudinal position. Favorables conditions for ozone

  2. A Cloud Computing Model for Optimization of Transport Logistics Process

    Directory of Open Access Journals (Sweden)

    Benotmane Zineb

    2017-09-01

    Full Text Available In any increasing competitive environment and even in companies; we must adopt a good logistic chain management policy which is the main objective to increase the overall gain by maximizing profits and minimizing costs, including manufacturing costs such as: transaction, transport, storage, etc. In this paper, we propose a cloud platform of this chain logistic for decision support; in fact, this decision must be made to adopt new strategy for cost optimization, besides, the decision-maker must have knowledge on the consequences of this new strategy. Our proposed cloud computing platform has a multilayer structure; this later is contained from a set of web services to provide a link between applications using different technologies; to enable sending; and receiving data through protocols, which should be understandable by everyone. The chain logistic is a process-oriented business; it’s used to evaluate logistics process costs, to propose optimal solutions and to evaluate these solutions before their application. As a scenario, we have formulated the problem for the delivery process, and we have proposed a modified Bin-packing algorithm to improve vehicles loading.

  3. Revealing the Molecular Structure and the Transport Mechanism at the Base of Primary Cilia Using Superresolution STED Microscopy

    Science.gov (United States)

    Yang, Tung-Lin

    The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the hedgehog signaling, cAMP pathway, Wnt pathways, etc. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). IFT88, one of the important IFT proteins in complex B, is known to play a role in the formation and maintenance of cilia in various types of organisms. The ciliary transition zone (TZ), which is part of the gating apparatus at the ciliary base, is home to a large number of ciliopathy molecules. Recent studies have identified important regulating elements for TZ gating in cilia. However, the architecture of the TZ region and its arrangement relative to intraflagellar transport (IFT) proteins remain largely unknown, hindering the mechanistic understanding of the regulation processes. One of the major challenges comes from the tiny volume at the ciliary base packed with numerous proteins, with the diameter of the TZ close to the diffraction limit of conventional microscopes. Using a series of stimulated emission depletion (STED) superresolution images mapped to electron microscopy images, we analyzed the structural organization of the ciliary base. Subdiffraction imaging of TZ components defines novel geometric distributions of RPGRIP1L, MKS1, CEP290, TCTN2 and TMEM67, shedding light on their roles in TZ structure, assembly, and function. We found TCTN2 at the outmost periphery of the TZ close to the ciliary membrane, with a 227+/-18 nm diameter. TMEM67 was adjacent to TCTN2, with a 205+/-20 nm diameter. RPGRIP1L was localized toward the axoneme at the same axial level as TCTN2 and TMEM67, with a 165+/-8 nm diameter. MKS1 was situated between TMEM67 and RPGRIP1L, with an 186+/-21 nm diameter. Surprisingly, CEP290 was localized at the proximal side of the TZ close to the distal end of the centrin-labeled basal body. The lateral width was unexpectedly close to

  4. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  5. Features, Events, and Processes in UZ and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  6. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.; Rauf, M.; Ahmed, M.; Malik, Z. A.; Habib, I.; Ahmed, Z.; Mahmood, K.; Ali, R.; Masmoudi, K.; Lemtiri-Chlieh, Fouad; Gehring, Christoph A; Berkowitz, G. A.; Saeed, N. A.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably

  7. Stable isotope tracer reveals that viviparous snakes transport amino acids to offspring during gestation.

    Science.gov (United States)

    Van Dyke, James U; Beaupre, Steven J

    2012-03-01

    Viviparity and placentation have evolved from oviparity over 100 times in squamate reptiles (lizards and snakes). The independent origins of placentation have resulted in a variety of placental morphologies in different taxa, ranging from simple apposition of fetal and maternal tissues to endotheliochorial implantation that is homoplasious with mammalian placentation. Because the eggs of oviparous squamates transport gases and water from the environment and calcium from the eggshell, the placentae of viviparous squamates are thought to have initially evolved to accomplish these functions from within the maternal oviduct. Species with complex placentae have also been shown to rely substantially, or even primarily, on placental transport of organic nutrients for embryonic nutrition. However, it is unclear whether species with only simple placentae are also capable of transporting organic nutrients to offspring. Among viviparous squamates, all of the snakes that have been studied thus far have been shown to have simple placentae. However, most studies of snake placentation are limited to a single lineage, the North American Natricinae. We tested the abilities of four species of viviparous snakes - Agkistrodon contortrix (Viperidae), Boa constrictor (Boidae), Nerodia sipedon (Colubridae: Natricinae) and Thamnophis sirtalis (Colubridae: Natricinae) - to transport diet-derived amino acids to offspring during gestation. We fed [(15)N]leucine to pregnant snakes, and compared offspring (15)N content with that of unlabeled controls. Labeled females allocated significantly more (15)N to offspring than did controls, but (15)N allocation did not differ among species. Our results indicate that viviparous snakes are capable of transporting diet-derived amino acids to their offspring during gestation, possibly via placentation.

  8. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  9. 23 CFR Appendix A to Part 450 - Linking the Transportation Planning and NEPA Processes

    Science.gov (United States)

    2010-04-01

    ... quality, and biology). Senior managers at transportation and partner agencies can arrange a variety of... strengthened link of the transportation planning and NEPA processes. Formal and informal mentoring on an intra...

  10. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  11. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Science.gov (United States)

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3

  12. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Directory of Open Access Journals (Sweden)

    Marie Thérèse Besson

    Full Text Available Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93. We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD, the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to

  13. Structural, Bioinformatic, and In Vivo Analyses of Two Treponema pallidum Lipoproteins Reveal a Unique TRAP Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Ranjit K.; Brautigam, Chad A.; Goldberg, Martin; Schuck, Peter; Tomchick, Diana R.; Norgard, Michael V. (NIH); (UTSMC)

    2012-05-25

    Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of 'tetratricopeptide repeat' (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).

  14. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  15. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  16. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth.

    Science.gov (United States)

    Lazar, Zbigniew; Neuvéglise, Cécile; Rossignol, Tristan; Devillers, Hugo; Morin, Nicolas; Robak, Małgorzata; Nicaud, Jean-Marc; Crutz-Le Coq, Anne-Marie

    2017-03-01

    Sugar assimilation has been intensively studied in the model yeast S. cerevisiae, and for two decades, it has been clear that the homologous HXT genes, which encode a set of hexose transporters, play a central role in this process. However, in the yeast Yarrowia lipolytica, which is well-known for its biotechnological applications, sugar assimilation is only poorly understood, even though this yeast exhibits peculiar intra-strain differences in fructose uptake: some strains (e.g., W29) are known to be slow-growing in fructose while others (e.g., H222) grow rapidly under the same conditions. Here, we retrieved 24 proteins of the Sugar Porter family from these two strains, and determined that at least six of these proteins can function as hexose transporters in the heterologous host Saccharomyces cerevisiae EBY.VW4000. Transcriptional studies and deletion analysis in Y. lipolytica indicated that two genes, YHT1 and YHT4, are probably the main players in both strains, with a similar role in the uptake of glucose, fructose, and mannose at various concentrations. The other four genes appear to constitute a set of 'reservoir' hexose transporters with an as-yet unclear physiological role. Furthermore, through examining Sugar Porters of the entire Yarrowia clade, we show that they constitute a dynamic family, within which hexose transport genes have been duplicated and lost several times. Our phylogenetic analyses support the existence of at least three distinct evolutionary groups of transporters which allow yeasts to grow on hexoses. In addition to the well-known and widespread Hxt-type transporters (which are not essential in Y. lipolytica), we highlight a second group of transporters, represented by Yht1, which are phylogenetically related to sensors that play a regulatory role in S. cerevisiae, and a third group, represented by Yht4, previously thought to contain only high-affinity glucose transporters related to Hgt1of Kluyveromyces lactis. Copyright © 2017

  17. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  18. Delay functions in trip assignment for transport planning process

    Science.gov (United States)

    Leong, Lee Vien

    2017-10-01

    In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future

  19. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina

    2004-01-01

    assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured...

  20. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.; Ewing, Robert P.; Kerisit, Sebastien N.; Liu, Chongxuan; Perfect, E.; Rother, Gernot; Stack, Andrew G.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models

  1. Computational Approaches for Revealing the Structure of Membrane Transporters: Case Study on Bilitranslocase

    Directory of Open Access Journals (Sweden)

    Katja Venko

    Full Text Available The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix–helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target. Keywords: Membrane proteins, Bilitranslocase, 3D protein structure, Transmembrane region predictors, Helix–helix interactions

  2. Progress in fuel processing for PEMFC systems for transport applications

    Energy Technology Data Exchange (ETDEWEB)

    Dams, A J; Hayter, P R; Moore, S C

    1998-07-01

    Wellman CJB Limited has been developing fuel processors for PEMFC systems for transport applications using a range of feedstocks. Feedstocks that can be processed to produce a hydrogen-rich gas stream suitable for use with a PEMFC include methanol, gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel. The basic fuel processor is a steam reformer combined with a selective carbon monoxide oxidation stage. Depending on the nature of the liquid feedstock, other process steps will be required such as vaporizer, desulfurizer, pre-reformer and high and low temperature shift reactors. Work on methanol reforming has been specifically targeted at a PEMFC driven passenger car as part of a multinational European Community JOULE programme called MERCATOX. The objective is to develop and test a compact and fast response methanol reformer and gas clean-up unit to meet a car manufacturer's specification. The method of construction is to coat a methanol reforming catalyst onto one side of a metal corrugated plate. On the other side is a coated combustion catalyst which burns fuel cell off-gas to provide the endothermic heat for the methanol reforming reaction. A number of these plates are assembled in a compact unit ensuring good heat transfer. The gas clean-up unit is similarly constructed with a selective oxidation catalyst on one side and a thermal fluid on the other. Initial tests have indicated a superior performance to conventional packed bed reformers in terms of response and start-up time. Steam reforming of gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel has been demonstrated on a bench scale (0.5kW). The process steps commence with vaporization (except for LPG), desulfurization (except for dimethylether), prereforming, reforming, low and high temperature shift and selective oxidation. A simple technology demonstrator has shown that a hydrogen-rich mixture (75% hydrogen, 25% carbon dioxide) with less than 2ppm carbon monoxide can be

  3. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  4. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    Science.gov (United States)

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  5. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  6. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  7. Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow

    Science.gov (United States)

    Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.

    2017-12-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole

  8. Elucidating the Roles of Transport Processes in Glucosinolate Distribution

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen

    Glucosinolates are plant defense compounds characteristic of the economically important plant family of Brassicaceae, which comprises crops as oilseed rape, cabbage, broccoli and the model plant Arabidopsis thaliana (Arabidopsis). Recently, two Arabidopsis glucosinolate transporters, GTR1 and GTR2...

  9. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  10. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  11. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  12. Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions

    International Nuclear Information System (INIS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2015-01-01

    Highlights: • Novel framework compares GHG of plugins vs. hybrids for any vehicle type/performance. • Fleet GHG can be compared without forecasting market penetrations of vehicle sizes. • GHG/km for pure electrics must account for limited range using novel, modified Utility Factor. • Applied to the US, this points to smaller GHG reduction at fleet level than traditional fleet analyses. - Abstract: Plugin and hybrid vehicles have been shown to offer possible reductions in greenhouse gas (GHG) emissions, depending on grid-carbon-intensity, range and thus life-cycle battery emissions and vehicle weight, and on trip patterns. We present a framework that enables GHG comparisons (well-to-wheel plus storage manufacturing) for three drivetrains (pure-electric, gasoline-hybrid, and plugin-hybrid), both for individual vehicles and for fleets. The framework captures effects of grid- versus vehicle-based electricity generation, grid transmission and charging losses, and manufacturing and carrying batteries. In contrast to previous work, GHG comparisons can be obtained for heterogeneous fleets of varying vehicle sizes (cars, vans, buses, trucks) and performances, without requiring forecasting of such vehicle specs and their respective market penetrations. Further, we show how a novel adaptation of the Utility Factor concept from plug-in-hybrids to mixed fleets of battery-only and gasoline-hybrids is crucial to quantifying battery-only-vehicles’ impact on fleet-wide GHG. To account for regional variations and possible future technology improvements, we show scenarios over a wide spectrum of grid-carbon-intensities (50–1200 g CO 2 e/kW h at wall), vehicle range (∼5–500 km), battery energy densities, and battery life-cycle GHG. Model uncertainties are quantified via sensitivity tests. Applying the framework to trip patterns of US passenger transportation, we find that owing to the interplay of GHG/km, battery size, all-electric range, and trip patterns, GHG

  13. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  14. Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning.

    Science.gov (United States)

    Scholz, Agnes; Krems, Josef F; Jahn, Georg

    2017-10-01

    Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.

  15. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  16. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    requirements with the aim of maximising accessibility in products and services. A review of ID literature has mainly developed in the arena of product design and design for assistive technology. Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design...... for accessibility or ID in this area. How is accessibility and the needs of users accounted for in rail transport design? This paper analyses interviews with rolling stock producers, operators and design consultancies. These conducted to determine if ID design methods are used explicitly and the extent to which...

  17. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  18. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  19. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  20. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  1. System of business-processes management at motor-transport enterprise

    OpenAIRE

    Коgut, Y.

    2010-01-01

    The place of the system of business-processes management at motor-transport enterprise in the general system of management of the enterprise has been substantiated. The subsystems of strategic management, business-processes management of strategic orientation and current activity, processes of enterprise functioning management have been marked out. The system of motor-transport enterprise business-processes management has been formed, which, unlike the existing ones, is based on the system-cy...

  2. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters.

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K; Barkla, Bronwyn J; Shigaki, Toshiro; Hirschi, Kendal D

    2003-02-01

    The Arabidopsis Ca(2+)/H(+) transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca(2+) levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca(2+)/H(+) antiport activity, a 40% reduction in tonoplast V-type H(+)-translocating ATPase activity, a 36% increase in tonoplast Ca(2+)-ATPase activity, and increased expression of the putative vacuolar Ca(2+)/H(+) antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn(2+) and Mg(2+) stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters.

  3. The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K.; Barkla, Bronwyn J.; Shigaki, Toshiro; Hirschi, Kendal D.

    2003-01-01

    The Arabidopsis Ca2+/H+ transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca2+ levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca2+/H+ antiport activity, a 40% reduction in tonoplast V-type H+-translocating ATPase activity, a 36% increase in tonoplast Ca2+-ATPase activity, and increased expression of the putative vacuolar Ca2+/H+ antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn2+ and Mg2+ stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters. PMID:12566577

  4. The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion.

    Science.gov (United States)

    Ramsubramaniam, Nikhil; Harris, Steven D; Marten, Mark R

    2014-11-01

    We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  6. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  7. Kinetic theory of transport processes in weakly ionized gases

    International Nuclear Information System (INIS)

    Odenhoven, F.J.F. van

    1984-01-01

    A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)

  8. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  9. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    Science.gov (United States)

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  11. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  12. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  13. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...... human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during...

