WorldWideScience

Sample records for transport phenomena extraction

  1. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  2. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  3. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  4. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  5. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  6. Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in HT-PEMFC during dynamic current extraction

    International Nuclear Information System (INIS)

    Raj, Kamal Abdul Rasheedj; Chan, Siew Hwa

    2015-01-01

    Highlights: • Increasing the fuel cell temperature reduces outlet CO concentration. • Increasing the CO inlet (initial) concentration increases outlet CO concentration. • Increasing current density step and dwell time increases outlet CO concentration. • Increasing in the CL and GDL porosities reduces outlet CO concentration. - Abstract: This paper investigates the transport phenomena of carbon monoxide (CO) and adsorption kinetics, in a high-temperature proton exchange membrane fuel cell (HT-PEMFC) during step-wise current extraction (step-change in current extraction). Step-wise current extraction is a common process done to accommodate a sudden power surge during an operation. Since HT-PEMFCs are capable of handling high impurity of CO, hydrogen fuel that is contaminated with trace amount of CO is usually considered for commercial benefits. Thus, a transient three-dimensional isothermal anodic electro-kinetic numerical model is developed to determine the effect of operating parameters such as fuel cell temperature, CO inlet (initial) concentration, step-change of current density and dwell time on the transport phenomena of CO and adsorption kinetics. In addition, geometrical factors such as the catalyst layer (CL) and gas diffusion layer (GDL) porosity are also varied as well. The results show that the above-mentioned operating parameters can affect the maximum CO concentration at the CL, especially at the outlet of the channel. Specifically, a reduction of fuel cell temperature can significantly increase the CO concentration near the outlet, while increasing CO inlet (initial) concentration, step-change amplitude of current density and current density dwell time can cause an increase in CO concentration at the outlet, albeit to different extent. In addition, the increase in the porosity of CL and GDL, results in the reduction of the maximum CO concentration at the outlet, albeit to different extent. In addition, the CO and hydrogen surface coverage

  7. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  8. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  9. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  10. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  11. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  12. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  13. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  14. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  15. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  16. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  17. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  18. Kinetic theory and transport phenomena

    CERN Document Server

    Soto, Rodrigo

    2016-01-01

    This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...

  19. Advances in transport phenomena 2011

    CERN Document Server

    2014-01-01

    This new volume of the annual review “Advances in Transport Phenomena” series contains three in-depth review articles on the microfluidic fabrication of vesicles, the dielectrophoresis field-flow fractionation for continuous-flow separation of particles and cells in microfluidic devices, and the thermodynamic analysis and optimization of heat exchangers, respectively.

  20. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  1. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  2. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  3. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  4. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  5. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  6. Rate phenomena in uranium extraction by amines

    International Nuclear Information System (INIS)

    Coleman, C.F.; McDowell, W.J.

    1979-01-01

    Kinetics studies and other rate measurements are reviewed in the amine extraction of uranium and of some other related and associated metal ions. Equilibration is relatively fast in the uranium sulfate systems most important to uranium hydrometallurgy. Significantly slow equilibration has been encountered in some other systems. Most of the recorded rate information, both qualitative and quantitative, has come from exploratory and process-development work, while some kinetics studies have been directed specifically toward elucidation of extraction mechanisms. 71 references

  7. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  8. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  9. Transport phenomena in Newtonian fluids a concise primer

    CERN Document Server

    Olsson, Per

    2013-01-01

    This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum.  The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid.  Also provided at

  10. Monte Carlo simulation of neutron transport phenomena

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2009-01-01

    Neutron transport is one of the central problems in nuclear reactor related studies and other applied sciences. Some of the major applications of neutron transport include nuclear reactor design and safety, criticality safety of fissile material handling, neutron detector design and development, nuclear medicine, assessment of radiation damage to materials, nuclear well logging, forensic analysis etc. Most reactor and dosimetry studies assume that neutrons diffuse from regions of high to low density just like gaseous molecules diffuse to regions of low concentration or heat flow from high to low temperature regions. However while treatment of gaseous or heat diffusion is quite accurately modeled, treatment of neutron transport as simple diffusion is quite limited. In simple diffusion, the neutron trajectories are irregular, random and zigzag - where as in neutron transport low reaction cross sections (1 barn- 10 -24 cm 2 ) lead to long mean free paths which again depend on the nature and irregularities of the medium. Hence a more accurate representation of the neutron transport evolved based on the Boltzmann equation of kinetic gas theory. In fact the neutron transport equation is a linearized version of the Boltzmann gas equation based on neutron conservation with seven independent variables. The transport equation is difficult to solve except in simple cases amenable to numerical methods. The diffusion (equation) approximation follows from removing the angular dependence of the neutron flux

  11. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  12. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  13. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  14. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Luchini, A.; Petricoin, E.F.; Geho, D.H.; Liotta, L.A.; Long, D.P.; Vaisman, I.I.

    2008-01-01

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  15. Individual and collective motions: transport phenomena

    International Nuclear Information System (INIS)

    Richert, J.

    The present lectures deal with the description of deep inelastic heavy ion reaction mechanism by means of transport concepts which were developed in statistical mechanics. The applicability of those concepts is analysed in terms of a hierarchy of characteristic times. The specificity of this time scale in the heavy ion framework is underlined. The derivation of transport coefficients out of the full dynamical formulation of the problem is shown through a random matrix model. The mechanism of mass and charge transfer between the ions as well as the generation of intrinsic angular momenta in the interacting fragments is formulated, quantitatively worked out and compared to some experimental results by using phenomenological approaches. Weak points of the theoretical approaches and disagreement between phenomenological models and experimental data are discussed. Open problems and unsolved questions are sketched in the final conclusions [fr

  16. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  17. Phenomena of charged particles transport in variable magnetic fields

    International Nuclear Information System (INIS)

    Savane, Sy Y.; Faza Barry, M.; Vladmir, L.; Diaby, I.

    2002-11-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock. (author)

  18. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  19. Mineral extraction and transport device

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, K.

    1991-08-21

    A device for the extraction and transport of stratified mineral deposits notably coal, having a transport run with lengths of transport troughing, an extraction run with lengths of extraction troughing, and a power-driven traction chain guided round return devices and carrying extraction bodies together with optional transport units. The transport and extraction troughing have guide members on which the extraction bodies and the transport units are guided with the aid of guide formations. Each extraction body consists of a headpiece having two laterally protruding guide formations, and an endpiece having two laterally protruding guide formations and a centrepiece. The headpiece and the endpiece are swivellably linked to the centrepiece through an axis running substantially at right angles to the traction axis of the traction chain and substantially at right angles to the floor of the lengths of transport troughing in the transport run. The centrepiece has an additional articulation about an axis substantially orthogonal to the swivel axis of the headpiece and the endpiece. Guide members are additionally provided in the vicinity of the return devices whereby the guide formations on each headpiece and endpiece receive continued guidance.

  20. Computational transport phenomena of fluid-particle systems

    CERN Document Server

    Arastoopour, Hamid; Abbasi, Emad

    2017-01-01

    This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

  1. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  2. Selected social phenomena following the extraction of mineral resources

    Directory of Open Access Journals (Sweden)

    Kocoń Paweł

    2014-12-01

    Full Text Available The author, due to the didactic needs and seeing a small gap in the way of presenting scientific data on the area of social science, have decided to present this work hoping that it will influence on widening both the social science and geography knowledge of the recipients, having connected the development and creation of certain social phenomena with particular economic activity, that is, the extraction of mineral resources. The aim of the hereby text is to present such social phenomena like organizational culture, discourse and social capital. The notions mentioned above ought to concern not only students, but also the specialists and scientists dealing with any of those two fields, as it seems prudent to follow the path of closely connecting two major issues emerging from two distinctively separate areas of science if that may help to better understand how such mixture influence people’s behaviour and allows to draw conclusion on the effect such actions may have on community or society. Moreover, such fact was prior for the author to decide to work on the problem of protests for mining in the future. On the other hand, the article may help in organizing the process of exploitation of mineral resources in the different organizations involved in this type of activity.

  3. New methods for analyzing transport phenomena in supersonic ejectors

    International Nuclear Information System (INIS)

    Lamberts, Olivier; Chatelain, Philippe; Bartosiewicz, Yann

    2017-01-01

    Highlights: • Simulation of a supersonic ejector with the open source software for CFD OpenFOAM. • Validation of the numerical tool based on flow structures obtained by schlieren. • Application of the momentum and energy tube analysis tools to a supersonic ejector. • Extension of this framework to exergy to construct exergy transport tubes. • Quantification of local transfers and losses of exergy within the ejector. - Abstract: This work aims at providing novel insights into the quantification and the location of the transfers and the irreversibilities within supersonic ejectors, and their connection with the entrainment. In this study, we propose two different and complementary approaches. First of all, recent analysis tools based on momentum and energy tubes (Meyers and Meneveau (2013)) are extended to the present compressible flow context and applied to the mean-flow structure of turbulent flow within the ejector. Furthermore, the transport equation for the mean-flow total exergy is derived and exergy transport tubes are proposed as a tool for the investigation of transport phenomena within supersonic ejectors. In addition to this topological approach, an analysis based on classical stream tubes is performed in order to quantitatively investigate transfers between the primary and the secondary streams all along the ejector. Finally, the present work identifies the location of exergy losses and their origins. Throughout this analysis, new local and cumulative parameters related to transfers and irreversibilities are introduced. The proposed methodology sheds light on the complex phenomena at play and may serve as a basis for the analysis of transport phenomena within supersonic ejectors. For the ejector under consideration, although global transfers are more important in on-design conditions, it is shown that the net gain in exergy of the secondary stream is maximum for a value of the back pressure that is close to the critical back pressure, as

  4. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  5. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  6. Transport phenomena of nanoparticles in plants and animals/humans.

    Science.gov (United States)

    Anjum, Naser A; Rodrigo, Miguel Angel Merlos; Moulick, Amitava; Heger, Zbynek; Kopel, Pavel; Zítka, Ondřej; Adam, Vojtech; Lukatkin, Alexander S; Duarte, Armando C; Pereira, Eduarda; Kizek, Rene

    2016-11-01

    The interaction of a plethora nanoparticles with major biota such as plants and animals/humans has been the subject of various multidisciplinary studies with special emphasis on toxicity aspects. However, reports are meager on the transport phenomena of nanoparticles in the plant-animal/human system. Since plants and animals/humans are closely linked via food chain, discussion is imperative on the main processes and mechanisms underlying the transport phenomena of nanoparticles in the plant-animal/human system, which is the main objective of this paper. Based on the literature appraised herein, it is recommended to perform an exhaustive exploration of so far least explored aspects such as reproducibility, predictability, and compliance risks of nanoparticles, and insights into underlying mechanisms in context with their transport phenomenon in the plant-animal/human system. The outcomes of the suggested studies can provide important clues for fetching significant benefits of rapidly expanding nanotechnology to the plant-animal/human health-improvements and protection as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Influence of coupling phenomena on the transport through compacted clays

    Energy Technology Data Exchange (ETDEWEB)

    Rosanne, M.; Koudina, N.; Adler, P.M. [IPGP, Paris (France); Tevissen, E. [ANDRA, Dept. Etude-Experimentation et Calcul, Chatenay Malabry (France)

    2001-07-01

    Our principal motivation was to study the influence of the coupling phenomena on transport through compacted clays. Coupled transports may occur when a pressure gradient {nabla}P, and electrical field E and a concentration gradient {nabla}C interact. These three gradients induce three fluxes. A flow is generated characterized by the seepage velocity U; a solute flux J{sub L} and a current density I are generated. Close to equilibrium, when the gradients are not to large, the problem is linear and the fluxes are linear functions of the gradients. A first series of experiments was performed with argillite to determine the diagonal properties, i.e., permeability, conductivity, and diffusion coefficient. In a second series of experiments, the voltage resulting from an imposed concentration gradient between two reservoirs separated by a clay sample was systematically measured; this corresponds to the coefficient L{sub 13}. (orig.)