  14. Acting without seeing: Eye movements reveal visual processing without awareness Miriam Spering & Marisa Carrasco

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2015-01-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. PMID:25765322

  15. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  16. Magnetic property effect on transport processes in resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424 (China); Wu, T H, E-mail: pswei@mail.nsysu.edu.tw, E-mail: wux0064@gmail.com [Department of Mechanical Engineering, Yung Ta Institute of Technology and Commerce, Pintong, Taiwan 909 (China)

    2011-08-17

    This study investigates the effects of the Curie temperature and magnetic permeability on transport variables, solute distribution and nugget shapes during resistance spot welding. The Curie temperature is the temperature below which a metal or alloy is ferromagnetic with a high magnetic permeability, and above which it is paramagnetic with a small magnetic permeability. The model proposed here accounts for electromagnetic force, heat generation and contact resistance at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance includes constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that transport variables and nugget shapes can be consistently interpreted from the delay of response time and jump of electric current density as a result of finite magnetic diffusion, rather than through the examination of the variations of dynamic electrical resistance with time. The molten nugget on the faying surface is initiated earlier with increasing magnetic permeability and Curie temperature. A high Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Any means to reduce the Curie temperature or magnetic permeability, such as adjusting the solute content, can be a good way to control weld quality. This study can also be applied to interpret the contact problems encountered in various electronics and packaging technologies, and so on.

  17. Whole tree transportation system for timber processing depots

    Science.gov (United States)

    John Lancaster; Tom Gallagher; Tim  McDonald; Dana Mitchell

    2016-01-01

    The growing demand for alternative energy has led those who are interested in producing sustainable energy from renewable timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the re-evaluation of our...

  18. Antarctic Temperature Extremes from MODIS Land Surface Temperatures: New Processing Methods Reveal Data Quality Puzzles

    Science.gov (United States)

    Grant, G.; Gallaher, D. W.

    2017-12-01

    New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.

  19. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.

    Science.gov (United States)

    Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher

    2018-04-11

    The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid

    Directory of Open Access Journals (Sweden)

    Daniel Fraher

    2016-02-01

    Full Text Available The role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.

  1. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  2. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  3. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  4. Deep Sequence Analysis of AgoshRNA Processing Reveals 3’ A Addition and Trimming

    Directory of Open Access Journals (Sweden)

    Alex Harwig

    2015-01-01

    Full Text Available The RNA interference (RNAi pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA, was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2 slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp. This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3’ strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3’ tail of 1–3 A-nucleotides (nt and we present evidence that this product is subsequently trimmed by the poly(A-specific ribonuclease (PARN.

  5. The exergy fields in transport processes: Their calculation and use

    Energy Technology Data Exchange (ETDEWEB)

    Lior, N.; Sarmiento-Darkin, W.; Al-Sharqawi, H.S. [University of Penn, Philadelphia, PA (United States). Dept. of Mechanical Engineering & Applied Mechanics

    2006-04-15

    This paper is a brief review of the method for analyzing the space and time dependent exergy and irreversibility fields in processes. It presents the basic equations, the method for their use, major literature sources, and three examples from the authors' work: flow desiccation, combustion of oil droplets, and combustion of pulverized coal. Conclusions from this Second Law analysis are used to attempt process improvement suggestions.

  6. Experimental elucidation on rate-determining process of water transport in polymer electrolyte fuel cell membrane by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takita, Shinpei; Tsushima, Shohji; Hirai, Shuichiro; Kubo, Norio; Aotani, Koichiro

    2007-01-01

    We examined rate-determining process of water transport in polymer electrolyte membrane (PEM) used in fuel cells by using magnetic resonance imaging (MRI). We measured transversal water content distributions of the membrane by MRI and through-plane mass flux of water by hygrometers. Through place water flux has taken place in the membrane when relative humidify of supplied gas is not equal in both side of the membrane. MRI results revealed that diffusion coefficient of water in the membrane increases with water content of membrane, λ, whilst it shows intensive peak at λ=3-4. Diffusion resistance and mass transfer resistance involving evaporation and condensation on the interface are almost in the same order and thus water transport process in the membrane is determined by either concentration diffusion or mass transfer, depending on water content of membrane. (author)

  7. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  8. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  9. Brain Signals of Face Processing as Revealed by Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Ela I. Olivares

    2015-01-01

    Full Text Available We analyze the functional significance of different event-related potentials (ERPs as electrophysiological indices of face perception and face recognition, according to cognitive and neurofunctional models of face processing. Initially, the processing of faces seems to be supported by early extrastriate occipital cortices and revealed by modulations of the occipital P1. This early response is thought to reflect the detection of certain primary structural aspects indicating the presence grosso modo of a face within the visual field. The posterior-temporal N170 is more sensitive to the detection of faces as complex-structured stimuli and, therefore, to the presence of its distinctive organizational characteristics prior to within-category identification. In turn, the relatively late and probably more rostrally generated N250r and N400-like responses might respectively indicate processes of access and retrieval of face-related information, which is stored in long-term memory (LTM. New methods of analysis of electrophysiological and neuroanatomical data, namely, dynamic causal modeling, single-trial and time-frequency analyses, are highly recommended to advance in the knowledge of those brain mechanisms concerning face processing.

  10. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  11. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  12. An evaluation of Mexican transportation planning, finance, implementation, and construction processes.

    Science.gov (United States)

    2009-10-01

    This research examined the legal, financial, institutional and policy processes that Mexico uses to plan, finance, : construct, and implement its transportation network. It documents through twelve case studies the state of the : practice in planning...

  13. Magnetic Processing of Structural Components for Transportation Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S. [Metalsa Roanoke, Inc.; del Prado Villasana, J. [Metalsa Roanoke, Inc.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  14. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  15. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  16. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  17. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry.

    Science.gov (United States)

    Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff

    2010-03-23

    As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."

  18. Transport description of intermediate processes in heavy ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Shivakumar, B.; Shapira, D.

    1986-01-01

    An extension of the diffusion model is proposed in order to describe the intermediate processes and the compound nucleus formation in heavy ion collisions. The model describes the intermediate processes and fusion in terms of the formation and the evolution of a long-lived dinuclear molecular complex (DMC) and its subsequent decay by fragmentation. The colliding ions can be trapped into the pocket of the entrance channel nucleus-nucleus potential and a DMC is formed. This DMC acts as a doorway state towards formation of a completely equilibrated compound nucleus (CN). It evolves through the exchange of nucleons to different dinuclear configurations. At each stage of its evolution, there is a finite probability for direct fragmentation into outgoing channels by thermal penetration over the barrier. The doorway states that do not fragment relax into a CN configuration and are identified as the fusion yield. 8 refs

  19. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  20. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  1. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  2. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  3. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2010-11-01

    Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS

  4. Sex differences in functional activation patterns revealed by increased emotion processing demands.

    Science.gov (United States)

    Hall, Geoffrey B C; Witelson, Sandra F; Szechtman, Henry; Nahmias, Claude

    2004-02-09

    Two [O(15)] PET studies assessed sex differences regional brain activation in the recognition of emotional stimuli. Study I revealed that the recognition of emotion in visual faces resulted in bilateral frontal activation in women, and unilateral right-sided activation in men. In study II, the complexity of the emotional face task was increased through tje addition of associated auditory emotional stimuli. Men again showed unilateral frontal activation, in this case to the left; whereas women did not show bilateral frontal activation, but showed greater limbic activity. These results suggest that when processing broader cross-modal emotional stimuli, men engage more in associative cognitive strategies while women draw more on primary emotional references.

  5. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  6. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  7. Nitrogen sources, transport and processing in peri-urban floodplains.

    Science.gov (United States)

    Gooddy, D C; Macdonald, D M J; Lapworth, D J; Bennett, S A; Griffiths, K J

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. Crown Copyright © 2014. Published by Elsevier B.V. All

  8. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    stress status. The dislocation nucleation and motion induced plastic deformation during grinding process can better reveal subsurface damage mechanism considering to stress and temperature acting on the dislocations

  9. A New Natural Product Analog of Blasticidin S Reveals Cellular Uptake Facilitated by the NorA Multidrug Transporter.

    Science.gov (United States)

    Davison, Jack R; Lohith, Katheryn M; Wang, Xiaoning; Bobyk, Kostyantyn; Mandadapu, Sivakoteswara R; Lee, Su-Lin; Cencic, Regina; Nelson, Justin; Simpkins, Scott; Frank, Karen M; Pelletier, Jerry; Myers, Chad L; Piotrowski, Jeff; Smith, Harold E; Bewley, Carole A

    2017-06-01

    The permeation of antibiotics through bacterial membranes to their target site is a crucial determinant of drug activity but in many cases remains poorly understood. During screening efforts to discover new broad-spectrum antibiotic compounds from marine sponge samples, we identified a new analog of the peptidyl nucleoside antibiotic blasticidin S that exhibited up to 16-fold-improved potency against a range of laboratory and clinical bacterial strains which we named P10. Whole-genome sequencing of laboratory-evolved strains of Staphylococcus aureus resistant to blasticidin S and P10, combined with genome-wide assessment of the fitness of barcoded Escherichia coli knockout strains in the presence of the antibiotics, revealed that restriction of cellular access was a key feature in the development of resistance to this class of drug. In particular, the gene encoding the well-characterized multidrug efflux pump NorA was found to be mutated in 69% of all S. aureus isolates resistant to blasticidin S or P10. Unexpectedly, resistance was associated with inactivation of norA , suggesting that the NorA transporter facilitates cellular entry of peptidyl nucleosides in addition to its known role in the efflux of diverse compounds, including fluoroquinolone antibiotics. Copyright © 2017 American Society for Microbiology.

  10. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    Science.gov (United States)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  11. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    Science.gov (United States)

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Nitrogen sources, transport and processing in peri-urban floodplains

    International Nuclear Information System (INIS)

    Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J.

    2014-01-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  13. Nitrogen sources, transport and processing in peri-urban floodplains

    Energy Technology Data Exchange (ETDEWEB)

    Gooddy, D.C., E-mail: dcg@bgs.ac.uk [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Macdonald, D.M.J.; Lapworth, D.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Bennett, S.A. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Griffiths, K.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  14. Impact of different vertical transport representations on simulating processes in the tropical tropopause layer (TTL)

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, Felix

    2011-07-06

    The chemical and dynamical processes in the tropical tropopause layer (TTL) control the amount of radiatively active species like water vapour and ozone in the stratosphere, and hence turn out to be crucial for atmospheric trends and climate change. Chemistry transport models and chemistry climate models are suitable tools to understand these processes. But model results are subject to uncertainties arising from the parametrization of model physics. In this thesis the sensitivity of model predictions to the choice of the vertical transport representation will be analysed. Therefore, backtrajectories are calculated in the TTL, based on different diabatic and kinematic transport representations using ERA-Interim and operational ECMWF data. For diabatic transport on potential temperature levels, the vertical velocity is deduced from the ERA-Interim diabatic heat budget. For kinematic transport on pressure levels, the vertical wind is used as vertical velocity. It is found that all terms in the diabatic heat budget are necessary to cause transport from the troposphere to the stratosphere. In particular, clear-sky heating rates alone miss very important processes. Many characteristics of transport in the TTL turn out to depend very sensitively on the choice of the vertical transport representation. Timescales for tropical troposphere-to-stratosphere transport vary between one and three months, with respect to the chosen representation. Moreover, for diabatic transport ascent is found throughout the upper TTL, whereas for kinematic transport regions of mean subsidence occur, particularly above the maritime continent. To investigate the sensitivity of simulated trace gas distributions in the TTL to the transport representation, a conceptual approach is presented to predict water vapour and ozone concentrations from backtrajectories, based on instantaneous freeze-drying and photochemical ozone production. It turns out that ozone predictions and vertical dispersion of the

  15. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    Directory of Open Access Journals (Sweden)

    Claire A Hales

    Full Text Available Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142, and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  16. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    Science.gov (United States)

    Hales, Claire A; Robinson, Emma S J; Houghton, Conor J

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  17. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  18. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. The development of control processes supporting source memory discrimination as revealed by event-related potentials.

    Science.gov (United States)

    de Chastelaine, Marianne; Friedman, David; Cycowicz, Yael M

    2007-08-01

    Improvement in source memory performance throughout childhood is thought to be mediated by the development of executive control. As postretrieval control processes may be better time-locked to the recognition response rather than the retrieval cue, the development of processes underlying source memory was investigated with both stimulus- and response-locked event-related potentials (ERPs). These were recorded in children, adolescents, and adults during a recognition memory exclusion task. Green- and red-outlined pictures were studied, but were tested in black outline. The test requirement was to endorse old items shown in one study color ("targets") and to reject new items along with old items shown in the alternative study color ("nontargets"). Source memory improved with age. All age groups retrieved target and nontarget memories as reflected by reliable parietal episodic memory (EM) effects, a stimulus-locked ERP correlate of recollection. Response-locked ERPs to targets and nontargets diverged in all groups prior to the response, although this occurred at an increasingly earlier time point with age. We suggest these findings reflect the implementation of attentional control mechanisms to enhance target memories and facilitate response selection with the greatest and least success, respectively, in adults and children. In adults only, response-locked ERPs revealed an early-onsetting parietal negativity for nontargets, but not for targets. This was suggested to reflect adults' ability to consistently inhibit prepotent target responses for nontargets. The findings support the notion that the development of source memory relies on the maturation of control processes that serve to enhance accurate selection of task-relevant memories.

  20. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  1. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.

    2017-07-13

    Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins with at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.

  2. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Proactive Complex Event Processing Method for Large-Scale Transportation Internet of Things

    OpenAIRE

    Wang, Yongheng; Cao, Kening

    2014-01-01

    The Internet of Things (IoT) provides a new way to improve the transportation system. The key issue is how to process the numerous events generated by IoT. In this paper, a proactive complex event processing method is proposed for large-scale transportation IoT. Based on a multilayered adaptive dynamic Bayesian model, a Bayesian network structure learning algorithm using search-and-score is proposed to support accurate predictive analytics. A parallel Markov decision processes model is design...

  4. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    and transportation prior to processing and samples with immediate processing and freezing. METHODS: Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed...... and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. RESULTS: For samples taken in the winter, relative...... differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate...

  5. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  6. The complete genome sequence of Trueperella pyogenes UFV1 reveals a processing system involved in the quorumsensing signal response

    DEFF Research Database (Denmark)

    Duarte, Vinicius da Silva; Treu, Laura; Campanaro, Stefano

    2017-01-01

    We present here the complete genome sequence of Trueperella pyogenes UFV1. The 2.3-Mbp genome contains an extremely interesting AI-2 transporter and processing system related to the quorum-sensing signal response. This specific feature is described in this species for the first time and might be ...... be responsible for a new pathogenic behavior.......We present here the complete genome sequence of Trueperella pyogenes UFV1. The 2.3-Mbp genome contains an extremely interesting AI-2 transporter and processing system related to the quorum-sensing signal response. This specific feature is described in this species for the first time and might...