  8. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  9. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  10. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  11. Numerical investigations for insulation particle transport phenomena in water flow

    International Nuclear Information System (INIS)

    Krepper, E.; Grahn, A.; Alt, S.; Kaestner, W.; Kratzsch, A.; Seeliger, A.

    2005-01-01

    The investigation of insulation debris generation, transport and sedimentation gains importance regarding the reactor safety research for PWR and BWR considering the long term behaviour of emergency core coolant systems during all types of LOCA. The insulation debris released near the break during LOCA consists of a mixture of very different particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Open questions of generic interest are e.g. the sedimentation of the insulation debris in a water pool, possible re-suspension, transport in the sump water flow, particle load on strainers and corresponding difference pressure. A joint research project in cooperation with Institute of Process Technology, Process Automation and Measuring Technology (IPM) Zittau deals with the experimental investigation and the development of CFD models for the description of particle transport phenomena in coolant flow. While experiments are performed at the IPM-Zittau, theoretical work is concentrated at Forschungszentrum Rossendorf. In the present paper the basic concepts for CFD modelling are described and first results including feasibility studies are shown. During the ongoing work further results are expected. (author)

  12. Kinetic theory of nonlinear transport phenomena in complex plasmas

    International Nuclear Information System (INIS)

    Mishra, S. K.; Sodha, M. S.

    2013-01-01

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  13. Transport phenomena in fuel cells : from microscale to macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Djilali, N. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering]|[Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2006-07-01

    Proton Exchange Membrane (PEM) fuel cells rely on an array of thermofluid transport processes for the regulated supply of reactant gases and the removal of by-product heat and water. Flows are characterized by a broad range of length and time scales that take place in conjunction with reaction kinetics in a variety of regimes and structures. This paper examined some of the challenges related to computational fluid dynamics (CFD) modelling of PEM fuel cell transport phenomena. An overview of the main features, components and operation of PEM fuel cells was followed by a discussion of the various strategies used for component modelling of the electrolyte membrane; the gas diffusion layer; microporous layer; and flow channels. A review of integrated CFD models for PEM fuel cells included the coupling of electrochemical thermal and fluid transport with 3-D unit cell simulations; air-breathing micro-structured fuel cells; and stack level modelling. Physical models for modelling of transport at the micro-scale were also discussed. Results of the review indicated that the treatment of electrochemical reactions in a PEM fuel cell currently combines classical reaction kinetics with solutions procedures to resolve charged species transport, which may lead to thermodynamically inconsistent solutions for more complex systems. Proper representation of the surface coverage of all the chemical species at all reaction sites is needed, and secondary reactions such as platinum (Pt) dissolution and oxidation must be accounted for in order to model and understand degradation mechanisms in fuel cells. While progress has been made in CFD-based modelling of fuel cells, functional and predictive capabilities remain a challenge because of fundamental modelling and material characterization deficiencies in ionic and water transport in polymer membranes; 2-phase transport in porous gas diffusion electrodes and gas flow channels; inadequate macroscopic modelling and resolution of catalyst

  14. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  15. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  16. Modeling of transport phenomena in concrete porous media.

    Science.gov (United States)

    Plecas, Ilija

    2014-02-01

    Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

  17. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  18. Prediction of transport phenomena in near and far field: interaction solid phase/fluid phase

    International Nuclear Information System (INIS)

    Mingarro, E.

    1995-01-01

    The prediction of transport phenomena in near and far field is presented in the present report. The study begins with the analysis of solid phases stability: solubility of storage waste: UO 2 and solubility of radionuclides the redox and sorption-desorption conditions are the last aspects studied to predict the transport phenomena

  19. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using

  20. Center for low-gravity fluid mechanics and transport phenomena

    Science.gov (United States)

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  1. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  2. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  3. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  4. Diffusion and transport phenomena in a collisional magnetoplasma ...

    Indian Academy of Sciences (India)

    Boltzmann-transport equation is analytically solved for two-component magnetoplasma using Chapman-Enskog analysis to include collisional diffusion transport having anisotropies in both streaming velocity and temperature components. The modified collisional integrals are analytically solved with flux integrals and ...

  5. Transport phenomena in gas-selective silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio

    Upcoming technology platforms for green fuel production require the development of advanced molecular separation processes for recovering dry liquid biofuels [1,2], biomethane [2] and hydrogen [3]. Replacement of extractive distillation, cryodistillation and adsorption processes by membrane units...

  6. Lab-scale tests on ISV vapor transport phenomena

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Gardner, B.M.

    1996-01-01

    In situ vitrification (ISV) is a promising technology for remediating buried waste sites and contaminated soil sites. However, concerns exist that low soil permeabilities may limit vapor transport away from the advancing melt front and cause a melt expulsion that breaches ISV containment. As a result, two ISV lab tests were conducted at the Idaho National Engineering Laboratory (INEL) using INEL soil (permeability: 10 -6 cm/s) and a low permeability (10 -10 cm/s) clay material. The clay test also had a ceramic tube inserted vertically through the center of the area being melted to provide one-dimensional data on vapor transport. Results confirm that low soil permeabilities can limit vapor transport away from the advancing ISV melt front. In addition, peak pressures inside the ceramic tube were significantly greater than those outside the tube, indicating the importance of horizontal vapor transport around the advancing ISV melt front

  7. Transport phenomena in sharply contrasting media with a diffusion barrier

    International Nuclear Information System (INIS)

    Dvoretskaya, O A; Kondratenko, P S

    2011-01-01

    Using the advection–diffusion equation, we analytically study contaminant transport in a sharply contrasting medium with a diffusion barrier due to localization of a contaminant source in a low-permeability medium. Anomalous diffusion behavior and a crossover between different transport regimes are observed. The diffusion barrier results in exponential attenuation of the source power, retardation of the contaminant plume growth and modification of the concentration distribution at large distances. (paper)

  8. Electron heat transport studies using transient phenomena in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jacchia, A.; Angioni, C.; Manini, A.; Ryter, F.; Apostoliceanu, M.; Conway, G.; Fahrbach, H.-U.; Kirov, K.K.; Leuterer, F.; Reich, M.; Sutttrop, W.; Cirant, S.; Mantica, P.; De Luca, F.; Weiland, J.

    2005-01-01

    Experiments in tokamaks suggest that a critical gradient length may cause the resilient behavior of T e profiles, in the absence of ITBs. This agrees in general with ITG/TEM turbulence physics. Experiments in ASDEX Upgrade using modulation techniques with ECH and/or cold pulses demonstrate the existence of a threshold in R/L Te when T e >T i and T e ≤T i . For T e >T i linear stability analyses indicate that electron heat transport is dominated by TEM modes. They agree in the value of the threshold (both T e and n e ) and for the electron heat transport increase above the threshold. The stabilization of TEM modes by collisions yielded by gyro-kinetic calculations, which suggests a transition from TEM to ITG dominated transport at high collisionality, is experimentally demonstrated by comparing heat pulse and steady-state diffusivities. For the T e ∼T i discharges above the threshold the resilience, normalized by T e 3/2 , is similar to that of the TEM dominated cases, despite very different conditions. The heat pinch predicted by fluid modeling of ITG/TEM turbulence is investigated by perturbative transport in off-axis ECH-heated discharges. (author)

  9. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  10. Concentration polarization: Electrodeposition and transport phenomena at overlimiting current

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder

    a numerical sharp-interface model describing the electrode growth. This model differs from the established phase-field models, in that it is applicable at overlimiting current and implements electrode reactions in a consistent way. Comparison of the sharp-interface model to the results of the stability...... methods. The initial study concerns a fundamental problem in the study of concentration polarization at overlimiting current, namely the emergence of an extended space-charge region near the ion-selective interface. Based on the so-called quasi-uniform charge density assumption (QCD), we develop...... this coupled chemical and transport effect using two simple models of the reaction kinetics. The principal investigations are performed using numerical simulations, but in addition we derive an analytical model for the transport in the system. The analytical model reveals an important link between the current...

  11. Experimental transport phenomena and optimization strategies for thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, A C; Gillespie, D J

    1997-07-01

    When a new and promising thermoelectric material is discovered, an effort is undertaken to improve its figure of merit. If the effort is to be more efficient than one of trial and error with perhaps some rule of thumb guidance then it is important to be able to make the connection between experimental data and the underlying material characteristics, electronic and phononic, that influence the figure of merit. Transport and fermiology experimental data can be used to evaluate these material characteristics and thus establish trends as a function of some controllable parameter, such as composition. In this paper some of the generic-materials characteristics, generally believed to be required for a high figure of merit, will be discussed in terms of the experimental approach to their evaluation and optimization. Transport and fermiology experiments will be emphasized and both will be outlined in what they can reveal and what can be obscured by the simplifying assumptions generally used in their interpretation.

  12. On nonequilibrium many-body systems V: ultrafast transport phenomena

    International Nuclear Information System (INIS)

    Freire, V.N.; Vasconcellos, A.R.; Luzzi, R.

    1989-01-01

    The monequilibrium statistical operator method and its accompanying nonlinear quantum transport theory, are used to perform an analytical study of the ultrafast mobility transient of central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for the time-resolved mobility of the hot carriers are derived. A brief discussion of the carriers' diffusion coefficient is done. (A.C.A.S.) [pt

  13. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  14. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  15. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  16. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  17. Tokamak fuelling with pellets: Effect of transport phenomena on the injection requirements

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1979-01-01

    Results of calculations on pellet-plasma interaction that take into account transport phenomena inherent in tokamak plasmas are analyzed. It is shown that the results obtained by different authors on the optimum pellet penetration depth and required pellet injection frequencies, which are partly contradictory, can be explained by means of the different transport processes taken into account or neglected in the calculations concerned. (orig.)

  18. Development of instrumentation in the transport phenomena research in thermal equipment

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de; Ladeira, L.C.D.

    1983-11-01

    The results obtained from the effort on the acquisition of know-how in experimental reactor thermal during the last years, through the approach of relevant aspects of basic research on transport phenomena applicable to nuclear reactor analysis and conventional thermal equipment based in the simultaneous development of instrumentation and experimental methods are presented. (E.G.) [pt

  19. Transport phenomena through porous screens and openings : from theory to greenhouse practice

    NARCIS (Netherlands)

    Miguel, A.A.F.

    1998-01-01

    The study of transport phenomena in multi-zone enclosures with permeable boundaries is fundamental for indoor climate control management. In this study, aspects concerning the air exchange through porous screens and openings, and heat transfer between the enclosure surface and inside air,

  20. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  1. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    Science.gov (United States)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  2. Spin-related transport phenomena in HgTe-based quantum well structures

    International Nuclear Information System (INIS)

    Koenig, Markus

    2007-12-01

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  3. Spin-related transport phenomena in HgTe-based quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  4. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  5. Final report, BWR drywell debris transport Phenomena Identification and Ranking Tables (PIRTs)

    International Nuclear Information System (INIS)

    Wilson, G.E.; Boyack, B.E.; Leonard, M.T.; Williams, K.A.; Wolf, L.T.

    1997-09-01

    The Nuclear Regulatory Commission has issued a Regulatory Bulletin and accompanying Regulatory Guide (1.82, Rev. 2) which requires licensees of boiling water reactors to develop a specific plan of action (including hardware backfits, if necessary) to preclude the possibility of early emergency core cooling system strainer blockage following a postulated loss-of-coolant-accident. The postulated mechanism for strainer blockage is destruction of piping insulation in the vicinity of the break and subsequent transport of fragmented insulation to the wetwell. In the absence of more definitive information, the Regulatory Guide recommends that licensees assume a drywell debris transport fraction of 1.0. Accordingly, the Nuclear Regulatory Commission initiated research focused toward developing a technical basis to provide insights useful to regulatory oversight of licensee submittals associated with resolution of the postulated strainer blockage issue. Part of this program was directed towards experimental and analytical research leading to a more realistic specification of the debris transport through the drywell to the wetwell. To help focus this development into a cost effective effort, a panel, with broad based knowledge and experience, was formed to address the relative importance of the various phenomena that can be expected in plant response to postulated accidents that may produce strainer blockage. The resulting phenomena identification and ranking tables reported herein were used to help guide research. The phenomena occurring in boiling water reactors drywells was the specific focus of the panel, although supporting experimental data and calculations of debris transport fractions were considered

  6. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  7. Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Beutler, D.E.