  7. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  8. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    Science.gov (United States)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  9. Human processing of short temporal intervals as revealed by an ERP waveform analysis

    Directory of Open Access Journals (Sweden)

    Yoshitaka eNakajima

    2011-12-01

    Full Text Available To clarify the time course over which the human brain processes information about durations up to ~300 ms, we reanalyzed the data that were previously reported by Mitsudo et al. (2009 using a multivariate analysis method. Event-related potentials were recorded from 19 scalp electrodes on 11 (9 original and 2 additional participants while they judged whether two neighboring empty time intervals—called t1 and t2 and marked by three tone bursts—had equal durations. There was also a control condition in which the participants were presented the same temporal patterns but without a judgment task. In the present reanalysis, we sought to visualize how the temporal patterns were represented in the brain over time. A correlation matrix across channels was calculated for each temporal pattern. Geometric separations between the correlation matrices were calculated, and subjected to multidimensional scaling. We performed such analyses for a moving 100-ms time window after the t1 presentations. In the windows centered at < 100 ms after the t2 presentation, the analyses revealed the local maxima of categorical separation between temporal patterns of perceptually equal durations versus perceptually unequal durations, both in the judgment condition and in the control condition. Such categorization of the temporal patterns was prominent only in narrow temporal regions. The analysis indicated that the participants determined whether the two neighboring time intervals were of equal duration mostly within 100 ms after the presentation of the temporal patterns. A very fast brain activity was related to the perception of elementary temporal patterns without explicit judgments. This is consistent with the findings of Mitsudo et al., and it is in line with the processing time hypothesis proposed by Nakajima et al. (2004. The validity of the correlation matrix analyses turned out to be an effective tool to grasp the overall responses of the brain to temporal

  10. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    Science.gov (United States)

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  11. Neuter is not common in Dutch: eye movements reveal asymmetrical gender processing.

    Science.gov (United States)

    Loerts, Hanneke; Wieling, Martijn; Schmid, Monika S

    2013-12-01

    Native speakers of languages with transparent gender systems can use gender cues to anticipate upcoming words. To examine whether this also holds true for a non-transparent two-way gender system, i.e. Dutch, eye movements were monitored as participants followed spoken instructions to click on one of four displayed items on a screen (e.g., Klik op [Formula: see text] rode appel [Formula: see text], 'Click on the[Formula: see text] red apple[Formula: see text]'). The items contained the target, a colour- and/or gender-matching competitor, and two unrelated distractors. A mixed-effects regression analysis revealed that the presence of a colour-matching and/or gender-matching competitor significantly slowed the process of finding the target. The gender effect, however, was only observed for common nouns, reflecting the fact that neuter gender-marking cannot disambiguate as all Dutch nouns become neuter when used as diminutives. The gender effect for common nouns occurred before noun onset, suggesting that gender information is, at least partially, activated automatically before encountering the noun.

  12. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions

    Science.gov (United States)

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the

  13. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions.

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    Full Text Available The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China, were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils. Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern

  14. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  15. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  16. Electronic repository and standardization of processes and electronic documents in transport

    Directory of Open Access Journals (Sweden)

    Tomasz DĘBICKI

    2007-01-01

    Full Text Available The article refers to the idea of the use of electronic repository to store standardised scheme of processes between a Logistics Service Provider and its business partners. Application of repository for automatic or semi-automatic configuration of interoperability in electronic data interchange between information systems of differentcompanies based on transport (road, rail, sea and combined related processes. Standardisation includes processes, scheme of cooperation and related to them, electronic messages.

  17. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John Jr.; Mann, Michael J.A.; Holt, Robert M..; Kriel, Kelly

    2007-01-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods

  18. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  19. The peculiarities of process-based approach realization in transport sector company management

    Science.gov (United States)

    Khripko, Elena; Sidorov, Gennadiy

    2017-10-01

    In the present article we study the phenomena of multiple meaning in understanding process-based management method in construction of transport infrastructure facilities. The idea of multiple meaning is in distortions which appear during reception of the management process paradigm in organizational environment of transport sector. The cause of distortion in process management is organizational resistance. The distortions of management processes are discovered at the level of diffusion among spheres of responsibility, collision in forms of functional, project and process interaction between the owner of the process and its participants. The level of distortion is affected by the attitude towards the result of work which means that process understanding of the result is replaced by the functional one in practice of management. This transfiguration is the consequence of regressive defensive mechanisms of the organizational environment. On the base of experience of forming process management in construction of transport infrastructure facilities company of the issues of diagnostics of various forms of organizational resistance and ways of reducing the destructive influence on managing processes are reviewed.

  20. Connected vehicle impacts on transportation planning technical memorandum #2 : connected vehicle planning processes and products and stakeholder roles and responsibilities.

    Science.gov (United States)

    2015-01-01

    The objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should : be considered across the range of transportation planning processes and products developed by Stat...

  1. Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf

    Directory of Open Access Journals (Sweden)

    Xun Yue

    2012-01-01

    Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.

  2. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  3. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  4. Spatial Evaluation Approach in the Planning Process of Transport Logistic Terminals

    Directory of Open Access Journals (Sweden)

    Mitja Pavliha

    2006-09-01

    Full Text Available The "state-of-the-art" of the present global European situationis in desperate need for a new approach to development ofurban and rural environment with an interdisciplinary approach,when introducing the elements of transport infrastructureand transport infrastructure landscape into space and environment.In order to reach a decision regarding the location of a certaintransport logistic terminal some constraints (technical andtechnological as well as financial should be considered. Aspart of the process trying to respond to these constraints, associatedprimarily with the traffic conditions at the appointed networklocations, a careful evaluation in respect to cargo flowsand infrastructure connections as well as spatial planningshould be performed.M01phological indicators, which directly and indirectly affectthe structure and the form of the transport infrastructure elements- transport logistic terminals, are extracted and presentedin the paper. At this point, the paper concludes that thelaying down and the evaluation of transport infrastructure elementsare based on two categories of morphological elements:Constructed morphological elements (all constntctionsand their elements, andNatural morphological elements (topography, climate, vegetation,etc..The presented spatial methodology deals with the interactionsbetween the constructed and natural morphological elements- the quality and the characteristics of the design areadded to both groups.Findings and projections acquired on the basis of a spatialevaluation and transport logistic analysis constitute, togetherwith financial-economic assumptions, the basis for elaboratinga business plan - a significant element in the decision-makingprocess regarding the development of a transport logistic terminal.

  5. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    Science.gov (United States)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  6. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  7. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics

    DEFF Research Database (Denmark)

    Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L

    2018-01-01

    The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter...... as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities...... collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted...

  8. Groundwater Recharge Processes Revealed By Multi-Tracers Approach in a Headwater, North China Plain

    Science.gov (United States)

    Sakakibara, K.; Tsujimura, M.; Song, X.; Zhang, J.

    2014-12-01

    Groundwater recharge variation in space and time is crucial for effective water management especially in arid/ semi-arid regions. In order to reveal comprehensive groundwater recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were conducted at 4 times in different seasons in Wangkuai watershed, Taihang Mountains, which is a main groundwater recharge zone of North China Plain. The groundwater, spring, stream water and lake water were sampled, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate was observed in stable state condition. The stable isotopic compositions, silica and bicarbonate concentrations in the groundwater show close values as those in the surface water, suggesting main groundwater recharge occurs from surface water at mountain-plain transitional zone throughout a year. Also, the deuterium and oxgen-18 in the Wangkuai reservoir and the groundwater in the vicinity of the reservoir show higher values, suggesting the reservoir water, affected by evaporation effect, seems to have an important role for the groundwater recharge in alluvial plain. For specifying the groundwater recharge area and quantifying groundwater recharge rate from the reservoir, an inversion analysis and a simple mixing model were applied in Wangkuai watershed using stable isotopes of oxygen-18 and deuterium. The model results show that groundwater recharge occurs dominantly at the altitude from 357 m to 738 m corresponding to mountain-plain transitional zone, and groundwater recharge rate by Wangkuai reservoir is estimated to be 2.4 % of total groundwater recharge in Wangkuai watershed.

  9. Evaluation of transport safety analysis processes of radioactive material performed by a regulatory body

    International Nuclear Information System (INIS)

    Mattar, Patricia Morais

    2017-01-01

    Radioactive substances have many beneficial applications, ranging from power generation to uses in medicine, industry and agriculture. As a rule, they are produced in different places from where they are used, needing to be transported. In order for transport to take place safely and efficiently, national and international standards must be complied with. This research aims to assess the safety analysis processes for the transport of radioactive material carried out by the regulatory body in Brazil, from the point of view of their compliance with the International Atomic Energy Agency (IAEA) standards. The self-assessment methodology named SARIS, developed by the AIEA, was used. The following steps were carried out: evaluation of the Diagnosis and Processes Mapping; responses to the SARIS Question Set and complementary questions; SWOT analysis; interviews with stakeholders and evaluation of a TranSAS mission conducted by the IAEA in 2002. Considering only SARIS questions, processes are 100% adherent. The deepening of the research, however, led to the development of twenty-two improvement proposals and the identification of nine good practices. The results showed that the safety analysis processes of the transport of radioactive material are being carried out in a structured, safe and reliable way but also that there is much opportunity for improvement. The formulation of an action plan, based on the presented proposals, can bring to the regulatory body many benefits. This would be an important step towards convening an external evaluation, providing greater reliability and transparency to the regulatory body´s processes. (author)

  10. Contribution to the logistic evaluation system in the transportation process in Santo Domingo, Ecuador

    Directory of Open Access Journals (Sweden)

    Rodobaldo Martínez Vivar

    2018-02-01

    Full Text Available Purpose: The objective of the present research is to design and apply a methodology to evaluate the logistics system in the transportation process in a base vehicle fleet, which contributes to decrease the costs of distribution and to increase the performance of the logistics system of the organization. Design/methodology: The proposal of a holistic technology for the management of this process is carried out, which integrates indicators and tools that improve control and decision-making activities in this area. Findings: The application of the procedure developed in the selected organization contributed to the identification of deficiencies related to the availability of the equipment and the needs of the clients, the low technical availability of the automotive plant, the low utilization of the capacity of the freight vehicles, the absence of a plan of measures to diminish the empty routes of the transport and the overconsumption of fuel due to the accomplishment of extra trips. Aspects that contributed to the redesign of some of the main functions of physical distribution such as itinerary planning, selection of means of transport and analysis of operating indicators, aspects that favored the optimization of the number of trips and, consequently, the adequate use of the equipment and the loads to be transported, observing a saving of 15% in the fuel consumption per load transported. Originality: The originality of the present research lies in the combination of different theories and techniques that contribute from a holistic approach to the logistics evaluation of the transportation process, facilitating the optimization of transportation requirements, its operation and maintenance.

  11. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  12. The issue resolution process in the Civilian Radioactive Waste Transportation Program

    International Nuclear Information System (INIS)

    Holm, J.A.; Denny, S.

    1987-01-01

    The Civilian Radioactive Waste Management (OCRWM) Program consists of various technical and institutional program activities which engender concern from the general public and from policymakers at federal, state, and local levels. Most familiar are the concerns centered around selection of a site for a repository; however, the transportation portion of the OCRWM program also engenders similar concerns for safety, efficiency and effectiveness. The major Transportation institutional issues were detailed in the Institutional Plan, issued in 1986, and include topics such as liability, defense waste, routing, emergency response, risk identification and mitigation, cash integrity, inspection and enforcement of high-level waste shipments and use of overweight trucks as part of the modal mix. This paper will define the process being used to identify and resolve institutional issues, show how the technical and institutional issues interface and are addressed, and briefly describe four specific activities which illustrate the process of resolving institutional issues in the Transportation program

  13. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  14. A microcomputer controlled data acquisition and processing system to study material transport processes by means of radioactive nuclides

    International Nuclear Information System (INIS)

    Baetz, H.

    1991-01-01

    The availability of efficient and stout computer systems offers many opportunities for shaping measuring and evaluation techniques which are suitable also for studies of material transport processes. The dissertation shows that already with a relatively low expenditure of hardware, the share of software, however, should not be neglected, universal solutions for complex hardware systems are possible which are qualitatively superior to customary systems. In addition to studying material transport processes in industry, for which the presented MEAS has been developed, its suitability for use in radiochemical analyses for the development of new medicines is tested. Furthermore, its application for the continuous determination of surface density profiles is being worked on (stone resistance in power plants) or planned (thickness profiles of tubes for vehicle tires). (orig./HP) [de

  15. Proposal of flexible atomic and molecular process management for Monte Carlo impurity transport code based on object oriented method

    International Nuclear Information System (INIS)

    Asano, K.; Ohno, N.; Takamura, S.

    2001-01-01

    Monte Carlo simulation code on impurity transport has been developed by several groups to be utilized mainly for fusion related edge plasmas. State of impurity particle is determined by atomic and molecular processes such as ionization, charge exchange in plasma. A lot of atomic and molecular processes have been considered because the edge plasma has not only impurity atoms, but also impurity molecules mainly related to chemical erosion of carbon materials, and their cross sections have been given experimentally and theoretically. We need to reveal which process is essential in a given edge plasma condition. Monte Carlo simulation code, which takes such various atomic and molecular processes into account, is necessary to investigate the behavior of impurity particle in plasmas. Usually, the impurity transport simulation code has been intended for some specific atomic and molecular processes so that the introduction of a new process forces complicated programming work. In order to evaluate various proposed atomic and molecular processes, a flexible management of atomic and molecular reaction should be established. We have developed the impurity transport simulation code based on object-oriented method. By employing object-oriented programming, we can handle each particle as 'object', which enfolds data and procedure function itself. A user (notice, not programmer) can define property of each particle species and the related atomic and molecular processes and then each 'object' is defined by analyzing this information. According to the relation among plasma particle species, objects are connected with each other and change their state by themselves. Dynamic allocation of these objects to program memory is employed to adapt for arbitrary number of species and atomic/molecular reactions. Thus we can treat arbitrary species and process starting from, for instance, methane and acetylene. Such a software procedure would be useful also for industrial application plasmas

  16. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  17. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  18. Acting without seeing: Eye movements reveal visual processing without awareness Miriam Spering & Marisa Carrasco

    OpenAIRE

    Spering, Miriam; Carrasco, Marisa

    2015-01-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to part...

  19. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  20. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  1. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  2. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  3. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  4. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  5. Effect of nonequipotentiality of magnetic surfaces on the transport processes in a tokamak

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Shasharina, S.G.

    1987-01-01

    The effect of deflection of equipotential from the magnetic surfaces on the transport processes in a tokamak is considered. The values of radial and poloidal electric fields are determined self-consistently, particle and heat fluxes are calculated with regard to these fields. It is shown that in some cases the effect of the poloidal electric field on the current values is very substantial

  6. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  7. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  8. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  9. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  10. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  11. Development and optimization of radiographic and tomographic methods for characterization of water transport processes in PEM fuel cell materials

    International Nuclear Information System (INIS)

    Markoetter, Henning

    2013-01-01

    Water transport in polymer electrolyte membrane fuel cells (PEMFC) was non-destructively studied during operation with synchrotron X-ray radiography and tomography. The focus was set on the influence of the three-dimensional morphology of the cell materials on the water distribution and transport. Water management is still one of the mayor issues in PEMFC research. If the fuel cell is too dry, the proton conductivity (of the membrane) decreases leading to a performance loss and, in the worst case, to an irreversible damage of the membrane. On the other hand, the presence of water hinders the gas supply and causes a decrease in the cell performance. For this reason, effective water transport is a prerequisite for successful fuel cell operation. In this work the three-dimensional water transport through the gas diffusion layer (GDL) and its correlated with the 3D morphology of the cell materials has been revealed for the first time. It was shown that water is transported preferably through only a few larger pores which form transport paths of low resistance. This effect is pronounced because of the hydrophobic properties of the employed materials. In addition, water transport was found to be bidirectional, i. e. at appropriate locations a back and forth transport between GDL and flow field channels was observed. Furthermore, liquid water in the GDL was found to agglomerate preferably at the ribs of the flow field. This can be explained by condensation due to a temperature gradient in the cell and by the position, which is sheltered from the gas flow. Larger water accumulations in the gas supply channels were mainly attached to the channel wall opposing the GDL. The gas flow can bypass these agglomerations allowing a continuous gas supply. Moreover, it was shown that randomly distributed cracks in the micro porous layers (MPL) play an important role for the agglomeration of liquid water as they form preferred low resistance transport paths. In this work also

  12. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  13. Mg/Ca and Sr/Ca as novel geochemical proxies for understanding sediment transport processes within coral reefs

    Science.gov (United States)

    Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.