    1997-09-01

    This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices

  8. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  9. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  10. Relaxation phenomena in and microscopic transport theories of deeply inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1976-01-01

    Relaxation phenomena in deeply inelastic collisions are qualitatively discussed and compared with precompound reactions. Different approaches for describing these processes are reviewed, in particular the microscopic transport theories, which can be understood from a generalized master equation for macroscopic variables. The Markoff approximation and the classical limit for the relative motion lead to two coupled equations, the classical equation of relative motion with friction and a Pauli master equation for the internal degrees of freedom. The master equation approximated by the corresponding Fokker-Planck equation for mass transfer and energy dissipation is discussed in detail. Simple analytic expressions are derived for the transport coefficients as functions of excitation energy, total mass, mass fragmentation and relative angular momentum. Calculated transport coefficients are compared with experimental values. Problems and future developments in microscopic transport theories are outlined. (orig.) [de

  11. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  12. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  13. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  14. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  15. THE IMPORTANCE OF LIMIT SOLUTIONS & TEMPORAL AND SPATIAL SCALES IN THE TEACHING OF TRANSPORT PHENOMENA

    Directory of Open Access Journals (Sweden)

    SÁVIO LEANDRO BERTOLI

    2016-07-01

    Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.

  16. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    Science.gov (United States)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  17. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  18. Frontiers in transport phenomena research and education: Energy systems, biological systems, security, information technology and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

    2008-09-15

    A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)

  19. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  20. Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene

    Directory of Open Access Journals (Sweden)

    Manuel Offidani

    2018-05-01

    Full Text Available We present a unified theoretical framework for the study of spin dynamics and relativistic transport phenomena in disordered two-dimensional Dirac systems with pseudospin-spin coupling. The formalism is applied to the paradigmatic case of graphene with uniform Bychkov-Rashba interaction and shown to capture spin relaxation processes and associated charge-to-spin interconversion phenomena in response to generic external perturbations, including spin density fluctuations and electric fields. A controlled diagrammatic evaluation of the generalized spin susceptibility in the diffusive regime of weak spin-orbit interaction allows us to show that the spin and momentum lifetimes satisfy the standard Dyakonov-Perel relation for both weak (Gaussian and resonant (unitary nonmagnetic disorder. Finally, we demonstrate that the spin relaxation rate can be derived in the zero-frequency limit by exploiting the SU(2 covariant conservation laws for the spin observables. Our results set the stage for a fully quantum-mechanical description of spin relaxation in both pristine graphene samples with weak spin-orbit fields and in graphene heterostructures with enhanced spin-orbital effects currently attracting much attention.

  1. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  2. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    International Nuclear Information System (INIS)

    Anderson, M.; Corradini, M.; Bank, K.Y.; Bonazza, R.; Cho, D.

    2005-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications

  3. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    International Nuclear Information System (INIS)

    Sarler, B.

    1992-01-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [sl

  4. Transport phenomena and kinetic theory applications to gases, semiconductors, photons, and biological systems

    CERN Document Server

    Gabetta, Ester

    2007-01-01

    The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...

  5. Transport phenomena in high Tc superconductors. Resume of Ph.D thesis

    International Nuclear Information System (INIS)

    Crisan, I.A.

    1994-01-01

    This is an extended abstract of the Ph. D. thesis devoted to the transport phenomena in high-Tc superconductors. There are three chapters. The first chapter presents an overview of the essential theoretical aspects concerning the vortex dynamics particularly in ceramic superconductors. The chapter two gives a description of the preparation methods of superconductor samples used by the author as well as the measurement devices for volt-ampere characteristics and the associated electronic circuitry. In the third chapter there are presented the experimental data obtained from different samples prepared in different temperature and magnetic field conditions. The obtained results are finally interpreted in the frame of existent or original models. (M.I.C.). 31 Refs

  6. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  7. Transport Phenomena in Porous Media Aspects of MicroMacro Behaviour

    CERN Document Server

    Ichikawa, Yasuaki

    2012-01-01

    This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms.  This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.

  8. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  9. Studies of the effect of radioactive waste on the transport phenomena in soil

    International Nuclear Information System (INIS)

    El-Reefy, A.I.A.F

    1992-01-01

    This thesis introduces a new concept in the field of soil mechanics. It is an integrated work between soil and radiation in the form of gamma-rays. Chapter II was introduced to cover the basics in geotechnical engineering so as to draw a clearer picture to radiologists. Similarly, Chapter III was introduced to enable geotechnical engineers to comprehend radioactive behaviour in general. Although these two chapters are for further reading they contain various points that will be referred to regularly in the latter pages. The aim of this work is to investigate: - The effect of γ -radiations on the transport phenomena in soil. This was carried out by studying the effect of the following factors on the transmission of γ -rays with different energies: 1) Soil sample thickness 2) Grain size 3)Water content 4) Degree of compaction. - The effect of γ -radiations on moisture movement through soil. -Using the -ray transmission method to determine the soil physical properties. - Improvement of soil to increase its ability to attenuate -radiations. Experimental work took place under strict conditions at the Hot Lab. Center located at Inchas. Soil sample was sought from a nearby site which eventually will be the actual radioactive disposal site. The physical properties of the soil sample were determined as well as its grain size distribution. Accurate and detailed data on the gamma rays transport phenomena in soils was obtained using an up to date γ -radiation measurement technique. Finally, the extensive data obtained throughout this research was recorded and analyzed to ultimately approach our aim

  10. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  11. Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    International Nuclear Information System (INIS)

    Petrovic, Z Lj; Suvakov, M; Nikitovic, Z; Dujko, S; Sasic, O; Jovanovic, J; Malovic, G; Stojanovic, V

    2007-01-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron-molecule cross section sets along with recent examples such as NO, CF 4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. (topical review)

  12. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation

    International Nuclear Information System (INIS)

    Paszkuta, M.

    2005-06-01

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  13. Colloids: a review of current knowledge with a view to application to phenomena of transportation within PWR

    International Nuclear Information System (INIS)

    Guinard, L.

    1996-01-01

    In an attempt to minimise dosimetry within the primary circuit of PWR units, research is being carried out into understanding the phenomena of transportation and deposition of corrosion products. It is therefore desirable to known the form of these corrosion products and the laws governing this form. It is generally considered that they are in soluble or particulate form. A third starts with a general presentation of colloids and goes on to define points which are useful, both on a theoretical and experimental level, in terms of application to phenomena of transportation within PWRs. (author). 69 refs., 30 figs., 6 tabs., 3 appends

  14. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation.

    Science.gov (United States)

    Wu, M; Li, J; Ludwig, A; Kharicha, A

    2014-09-01

    Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.

  15. Study of phenomena of tracer transport and dispersion in fractured media

    International Nuclear Information System (INIS)

    Ippolito, Irene

    1993-01-01

    The objective of this research thesis is to present some transport phenomena according to two different approaches: firstly, the study of flows and tracing in a natural crack within a granitic site, and secondly, the study of flows of different geometries in model cracks, mainly by using techniques of tracer dispersion. The author first presents some properties of fractured media and elements of the theory of the phenomenon of dispersion. She notably discusses the reversibility of the Taylor dispersion which is the prevailing mechanism for simply connected geometries such as in the case of a flow between two continuous solid surfaces limiting a fracture. In the next chapters, the author reports the analysis of characteristics of local structures (mouths, roughnesses) of a single fracture by using echo dispersion. She reports experiments as well as Monte Carlo simulations performed on well defined geometries. In a parallel way, some characteristics measurements (rate-pressure, distribution of flows and tracing in transmission) and mechanical measurements of fracture deformation have been performed on a natural fracture in a granitic site [fr

  16. The application of the Chebyshev-spectral method in transport phenomena

    CERN Document Server

    Guo, Weidong; Narayanan, Ranga

    2012-01-01

    Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character.  When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists  to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer.  To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems.  The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs.  The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interes...

  17. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  18. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sarler, B [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [Slovenian] Predstavljeno je fizikalno in matematicno ogrodje za obravnavo prenosnih pojavov taljenja in strjevanja med hipoteticnimi tezkimi nezgodami v jedrskih elektrarnah. Osredotoceno je na popis neustaljene porazdelitve temperatur, hitrosti in koncentracij sestavin med taksnimi dogodki. Ogrodje temelji na formulaciji kontinuuma mesanice komponent in faz, v obliki robno obmocnih integralskih enacb, ki so sestavljena na podlagi fundamentalne resitve Laplace-ove enacbe. Formulacija lahko popisuje stevilne trdno-tekoce pod-sisteme na podlagi specificnih sklopitvenih relacij. Izpeljan sistem robno-obmocnih integralskih enacb za popis ohranitve mase, energije, gibalne kolicine in sestavin lahko resimo na podlagi diskretne aproksimativne metode robnih elementov. (author)

  19. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  20. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    Science.gov (United States)

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  1. Peculiarities of the radioactive particles transport phenomena in the facilitated diffusion processes

    International Nuclear Information System (INIS)

    Gavryushenko, D.A.; Sisojev, V.M.; Cherevko, K.V.; Vlasenko, T.S.

    2017-01-01

    The work is devoted to the up to date problem that is the description of the radioactive particle diffusion processes. One of the aims of the present study is to estimate the effects caused by the irradiation of the liquid systems on the ongoing transport processes. That can allow predicting the behavior of the liquid systems in the presence of the radioactive sources. The main objective of the present work is studying the radioactive particles diffusion phenomena with the possible facilitated diffusion processes being considered. The phenomena are studied based on the fundamental relations of the nonequilibrium statistical thermodynamics. The diffusive flows are evaluated with the special attention given to the accounting of the entropy effects due to the appearance of the new radioactive particles in the system. The developed approach is used to estimate the diffusive flow of the radioactive particles for the case of the plane-parallel pore with the semi-transparent walls. The choice of a model can be justified as it might be used to describe the production of the radioactive contaminated water when the radionuclide face the diffusion process after being washed from the radioactive wastes and the rests of the nuclear fuel. Within the suggested model it is shown that the diffusion coefficient depends on the structural properties of the liquid systems that might be changed under the influence of the irradiation. The obtained equations for calculating the diffusive flows show the definite stabilizing effect in respect to the concentration difference in between the boundaries of the plane-parallel pore. It leads to the decreased changes of the diffusive flow when the concentrations of the radioactive particles at the boundaries are changed in comparison with those observed for the constant diffusion coefficient. The observed behavior for the ideal solution model is explained by the entropy effects. The qualitative analysis of the possible influence of the changes in

  2. TTF/TCNQ-based thin films and microcrystals. Growth and charge transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Vita

    2011-05-26

    The thesis adresses several problems related to growth and charge transport phenomena in thin films of TTF-TCNQ and (BEDT-TTF)TCNQ. The following main new problems are addressed: - The influence of thin-film specific factors, such as the substrate material and growth-induced defects, on the Peierls transition temperature in TTF-TCNQ thin films was studied; - finite-size effects in TTF-TCNQ were investigated by considering transport properties in TTF-TCNQ microcrystals. The influence of the size of the crystal on the Peierls transition temperature was studied. In this context a new method of microcontact fabrication was employed to favor the measurements; - an analysis of radiation-induced defects in TTF-TCNQ thin films and microcrystals was performed. It was demonstrated than an electron beam can induce appreciable damage to the sample such that its electronic properties are strongly modified; - a bilayer growth method was established to fabricate (BEDT-TTF)TCNQ from the gas phase. This newly developed bilayer growth method was showed to be suitable for testing (BEDT-TTF)TCNQ charge-transfer phase formation; - the structure of the formed (BEDT-TTF)TCNQ charge-transfer compounds was analyzed by using a wide range of experimental techniques. An overview and the description of the basic physical principles underlying charge-transfer compounds is given in chapter 2. Experimental techniques used for the growth and characterization of thin films and microcrystals are presented in chapter 3. Chapter 4 gives an overview of the physical properties of the studied organic materials. Chapter 5 discussed the experimental study of TTF-TCNQ thin films. he Peierls transition in TTF-TCNQ is a consequence of the quasi-one-dimensional structure of the material and depends on different factors, studied in chapters 5 and 6. In contradistinction to TTF-TTCNQ, the (BEDT-TTF)TCNQ charge-transfer compound crystallizes in several different modifications with different physical properties