    2017-10-01

    Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of

  14. Patterns and processes of Mycobacterium bovis evolution revealed by phylogenomic analyses

    Science.gov (United States)

    Mycobacterium bovis is an important animal pathogen worldwide that parasitizes wild and domesticated vertebrate livestock as well as humans. A comparison of the five M. bovis complete genomes from UK, South Korea, Brazil and USA revealed four novel large-scale structural variations of at least 2,000...

  15. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  16. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  17. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  18. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  19. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  20. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  1. The influence of response competition on cerebral asymmetries for processing hierarchical stimuli revealed by ERP recordings

    OpenAIRE

    Malinowski, Peter; Hübner, Ronald; Keil, Andreas; Gruber, Thomas

    2002-01-01

    It is widely accepted that the left and right hemispheres differ with respect to the processing of global and local aspects of visual stimuli. Recently, behavioural experiments have shown that this processing asymmetry strongly depends on the response competition between the global and local levels of a stimulus. Here we report electrophysiological data that underline this observation. Hemispheric differences for global/local processing were mainly observed for responseincompatible stimuli an...

  2. Using data- and network science to reveal iterations and phase-transitions in the design process

    DEFF Research Database (Denmark)

    Piccolo, Sebastiano; Jørgensen, Sune Lehmann; Maier, Anja

    2017-01-01

    Understanding the role of iterations is a prevalent topic in both design research and design practice. Furthermore, the increasing amount of data produced and stored by companies leaves traces and enables the application of data science to learn from past design processes. In this article, we...... analyse a documentlog to show the temporal evolution of a real design process of a power plant by using exploratory data analysis and network analysis. We show how the iterative nature of the design process is reflected in archival data and how one might re-construct the design process, involving...

  3. Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and P. ramorum

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Land, Miriam L [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2008-08-01

    Phytophthora ramorum and Phytophthora sojae are destructive plant pathogens. Phytophthora sojae has a narrow host range whereas P. ramorum has a wide host range. A global proteomic comparison of the vegetative (mycelium) and infective (germinating-cyst) life-stages of P. sojae and P. ramorum was conducted to identify candidate proteins involved in host range, early infection and vegetative growth. Sixty-two candidates for early infection, 26 candidates for vegetative growth, and numerous proteins that may be involved in defining host specificity were identified. In addition, common life stage proteomic trends between the organisms were observed. In mycelia, proteins involved in transport and metabolism of amino acids, carbohydrates and other small molecules were up-regulated. In the germinating cysts, up-regulated proteins associated with lipid transport and metabolism, cytoskeleton and protein synthesis were observed. It appears that the germinating cyst catabolizes lipid reserves through the -oxidation pathway to drive the extensive protein synthesis necessary to produce the germ tube and initiate infection. Once inside the host, the pathogen switches to vegetative growth, where energy is derived from glycolysis and utilized for synthesis of amino acids and other molecules that assist survival in the plant tissue.

  4. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  5. Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: An outdoor stability study

    Directory of Open Access Journals (Sweden)

    F. Anderson S. Lima

    2016-02-01

    Full Text Available Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.

  6. Design process robustness: A bi-partite network analysis reveals the central importance of people

    DEFF Research Database (Denmark)

    Piccolo, Sebastiano; Jørgensen, Sune Lehmann; Maier, Anja

    2018-01-01

    , reducing the risk of rework and delays. Although there has been much progress in modelling and understanding design processes, little is known about the interplay between people and the activities they perform and its influence on design process robustness. To analyse this interplay, we model a large...

  7. New levels of language processing complexity and organization revealed by Granger causation

    Directory of Open Access Journals (Sweden)

    David W Gow

    2012-11-01

    Full Text Available Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all nonredundant potentially interacting signals, and has shown that even early processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of language-specific localized processes.

  8. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming

    NARCIS (Netherlands)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-01-01

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was

  9. New levels of language processing complexity and organization revealed by granger causation.

    Science.gov (United States)

    Gow, David W; Caplan, David N

    2012-01-01

    Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.

  10. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Directory of Open Access Journals (Sweden)

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  11. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  12. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  13. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  14. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  15. Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells

    Institute of Scientific and Technical Information of China (English)

    Nanaji Islavath; S Saroja; K Srinivas Reddy; P C Harikesh; G Veerappan; Shrikant V Joshi; Easwaramoorthi Ramasamy

    2017-01-01

    High-efficiency perovskite solar cells (PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere,which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology.In this work,we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance.It has been shown that phasepure crystalline tetragonal MAPbI3 perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process,undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au achieve opencircuit voltage (990 mV) and short-circuit current density (20.31 mA/cm2) comparable to those of best reported glove-box processed devices.Nevertheless,device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25.Dark current-voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMeTAD species,resulting in high seriesresistance and decreased fill-factor,The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor,copper thiocyanate,as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%.The present findings can have important implications in industrially viable fabrication of large-area PSCs.

  16. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  17. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    DEFF Research Database (Denmark)

    Skovstrup, Soren; David, Laurent; Taboureau, Olivier

    2012-01-01

    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand...... to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues...

  18. Mystery Montage: A Holistic, Visual, and Kinesthetic Process for Expanding Horizons and Revealing the Core of a Teaching Philosophy

    Science.gov (United States)

    Ennis, Kim; Priebe, Carly; Sharipova, Mayya; West, Kim

    2012-01-01

    Revealing the core of a teaching philosophy is the key to a concise and meaningful philosophy statement, but it can be an elusive goal. This paper offers a visual, kinesthetic, and holistic process for expanding the horizons of self-reflection, self-analysis, and self-knowledge. Mystery montage, a variation of visual mapping, storyboarding, and…

  19. Processing of acoustic and phonological information of lexical tones in Mandarin Chinese revealed by mismatch negativity.

    Science.gov (United States)

    Yu, Keke; Wang, Ruiming; Li, Li; Li, Ping

    2014-01-01

    The accurate perception of lexical tones in tonal languages involves the processing of both acoustic information and phonological information carried by the tonal signal. In this study we evaluated the relative role of the two types of information in native Chinese speaker's processing of tones at a preattentive stage with event-related potentials (ERPs), particularly the mismatch negativity (MNN). Specifically, we distinguished the acoustic from the phonological information by manipulating phonological category and acoustic interval of the stimulus materials. We found a significant main effect of phonological category for the peak latency of MMN, but a main effect of both phonological category and acoustic interval for the mean amplitude of MMN. The results indicated that the two types of information, acoustic and phonological, play different roles in the processing of Chinese lexical tones: acoustic information only impacts the extent of tonal processing, while phonological information affects both the extent and the time course of tonal processing. Implications of these findings are discussed in light of neurocognitive processes of phonological processing.

  20. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  1. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  2. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  3. Study of transport processes in soils and plants by microautoradiographic and radioabsorption methods

    International Nuclear Information System (INIS)

    Varro, T.; Gelencser, Judit; Somogyi, G.

    1987-01-01

    The concentration profiles of lead and boron in carrot root and potato tuber were determined at various diffusion times by microradiographic method. The transport process of nutrients, leaf-manures and plant-protecting agents in plants was investigated by radioabsorption method. The influence of the pH of soils and complex-forming agents on the effective diffusion coefficients of nutritives was studied by radioabsorption technique. In soils, the effective diffusion coefficient of the nutrients was found to change in the region of 10 -16 -10 -10 m 2 s -1 . The data of the measurements give valuable information about the transport processes in plants and soils. (author) 9 refs., 4 figs

  4. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T. [Univ Nice Sophia Antipolis, Sch Med, CEA, DSV, iBEB, SBTN, TIRO, F-06107 Nice (France); Chang, P. [CNRS, UPMC Biol Dev, UMR 7009, F-06230 Villefranche Sur Mer (France); Huc, S.; Darrouzet, E. [CEA Valrho, DSV, iBEB, SBTN, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na{sup +}/I{sup -} sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared {sup 125}I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in {approx} 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  5. Seasonal cycle of volume transport through Kerama Gap revealed by a 20-year global HYbrid Coordinate Ocean Model reanalysis

    Science.gov (United States)

    2015-11-10

    approaching eddies are both important in deter- mining flow direction through Kerama Gap. The preceding results in- dicate the important role of the... topography and its width is only about 50 km. Thus, esolving the transport requires fine horizontal resolution and a ver- ical coordinate system...complex topography that overs the shallow water near Kerama Gap and Okinawa Island, the kinawa trough, slope, and the deep ocean. The data assimilation

  6. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  7. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    International Nuclear Information System (INIS)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T.; Chang, P.; Huc, S.; Darrouzet, E.

    2008-01-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na + /I - sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared 125 I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in ∼ 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  8. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  9. Dynamic information processing states revealed through neurocognitive models of object semantics

    Science.gov (United States)

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  10. Psychophysical "blinding" methods reveal a functional hierarchy of unconscious visual processing.

    Science.gov (United States)

    Breitmeyer, Bruno G

    2015-09-01

    Numerous non-invasive experimental "blinding" methods exist for suppressing the phenomenal awareness of visual stimuli. Not all of these suppressive methods occur at, and thus index, the same level of unconscious visual processing. This suggests that a functional hierarchy of unconscious visual processing can in principle be established. The empirical results of extant studies that have used a number of different methods and additional reasonable theoretical considerations suggest the following tentative hierarchy. At the highest levels in this hierarchy is unconscious processing indexed by object-substitution masking. The functional levels indexed by crowding, the attentional blink (and other attentional blinding methods), backward pattern masking, metacontrast masking, continuous flash suppression, sandwich masking, and single-flash interocular suppression, fall at progressively lower levels, while unconscious processing at the lowest levels is indexed by eye-based binocular-rivalry suppression. Although unconscious processing levels indexed by additional blinding methods is yet to be determined, a tentative placement at lower levels in the hierarchy is also given for unconscious processing indexed by Troxler fading and adaptation-induced blindness, and at higher levels in the hierarchy indexed by attentional blinding effects in addition to the level indexed by the attentional blink. The full mapping of levels in the functional hierarchy onto cortical activation sites and levels is yet to be determined. The existence of such a hierarchy bears importantly on the search for, and the distinctions between, neural correlates of conscious and unconscious vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  12. Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis.

    Science.gov (United States)

    Zywicki, Marek; Bakowska-Zywicka, Kamilla; Polacek, Norbert

    2012-05-01

    The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manner.

  13. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact...

  14. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills

    OpenAIRE

    Bente, Sonja

    2010-01-01

    In this thesis a model for the complex interactions between deformation, degradation and transport processe in municipal solid waste landfills is presented. Key aspects of the model are a joint continuum mechanical framework and a monolithic solution of the governing equations within the Theory of Porous Media. Interactions are considered by coupling the governing physical fields over the domain of a representative elementary volume via selected state variables. A simplified two-stage degrada...

  15. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  16. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  17. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  18. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  19. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    Science.gov (United States)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  20. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    International Nuclear Information System (INIS)

    Lan, G; Jiang, J; Li, D D; Yi, W S; Zhao, Z; Nie, L N

    2013-01-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system

  1. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  2. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  3. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  4. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  5. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells

    KAUST Repository

    Wijeyasinghe, Nilushi; Regoutz, Anna; Eisner, Flurin; Du, Tian; Tsetseris, Leonidas; Lin, Yen-Hung; Faber, Hendrik; Pattanasattayavong, Pichaya; Li, Jinhua; Yan, Feng; McLachlan, Martyn A.; Payne, David J.; Heeney, Martin; Anthopoulos, Thomas D.

    2017-01-01

    spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl

  6. Varying acoustic-phonemic ambiguity reveals that talker normalization is obligatory in speech processing.

    Science.gov (United States)

    Choi, Ja Young; Hu, Elly R; Perrachione, Tyler K

    2018-04-01

    The nondeterministic relationship between speech acoustics and abstract phonemic representations imposes a challenge for listeners to maintain perceptual constancy despite the highly variable acoustic realization of speech. Talker normalization facilitates speech processing by reducing the degrees of freedom for mapping between encountered speech and phonemic representations. While this process has been proposed to facilitate the perception of ambiguous speech sounds, it is currently unknown whether talker normalization is affected by the degree of potential ambiguity in acoustic-phonemic mapping. We explored the effects of talker normalization on speech processing in a series of speeded classification paradigms, parametrically manipulating the potential for inconsistent acoustic-phonemic relationships across talkers for both consonants and vowels. Listeners identified words with varying potential acoustic-phonemic ambiguity across talkers (e.g., beet/boat vs. boot/boat) spoken by single or mixed talkers. Auditory categorization of words was always slower when listening to mixed talkers compared to a single talker, even when there was no potential acoustic ambiguity between target sounds. Moreover, the processing cost imposed by mixed talkers was greatest when words had the most potential acoustic-phonemic overlap across talkers. Models of acoustic dissimilarity between target speech sounds did not account for the pattern of results. These results suggest (a) that talker normalization incurs the greatest processing cost when disambiguating highly confusable sounds and (b) that talker normalization appears to be an obligatory component of speech perception, taking place even when the acoustic-phonemic relationships across sounds are unambiguous.

  7. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  8. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...

  9. Species-scanning mutagenesis of the serotonin transporter reveals residues essential in selective, high-affinity recognition of antidepressants

    DEFF Research Database (Denmark)

    Mortensen, O.V.; Wiborg, O.; Kristensen, A.S.

    2001-01-01

    )tropane, or for 3,4-methylenedioxymethamphetamine (MDMA). Analysis of six hSERT/bSERT chimeras and subsequent species-scanning mutagenesis of each isoform revealed methionine-180, tyrosine-495, and phenylalanine-513 to be responsible for the increase in citalopram and paroxetine potencies at hSERT and methionine...

  10. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.

    Science.gov (United States)

    Balestrini, Raffaella; Gómez-Ariza, Jorge; Lanfranco, Luisa; Bonfante, Paola

    2007-09-01

    The establishment of a symbiotic interaction between plant roots and arbuscular mycorrhizal (AM) fungi requires both partners to undergo significant morphological and physiological modifications which eventually lead to reciprocal beneficial effects. Extensive changes in gene expression profiles recently have been described in transcriptomic studies that have analyzed the whole mycorrhizal root. However, because root colonization by AM fungi involves different cell types, a cell-specific gene expression pattern is likely to occur. We have applied the laser microdissection (LMD) technology to investigate expression profiles of both plant and fungal genes in Lycopersicon esculentum roots colonized by Glomus mosseae. A protocol to harvest arbuscule-containing cells from paraffin sections of mycorrhizal roots has been developed using a Leica AS LMD system. RNA of satisfactory quantity and quality has been extracted for molecular analysis. Transcripts for plant phosphate transporters (LePTs), selected as molecular markers for a functional symbiosis, have been detected by reverse-transcriptase polymerase chain reaction assays and associated to distinct cell types, leading to novel insights into the distribution of LePT mRNAs. In fact, the transcripts of the five phosphate transporters (PTs) have been detected contemporaneously in the same arbusculated cell population, unlike from the neighboring noncolonized cells. In addition, fungal H(+)ATPase (GmHA5) and phosphate transporter (GmosPT) mRNAs were found exclusively in arbusculated cells. The discovery that five plant and one fungal PT genes are consistently expressed inside the arbusculated cells provides a new scenario for plant-fungus nutrient exchanges.

  11. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  12. Caught in the act: revealing the metastatic process by live imaging

    Directory of Open Access Journals (Sweden)

    Miriam R. Fein

    2013-05-01

    Full Text Available The prognosis of metastatic cancer in patients is poor. Interfering with metastatic spread is therefore important for achieving better survival from cancer. Metastatic disease is established through a series of steps, including breaching of the basement membrane, intravasation and survival in lymphatic or blood vessels, extravasation, and growth at distant sites. Yet, although we know the steps involved in metastasis, the cellular and molecular mechanisms of dissemination and colonization of distant organs are incompletely understood. Here, we review the important insights into the metastatic process that have been gained specifically through the use of imaging technologies in murine, chicken embryo and zebrafish model systems, including high-resolution two-photon microscopy and bioluminescence. We further discuss how imaging technologies are beginning to allow researchers to address the role of regional activation of specific molecular pathways in the metastatic process. These technologies are shedding light, literally, on almost every step of the metastatic process, particularly with regards to the dynamics and plasticity of the disseminating cancer cells and the active participation of the microenvironment in the processes.

  13. Conceptual processing in music as revealed by N400 effects on words and musical targets.

    Science.gov (United States)

    Daltrozzo, Jérôme; Schön, Daniele

    2009-10-01

    The cognitive processing of concepts, that is, abstract general ideas, has been mostly studied with language. However, other domains, such as music, can also convey concepts. Koelsch et al. [Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., & Friederici, A. D. Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 7, 302-307, 2004] showed that 10 sec of music can influence the semantic processing of words. However, the length of the musical excerpts did not allow the authors to study the effect of words on musical targets. In this study, we decided to replicate Koelsch et al. findings using 1-sec musical excerpts (Experiment 1). This allowed us to study the reverse influence, namely, of a linguistic context on conceptual processing of musical excerpts (Experiment 2). In both experiments, we recorded behavioral and electrophysiological responses while participants were presented 50 related and 50 unrelated pairs (context/target). Experiments 1 and 2 showed a larger N400 component of the event-related brain potentials to targets following a conceptually unrelated compared to a related context. The presence of an N400 effect with musical targets suggests that music may convey concepts. The relevance of these results for the comprehension of music as a structured set of conceptual units and for the domain specificity of the mechanisms underlying N400 effects are discussed.

  14. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  15. Using Regression to Measure Holistic Face Processing Reveals a Strong Link with Face Recognition Ability

    Science.gov (United States)

    DeGutis, Joseph; Wilmer, Jeremy; Mercado, Rogelio J.; Cohan, Sarah

    2013-01-01

    Although holistic processing is thought to underlie normal face recognition ability, widely discrepant reports have recently emerged about this link in an individual differences context. Progress in this domain may have been impeded by the widespread use of subtraction scores, which lack validity due to their contamination with control condition…

  16. Substrate and Inhibitor-Specific Conformational Changes in the Human Serotonin Transporter Revealed by Voltage-Clamp Fluorometry

    DEFF Research Database (Denmark)

    Söderhielm, Pella C; Andersen, Jacob; Munro, Lachlan

    2015-01-01

    of TM6, Ala419 in the interface between TM8 and extracellular loop (EL) 4, and Leu481 in EL5. The reporter positions were used for time-resolved measurement of conformational changes during 5-HT transport and binding of cocaine and the selective serotonin reuptake inhibitors fluoxetine and escitalopram...... changes overall, which included movements within or around TM1b, EL4, and EL5. Taken together, our data lead us to suggest that competitive inhibitors stabilize hSERT in a state that is different from the apo outward-open conformation as well as inward-facing conformations....

  17. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  19. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  20. Process and appliance for determining the nature of transported substances by measuring the radiations transmitted

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, Ian.

    1980-01-01

    The invention relates to a process for determining the nature of a substance transported, comprising the collimation of the radiation of not less than two energies so that they form beams; the irradiation of the matter transported by the beams, the detection of the non-scattered radiations for the two energies at least, after passing in the transported matter, and the deduction of the nature of the transported matter according to the radiations detected. The radiations are collimated by placing a shield around the gamma source (americium 241 or cesium 137). The detector is protected by a shield so that it prevents any significant interference due to the reactions near the surface provoked by those radiations not of the lowest energy, with detection of those radiations of lesser energy. In a variation, a source of relatively higher energy radiations is placed at a distance from the source of relatively lesser energy radiations. The latter have a component taken from natural ionizing radiation and this component is withdrawn to a predetermined calibration [fr

  1. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to

  2. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  3. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  4. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  5. De Hass-van Alphen and magnetoresistance reveal predominantly single-band transport behavior in PdTe2.

    Science.gov (United States)

    Wang, Yongjian; Zhang, Jinglei; Zhu, Wenka; Zou, Youming; Xi, Chuanying; Ma, Long; Han, Tao; Yang, Jun; Wang, Jingrong; Xu, Junmin; Zhang, Lei; Pi, Li; Zhang, Changjin; Zhang, Yuheng

    2016-08-12

    Research on two-dimensional transition metal dichalcogenides (TMDs) has grown rapidly over the past several years, from fundamental studies to the development of next generation technologies. Recently, it has been reported that the MX2-type PdTe2 exhibits superconductivity with topological surface state, making this compound a promising candidate for investigating possible topological superconductivity. However, due to the multi-band feature of most of TMDs, the investigating of magnetoresistance and quantum oscillations of these TMDs proves to be quite complicated. Here we report a combined de Hass-van Alphen effect and magnetoresistance studies on the PdTe2 single crystal. Our high-field de Hass-van Alphen data measured at different temperature and different tilting angle suggest that though these is a well-defined multi-band feature, a predominant oscillation frequency has the largest oscillation magnitude in the fast Fourier transformation spectra, which is at least one order of magnitude larger than other oscillation frequencies. Thus it is likely that the transport behavior in PdTe2 system can be simplified into a single-band model. Meanwhile, the magnetoresistance results of the PdTe2 sample can be well-fitted according to the single-band models. The present results could be important in further investigation of the transport behaviors of two-dimensional TMDs.

  6. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  7. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  8. Constant-scale natural boundary mapping to reveal global and cosmic processes

    CERN Document Server

    Clark, Pamela Elizabeth

    2013-01-01

    Whereas conventional maps can be expressed as outward-expanding formulae with well-defined central features and relatively poorly defined edges, Constant Scale Natural Boundary (CSNB) maps have well-defined boundaries that result from natural processes and thus allow spatial and dynamic relationships to be observed in a new way useful to understanding these processes. CSNB mapping presents a new approach to visualization that produces maps markedly different from those produced by conventional cartographic methods. In this approach, any body can be represented by a 3D coordinate system. For a regular body, with its surface relatively smooth on the scale of its size, locations of features can be represented by definite geographic grid (latitude and longitude) and elevation, or deviation from the triaxial ellipsoid defined surface. A continuous surface on this body can be segmented, its distinctive regional terranes enclosed, and their inter-relationships defined, by using selected morphologically identifiable ...

  9. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing

    OpenAIRE

    Cohen, M.X.; Ridderinkhof, K.R.

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (?200 ms post-stimulus) conflict modulation in ...

  10. New Levels of Language Processing Complexity and Organization Revealed by Granger Causation

    OpenAIRE

    Gow, David W.; Caplan, David N.

    2012-01-01

    Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that...

  11. Long Memory Processes Are Revealed in the Dynamics of the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Mark James Cook

    2014-10-01

    Full Text Available The pattern of epileptic seizures is often considered unpredictable, and the interval between events without correlation. A number of studies have examined the possibility that seizure activity, both in terms of event magnitude and inter-event intervals, respect a power-law relationship. Such relationships are found in a variety of natural and man-made systems, such as earthquakes or Internet traffic, and describe the relationship between the magnitude of an event and the number of events. We postulated that human inter-seizure intervals would follow a power law relationship, and furthermore that evidence for the existence of a long memory process could be established in this relationship. We studied 8 patients who had long-term ambulatory EEG data recorded as part of the assessment of a novel seizure prediction device, in which data was sufficiently stationary in 6. We demonstrated that a power law relationship could be established in these patients, β=1.5. In 5/6 subjects we found evidence of long memory process, spanning time scales from 30 minutes to 40 days, using a wavelet based analysis technique. The Hurst exponent values ranged from 0.5 to 0.76. We conclude there is evidence of long memory processes in adult human epilepsy, with a heterogeneous range of time scales demonstrated between individuals. This finding may provide evidence of phase-transitions underlying the dynamics of epilepsy.

  12. Speech processing asymmetry revealed by dichotic listening and functional brain imaging.

    Science.gov (United States)

    Hugdahl, Kenneth; Westerhausen, René

    2016-12-01

    In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Immediate relativity: EEG reveals early engagement of comparison in social information processing.

    Science.gov (United States)

    Ohmann, Katharina; Stahl, Jutta; Mussweiler, Thomas; Kedia, Gayannée

    2016-11-01

    A wide array of social decisions relies on social comparisons. As such, these decisions require fast access to relative information. Therefore, we expect that signatures of the comparative process should be observable in electrophysiological components at an early stage of information processing. However, to date, little is known about the neural time course of social target comparisons. Therefore, we tested this hypothesis in 2 electroencephalography (EEG) studies using a social distance effect paradigm. The distance effect capitalizes on the fact that stimuli close on a certain dimension take longer to compare than stimuli clearly differing on this dimension. Here, we manipulated the distance of face characteristics regarding their levels of attractiveness (Study 1) and trustworthiness (Study 2), 2 essential social dimensions. In both studies, size comparisons served as a nonsocial control condition. In Study 1, distance related effects were apparent 170 ms (vertex positive potential, VPP) and 200 ms (N2) after stimulus onset for attractiveness comparisons. In Study 2, trustworthiness comparisons took effect already after 100 ms (N1) and likewise carried over to an event-related N2. Remarkably, we observed a similar temporal pattern for social (attractiveness, trustworthiness) and nonsocial (size) dimensions. These results speak in favor of an early encoding of comparative information and emphasize the primary role of comparison in social information processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  15. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  16. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  17. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  18. Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes

    Directory of Open Access Journals (Sweden)

    Stéphane eHACQUARD

    2013-11-01

    Full Text Available Most rust fungi have a complex life cycle involving up to five different spore-producing stages. The telial stage that produces melanised overwintering teliospores is one of these and plays a fundamental role for generating genetic diversity as karyogamy and meiosis occur at that stage. Despite the importance of telia for the rust life cycle, almost nothing is known about the fungal genetic programs that are activated in this overwintering structure. In the present study, the transcriptome of telia produced by the poplar rust fungus M. larici-populina has been investigated using whole genome exon oligoarrays and RT-qPCR. Comparative expression profiling at the telial and uredinial stages identifies genes specifically expressed or up-regulated in telia including osmotins/thaumatin-like proteins and aquaporins that may reflect specific adaptation to overwintering as well numerous lytic enzymes acting on plant cell wall, reflecting extensive cell wall remodelling at that stage. The temporal dynamics of karyogamy was followed using combined RT-qPCR and DAPI-staining approaches. This reveals that fusion of nuclei and induction of karyogamy-related genes occur simultaneously between the 25-39 days post inoculation time frame. Transcript profiling of conserved meiosis genes indicate a preferential induction right after karyogamy and corroborate that meiosis begins prior to overwintering and is interrupted in Meiosis I (prophase I, diplonema stage until teliospore germination in early spring.

  19. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  20. Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping.

    LENUS (Irish Health Repository)

    Yeap, Sherlyn

    2009-11-01

    BACKGROUND: Etiological commonalities are apparent between bipolar disorder and schizophrenia. For example, it is becoming clear that both populations show similar electrophysiological deficits in the auditory domain. Recent studies have also shown robust visual sensory processing deficits in patients with schizophrenia using the event-related potential technique, but this has not been formally tested in those with bipolar disorder. Our goal here was to assess whether early visual sensory processing in patients with bipolar disorder, as indexed by decreased amplitude of the P1 component of the visual evoked potential (VEP), would show a similar deficit to that seen in those with schizophrenia. Since the P1 deficit has already been established as an endophenotype in schizophrenia, a finding of commonality between disorders would raise the possibility that it represents a measure of common genetic liability. METHODS: We visually presented isolated-check stimuli to euthymic patients with a diagnosis of bipolar disorder and age-matched healthy controls within a simple go\\/no-go task and recorded VEPs using high-density (72-channel) electroencephalography. RESULTS: The P1 VEP amplitude was substantially reduced in patients with bipolar disorder, with an effect size of f = 0.56 (large according to Cohen\\'s criteria). LIMITATIONS: Our sample size was relatively small and as such, did not allow for an examination of potential relations between the physiologic measures and clinical measures. CONCLUSION: This reduction in P1 amplitude among patients with bipolar disorder represents a dysfunction in early visual processing that is highly similar to that found repeatedly in patients with schizophrenia and their healthy first-degree relatives. Since the P1 deficit has been related to susceptibility genes for schizophrenia, our results raise the possibility that the deficit may in fact be more broadly related to the development of psychosis and that it merits further

  1. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy.

    Science.gov (United States)

    Hovhannisyan, V; Guo, H W; Hovhannisyan, A; Ghukasyan, V; Buryakina, T; Chen, Y F; Dong, C Y

    2014-05-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.

  2. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  3. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  4. Indirect Transportation Cost in the border crossing process: The United States–Mexico trade

    Directory of Open Access Journals (Sweden)

    Carlos Obed Figueroa Ortiz

    2015-12-01

    Full Text Available Using a Social Accounting Matrix as database, a Computable General Equilibrium model is implemented in order to estimate the Indirect Transportations Costs (ITC present in the border crossing for the U.S.–Mexico bilateral trade. Here, an “iceberg–type” transportation function is assumed to determine the amount of loss that must be faced as a result of border crossing process through the ports of entry existing between the two countries. The study period covers annual data from 1995 to 2009 allowing the analysis of the trend of these costs considering the trade liberalisation that is experienced. Results show that the ITC have experienced a decrease of 12% during the period.Test

  5. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  6. Process of Judging Significant Modifications for Different Transportation Systems compared to the Approach for Nuclear Installations

    Directory of Open Access Journals (Sweden)

    Nicolas Petrek

    2015-12-01

    Full Text Available The implementation of the CSM regulation by the European Commission in 2009 which harmonizes the risk assessment process and introduces a rather new concept of judging changes within the European railway industry. This circumstance has risen the question how other technology sectors handle the aspect of modifications and alterations. The paper discusses the approaches for judging the significance of modifications within the three transport sectors of European railways, aviation and maritime transportation and the procedure which is used in the area of nuclear safety. We will outline the similarities and differences between these four methods and discuss the underlying reasons. Finally, we will take into account the role of the European legislator and the fundamental idea of a harmonization of the different approaches.

  7. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  8. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    Science.gov (United States)

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  10. Vibrotactile masking experiments reveal accelerated somatosensory processing in congenitally blind braille readers.