  3. Transport Phenomena in Nanowires, Nanotubes, and Other Low-Dimensional Systems

    KAUST Repository

    Montes, Enrique

    2017-01-01

    Nanoscale materials are not new in either nature or physics. However, the recent technological improvements have given scientists new tools to understand and quantify phenomena that occur naturally due to quantum confinement effects. In general, these phenomena induce remarkable optical, magnetic, and electronic properties in nanoscale materials in contrast to their bulk counterpart. In addition, scientists have recently developed the necessary tools to control and exploit these properties in electronic devices, in particular field effect transistors, magnetic memories, and gas sensors. In the present thesis we implement theoretical and computational tools for analyzing the ground state and electronic transport properties of nanoscale materials and their performance in electronic devices. The ground state properties are studied within density functional theory using the SIESTA code, whereas the transport properties are investigated using the non-equilibrium Green\\'s functions formalism implemented in the SMEAGOL code. First we study Si-based systems, as Si nanowires are believed to be important building blocks of the next generation of electronic devices. We derive the electron transport properties of Si nanowires connected to Au electrodes and their dependence on the nanowire growth direction, diameter, and length. At equilibrium Au-nanowire distance we find strong electronic coupling between electrodes and nanowire, resulting in low contact resistance. For the tunneling regime, the decay of the conductance with the nanowire length is rationalized using the complex band structure. The nanowires grown along the (110) direction show the smallest decay and the largest conductance and current. Due to the high spin coherence in Si, Si nanowires represent an interesting platform for spin devices. Therefore, we built a magnetic tunneling junction by connecting a (110) Si nanowire to ferromagnetic Fe electrodes. We have find a substantial low bias magnetoresistance of

  4. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Igal; Brandon, Simon [Dept. of Chemical Engineering, Technion, Haifa 32000 (Israel); Ben Dov, Anne; Grimberg, Ilana; Klin, Olga; Weiss, Eliezer [SCD-Semi-Conductor Devices, P.O. Box 2250/99, Haifa 31021 (Israel)

    2010-07-01

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  5. Mathematical modelling of transport phenomena in radioactive waste-cement-bentonite matrix

    International Nuclear Information System (INIS)

    Plecas, Ilija; Dimovic, Slavko

    2010-01-01

    Document available in extended abstract form only. The leaching rate of 137 Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a first-order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center. Radioactive waste is waste material containing radioactive chemical elements which does not have a practical purpose. It is often the product of a nuclear process, such as nuclear fission. Waste can also be generated from the processing of fuel for nuclear reactors or nuclear weapons. The main objective in managing and disposing of radioactive (or other) waste is to protect people and the environment. This means isolating or diluting the waste so that the rate or concentration of any radionuclides returned to the biosphere is harmless. Storage as the placement of waste in a nuclear facility where isolation, environmental protection and human control are provided with the intent that the waste will be retrieved at a later time. Disposal as the emplacement of waste in an approved, specified facility (e.g. near surface or geological repository) without the intention of retrieval. The processing of radioactive wastes may be done for economic reasons (e.g. to reduce the volume for storage or disposal, or to recover a 'resource' from the waste), or safety reasons (e.g. converting the waste to a more 'stable' form, such as one that will contain the radionuclide inventory for a long time). Typically processing involves reducing

  6. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  7. Transport phenomena of macro and micro flows behind orifice and flow accelerated corrosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Hayase, Toshiyuki; Ohara, Taku; Ikohagi, Toshiaki

    2008-01-01

    This paper describes experiment and numerical simulations for macro and micro flows behind an orifice model in a square pipe, which are carried from the viewpoint of flow accelerated corrosion (FAC). The measurements of velocity field behind the orifice model were carried out using particle image velocimetry, and the variations of velocity field with respect to the accuracy of the orifice position were studied. It is found that the reattachment behavior of the flow is highly influenced by the orifice position, which is a critical problem for predicting the pipe thinning phenomena by FAC. The DNS simulation was also conducted for calculating the macro flow behind the orifice. The result suggests that the DNS simulation is applicable to the prediction of pipe thinning macro flow for highly aged nuclear plant. The micro flow simulation can predict the pipe thinning phenomena near the wall. (author)

  8. Effect of propolis extract on angelfish larval performance and transport

    Directory of Open Access Journals (Sweden)

    Douglas da Cruz Mattos

    2017-06-01

    Full Text Available This study aimed to evaluate the influence propolis extract inclusion to the feed mixture for juvenile angelfish (Pterophyllum scalare on larval performance and transport. Levels of propolis extract inclusion consisted of 0, 300, 600, 900, and 1200 mg.kg-1 of feed. After 14 days of hatching, unmetamorphosed larvae with a total length of 18.4 mm and 0.11 g initial weight were used. Six-hundred larvae were divided into 20 experimental units, totalizing 30 larvae each. Experimental units consisted of polythene containers with independent water input and output and a level controller. Each unit was controlled for maintenance of 40 L water within a recirculation system. After offering feed containing propolis extract, five fish from each experimental unit were packed in bags for transportation only with atmospheric air, without pure oxygen addition. The bags were filled with 300 mL water on a 2:1 basis of air and water respectively. The total transport time was considered until the death of the third fish in package. At the end of the experiment, data underwent statistical analysis through Statistical Analysis System (SAS, 2001. Results showed there was no significant difference (P < 0.05 neither for any of the studied zootechnical variables (standard length, total length, height, and weight nor for the transport of juveniles. In conclusion, propolis extract addition to angelfish feed was ineffective for larval performance and for transportation of juveniles, at the levels tested here.

  9. Fast transient transport phenomena measured by soft X-ray emission in TCV tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furno, I. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-08-01

    Energy and particle transport during sawtooth activity in TCV plasmas has been studied in this thesis with high temporal resolution many chord diagnostics. We indicated the influence of sawteeth on plasma profiles in ohmic conditions and in the presence of auxiliary electron cyclotron resonance heating and current drive. A 2-dimensional model for heat transport, including localised heat source and a magnetic island, has been used to interpret the experimental observations. These results provided a new interpretation of a coupled heat and transport phenomenon which is potentially important for plasma confinement. The observations validate the applicability and show the possibility of improvement of a 2-dimensional theoretic a1 model for the study of heat transport in the presence of localised heat source and a magnetic island. Furthermore, the TCV results showed a new possibility for the interpretation of a coupled heat and particle transport phenomenon previously understood only in stellarators. (author)

  10. Engineering a spin-fet: spin-orbit phenomena and spin transport induced by a gate electric field

    OpenAIRE

    Cardoso, J. L.; Hernández-Saldaña, H.

    2012-01-01

    In this work, we show that a gate electric field, applied in the base of the field-effect devices, leads to inducing spin-orbit interactions (Rashba and linear Dresselhauss) and confines the transport electrons in a two-dimensional electron gas. On the basis of these phenomena we solve analytically the Pauli equation when the Rashba strength and the linear Dresselhaus one are equal, for a tuning value of the gate electric field $\\mathcal{E}_g^*$. Using the transfer matrix approach, we provide...

  11. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.; Tramper, J.; Rinzema, A.

    2006-01-01

    Solid-state fermentation (SSF) is accompanied inevitably by development of concentration and temperature gradients within the substrate particles and microbial biofilms. These gradients are needed for driving the transport of substrates and products. In addition, concentration gradients have been

  12. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    International Nuclear Information System (INIS)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions

  13. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Science.gov (United States)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  14. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions.

  15. Modeling of the Transport Phenomena in Passive Direct Methanol Fuel Cells Using a Two-Phase Anisotropic Model

    Directory of Open Access Journals (Sweden)

    Zheng Miao

    2014-04-01

    Full Text Available The transport phenomena in a passive direct methanol fuel cell (DMFC were numerically simulated by the proposed two-dimensional two-phase nonisothermal mass transport model. The anisotropic transport characteristic and deformation of the gas diffusion layer (GDL were considered in this model. The natural convection boundary conditions were adopted for the transport of methanol, oxygen, and heat at the GDL outer surface. The effect of methanol concentration in the reservoir on cell performance was examined. The distribution of multiphysical fields in the membrane electrode assembly (MEA, especially in the catalyst layers (CLs, was obtained and analyzed. The results indicated that transport resistance for the methanol mainly existed in the MEA while that for oxygen and heat was primarily due to natural convection at the GDL outer surface. Because of the relatively high methanol concentration, the local reaction rate in CLs was mainly determined by the overpotential. Methanol concentration between 3 M and 4 M was recommended for passive liquid feed DMFC in order to achieve a balance between the cell performance and the methanol crossover.

  16. Influence of anomalous transport phenomena on onset of Neoclassical Tearing Modes in tokamaks

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Takizuka, T.; Hayashi, N.

    2005-01-01

    Influence of anomalous perpendicular heat transport and anomalous ion perpendicular viscosity on conditions of Neoclassical Tearing Mode (NTM) onset is studied theoretically. Series of various parallel transport mechanisms competitive to anomalous cross-island heat transport in formation of the perturbed electron and ion temperature profiles within the island are considered. Analytical solutions to respective heat balance equations were found and perturbed temperature profiles were calculated rigorously. The partial contributions from the plasma electron and ion temperature perturbations in the bootstrap drive of the mode and magnetic curvature effect were then accounted in construction of a generalized transport threshold model of NTMs. Taking into account the curvature effect weakening in the generalized transport threshold model predicts notable improvement of NTM stability. The anomalous perpendicular ion viscosity was shown to modify collisionality dependence of polarization current effect reducing it to the low collisionality limit. The bootstrap drive of NTM in the presence of anomalous perpendicular ion viscosity was found to be dependent on the island rotation frequency and direction. For island rotating in direction of the electron diamagnetic drift viscosity effect was shown to be stabilizing. The role of viscosity effect grows rapidly with rise of the plasma ion temperature. (author)

  17. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  18. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    Science.gov (United States)

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2018-07-24

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

  19. Fission product transport in the primary system, important phenomena, and code status

    International Nuclear Information System (INIS)

    Gieseke, J.A.; Jordan, H.; Kuhlman, M.R.

    1990-01-01

    The purpose of this paper is to identify important issues concerning the transport and deposition of radionuclides in the reactor coolant system (RCS) under accident conditions and to examine how such issues are being treated or should be treated by the various available computer codes. In general, the RCS is a very important section of the transport pathway along which radionuclides move and by which they are attenuated as they travel after being released from the fuel. The RCS can serve as a sink for radionuclides that may deposit from the gas and react with surfaces, or can serve as a repository for materials deposited from the gas which are then available for later release into the transporting gas stream. The RCS may also have thermal hydraulic conditions that foster aerosol growth by condensation or agglomeration, and may provide an environment in which gas phase or heterogeneous chemical reactions may occur

  20. Various Transport Phenomena and Modeling in a Methane Reformer Duct for PEMFCs

    International Nuclear Information System (INIS)

    Jinliang Yuan; Fuan Ren; Jinliang Yuan; Bengt Sunden

    2006-01-01

    There are various physical processes (such as mass, heat and momentum transport) integrated with catalytic chemical reactions in a methane steam reforming duct. It is often found that endothermic and exothermic reactions in the ducts are strongly coupled by heat transfer from adjacent catalytic combustion ducts. In this paper, a three-dimensional calculation method is developed to simulate and analyze steam reforming of methane, and the effects on various transport processes in a steam reforming duct. The reformer conditions such as mass balances associated with the reforming reactions and gas permeation to/from the porous catalyst layer are applied in the analysis. The predicted results are presented and discussed for a composite duct consisting of a porous catalyst reaction area, the gas flow duct and solid layers. Parametric studies are conducted and the results show that the variables, such as fuel reformer temperatures and catalyst loadings, have significant effects on the transport processes and reformer performance. (authors)

  1. Transport phenomena in the edge of Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Terry, J.L.; Basse, N.P.; Cziegler, I.; Greenwald, M.; LaBombard, B.; Edlund, E.M.; Hughes, J.W.; Lin, L.; Lin, Y.; Porkolab, M.; Veto, B.; Wukitch, S.J.; Grulke, O.; Zweben, S.J.; Sampsell, M.

    2005-01-01

    Two aspects of edge turbulence and transport in Alcator C-Mod are explored. The quasi-coherent mode, an edge fluctuation present in Enhanced Da H-mode plasmas, is examined with regard to its role in the enhanced particle transport found in these plasmas, its in/out asymmetry, its poloidal wave number, and its radial width and location. It is shown to play a dominant role in the perpendicular particle transport. The QCM is not observed at the inboard midplane, indicating that its amplitude there is significantly smaller than on the outboard side. The peak amplitude of the QCM is found just inside the separatrix, with a radial width ≥5 mm, leading to a non-zero amplitude outside the separatrix and qualitatively consistent with its transport enhancement. Also examined are the characteristics of the intermittent convective transport, associated with 'blobs' and typically occurring in the scrape-off-layer. The blobs are qualitatively similar in L- and H-mode. When their sizes, occurrence frequencies, and magnitudes are compared, it is found that the blob size may be somewhat smaller in ELMfree H-Mode, and blob frequency is similar. A clear difference is seen in the blob magnitude in the far SOL, with ELMfree H-mode showing a smaller perturbation there than L-mode. As the Greenwald density limit is approached (n/n GW ≥0.7), blobs are seen inside the separatrix, consistent with the observation that the high cross-field transport region, normally found in the far scrape-off, penetrates the closed flux surfaces at high n/n GW . (author)

  2. Laser field effects on the transport phenomena: Energy loss and stopping power

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.

    1990-01-01

    The energy loss method has been applied to a large variety of transport problems in optics, solid-state and fusion research. In these papers, however, the transport equations were linearized, so there are no multiphoton interaction. On the other hand, Bivona et al. (1982) [2] have shown that, for a one-component plasma, the strong field effects would be only of academic interest. On the basis of the center of mass approach [3], a generalization of the energy loss rate which is in accordance with the recent results of Arista et al. (1989) [4] is obtained. (Author)

  3. Studies of transport phenomena in tokamaks with nonstationary intervention into the discharge

    International Nuclear Information System (INIS)

    Kalmykov, S.G.

    1993-01-01

    Together with detailed plasma parameter measurements, an experimental basis is provided to deduce radial profiles of local transport coefficients, to obtain their temporal evolution in the transient phase of the discharge. The equations of heat and particle balance were used as proper instrument to perform the coefficients calculation. The majority of the experiments deals with heat transport processes in the electron component of plasma. A problem in getting ohmic heat deposit radial distribution arise with use of the electron population heat balance equation. For its solution, numerical simulation of the plasma column loop voltage based on poloidal magnetic field classical diffusion supposition was used. (L.C.J.A.)

  4. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  5. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, B.; Axelrod, E.; Sa' ar, A. [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2007-05-15

    Dielectric spectroscopy accompanied by infrared (IR) and photoluminescence (PL) spectroscopy have been utilized to reveal the correlation between transport, optical and structural properties of oxidized porous silicon (PS). Three relaxation processes at low-, mid- and high-temperatures were observed, including dc-conductivity at high-temperatures. Both the low-T relaxation and the dc conductivity were found to be thermally activated processes that involve tunneling and hopping in between the nanocrystals in oxidized PS. We have found that the dc-conductivity is limited by geometrical constrictions along the transport channels, which are not effected by the oxidation process and are characterized by activation energies of about {proportional_to}0.85 eV. The low-T relaxation process involves thermal activation followed by tunneling in between neighbor nanocrystals, with somewhat lower activation energies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport i...

  7. COMSOL-PHREEQC: a tool for high performance numerical simulation of reactive transport phenomena

    International Nuclear Information System (INIS)

    Nardi, Albert; Vries, Luis Manuel de; Trinchero, Paolo; Idiart, Andres; Molinero, Jorge

    2012-01-01

    Document available in extended abstract form only. Comsol Multiphysics (COMSOL, from now on) is a powerful Finite Element software environment for the modelling and simulation of a large number of physics-based systems. The user can apply variables, expressions or numbers directly to solid and fluid domains, boundaries, edges and points, independently of the computational mesh. COMSOL then internally compiles a set of equations representing the entire model. The availability of extremely powerful pre and post processors makes COMSOL a numerical platform well known and extensively used in many branches of sciences and engineering. On the other hand, PHREEQC is a freely available computer program for simulating chemical reactions and transport processes in aqueous systems. It is perhaps the most widely used geochemical code in the scientific community and is openly distributed. The program is based on equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, exchangers, and sorption surfaces, but also includes the capability to model kinetic reactions with rate equations that are user-specified in a very flexible way by means of Basic statements directly written in the input file. Here we present COMSOL-PHREEQC, a software interface able to communicate and couple these two powerful simulators by means of a Java interface. The methodology is based on Sequential Non Iterative Approach (SNIA), where PHREEQC is compiled as a dynamic subroutine (iPhreeqc) that is called by the interface to solve the geochemical system at every element of the finite element mesh of COMSOL. The numerical tool has been extensively verified by comparison with computed results of 1D, 2D and 3D benchmark examples solved with other reactive transport simulators. COMSOL-PHREEQC is parallelized so that CPU time can be highly optimized in multi-core processors or clusters. Then, fully 3D detailed reactive transport problems can be readily simulated by means of

  8. Transient transport phenomena induced by cold pulses in W7-AS

    International Nuclear Information System (INIS)

    Walter, H.; Stroth, U.; Bleuel, J.; Burhenn, R.; Geist, T.; Giannone, L.; Hartfuss, H.; Koponen, J.P.T.; Ledl, L.; Pereverzev, G.

    1998-01-01

    Cold-pulse experiments were carried out in the W7-AS stellarator for the first time. Carbon was injected by a laser blow-off system into the plasma edge. The electron density increase due to the injected carbon is found to be responsible for the edge electron temperature drop. In all cases, the propagation of the edge temperature perturbation to the plasma centre could be modelled with a local parameter-dependent electron heat diffusivity. Unlike in tokamaks, non-local transport effects were not observed in these experiments. (author)

  9. Transient transport phenomena induced by cold pulses in W7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Walter, H; Stroth, U; Bleuel, J; Burhenn, R; Geist, T; Giannone, L.; Hartfuss, H; Koponen, J P.T.; Ledl, L; Pereverzev, G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, 85748 Garching (Germany)

    1998-09-01

    Cold-pulse experiments were carried out in the W7-AS stellarator for the first time. Carbon was injected by a laser blow-off system into the plasma edge. The electron density increase due to the injected carbon is found to be responsible for the edge electron temperature drop. In all cases, the propagation of the edge temperature perturbation to the plasma centre could be modelled with a local parameter-dependent electron heat diffusivity. Unlike in tokamaks, non-local transport effects were not observed in these experiments. (author)

  10. About relaxation phenomena and transport processing in a fully ionized non-ideal plasma

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Iztleuov, N.T.

    1999-01-01

    In this report correlation effects for non-ideal plasma are accounted in the so called pseudopotentials. The accounting of high order correlation influences in the pseudopotential lead to the strongly screened potential. Kinetic equation with pseudopotential is cited. The equations which describe the relaxation of the difference of directed velocities of plasma particles, and frequency of particle collision which determines relaxation of temperature for non-ideal plasma are obtained. On basis of mentioned kinetic equation the transport equation is obtained as well

  11. Novel phenomena in one-dimensional non-linear transport in long quantum wires

    International Nuclear Information System (INIS)

    Morimoto, T; Hemmi, M; Naito, R; Tsubaki, K; Park, J-S; Aoki, N; Bird, J P; Ochiai, Y

    2006-01-01

    We have investigated the non-linear transport properties of split-gate quantum wires of various channel lengths. In this report, we present results on a resonant enhancement of the non-linear conductance that is observed near pinch-off under a finite source-drain bias voltage. The resonant phenomenon exhibits a strong dependence on temperature and in-plane magnetic field. We discuss the possible relationship of this phenomenon to the spin-polarized manybody state that has recently been suggested to occur in quasi-one dimensional systems

  12. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  13. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

    2012-01-01

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  14. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu

    2012-06-02

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  15. Modelling the transport phenomena and texture changes of chicken breast meat during the roasting in a convective oven

    DEFF Research Database (Denmark)

    Rabeler, Felix; Feyissa, Aberham Hailu

    2018-01-01

    A numerical 3D model of coupled transport phenomena and texture changes during the roasting of chicken breast meat in a convection oven was developed. The model is based on heat and mass transfer coupled with the kinetics of temperature induced texture changes of chicken breast meat. The partial...... experimentally values. The developed model enables the prediction of the texture development inside the chicken meat as function of the process parameters. The model predictions and measured values show the clear effect of changing process settings on the texture profiles during the roasting process. Overall......, the developed model provides deep insights into the local and spatial texture changes of chicken breast meat during the roasting process that cannot be gained by experimentation alone....

  16. Proceedings of the International Symposium on quantitative description of metal extraction processes

    International Nuclear Information System (INIS)

    Themelis, N.J.

    1991-01-01

    This book contains the proceedings of the H.H. Kellogg International Symposium. Topics include: Extractive metallurgy; Thermochemical phenomena in metallurgy; Thermodynamic modeling of metallurgical processes; and Transport and rate phenomena in metallurgical extraction

  17. Investigation of high-p{sub T} phenomena within a partonic transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fochler, Oliver

    2011-10-26

    In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R{sub AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v{sub 2} within a common framework. (orig.)

  18. Investigation of high-pT phenomena within a partonic transport model

    International Nuclear Information System (INIS)

    Fochler, Oliver

    2011-01-01

    In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R AA , that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v 2 within a common framework. (orig.)

  19. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    Science.gov (United States)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  20. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    International Nuclear Information System (INIS)

    Strobel, Sebastian; Hernandez, Rocio Murcia; Hansen, Allan G; Tornow, Marc

    2008-01-01

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10 -18 farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology

  1. Investigations into co-transport phenomena in PUREX relevant solutions by use of an analytical ultracentrifuge

    International Nuclear Information System (INIS)

    Gauglitz, R.; Marx, G.

    1991-01-01

    The diffusion of the elements uranium, neodymium, chromium, iron, ruthenium was studied in aqueous and aqueous nitric acid solutions. The diffusion of these elements was measured not only under a concentration gradient but also with respect to simultanious nitric and diffusion. Measurements with schlierenoptics and with uv/vis.-optic were carried out at the same time. Besides the diffusion of metal nitrates and potassium dichromate also nitric acid diffusion was investigated. Also in this case apparent diffusion coefficients were determined under concentration gradients and under the influence of superposing element gradients. The diffusion of the elements uranium, neodymium, ruthenium, neptunium and plutonium was also determined in organic systems. At first the transport of the elements was measured under an element gradient, in presence of various amounts of water and nitric acid. These experiments were followed by those on simultanious diffusion of water of nitric acid and elements in TBP/dodecane mixture. Furthermore TBP/dodecane solutions were oxidized with potassium dichromate. This oxidation was measured using a gaschromatograph. From the obtained results the formation rate for the oxidation products could be calculated which proved that higher nitric acid concentrations increased the rate. (orig.) With 16 refs., 100 tabs., 120 figs [de

  2. Transport phenomena in the cathode of a molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Berg, P.; Findlay, J.

    2009-01-01

    'Full text': A Molten Carbonate Fuel Cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for noble catalysts. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. A model for the reaction-diffusion processes within the cathode of a MCFC is developed using Fick's Law for diffusion and incorporating Darcy's Law for convection. A model for Binary Diffusion is also discussed and compared to those for Fickian diffusion. It can be shown that there exists a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results are also discussed for varying diffusivities and permeabilities. Ultimately, this research focuses on the optimization of the electrode porosity to increase the power output of the fuel cell. The porosity is considered as a function of position, and is optimized using the software package MATLAB. (author)

  3. Phenomena of the ionic transport in the stress corrosion of metals

    International Nuclear Information System (INIS)

    Gravano, S.M.