    Science.gov (United States)

    Bhattacharjee, Arindam; Ye, Amanda J; Lisak, Joy A; Vargas, Maria G; Goldreich, Daniel

    2010-10-27

    Braille reading is a demanding task that requires the identification of rapidly varying tactile patterns. During proficient reading, neighboring characters impact the fingertip at ∼100 ms intervals, and adjacent raised dots within a character at 50 ms intervals. Because the brain requires time to interpret afferent sensorineural activity, among other reasons, tactile stimuli separated by such short temporal intervals pose a challenge to perception. How, then, do proficient Braille readers successfully interpret inputs arising from their fingertips at such rapid rates? We hypothesized that somatosensory perceptual consolidation occurs more rapidly in proficient Braille readers. If so, Braille readers should outperform sighted participants on masking tasks, which demand rapid perceptual processing, but would not necessarily outperform the sighted on tests of simple vibrotactile sensitivity. To investigate, we conducted two-interval forced-choice vibrotactile detection, amplitude discrimination, and masking tasks on the index fingertips of 89 sighted and 57 profoundly blind humans. Sighted and blind participants had similar unmasked detection (25 ms target tap) and amplitude discrimination (compared with 100 μm reference tap) thresholds, but congenitally blind Braille readers, the fastest readers among the blind participants, exhibited significantly less masking than the sighted (masker, 50 Hz, 50 μm; target-masker delays, ±50 and ±100 ms). Indeed, Braille reading speed correlated significantly and specifically with masking task performance, and in particular with the backward masking decay time constant. We conclude that vibrotactile sensitivity is unchanged but that perceptual processing is accelerated in congenitally blind Braille readers.

  11. Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Vida Čadež

    2018-06-01

    Full Text Available Amorphous calcium phosphate (ACP attracts attention as a precursor of crystalline calcium phosphates (CaPs formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS and laser diffraction (LD. In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, and atomic force microscopy (AFM. The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest.

  12. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    Science.gov (United States)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  13. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  14. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  15. ERPs reveal deficits in automatic cerebral stimulus processing in patients with NIDDM.

    Science.gov (United States)

    Vanhanen, M; Karhu, J; Koivisto, K; Pääkkönen, A; Partanen, J; Laakso, M; Riekkinen, P

    1996-11-04

    We compared auditory event-related potentials (ERPs) and neuropsychological test scores in nine patients with non-insulin-dependent diabetes mellitus (NIDDM) and in nine control subjects. The measures of automatic stimulus processing, habituation of auditory N100 and mismatch negativity (MMN) were impaired in patients. No differences were observed in the N2b and P3 components, which presumably reflect conscious cognitive analysis of the stimuli. A trend towards impaired performance in the Digit Span backward was found in diabetic subjects, but in the tests of secondary or long-term memory the groups were comparable. Patients with NIDDM may have defects in arousal and in the automatic ability to redirect attention, which can affect their cognitive performance.

  16. The Rational Adolescent: Strategic Information Processing during Decision Making Revealed by Eye Tracking.

    Science.gov (United States)

    Kwak, Youngbin; Payne, John W; Cohen, Andrew L; Huettel, Scott A

    2015-01-01

    Adolescence is often viewed as a time of irrational, risky decision-making - despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics.

  17. Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2007-06-01

    Full Text Available In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%-15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding should be considered in the context of changes in the amplitude and phase of genetic oscillations.

  18. The Rational Adolescent: Strategic Information Processing during Decision Making Revealed by Eye Tracking

    Science.gov (United States)

    Kwak, Youngbin; Payne, John W.; Cohen, Andrew L.; Huettel, Scott A.

    2015-01-01

    Adolescence is often viewed as a time of irrational, risky decision-making – despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics. PMID:26388664

  19. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Cardinali, Federica; Aquilanti, Lucia; Riolo, Paola; Ruschioni, Sara; Isidoro, Nunzio; Clementi, Francesca

    2017-04-01

    Entomophagy has been linked to nutritional, economic, social and ecological benefits. However, scientific studies on the potential safety risks in eating edible insects need to be carried out for legislators, markets and consumers. In this context, the microbiota of edible insects deserves to be deeply investigated. The aim of this study was to elucidate the microbial species occurring in some processed marketed edible insects, namely powdered small crickets, whole dried small crickets (Acheta domesticus), whole dried locusts (Locusta migratoria), and whole dried mealworm larvae (Tenebrio molitor), through culture-dependent (classical microbiological analyses) and -independent methods (pyrosequencing). A great bacterial diversity and variation among insects was seen. Relatively low counts of total mesophilic aerobes, Enterobacteriaceae, lactic acid bacteria, Clostridium perfringens spores, yeasts and moulds in all of the studied insect batches were found. Furthermore, the presence of several gut-associated bacteria, some of which may act as opportunistic pathogens in humans, were found through pyrosequencing. Food spoilage bacteria were also identified, as well as Spiroplasma spp. in mealworm larvae, which has been found to be related to neurodegenerative diseases in animals and humans. Although viable pathogens such as Salmonella spp. and Listeria monocytogenes were not detected, the presence of Listeria spp., Staphylococcus spp., Clostridium spp. and Bacillus spp. (with low abundance) was also found through pyrosequencing. The results of this study contribute to the elucidation of the microbiota associated with edible insects and encourage further studies aimed to evaluate the influence of rearing and processing conditions on that microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Auditory N1 reveals planning and monitoring processes during music performance.

    Science.gov (United States)

    Mathias, Brian; Gehring, William J; Palmer, Caroline

    2017-02-01

    The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks. © 2016 Society for Psychophysiological Research.

  1. Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory.

    Science.gov (United States)

    Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan

    2017-08-01

    Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  3. Collection, transport and general processing of clinical specimens in Microbiology laboratory.

    Science.gov (United States)

    Sánchez-Romero, M Isabel; García-Lechuz Moya, Juan Manuel; González López, Juan José; Orta Mira, Nieves

    2018-02-06

    The interpretation and the accuracy of the microbiological results still depend to a great extent on the quality of the samples and their processing within the Microbiology laboratory. The type of specimen, the appropriate time to obtain the sample, the way of sampling, the storage and transport are critical points in the diagnostic process. The availability of new laboratory techniques for unusual pathogens, makes necessary the review and update of all the steps involved in the processing of the samples. Nowadays, the laboratory automation and the availability of rapid techniques allow the precision and turn-around time necessary to help the clinicians in the decision making. In order to be efficient, it is very important to obtain clinical information to use the best diagnostic tools. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  5. Fossil imprints of the Pan-African collision process revealed by seismic anisotropy in southern Madagasca

    Science.gov (United States)

    Tilmann, F. J.; Rindraharisaona, E. J.; Reiss, M. C.; Dreiling, J.; Rumpker, G.; Yuan, X.; Giese, J.; Priestley, K. F.; Wysession, M. E.; Barruol, G.; Rambolamanana, G.

    2017-12-01

    In the assembly of Pangaea during the Proterozoic Pan-African Orogeny and later rifting and break-up of Gondwanaland, Madagascar occupied a central position, sandwiched between East Africa and India-Seychelles. Today, its metamorphic terranes still bear witness to the collision process. In the SELASOMA project we have deployed a seismic array in southern Madagascar in order to determine the imprint of these events onto the present day-crustal structure. 25 broadband and 23 SP stations were deployed for a period of 1-2 years. We present an overview of the results of several studies (receiver functions, ambient noise surface wave analysis, SKS splitting) constraining the isotropic and anisotropic crustal structure of southern Madagascar based on this deployment, supplemented by permanent stations and the contemporaneous MACOMO and RHUM-RUM deployments. The upper and middle crust of the Archean and Proterozoic provinces is overall quite similar, but a remarkable difference is that the Archean crust shows clear signs of underplating; we surmise that the Proterozoic crust was lost in the Pan-African collision. Both horizontal (from shear-wave splitting) and radial (SH/SV from Love and Rayleigh discrepancy) anisotropy shows evidence of collisional processes. A 150 km-wide zone of anomalous splitting measurements (deviating from the APM-parallel fast directions in most of Madagascar) in the region, where several major fossil shear zones have been mapped, can be explained as a zone of extensive coherent deformation within the crust; fast directions here align with the dominant strike of the major fossil shear zones. Negative radial anisotropy (i.e., SV faster than SH) in the mid-crust, likewise interpreted to have been formed by the collision, highlights the likely role of vertical shearing, presumably caused by extensive folding. In the lower crust, however, positive radial anisotropy is found in most of the Proterozoic and Archean terranes, which, analogous to the

  6. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Science.gov (United States)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  7. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination.

    Science.gov (United States)

    Zhang, Hong; Zhou, Ke-Xin; Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan

    2017-06-01

    Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, Pgermination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Sub-processes of motor learning revealed by a robotic manipulandum for rodents.

    Science.gov (United States)

    Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A

    2015-02-01

    Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Interplay of Multisensory Processing, Attention, and Consciousness as Revealed by Bistable Figures

    Directory of Open Access Journals (Sweden)

    Su-Ling Yeh

    2011-10-01

    Full Text Available We examined the novel crossmodal semantic congruency effect on bistable figures in which a static stimulus gives rise to two competing percepts that alternate over time. Participants viewed the bistable figure “my wife or my mother-in-law” while listening to the voice of an old woman or a young lady speaking in an unfamiliar language. They had to report whether they saw the old woman, the young lady, or a mixed percept. Robust crossmodal semantic congruency effects in the measures of the first percept and the predominance duration were observed. The possibilities that the participants simply responded to, and/or that they fixed at the location in favor of, the percept congruent with the sound that they happened to hear were ruled out. When the participants were instructed to maintain their attention to a specific view, a strong top-down modulation on the perception of bistable figure was observed, although the audiovisual semantic congruency effect still remained. These results thus demonstrate that top-down attention (ie,, selection and/or voluntary control modulates the audiovisual semantic congruency effect. As the alternating percepts in bistable figures indicate competition for conscious perception, this study has important implications for the multifaceted interactions between multisensory processing, attention, and consciousness.

  10. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Repetition-related reductions in neural activity reveal component processes of mental simulation.

    Science.gov (United States)

    Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L

    2014-05-01

    In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.

  12. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice.

    Science.gov (United States)

    Matsuo, Tomohiko; Hattori, Tatsuya; Asaba, Akari; Inoue, Naokazu; Kanomata, Nobuhiro; Kikusui, Takefumi; Kobayakawa, Reiko; Kobayakawa, Ko

    2015-01-20

    Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.

  14. Improved performance of organic solar cells with solution processed hole transport layer

    Science.gov (United States)

    Bhargav, Ranoo; Gairola, S. P.; Patra, Asit; Naqvi, Samya; Dhawan, S. K.

    2018-06-01

    This work is based on Cobalt Oxide as solution processed, inexpensive and effective hole transport layer (HTL) for efficient organic photovoltaic applications (OPVs). In Organic solar cell (OSC) devices ITO coated glass substrate used as a transparent anode electrode for light incident, HTL material Co3O4 dissolve in DMF solvent deposited on anode electrode, after that active layer material (donor/acceptor) deposited on to HTL and finally Al were deposited by thermal evaporation used as cathode electrode. These devices were fabricated with PCDTBT well known low band gap donor material in OSCs and blended with PC71BM as an acceptor material using simplest device structure ITO/Co3O4/active layer/Al at ambient conditions. The power conversion efficiencies (PCEs) based on Co3O4 and PEDOT:PSS have been achieved to up to 3.21% and 1.47% with PCDTBT respectively. In this study we reported that the devices fabricated with Co3O4 showed better performance as compare to the devices fabricated with well known and most studied solution processed HTL material PEDOT:PSS under identical environmental conditions. The surface morphology of the HTL film was characterized by (AFM). Lastly, we have provided Co3O4 as an efficient hole transport material HTL for solution processed organic photovoltaic applications.

  15. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji

    1998-01-01

    In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  16. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    Science.gov (United States)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  17. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  18. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Science.gov (United States)

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2014-08-01

    In this work, we performed DNA microarray studies on lager brewer's yeast Saccharomyces pastorianus to investigate changes in gene expression in the process of autolysis. The two strains we used were Qing2 and 5-2. Strain 5-2 is a mutant of Qing2 and autolyzes much more slowly than its parent strain. Four samples of these two strains during different autolysis stages (0% and 15%) were tested using DNA microarray containing > 10,000 yeast's genes. Analysis of genes with the same transcription pattern (up- or down-regulated in both strains) showed that the same 99 genes were up-regulated (transcription levels were increased), and the same 97 genes were down-regulated (transcription levels were decreased) by fivefold or more during autolysis. Genes involved in energy production/utilization, protein anabolism, and stress response were down-regulated. Genes related to cell wall organization and biogenesis, starvation response and DNA damage response were up-regulated. Analysis of genes with opposite transcription patterns (up-regulated in one strain and down-regulated in the other one) showed that 246 genes were up-regulated in 5-2 (autolyzes slowly) and down-regulated in Qing2 (autolyzes rapidly). Another 18 genes had opposite transcription levels, indicating that the strain which autolyzes slowly had better cell vitality despite the same autolysis stage. These findings might further promote the global understanding of autolysis in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite

    International Nuclear Information System (INIS)

    Arai, Takashi; Tsukahara, Hiroaki; Morikiyo, Toshiro

    2003-01-01

    The Nojima fault appeared on the surface in the northern part of Awaji Island, central Japan as a result of the Hyogo-ken Nanbu earthquake (1995, M=7.2). Active fault drilling was performed by the Disaster Prevention Research Institute (DPRI), Kyoto University, and core samples were retrieved from 1410 to 1710 m, which were composed of intact and fractured granodiorites. We obtained calcite samples and gas samples from the vein in marginal fracture and non-fracture zones. We analyzed the carbon and oxygen isotope ratios of calcite and carbon dioxide to investigate the characteristic isotope ratios of fluids in the active fault zone, to estimate the origins of fluids, and to determine the sealing process of fractures. The analyzed values of carbon and oxygen isotope ratios of calcite were -10.3 to -7.2 per mille, 18 to 23 per mille, respectively, and carbon isotope ratios of CO 2 were -21 to -17 per mille. If carbon isotope ratios of calcite were at equilibrium with those of CO 2 , the precipitation temperature of calcite is calculated to be 30 to 50 deg C. This temperature is consistent with the present temperature of the depth where drilling cores were retrieved. Oxygen isotope ratios of H 2 O that, precipitated calcite were calculated to be -1.8 to -5.5 per mille. These values indicate calcite were precipitated from mixed fluids of sea water and meteoric water. Therefore, the marginal fracture zone of the Nojima fault was sealed with calcite, which was generated from mixing of sea water and meteoric water in situ. (author)

  1. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing.

    Science.gov (United States)

    Guéguin, Marie; Le Bouquin-Jeannès, Régine; Faucon, Gérard; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2007-02-01

    The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.

  2. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  3. Transport processes for Chernobyl-labelled sediments: preliminary evidence from upland mid-Wales

    International Nuclear Information System (INIS)

    Bonnett, P.J.P.; Leeks, G.J.L.; Cambray, R.S.

    1989-01-01

    The nuclear accident at Chernobyl in April 1986 resulted in a significant increase in the inventory of radiocaesium retained in the soil in many regions of the United Kingdom. The deposition of 134 Cs provides a convenient tool for the examination of erosional processes in upland systems. Detailed soil sampling has been undertaken within the Plynlimon experimental catchments to establish the pattern of deposition of Chernobyl-derived radionuclides. The preliminary results of a combined radiometric and mineral magnetic approach to the study of the transport of Chernobyl-labelled sediments and their source areas on these upland catchments in mid-Wales are described. (author)

  4. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    Science.gov (United States)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  5. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    Science.gov (United States)

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents.