    1986-07-01

    For the study of electrochemical conditions of propagation, a model which calculates the concentrations and potential profiles inside cracks or localized corrosion cavities, was developed. Considering transport by difussion and migration it was applied to pure metals (Zn, Fe) in solutions where pitting occurs (NaCl or Na2SO4, with borate buffer), and also extended to systems where stress corrosion cracking is present, such as Cu and yellow brass in NaNO2. Physical bases of the 'constant intermediate elongation rate technique' to predict stress corrosion cracking susceptibility was analized, studying by mathematical models: 1) dissolution current, that should be the result of superposition of repassivation transients on the fresh metal, exposed to corrosive medium by strain, with the same rate of that of a static specimen; 2) ohmic drop, that in some systems could be quite important and it must be considered in the overpotential evaluation; and 3) metallic ion concentration that, instead of what happens in a crack, never attains saturation in the analized cases. For repassivation transient according to the crak propagation models proposed by Scully and Ford it was found that, at the tip of the crack, it is unlikely that the same repassivation transients occur as in the constant intermediate elongation rate experiments. (M.E.L.)

  4. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  5. Charge Transport Phenomena in Detectors of the Cryogenic Dark Matter Search

    Science.gov (United States)

    Sundqvist, Kyle

    2008-03-01

    The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in athermal phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei apart from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier drift-fields are maintained at only a few V/cm, else drift-emitted Luke-Neganov phonons would dominate the phonons of the original interaction. Under such conditions, carrier scattering is dominated by zero-point fluctuations of the lattice ions. It has been an open question how well the 8 Kelvin data prominent in the literature depicts this case. We compare the simulated transport properties of electrons and holes in Ge at 40 mK and at 8 K, and apply this understanding to our detectors.

  6. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian; Hernandez, Rocio Murcia [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Hansen, Allan G; Tornow, Marc [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)], E-mail: m.tornow@tu-bs.de

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10{sup -18} farad and asymmetric resistances of 30 and 300 M{omega}, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  7. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.

    Science.gov (United States)

    Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  8. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes.

    Science.gov (United States)

    Xu, Hao; Nagasaka, Shinobu; Kameta, Naohiro; Masuda, Mitsutoshi; Ito, Takashi; Higgins, Daniel A

    2017-08-02

    Synthetic organic nanotubes self-assembled from bolaamphiphile surfactants are now being explored for use as drug delivery vehicles. In this work, several factors important to their implementation in drug delivery are explored. All experiments are performed with the nanotubes immersed in ethanol. First, Nile Red (NR) and a hydroxylated Nile Red derivative (NR-OH) are loaded into the nanotubes and spectroscopic fluorescence imaging methods are used to determine the apparent dielectric constant of their local environment. Both are found in relatively nonpolar environments, with the NR-OH molecules preferring regions of relatively higher dielectric constant compared to NR. Unique two-color imaging fluorescence correlation spectroscopy (imaging FCS) measurements are then used along with the spectroscopic imaging results to deduce the dielectric properties of the environments sensed by mobile and immobile populations of probe molecules. The results reveal that mobile NR molecules pass through less polar regions, likely within the nanotube walls, while immobile NR molecules are found in more polar regions, possibly near the nanotube surfaces. In contrast, mobile and immobile NR-OH molecules are found to locate in environments of similar polarity. The imaging FCS results also provide quantitative data on the apparent diffusion coefficient for each dye. The mean diffusion coefficient for the NR dye was approximately two-fold larger than that of NR-OH. Slower diffusion by the latter could result from its additional hydrogen bonding interactions with polar triglycine, amine, and glucose moieties near the nanotube surfaces. The knowledge gained in these studies will allow for the development of nanotubes that are better engineered for applications in the controlled transport and release of uncharged, dipolar drug molecules.

  9. Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Erik

    2004-02-01

    This thesis deals with modeling of two types of fuel cells: the polymer electrolyte fuel cell (PEFC) and the direct methanol fuel cell (DMFC), for which we address four major issues: a) mass transport limitations; b) water management (PEFC); c) gas management (DMFC); d) thermal management. Four models have been derived and studied for the PEFC, focusing on the cathode. The first exploits the slenderness of the cathode for a two-dimensional geometry, leading to a reduced model, where several non dimensional parameters capture the behavior of the cathode. The model was extended to three dimensions, where four different flow distributors were studied for the cathode. A quantitative comparison shows that the interdigitated channels can sustain the highest current densities. These two models, comprising isothermal gas phase flow, limit the studies to (a). Returning to a two-dimensional geometry of the PEFC, the liquid phase was introduced via a separate flow model approach for the cathode. In addition to conservation of mass, momentum and species, the model was extended to consider simultaneous charge and heat transfer for the whole cell. Different thermal, flow fields, and hydrodynamic conditions were studied, addressing (a), (b) and (d). A scale analysis allowed for predictions of the cell performance prior to any computations. Good agreement between experiments with a segmented cell and the model was obtained. A liquid-phase model, comprising conservation of mass, momentum and species, was derived and analyzed for the anode of the DMFC. The impact of hydrodynamic, electrochemical and geometrical features on the fuel cell performance were studied, mainly focusing on (a). The slenderness of the anode allows the use of a narrow-gap approximation, leading to a reduced model, with benefits such as reduced computational cost and understanding of the physical trends prior to any numerical computations. Adding the gas-phase via a multiphase mixture approach, the gas

  10. A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process

    Directory of Open Access Journals (Sweden)

    Dipankar Chatterjee

    2017-06-01

    Full Text Available A comparative assessment is done on the effectiveness of some developed and reported macroscopic and mesoscopic models deployed for addressing the three-dimensional thermo-fluidic transport during high-power laser surface alloying process. The macroscopic models include the most celebrated k–ε turbulence model and the large eddy simulation (LES model, whereas a kinetic theory-based lattice Boltzmann (LB approach is invoked under the mesoscopic paradigm. The time-dependent Navier–Stokes equations are transformed into the k–ε turbulence model by performing the Reynolds averaging technique, whereas a spatial filtering operation is used to produce the LES model. The models are suitably modified to address the turbulent melt-pool convection by using a modified eddy viscosity expression including a damping factor in the form of square root of the liquid fraction. The LB scheme utilizes three separate distribution functions to monitor the underlying hydrodynamic, thermal and compositional fields. Accordingly, the kinematic viscosity, thermal and mass diffusivities are adjusted independently. A single domain fixed-grid enthalpy-porosity approach is utilized to model the phase change phenomena in conjunction with an appropriate enthalpy updating closure scheme. The performance of these models is recorded by capturing the characteristic nature of the thermo-fluidic transport during the laser material processing. The maximum values of the pertinent parameters in the computational domain obtained from several modeling efforts are compared to assess their capabilities. The comparison shows that the prediction from the k–ε turbulence model is higher than the LES and LB models. In addition, the results from all three models are compared with the available experimental results in the form of dimensionless composition of the alloyed layer along the dimensionless depth of the pool. The comparison reveals that the LB and the LES approaches are better

  11. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Investigation of the Mesoporous Metal-Organic Framework as a New Platform To Study the Transport Phenomena of Biomolecules.

    Science.gov (United States)

    Chen, Yao; Hong, Seongmin; Fu, Chung-Wei; Hoang, Tran; Li, Xiao; Valencia, Veronica; Zhang, Zhenjie; Perman, Jason A; Ma, Shengqian

    2017-03-29

    Mesoporous materials, Tb-mesoMOF and MCM-41, were used to study the transport phenomena of biomolecules entering the interior pores from solution. Vitamins B 12 and B 2 were successfully encapsulated into these mesoporous materials, whereas Tb-mesoMOF (0.33 g of B 12 /g, 0.01 g of B 2 /g) adsorbed a higher amount of vitamin per mass than MCM-41 (0.21 g of B 12 /g, 0.002 g of B 2 /g). The diffusion mechanism of the biomolecules entering Tb-mesoMOF was evaluated using a mathematical model. The Raman spectroscopy studies showed vitamin B 12 has been encapsulated within Tb-mesoMOF's pores, and evaluation of the peak shifts indicated strong interactions linking vitamin B 12 's pyrroline moiety with Tb-mesoMOF's triazine and benzoate rings. Because of these stronger interactions between the vitamins and Tb-mesoMOF, longer egress times were observed than with MCM-41.

  13. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation; Phenomenes de transport couples dans les argiles du Callovo-Oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Paszkuta, M

    2005-06-15

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  14. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Science.gov (United States)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  15. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Science.gov (United States)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  16. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  17. Three-dimensional multi-phase flow computational fluid dynamics model for analysis of transport phenomena and thermal stresses in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maher, A.R.; Al-Baghdadi, S. [International Technological Univ., London (United Kingdom). Dept. of Mechanical Engineering; Haroun, A.K.; Al-Janabi, S. [Babylon Univ., Babylon (Iraq). Dept. of Mechanical Engineering

    2007-07-01

    Fuel cell technology is expected to play an important role in meeting the growing demand for distributed generation because it can convert the chemical energy of a clean fuel directly into electrical energy. An operating fuel cell has varying local conditions of temperature, humidity, and power generation across the active area of the fuel cell in 3D. This paper presented a model that was developed to improve the basic understanding of the transport phenomena and thermal stresses in PEM fuel cells, and to investigate the behaviour of polymer membrane under hygro and thermal stresses during the cell operation. This comprehensive 3D, multiphase, non-isothermal model accounts for the major transport phenomena in a PEM fuel cell, notably convective and diffusive heat and mass transfer; electrode kinetics; transport and phase change mechanism of water; and potential fields. The model accounts for the liquid water flux inside the gas diffusion layers by viscous and capillary forces and can therefore predict the amount of liquid water inside the gas diffusion layers. This study also investigated the key parameters affecting fuel cell performance including geometry, materials and operating conditions. The model considers the many interacting, complex electrochemical, transport phenomena, thermal stresses and deformation that cannot be studied experimentally. It was concluded that the model can provide a computer-aided tool for the design and optimization of future fuel cells with much higher power density and lower cost. 21 refs., 2 tabs., 14 figs.

  18. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  19. Colloids: a review of current knowledge with a view to application to phenomena of transportation within PWR; Colloides: point de vue sur les connaissances actuelles en vue d`une application aux phenomenes de transport dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Guinard, L.

    1996-12-31

    In an attempt to minimise dosimetry within the primary circuit of PWR units, research is being carried out into understanding the phenomena of transportation and deposition of corrosion products. It is therefore desirable to known the form of these corrosion products and the laws governing this form. It is generally considered that they are in soluble or particulate form. A third starts with a general presentation of colloids and goes on to define points which are useful, both on a theoretical and experimental level, in terms of application to phenomena of transportation within PWRs. (author). 69 refs., 30 figs., 6 tabs., 3 appends.

  20. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the compact and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author) 210 refs.

  1. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the compact and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author)

  2. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the dense and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author)

  3. Modelling of near-field radionuclide transport phenomena in a KBS-3V type of repository for nuclear waste with Goldsim Code - and verification against previous methods

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2010-03-01

    Traditional radionuclide transport models overestimate significantly some phenomena, or completely ignore them. This motivates the development of new more precise models. As a result, this work is a description of commissioning of a new KBS-3V near-field radionuclide transport model, which has been done with a commercial software called GoldSim. According to earlier models, GoldSim model uses rz coordinates, but the solubilities of radionuclides have been treated more precisely. To begin with, the physical phenomena concerning near-field transport have been introduced according to GoldSim way of thinking. Also, the computational methods of GoldSim have been introduced and compared to methods used earlier. The actual verification of GoldSim model has been carried out by comparing the GoldSim results from simple cases to the corresponding results obtained with REPCOM, a software developed by VTT and used in several safety assessments. The results agree well. Finally, a few complicated cases were studied. In these cases, the REPCOM's limitations in handling of some phenomena become evident. The differences in the results are caused especially by the extension of the solubility limit to the whole computational domain, and the element-wise treatment of the solubilities which was used instead of nuclide-wise treatment. This work has been carried out as a special assignment to the former laboratory of Advanced Energy Systems in Helsinki University of Technology. The work was done at VTT. (orig.)

  4. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  5. Liquid-liquid transfer phenomena studies coupled with redox reactions: back-extraction of nitrous acid in the presence of scavengers in aqueous phase

    International Nuclear Information System (INIS)

    K'zerho, R.

    1998-01-01

    This work deals with the investigation of redox reaction contribution to the kinetics of liquid-liquid transfer, in relation with PUREX reprocessing of spent nuclear fuel. The chemical system chosen concerns the tripping of nitrous acid from tributylphosphate organic phase into a nitric acid aqueous solution containing an 'anti-nitrous' component, namely hydrazinium nitrate. According to the abundant literature, a major attention is devoted to the very important role of interfacial phenomena on the kinetics of solvent extraction with tributylphosphate. Although, a suitable experimental technique is chosen, using a constant interfacial area cell of the ARMOLLEX-type. Furthermore, the effects of the hydrodynamical and the physico-chemical parameters on the extraction rate led to the identification of the extraction regime nature: diffusional, then chemical limitation. When no 'anti-nitrous' component is used, the diffusional resistance is found to be mainly located in the aqueous diffusion layer. The presence of hydrazinium nitrate into the aqueous solution has an overall accelerating effect on the rate of extraction, related to both a complete suppression of the aqueous diffusional resistance, and a very significant enhancement of the interfacial transfer of the nitrous acid, as a function of hydrazinium concentration. If the first effect could be expected because of the well known fast redox reaction in aqueous phase, the second phenomenon represents a quite original and new result which has never been explored before, to the best of our knowledge. A reaction mechanism is postulated and validated, taking into account the reactive effect of hydrazinium on the interfacial step. In order to support the drawn general patterns, different complementary studies were attempted. When hydroxyl-ammonium nitrate is used, a surprising interfacial transfer blockage is observed, pointing out the extreme performance and specificity of the common hydrazinium component. (author)

  6. An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas

    International Nuclear Information System (INIS)

    Del-Sorbo, Dario

    2015-01-01

    Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion require a detailed description of energy fluxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolai and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model

  7. Optimizing Transport in Surface Mines, Taking into Account the Quality of Extracted Raw Ore

    Directory of Open Access Journals (Sweden)

    Marian Šofranko

    2012-12-01

    Full Text Available This articles concerns problemacy of appropriate separation of transporting mechanisms for mining minerals from individulalteritories. In the following sections of the article a model solution is presented with the use of newly created program for optimizationof transport, taking into account the required quality of extracted raw ore. This process is being done through computing analysisand programming language Borland C++ Builder

  8. Can one extract source radii from transport theories?

    International Nuclear Information System (INIS)

    Aichelin, J.

    1996-01-01

    To known the space time evolution of a heavy ion reaction is of great interest especially in cases where the measured spectra do not allow to ascertain the underlying reaction mechanism. In recent times it became popular to believe that the comparison of Hanbury-Brown Twiss correlation functions obtained from classical or semiclassical transport theories, like Boltzmann Uehling Uhlenbeck (BUU), Quantum Molecular Dynamics (QMD), VENUS or ARC, with experiments may provide this insight. It is the purpose of this article to show that this is not the case. None of these transport theories provides a reliable time evolution of those quantities which are mandatory for a correct calculation of the correlation function. The reason for this failure is different for the different transport theories. (author)

  9. Can one extract source radii from transport theories?

    Energy Technology Data Exchange (ETDEWEB)

    Aichelin, J.

    1996-12-31

    To known the space time evolution of a heavy ion reaction is of great interest especially in cases where the measured spectra do not allow to ascertain the underlying reaction mechanism. In recent times it became popular to believe that the comparison of Hanbury-Brown Twiss correlation functions obtained from classical or semiclassical transport theories, like Boltzmann Uehling Uhlenbeck (BUU), Quantum Molecular Dynamics (QMD), VENUS or ARC, with experiments may provide this insight. It is the purpose of this article to show that this is not the case. None of these transport theories provides a reliable time evolution of those quantities which are mandatory for a correct calculation of the correlation function. The reason for this failure is different for the different transport theories. (author).

  10. Study of the transport phenomena in III-V materials by the Monte Carlo method: application to INAS

    International Nuclear Information System (INIS)

    Bouazza, B.; Amer, L.; Guen-Bouazza, A.; Sayeh, C.; Chabanne-Sari, N.E.; Gontrand, C.

    2004-01-01

    Full text.The microelectronic comprehension of the phenomena which describes the behavior of the carriers in semiconductor materials requires the knowledge of energy distribution function. This distribution function is obtained by the resolution of Boltzmann equation which is very hard to solve analytically. Other methods based on modeling are actually successfully used to solve this equation. This Monte Carlo method is among of the most methods used for studying electronics components operations. It consists to follow the evolution of electron packets in real space, where each electron subjected to the electric field present in material goes interact with the crystal lattice. It is therefore an iterative process made up from a whole coasting flights stopped by acoustics interactions, polar and non polar optics, piezoelectric, inter-valley, impurity, ionization and surface. By applying this method to the III-V material: InAs. We can describe the behavior of the carriers from dynamic and energetic point of view (variation speed according to the field). The simulation is applied, taking into account variation of the carriers according to time in the non stationary mode, and the effect of temperature, and measurements doping. Results obtained are shown to be comparable to those of the theory

  11. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal co...

  12. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    International Nuclear Information System (INIS)

    Sedano, L. A.

    2007-01-01

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs

  13. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, L. A.

    2007-09-27

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs.

  14. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Science.gov (United States)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2018-02-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  15. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  16. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered....... Electrical neutrality was continuously assured in the model by the inclusion of the Poisson-Boltzmann equation to the system of governing equations. Voltage differences were applied across the sample as boundary conditions in order to evaluate the competition between diffusion and electromigration terms...

  17. Interaction between breaking/broken waves and infragravity-scale phenomena to control sediment suspension transport in the surf zone

    CSIR Research Space (South Africa)

    Smith, GG

    2002-07-30

    Full Text Available suspension was further found to be related to the onset of lower water-levels associated with infragravity wave action, which corresponded with a predominance of breaking/broken waves. These breaking/broken waves (which are induced by the low water... is transported down- wards. Nadaoka et al. (1989) have furthermore identi?ed an eddy structure whereby the surface roller is dominated by a nearly two-dimensional ?ow structure, bounded below by strongly three- dimensional obliquely descending eddies bringing...

  18. Modeling of the anode of a liquid-feed DMFC: Inhomogeneous compression effects and two-phase transport phenomena

    Science.gov (United States)

    García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada

    2014-01-01

    An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .

  19. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  20. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    Science.gov (United States)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  1. Transport and microstructural phenomena in bentonite clay with respect to the behavior and influence of Na, Cu, and U

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Muurinen, A.

    1989-12-01

    MX-80 Na smectite clay, essentially consisting of montmorillonite, was investigated with respect to major transport properties and rheological behavior. Duffison and percolation tests using sodium, copper, and uranium solutions were conducted both at room temperature and at 90deg C. The diffusion tests showed that Na migrates very rapidly by pore and surface diffusion. Cu appears to migrate at the same rate as many other cations, the major diffusion mechanism being surface diffusion. Cu tends to replace initially sorbed Na and exchangeable protons and charges the clay to yield 'Cu-bentonite' even on contacting the clay with rather dilute solutions (100 ppm Cu). Uranium was found to migrate approximately as Cu but precipitation of Na- or Ca U compounds forming a front zone appeared to be a rate-controlling mechanism. Thus, the diffusion profile had a very steep front, identified also by a SEM/EDX investigation. This indicates that the rate of advancement of the front is determined by the reaction rate. Although not being a true diffusion process, it can approximately be regarded as one, the coefficient of diffusion being 10-100 times lower than that of Cu. Behind the high concentration front, the clay becomes fully charged with U to form a 'U-bentonite' even at low concentration of the uranium solution (100 ppm U). The percolation and rheological investigations showed only moderate influence on the hydraulic conductivity and creep properties by an increased Na content (10000 ppm) or partial uptake by Cu or U. Considerable differences were found between samples investigated at room temperature and at 90deg C (effect of cementation). The microstructure was concluded to control a number of practically important physical properties. It determines the hydraulic conductivity and the rheological behaviour, and it has a very substantial influence on diffusive transport of ions in the porewater. (orig.)

  2. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  3. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part III extensions and applications to kinetic theory and transport

    Science.gov (United States)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.

  4. Stochastic foundations of undulatory transport phenomena: generalized Poisson–Kac processes—part III extensions and applications to kinetic theory and transport

    International Nuclear Information System (INIS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-01-01

    This third part extends the theory of Generalized Poisson–Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker–Planck–Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed. (paper)

  5. ROAD AND ROADSIDE FEATURE EXTRACTION USING IMAGERY AND LIDAR DATA FOR TRANSPORTATION OPERATION

    Directory of Open Access Journals (Sweden)

    S. Ural

    2015-03-01

    Full Text Available Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for acquiring the information and extracting aforementioned various road features at various levels and scopes. Even with many remote sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.

  6. 1.5 GeV/c multiturn shaving extraction and its transport line for the Brookhaven AGS

    International Nuclear Information System (INIS)

    Weng, W.T.; Blumberg, L.N.; Gill, E.; Soukas, A.; Witkover, R.L.; Egleman, E.; LoSecco, J.; Sulak, L.

    1979-01-01

    A system for fast shaving extraction at 1.5 GeV/c is implemented to extract the circulating beam in five turns. A numerical simulation is first carried out to determine the emittance and the rf structure of the extracted beam. This is followed by several machine study sessions which establish the optimal extraction configuration, confirm the emittance, and modify the transport line for low energy beam. Finally, a one-week run for the Neutrino Oscillation experiment demonstrates that the system is very stable and capable of delivering 7.5 x 10 12 p/sec with 70% extraction efficiency and 95% transport efficiency

  7. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    Directory of Open Access Journals (Sweden)

    Tyurin Alexey

    2017-01-01

    Full Text Available Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  8. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    Science.gov (United States)

    Tyurin, Alexey

    2017-11-01

    Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  9. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  10. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  11. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  12. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  13. Control of the extraction, transport and quality of coal in sections in actual time intervals

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, P; Sladek, J

    1981-01-01

    This paper describes the design of a system for the automatic, semiautomatic and manual control of the extraction, transport and quality of the coal in two sections of the Severo-Cheshsk brown coal basin using computers. The coal in these sections is transported along a joint transport main line which consists of three conveyor lines to two grinding works and from there to 3 thermoelectric power plants. Based on information about the coal quality in the mining sections of individual excavators, about their productivity and about the throughput of the conveyor lines, the computer determines in a quite short time the maximally possible throughput of the conveyor lines for ensuring the required coal quality. Programs are written in the ALGOL language. The information in the SM-3 computer from the excavators will be transmitted using a Tesla Radom wireless communications apparatus through a JPR-12 computer. A terminal will be mounted on each excavator which will report to the computer the number of ledges subject to mining, the type of coal in them, the distance of the excavator from the coal loading point and the size of required and actual productivity of the excavator.