  6. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  7. Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes

    Directory of Open Access Journals (Sweden)

    Robert Matindi

    2018-10-01

    Full Text Available In Australia, Bioenergy plays an important role in modern power systems, where many biomass resources provide greenhouse gas neutral and electricity at a variety of scales. By 2050, the Biomass energy is projected to have a 40-50 % share as an alternative source of energy. In addition to conversion of biomass, barriers and uncertainties in the production, supply may hinder biomass energy development. The sugarcane is an essential ingredient in the production of Bioenergy, across the whole spectrum ranging from the first generation to second generation, e.g., production of energy from the lignocellulosic component of the sugarcane initially regarded as waste (bagasse and cane residue. Sustainable recovery of the Lignocellulosic component of sugarcane from the field through a structured process is largely unknown and associated with high capital outlay that have stifled the growth of bioenergy sector. In this context, this paper develops a new scheduler to optimise the recovery of lignocellulosic component of sugarcane and cane, transport and harvest systems with reducing the associated costs and operational time. An Optimisation Algorithm called Limited Discrepancy Search has been adapted and integrated with the developed scheduling transport algorithms. The developed algorithms are formulated and coded by Optimization Programming Language (OPL to obtain the optimised cane and cane residues transport schedules. Computational experiments demonstrate that high-quality solutions are obtainable for industry-scale instances. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and criteria.

  8. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2012-01-01

    This paper evaluates alternative fuels for the Greek road transport sector, using the Analytic Hierarchy Process. Seven different alternatives of fuel mode are considered in this paper: internal combustion engine (ICE) and its combination with petroleum and 1st and 2nd generation biofuels blends, fuel cells, hybrid vehicles, plug-in hybrids and electric vehicles. The evaluation of alternative fuel modes is performed according to cost and policy aspects. In order to evaluate each alternative fuel, one base scenario and ten alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all ten alternative scenarios. It is concluded that ICE blended with 1st and 2nd generation biofuels are the most suitable alternative fuels for the Greek road transport sector. - Highlights: ► Alternative fuels for the Greek road transport sector have been evaluated. ► The method of the AHP was used. ► Seven different alternatives of fuel mode are considered. ► The evaluation is performed according to cost and policy aspects. ► The ICE with 1st and 2nd generation biofuels are the most suitable fuels.

  9. Long wavelength approximation of transport processes in a single-band crystal

    International Nuclear Information System (INIS)

    Ferrari, Loris

    2014-01-01

    The single band, long wavelength approximation (SBA–LWA) is currently used in textbooks as a quasi-free-particle picture of the motion in a quantum crystal. The resulting transport process might thereby look a trivial issue. In contrast, we shall show that the SBA–LWA hides some controversial aspects that should be clarified at the level of an advanced course of condensed matter physics, and refer to the incompleteness of the SBA representation. In particular, it will be shown that the single-band velocity v 1B , expressed in terms of the projectors on the Bloch states, cannot be a transport velocity in a full sense, since the resulting current violates the continuity equation. The drawback manifests itself as a ‘lost’ current J lost , which provides a non conventional estimate of the limits of accuracy of SBA–LWA. The vanishing of J lost corresponds to the effective mass approximation in which the dispersion relation can be reduced to a quadratic form in the (pseudo) momentum components. In practice, the quantity transported by v 1B is not the bare mass, but the effective mass, until this notion does make sense. Recalling that the non-quadratic expression of the relativistic kinetic energy leads to a difference between the rest and moving mass, the notion of the lost current is finally used as a non-conventional approach to relativistic quantum mechanics, with special reference to Dirac’s theory. (paper)

  10. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  11. Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory

    Directory of Open Access Journals (Sweden)

    Emmanuel eBigand

    2014-06-01

    Full Text Available During the last decade, it has been argued that 1 music processing involves syntactic representations similar to those observed in language, and 2 that music and language share similar syntactic-like processes and neural resources. This claim is important for understanding the origin of music and language abilities and, furthermore, it has clinical implications. The Western musical system, however, is rooted in psychoacoustic properties of sound, and this is not the case for linguistic syntax. Accordingly, musical syntax processing could be parsimoniously understood as an emergent property of auditory memory rather than a property of abstract processing similar to linguistic processing. To support this view, we simulated numerous empirical studies that investigated the processing of harmonic structures, using a model based on the accumulation of sensory information in auditory memory. The simulations revealed that most of the musical syntax manipulations used with behavioral and neurophysiological methods as well as with developmental and cross-cultural approaches can be accounted for by the auditory memory model. This led us to question whether current research on musical syntax can really be compared with linguistic processing. Our simulation also raises methodological and theoretical challenges to study musical syntax while disentangling the confounded low-level sensory influences. In order to investigate syntactic abilities in music comparable to language, research should preferentially use musical material with structures that circumvent the tonal effect exerted by psychoacoustic properties of sounds.

  12. Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory.

    Science.gov (United States)

    Bigand, Emmanuel; Delbé, Charles; Poulin-Charronnat, Bénédicte; Leman, Marc; Tillmann, Barbara

    2014-01-01

    During the last decade, it has been argued that (1) music processing involves syntactic representations similar to those observed in language, and (2) that music and language share similar syntactic-like processes and neural resources. This claim is important for understanding the origin of music and language abilities and, furthermore, it has clinical implications. The Western musical system, however, is rooted in psychoacoustic properties of sound, and this is not the case for linguistic syntax. Accordingly, musical syntax processing could be parsimoniously understood as an emergent property of auditory memory rather than a property of abstract processing similar to linguistic processing. To support this view, we simulated numerous empirical studies that investigated the processing of harmonic structures, using a model based on the accumulation of sensory information in auditory memory. The simulations revealed that most of the musical syntax manipulations used with behavioral and neurophysiological methods as well as with developmental and cross-cultural approaches can be accounted for by the auditory memory model. This led us to question whether current research on musical syntax can really be compared with linguistic processing. Our simulation also raises methodological and theoretical challenges to study musical syntax while disentangling the confounded low-level sensory influences. In order to investigate syntactic abilities in music comparable to language, research should preferentially use musical material with structures that circumvent the tonal effect exerted by psychoacoustic properties of sounds.

  13. Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory

    Science.gov (United States)

    Bigand, Emmanuel; Delbé, Charles; Poulin-Charronnat, Bénédicte; Leman, Marc; Tillmann, Barbara

    2014-01-01

    During the last decade, it has been argued that (1) music processing involves syntactic representations similar to those observed in language, and (2) that music and language share similar syntactic-like processes and neural resources. This claim is important for understanding the origin of music and language abilities and, furthermore, it has clinical implications. The Western musical system, however, is rooted in psychoacoustic properties of sound, and this is not the case for linguistic syntax. Accordingly, musical syntax processing could be parsimoniously understood as an emergent property of auditory memory rather than a property of abstract processing similar to linguistic processing. To support this view, we simulated numerous empirical studies that investigated the processing of harmonic structures, using a model based on the accumulation of sensory information in auditory memory. The simulations revealed that most of the musical syntax manipulations used with behavioral and neurophysiological methods as well as with developmental and cross-cultural approaches can be accounted for by the auditory memory model. This led us to question whether current research on musical syntax can really be compared with linguistic processing. Our simulation also raises methodological and theoretical challenges to study musical syntax while disentangling the confounded low-level sensory influences. In order to investigate syntactic abilities in music comparable to language, research should preferentially use musical material with structures that circumvent the tonal effect exerted by psychoacoustic properties of sounds. PMID:24936174

  14. Realistic integration of sorption processes in transport codes for long-term safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Fluegge, Judith; Britz, Susan; Schneider, Anke [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Brendler, Vinzenz; Stockmann, Madlen; Schikora, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Lampe, Michael [Frankfurt Univ. (Germany). Goethe Center for Scientific Computing

    2012-09-15

    One important aspect in long-term safety assessment is related to radionuclide transport in geologic formations. In order to assess its consequences over assessment periods of one million years numerical models describing flow and transport are applied. Sorption on mineral surfaces is the most relevant process retarding radionuclide transport. On the one hand an increased transport time might cause a decrease in radionuclide concentration by radioactive decay. On the other hand it might increase concentrations of dose-relevant daughter nuclides in decay chains. In order to treat the radionuclide sorption processes in natural systems close to reality the so-called smart K{sub d}-concept is implemented into the transport program r{sup 3}t, which is applied to large model areas and very long time scales in long-term safety assessment. In the first stage this approach is developed for a typical sedimentary system covering rock salt and clay formations in Northern Germany. The smart K{sub d}-values are based on mechanistic surface complexation models (SCM), varying in time and space and de-pending on the actual geochemical conditions, which might change in the future e. g. due to the impact of climate changes. The concept developed and introduced here is based on a feasible treatment of the most relevant geochemical parameters in the transport code as well as on a matrix of smart K{sub d}-values calculated in dependence on these parameters. The implementation of the concept comprises the selection of relevant elements and minerals to be considered, an experimental program to fill data gaps of the thermody-namic sorption database, an uncertainty and sensitivity analysis to identify the most important environmental parameters influencing sorption of long-term relevant radionu-clides, the creation of a matrix with K{sub d}-values dependent on the selected environmental parameters, and the development and realisation of the conceptual model for treatment of temporal and

  15. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target.

    Science.gov (United States)

    Fedeles, Bogdan I; Zhu, Angela Y; Young, Kellie S; Hillier, Shawn M; Proffitt, Kyle D; Essigmann, John M; Croy, Robert G

    2011-09-30

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death.

  16. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Science.gov (United States)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2014-12-01

    We analyzed the measurements of ozone (O3) and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site downwind of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv), while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in situ production. The O3 production was in a volatile organic compound (VOC)-limited regime in both Shanghai and Guangzhou, and a NOx-limited regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5), uptake of hydro peroxy radical (HO2) on particles and surface reactions of NO2 forming nitrous acid (HONO), were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  17. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  18. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  19. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    International Nuclear Information System (INIS)

    Woodman, N.D.; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-01-01

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study

  20. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  2. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  3. A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process

    Directory of Open Access Journals (Sweden)

    Dipankar Chatterjee

    2017-06-01

    Full Text Available A comparative assessment is done on the effectiveness of some developed and reported macroscopic and mesoscopic models deployed for addressing the three-dimensional thermo-fluidic transport during high-power laser surface alloying process. The macroscopic models include the most celebrated k–ε turbulence model and the large eddy simulation (LES model, whereas a kinetic theory-based lattice Boltzmann (LB approach is invoked under the mesoscopic paradigm. The time-dependent Navier–Stokes equations are transformed into the k–ε turbulence model by performing the Reynolds averaging technique, whereas a spatial filtering operation is used to produce the LES model. The models are suitably modified to address the turbulent melt-pool convection by using a modified eddy viscosity expression including a damping factor in the form of square root of the liquid fraction. The LB scheme utilizes three separate distribution functions to monitor the underlying hydrodynamic, thermal and compositional fields. Accordingly, the kinematic viscosity, thermal and mass diffusivities are adjusted independently. A single domain fixed-grid enthalpy-porosity approach is utilized to model the phase change phenomena in conjunction with an appropriate enthalpy updating closure scheme. The performance of these models is recorded by capturing the characteristic nature of the thermo-fluidic transport during the laser material processing. The maximum values of the pertinent parameters in the computational domain obtained from several modeling efforts are compared to assess their capabilities. The comparison shows that the prediction from the k–ε turbulence model is higher than the LES and LB models. In addition, the results from all three models are compared with the available experimental results in the form of dimensionless composition of the alloyed layer along the dimensionless depth of the pool. The comparison reveals that the LB and the LES approaches are better

  4. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing.

    Directory of Open Access Journals (Sweden)

    Luiz Miguel Camargo

    Full Text Available The progressive aggregation of Amyloid-β (Aβ in the brain is a major trait of Alzheimer's Disease (AD. Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP. Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A recently implicated with AD through genome wide association studies (GWAS and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the "regulatory landscape" of APP.

  5. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  6. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  7. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  8. Integration, status and potential of environmental justice and the social impact assessment process in transportation development in Missouri

    Science.gov (United States)

    2003-12-01

    This research examines the Social Impact Assessment Process at the Missouri Department of Transportation as directed by the : National Environmental Policy Act (NEPA). The analysis includes an examination of the influences of the more recent directiv...

  9. Validating commercial remote sensing and spatial information (CRS&SI) technologies for streamlining environmental and planning processes in transportation projects.

    Science.gov (United States)

    2010-03-01

    Transportation corridor-planning processes are well understood, and consensus exists among practitioners : about common practices for stages and tasks included in traditional EIS approaches. However, traditional approaches do : not typically employ f...

  10. Observational evidence of competing source, loss, and transport processes for relativistic electrons in Earth's outer radiation belt

    Science.gov (United States)

    Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan

    Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a

  11. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...... for continuous solute exchange with the macropores. An average field-determined active macroporosity constituted 0.2% of the total porosity, or approximately 10% of the total macroporosity. (C) 1998 Elsevier Science B.V. All rights reserved....

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang

    2000-01-19

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.

  13. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes; SEMIANNUAL

    International Nuclear Information System (INIS)

    Yorstos, Yanis C.

    2002-01-01

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes

  14. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    International Nuclear Information System (INIS)

    Carvalho, C.; Anjos, R.M.; Veiga, R.; Macario, K.

    2011-01-01

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using γ-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: → Based on the natural γ-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. → Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  15. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Anjos, R.M., E-mail: meigikos@if.uff.b [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Veiga, R.; Macario, K. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil)

    2011-02-15

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using {gamma}-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: {yields} Based on the natural {gamma}-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. {yields} Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  16. Developing emergency exercises for hazardous material transportation: process, documents and templates.

    Science.gov (United States)

    Crichton, Margaret; Kelly, Terence

    2012-01-01

    Multi-agency emergency exercises establish and reinforce relationships, and bring people from different areas together to work as a team, realise clear goals, understand roles and responsibilities, and get to know and respect each agency's strengths and weaknesses. However, despite the long-held belief in and respect for exercises in their provision of benefits to the individual and the organisation, there is little evidence of a consistent and clear process for exercise design, especially identifying the documents that may need to be completed to ensure efficient exercise preparation and performance. This paper reports the results of a project undertaken on behalf of the organisations that form the radioactive material transportation mutual-aid agreement, RADSAFE, to develop a standardised process to design emergency exercises. Three stages, from identifying the requirement for an exercise (Stage I), through to obtaining approval for operational orders (Stage II), then conducting a management review as part of the continuous improvement cycle (Stage III), were developed. Although designed for radioactive material transportation events, it is suggested that many of the factors within these three stages can be generalised for the design of exercises in other high-hazard industries.

  17. Theoretical approach to description of some corrosion product transport processes in PWRs primary circuit

    International Nuclear Information System (INIS)

    Zmitko, M.

    1990-10-01

    The behavior and mass transport of corrosion products in primary circuits of PWR type reactors are described assuming that the products occur in ionic form, in colloidal form (about 0.01-0.6 μm in size) and in particulate form. The transport of the soluble form is treated as a diffusion process. For the colloidal form, allowance is made for its Van der Waals attraction and repulsion interaction with the surfaces. For particles and their agglomerates, the hydrodynamical effects of the flowing liquid on the agglomerate breakdown and re-formation of the particle suspension are taken into account. Efforts were made to employ theoretical relations rather than particular experimental data, for the conclusions to be applicable to different facilities. It is believed that the complex approach to the problem can contribute to gaining insight into the role of the individual factors and processes involved, particularly as regards colloidal particles whose effect on the formation of radiation fields is not yet fully understood. (author). 3 figs., 10 refs

  18. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  19. A new approach to correlate transport processes and optical efficiency in GaN-based LEDs

    International Nuclear Information System (INIS)

    Pavesi, M; Manfredi, M; Rossi, F; Salviati, G; Meneghini, M; Zanoni, E

    2009-01-01

    Carrier injection and non-radiative processes are determinants of the optical efficiency of InGaN/GaN LEDs. Among transport mechanisms, tunnelling is crucial for device functioning, but other contributions can be decisive on a varying bias. It is not easy to identify the weights and roles of these terms by a simple current-voltage characterization, so it needs a careful investigation by means of complementary experimental techniques. The correlation between luminescence and microscopic transport processes in InGaN/GaN LEDs has been investigated by means of a set of techniques: electroluminescence, cathodoluminescence, current-voltage dc measurements and thermal admittance spectroscopy. Green and blue LEDs, designed with a multi-quantum-well injector layer and an optically active single-quantum-well, have been tested. They showed distinctive current and temperature dependences of the optical efficiency, with a better performance at room temperature observed for green devices. This was discussed in terms of the carrier injection efficiency controlled by electrically active traps. The comparative analysis of the optical and electrical experimental data comes in handy as a methodological approach to correlate the emission properties with the carrier injection mechanisms and to improve the functionality in a large number of quantum well heterostructures for lighting applications.

  20. Data processing in studies of diffusion for seawage disposal and of sediment transportation

    International Nuclear Information System (INIS)

    Szulak, C.; Agudo, E.G.

    1974-01-01

    The radiotracer applications on diffusion studies for sewage disposal in sea waters, as well as some large scale experiments on sediments transportation, are characterized by the bulky amount data obtained in the field. Data processing and plotting is a very time consuming task if they are to be handled manually, as may occurs in small research institutes. In order to overcome this difficulty, a program suitable for a 9810-A, Model Hewlett Packard calculator with plotter, was been developed. Through this program the following sequence of operations is performed: 1 - Background and decay corrections on activity measurements; 2 - conversion of angular position data taken with sextants, to rectangular coordinates; 3 - Position corrections as a function of the mean transport velocity of the radioactive cloud; 4 - Interpolation and plotting for each cloud section; of the points belonging ro preselected values of isoactivity curves; 5 - Interpolation and plotting between maximum activity points from two consecutive trajectories of the points belonging to preselected isoactivity curves. As a result of each data processing and plotting, a definition of shape of the radioactive, as well as the instantaneous concentration distribution are obtained. Interpolating a curve through the points with same activity, the preselected isoactivity lines are easily drawn [pt

  1. Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations

    International Nuclear Information System (INIS)

    Hutton, T.; Sublet, J.C.; Morgan, L.; Leadbeater, T.W.

    2015-01-01

    Highlights: • We quantify the effect of processing nuclear data from ENDF to ACE format. • We consider the differences between fission and fusion angular distributions. • C-nat(n,el) at 2.0 MeV has a 0.6% deviation between original and processed data. • Fe-56(n,el) at 14.1 MeV has a 11.0% deviation between original and processed data. • Processed data do not accurately depict ENDF distributions for fusion energies. - Abstract: Nuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the nat C(n,el) reaction at 2.0 MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56 Fe(n,el) reaction at 14.1 MeV, the deviation increases to 11.0%. We

  2. Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition.

    Science.gov (United States)

    Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten

    2015-12-16

    Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and

  3. Revealing the Value of “Green” and the Small Group with a Big Heart in Transportation Mode Choice

    Directory of Open Access Journals (Sweden)

    David Gaker

    2013-07-01

    Full Text Available To address issues of climate change, people are more and more being presented with the greenhouse gas emissions associated with their alternatives. Statements of pounds or kilograms of CO2 are showing up in trip planners, car advertisements, and even restaurant menus under the assumption that this information influences behavior. This research contributes to the literature that investigates how travelers respond to such information. Our objective is to better understand the “value of green” or how much travelers are willing to pay in money in order to reduce the CO2 associated with their travel. As with previous work, we designed and conducted a mode choice experiment using methods that have long been used to study value of time. The contributions of this paper are twofold. First, we employ revealed preference data, whereas previous studies have been based on stated preferences. Second, we provide new insight on how the value of green is distributed in the population. Whereas previous work has specified heterogeneity either systematically or with a continuous distribution, we find that a latent class choice model specification better fits the data and also is attractive behaviorally. The best fitting latent class model has two classes: one large class (76% of the sample who are not willing to spend any time or money to reduce their CO2 and a second class (24% of the sample who value reducing their CO2 at a very high rate of $2.68 per pound of reduction—our so-called small group with a big heart. We reanalyzed three datasets that we had previously collected and found considerable robustness of this two class result.

  4. The Application of Online Check-in in the Process of Passenger Handling in Air Transportation

    Directory of Open Access Journals (Sweden)

    František Adamčík

    2017-11-01

    Full Text Available Passenger handling is one of the most important activities any passenger is obliged to carry out prior to boarding the plane to depart. For the handling process to be safeguarded, it is inevitable to perform the services involved in it fast and efficiently so as to prevent idle times or delays during the procedures potentially resulting in delay of flight. By gradual development of the so-called web-based information technologies, some of the activities involved in the handling process can be delegated to the passengers themselves, thereby achieving a faster course of the passenger handling process. In this contribution the authors are dealing with the status quo of the on-line web-based check-in process in air transportation forecasting the expected course of events in these services in the future. Next, based on analyzing functions and characteristics of similar solutions available in the market, the authors are putting forward their new proposal of their own design of a self-service, on-line system of passenger handling with the aim to simplify and expedite the entire handling process. It is the aim of the authors to develop a competitive design in terms of costs as well as new function and services not offered by the hitherto existing with emphasis on improving efficiency of passenger handling at the airports. The resulting solution thanks to internet based technologies is platform independent and fully applicable to the process of airport passenger handling. To an equal extent, the solutions are being applied by the authors to the educational process, as a training tool for the preparation of the aviation personnel and also as part of simulation models for research in the field of airport processes optimization.

  5. MMRW-BOOKS, Legacy books on slowing down, thermalization, particle transport theory, random processes in reactors

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2007-01-01

    Description: Prof. M.M..R Williams has now released three of his legacy books for free distribution: 1 - M.M.R. Williams: The Slowing Down and Thermalization of Neutrons, North-Holland Publishing Company - Amsterdam, 582 pages, 1966. Content: Part I - The Thermal Energy Region: 1. Introduction and Historical Review, 2. The Scattering Kernel, 3. Neutron Thermalization in an Infinite Homogeneous Medium, 4. Neutron Thermalization in Finite Media, 5. The Spatial Dependence of the Energy Spectrum, 6. Reactor Cell Calculations, 7. Synthetic Scattering Kernels. Part II - The Slowing Down Region: 8. Scattering Kernels in the Slowing Down Region, 9. Neutron Slowing Down in an Infinite Homogeneous Medium, 10.Neutron Slowing Down and Diffusion. 2 - M.M.R. Williams: Mathematical Methods in Particle Transport Theory, Butterworths, London, 430 pages, 1971. Content: 1 The General Problem of Particle Transport, 2 The Boltzmann Equation for Gas Atoms and Neutrons, 3 Boundary Conditions, 4 Scattering Kernels, 5 Some Basic Problems in Neutron Transport and Rarefied Gas Dynamics, 6 The Integral Form of the Transport Equation in Plane, Spherical and Cylindrical Geometries, 7 Exact Solutions of Model Problems, 8 Eigenvalue Problems in Transport Theory, 9 Collision Probability Methods, 10 Variational Methods, 11 Polynomial Approximations. 3 - M.M.R. Williams: Random Processes in Nuclear Reactors, Pergamon Press Oxford New York Toronto Sydney, 243 pages, 1974. Content: 1. Historical Survey and General Discussion, 2. Introductory Mathematical Treatment, 3. Applications of the General Theory, 4. Practical Applications of the Probability Distribution, 5. The Langevin Technique, 6. Point Model Power Reactor Noise, 7. The Spatial Variation of Reactor Noise, 8. Random Phenomena in Heterogeneous Reactor Systems, 9. Associated Fluctuation Problems, Appendix: Noise Equivalent Sources. Note to the user: Prof. M.M.R Williams owns the copyright of these books and he authorises the OECD/NEA Data Bank

  6. The Relative Influence of Aquatic and Terrestrial Processes on Methylmercury Transport in River Basins

    Science.gov (United States)

    Burns, D. A.; Bradley, P. M.; Marvin-DiPasquale, M. C.; Aiken, G.; Brigham, M. E.

    2012-12-01

    Conceptual understanding of the mercury (Hg) cycle in river basins is important for the development of improved Hg models that can inform Hg emissions policies, and, therefore, decrease the health risk that stems from widespread high Hg levels found in fresh water fish throughout the US and globally. Distinguishing the relative roles of aquatic and terrestrial ecosystems in Hg transport and transformation is fundamental to improved Hg risk management. The principal zones where Hg is transformed to its methyl form (MeHg), the transport of that MeHg to aquatic ecosystems, and subsequent bioaccumulation in aquatic food webs have been the focus of our investigations for more than 10 years in several small river basins across the US. Our data indicate that most MeHg in these rivers originates at the interface of the terrestrial and aquatic ecosystem in wetlands and riparian areas where anaerobic conditions and abundant organic matter favor methylation. Key factors in addition to methylation potential are those that influence the hydrologic transport of MeHg to adjacent streams and rivers such as hydraulic conductivity in the shallow subsurface and the depth of the water table in riparian areas. The presence and quality of organic matter in wetland soils and in water that moves through wetland areas also plays a pivotal role in MeHg source and transport. We discuss how these factors affect aquatic MeHg concentrations in light of a recently completed investigation of the Hg cycle in river basins in the Adirondack Mountains of New York and Coastal Plain of South Carolina. At each site, MeHg originates primarily in riparian wetland areas and is transported to the streams via shallow groundwater flow. The presence of open water bodies in these basins favors losses of MeHg by any of several processes, though smaller open water bodies may act as net MeHg sources. Ongoing work is building on this conceptualization of the Hg cycle through development of a model based on the

  7. Mechanisms of meridional transport processes in the tropical Atlantic; Mechanismen meridionaler Transportprozesse im tropischen Atlantik

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, J.

    2001-07-01

    Meridional transport processes of water masses and tracers in the subtropical and tropical Atlantic are investigated using a regional eddy resolving model of the wind driven and thermohaline circulation. Analytical emphasis is on float simulations in the model which, complementary to Eulerian means, represent the Lagrangian view and give further insight into the spreading and pathways of characteristic water masses in this area. In the tropics and subtropics shallow 3-dimensional circulation cells are superimposed on the northward warm water transfer within the deep reaching thermohaline overturning cell (MOC) as part of the global ''Conveyor Belt''. Under present-day climate conditions the model shows that the equatorial thermocline is exclusively ventilated by subsurface flow within the tropical-subtropical cell (STC) of the South Atlantic. Only with a prescribed ''Conveyor-off''-Mode the STC of the North Atlantic contributes to this ventilation process with equal amounts. Throughout the year the interhemispheric transport of surface and central water masses of South Atlantic origin into the Caribbean Sea is dominated by zonal detours to the east as a consequence of the interplay of several retroflection events occuring in the North Atlantic. The eulerian mean flow field in the deep layer postulates the interhemispheric mass transport into the South Atlantic to be confined entirely to the western boundary, whereas Lagrangian means indicate intermittent eastward excursions along the equator, related to seasonally alternating zonal currents due to long Rossby waves. It was suggested that the observed characteristic eastward maximum of tracer concentrations along the equator is a consequence of rectifying effects of single or interacting equatorial waves. The model does not validate this hypothesis. The response to transport anomalies of subpolar origin and long periodicity is subject to different time-scales in both

  8. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.

    Science.gov (United States)

    Hummel, Jonathan; Pagkaliwangan, Mark; Gjoka, Xhorxhi; Davidovits, Terence; Stock, Rick; Ransohoff, Thomas; Gantier, Rene; Schofield, Mark

    2018-01-17

    The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing

    Directory of Open Access Journals (Sweden)

    Claudia Männel

    2017-02-01

    Full Text Available Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia are known to experience deficient phoneme discrimination (i.e., segmental phonology, findings concerning their prosodic processing (i.e., suprasegmental phonology are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial findings might be explained by different task demands. To provide an objective behavior-independent picture of segmental and suprasegmental phonological processing in impaired literacy acquisition, we investigated event-related brain potentials during passive listening in typically and poor-spelling German school children. For segmental phonology, we analyzed the Mismatch Negativity (MMN during vowel length discrimination, capturing automatic auditory deviancy detection in repetitive contexts. For suprasegmental phonology, we analyzed the Closure Positive Shift (CPS that automatically occurs in response to prosodic boundaries. Our results revealed spelling group differences for the MMN, but not for the CPS, indicating deficient segmental, but intact suprasegmental phonological processing in poor spellers. The present findings point towards a differential role of segmental and suprasegmental phonology in literacy disorders and call for interventions that invigorate impaired literacy by utilizing intact prosody in addition to training deficient phonemic awareness.

  10. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  11. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    Science.gov (United States)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for

  12. Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)

  13. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry

    Science.gov (United States)

    Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver

    2018-04-01

    Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell

  15. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry

    Science.gov (United States)

    Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver

    2018-05-01

    Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell

  16. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  17. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.

  18. Sediment transport processes and their resulting stratigraphy: informing science and society

    Science.gov (United States)

    Nittrouer, J. A.

    2013-12-01

    Sediment transport physically shapes planetary surfaces by producing patterns of erosion and deposition, with the relative magnitudes of geomorphic actions varying according to environmental conditions. Where sediment fills accommodation space and generates accumulation, a stratigraphic archive develops that potentially harbors a trove of information documenting dynamic conditions during the periods of sediment production, transport and deposition. By investigating the stratigraphic record, it is possible to describe changes in surface environments, as well as hypothesize about the development of regional tectonic and climate regimes. Ultimately, information contained within the stratigraphic record is critical for evaluating the geological history of terrestrial planets. The enigma of stratigraphy, however, is that sediment deposition is finicky, there is no uninterrupted record, and while deposits may reflect only a brief temporal window, they may still be used to infer about conditions that encompass much longer periods of time. Consider a case where meter-scale dune foresets, deposited in a matter of minutes to hours, are in contact with sediments above and below that reflect entirely different depositional circumstances and are separated in time by a hiatus of thousands or perhaps millions of years. To effectively unlock the scientific trove bound in stratigraphy, it is first necessary to identify where such unconformities exist and the conditions that lead to their development. This challenge is made much simpler through scientific advances in understanding sediment transport processes -- the examination of how fluid and solids interact under modern conditions -- because this is precisely where sediment patterns first emerge to produce accumulation that builds a stratigraphic record. By advancing an understanding of process-based sedimentology, it is possible to enhance diagnostic evaluations of the stratigraphic record. Fortunately, over the past several

  19. Some analytic diagnostic models for transport processes in estuarine and coastal waters; Algunos modelos analiticos de diagnostico para procesos de transporte en estuarios y aguas costeras

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Antola, R [Industry Energy and Mining Ministry, National Direction of Nuclear Technology, Montevideo (Uruguay)

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water.

  20. Expanding the role of reactive transport models in critical zone processes

    Science.gov (United States)

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, op