  14. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico); Munoz C, J L [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  15. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E. [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico)]. E-mail: ecerezo@unicaribe.edu.mx; Munoz C, J.L. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  16. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  17. Extracting potential bus lines of Customized City Bus Service based on public transport big data

    Science.gov (United States)

    Ren, Yibin; Chen, Ge; Han, Yong; Zheng, Huangcheng

    2016-11-01

    Customized City Bus Service (CCBS) can reduce the traffic congestion and environmental pollution that caused by the increasing in private cars, effectively. This study aims to extract the potential bus lines and each line's passenger density of CCBS by mining the public transport big data. The datasets used in this study are mainly Smart Card Data (SCD) and bus GPS data of Qingdao, China, from October 11th and November 7th 2015. Firstly, we compute the temporal-origin-destination (TOD) of passengers by mining SCD and bus GPS data. Compared with the traditional OD, TOD not only has the spatial location, but also contains the trip's boarding time. Secondly, based on the traditional DBSCAN algorithm, we put forwards an algorithm, named TOD-DBSCAN, combined with the spatial-temporal features of TOD.TOD-DBSCAN is used to cluster the TOD trajectories in peak hours of all working days. Then, we define two variables P and N to describe the possibility and passenger destiny of a potential CCBS line. P is the probability of the CCBS line. And N represents the potential passenger destiny of the line. Lastly, we visualize the potential CCBS lines extracted by our procedure on the map and analyse relationship between potential CCBS lines and the urban spatial structure.

  18. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  19. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  20. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  1. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  2. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes.

    Science.gov (United States)

    Cao, Heping; Graves, Donald J; Anderson, Richard A

    2010-11-01

    Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.

  3. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  4. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    Science.gov (United States)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  5. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  6. Theoretical studies of H2--H2 collisions. IV. Ab initio calculations of anisotropic transport phenomena in para-hydrogen gas

    International Nuclear Information System (INIS)

    Koehler, W.E.; Schaefer, J.

    1983-01-01

    The temperature dependence of the effective Waldmann--Snider cross sections determining the Senftleben--Beenakker effects of viscosity and heat conductivity has been studied for pH 2 gas between 10 and 200 K. From ab initio nonspherical potentials of H 2 --H 2 , scattering matrices have been determined in close-coupling calculations. From these, the elements of the scattering amplitude matrix have been obtained and used as input quantities for the evaluation of the various Waldmann--Snider collision integrals. The results of these first ab initio numerical calculations of anisotropic transport coefficients show excellent agreement of calculated and measured effective cross sections, especially for the most recent improved version of the interaction potential. In addition, it has been shown that the polarization production cross sections are quite sensitive to the potential anisotropy

  7. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  8. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  9. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  10. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  11. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  12. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.J., E-mail: jashim_74@yahoo.com [Department of Mathematics, American International University-Bangladesh, Banani Dhaka 1213 (Bangladesh); Bég, O. Anwar [Gort Engovation Research (Propulsion/Biomechanics), Gabriel' s Wing House, 15 Southmere Ave., Bradford, BD7 3NU England (United Kingdom); Amin, N. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor (Malaysia)

    2014-11-15

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids.

  13. Diffusional mass transport phenomena in the buffer material and damaged zone of a borehole wall in an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Page, S.; Cheung, S.C.H.

    1983-06-01

    The effects of the geometry of the borehole and the characteristics of the damaged borehole rock wall on the movement of the radionuclides from an underground nuclear waste vault have been studied. The results show that radionuclide transport will occur mainly through the buffer into the damaged zone of the borehole wall. As the degree of facturing of the damaged zone increases, the total radionuclide flux will increase up to a limit which can be approximated by a one-dimensional radial diffusion model. For large degrees of fracturing of the damaged zone, an increase in the radial buffer material thickness will decrease the total flux, whereas, for small degrees of fracturing, an increase in the radial buffer thickness may slightly increase the total flux. Increasing the vertical buffer thickness will significantly decrease the total flux when the degree of fracturing of the damaged zone is small. An increase in the vertical extent of the damaged zone will cause an increase in total flux

  14. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  15. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  16. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  17. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    Science.gov (United States)

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Charged particle transport and extraction studies in the NSCL gas cell for stopping radioactive fragments

    International Nuclear Information System (INIS)

    Facina, M.; Bachelet, C.; Block, M.; Bollen, G.; Davies, D.; Folden, C.M.; Guenaut, C.; Huikari, J.; Kwan, E.; Morrissey, D.J.; Pang, G.K.; Prinke, A.; Ringle, R.; Savory, J.; Schury, P.; Schwarz, S.; Sumithrarachchi, C.; Sun, T.

    2008-01-01

    The NSCL gas-stopping station thermalizes high-energy projectile fragments for study in the low energy beam and ion trap (LEBIT) facility. The stopping and extraction of fast beams has been studied extensively and the extracted short-lived ions have been used in a series of mass measurements of exotic nuclei. Particle-in-cell simulations of ion drift in the gas cell have been performed. In the present paper calculation results are presented and compared to experimental data obtained with neutron-deficient and neutron-rich As and Se isotopes recently measured at LEBIT. Good agreement between the theoretical and experimental extraction efficiency was found.

  19. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  20. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  1. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  2. Technetium-99m extraction and transport across tri-n-octylamine-xylene based supported liquid membranes

    International Nuclear Information System (INIS)

    Ashraf Chaudry, M.; Ahmad, B.

    1996-01-01

    The nuclear properties of 99m Tc radionuclide are ideal for organ imaging. Study of the technetium transport across supported liquid membranes has been performed to get data for its separation from other elements. Tri-n-octylamine diluted in xylene was used to constitute the liquid membranes, supported in polypropylene microporous films. Stripping on the product solution side was performed with dilute NaOH solutions. The effect of sulphuric acid, nitric acid and hydrochloric acid in the feed on transport of 99m Tc as TcO 4 - ions has been studied. The permeability of the given ions determined from kinetic activity data has been found to be in the order of PH 2 SO 4 >PHCl>PHNO 3 . The flux values have been calculated based on this permeability data. The increase in carrier concentration has shown an increase in flux and permeability values to a given optimum concentration. The increase in temperature has been found to reduce the transport of Tc ions. The optimum conditions for transport of 99m Tc for the given acid concentration have been determined. Mechanism of Tc ion transport has also been provided based on chemical reactions involved at the membrane interfaces and uptake of Tc ions by the membrane. MoO 4 2- ions do not permeate through membrane under optimum conditions of transport for TcO 4 2 - ions from H 2 SO 4 solution. (author). 12 refs., 20 figs., 1 tab

  3. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  4. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  5. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  6. Lane Detection in Video-Based Intelligent Transportation Monitoring via Fast Extracting and Clustering of Vehicle Motion Trajectories

    Directory of Open Access Journals (Sweden)

    Jianqiang Ren

    2014-01-01

    Full Text Available Lane detection is a crucial process in video-based transportation monitoring system. This paper proposes a novel method to detect the lane center via rapid extraction and high accuracy clustering of vehicle motion trajectories. First, we use the activity map to realize automatically the extraction of road region, the calibration of dynamic camera, and the setting of three virtual detecting lines. Secondly, the three virtual detecting lines and a local background model with traffic flow feedback are used to extract and group vehicle feature points in unit of vehicle. Then, the feature point groups are described accurately by edge weighted dynamic graph and modified by a motion-similarity Kalman filter during the sparse feature point tracking. After obtaining the vehicle trajectories, a rough k-means incremental clustering with Hausdorff distance is designed to realize the rapid online extraction of lane center with high accuracy. The use of rough set reduces effectively the accuracy decrease, which results from the trajectories that run irregularly. Experimental results prove that the proposed method can detect lane center position efficiently, the affected time of subsequent tasks can be reduced obviously, and the safety of traffic surveillance systems can be enhanced significantly.

  7. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... coherent anti-Stokes Raman spectroscopy (CARS) are examples that ... The camera may be interfaced with a personal computer (HCL, 1 GB ..... convolution back-projection (CBP) and algebraic reconstruction (ART) have ...

  8. Selective transport phenomena in coastal sands

    OpenAIRE

    Tánczos, Ilka Christine

    1996-01-01

    De Nederlandse kust bestaat voor een groot gedeelte uit zand. Zij wordt continu belaagd door water en wind en op een aantal plaatsen verliest het land terrein op het water: de kust erodeert. Vanwege met name sociale en economische belangen wil men de kust graag in de huidige vorm behouden. Om het strand en de duinen, maar ook de havens en waterwegen op een goede en efficiënte manier te beheren, is het belangrijk om te weten hoe zand wordt getransporteerd door water en wind. Dat is het onderwe...

  9. Selective transport phenomena in coastal sands

    NARCIS (Netherlands)

    Tánczos, Ilka Christine

    1996-01-01

    De Nederlandse kust bestaat voor een groot gedeelte uit zand. Zij wordt continu belaagd door water en wind en op een aantal plaatsen verliest het land terrein op het water: de kust erodeert. Vanwege met name sociale en economische belangen wil men de kust graag in de huidige vorm behouden. Om het

  10. Transport phenomena for chemical reactor design

    National Research Council Canada - National Science Library

    Belfiore, Laurence A

    2003-01-01

    ...-Averaged Specific Heats, 48 3-2 Conversion Dependence of Mass Fraction and Heat Capacity of the Mixture, 50 3-3 Plug-Flow Mass Balance in Terms of CO Conversion, 51 3-4 Thermal Energy Balance for ...

  11. Process for introducing radioactive articles into a transport and/or storage container and transporting and/or storing the container and later extraction of the article from the container, and container for transporting and/or storing radioactive articles

    International Nuclear Information System (INIS)

    Vox, A.J.

    1979-01-01

    The articles, for example fuel elements, are introduced into the container and the remaining space inside the container is filled with lead, a salt or a mixture of salts of eutectic composition, which freezes at ambient temperature. This makes dry transport possible. To extract the fuel elements, it is sufficient to heat the container, which softens the protective and shielding material. The salt or mixture of salts is suitable for thermal conduction. (DG) [de

  12. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  13. Chaotic phenomena in plasmas

    International Nuclear Information System (INIS)

    Kawai, Y.

    1991-08-01

    It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)

  14. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  15. Wolf-Rayet phenomena

    International Nuclear Information System (INIS)

    Conti, P.S.

    1982-01-01

    The author reviews in broad terms the concept of Wolf-Rayet (W-R) phenomena, outlines what we currently know about the properties of stars showing such phenomena and indicates the directions in which future work is leading. He begins by listing the characteristics of W-R spectra and then considers the following specific problems: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions; the mass loss rates; the existence of very luminous and possibly very massive W-R stars. He discusses briefly our current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R stars. (Auth.)

  16. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  17. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  18. Interactions between crude drug extracts used in Japanese traditional Kampo medicines and organic anion-transporting polypeptide 2B1.

    Science.gov (United States)

    Iijima, Rie; Watanabe, Tomoki; Ishiuchi, Kan'ichiro; Matsumoto, Takashi; Watanabe, Junko; Makino, Toshiaki

    2018-03-25

    The use of herbal medicines has become popular worldwide, and the information on drug interactions between herbal medicines and chemical drugs is needed. We screened the inhibitory effects of crude drugs used in Kampo medicines used in Japan on organic anion-transporting polypeptide (OATP) 2B1 to predict potential interactions between Kampo medicines and chemical drugs used together. We chose 98 kinds of crude drugs frequently used as ingredients of Kampo formulations in Japan and prepared their boiling water extracts. We then screened their inhibitory effects on OATP2B1 by measuring the uptake of estrone 3-sulphate (E3S) by HEK293 cells stably expressing OATP2B1. At the concentration of 100µg/ml, the extracts prepared from 12 kinds of crude drugs, Scuteralliae Radix, Arecae Semen, Aurantii Fructus Immaturus, Perillae Herba, Panacis Japonici Rhizoma, Moutan Cortex, Polygalae Radix, Rhei Rhizoma, Cannabis Fructus, Chrysanthemi Flos, Eriobotryae Folium, and Querci Cortex, suppressed the function of OATP2B1 by less than 20%. The extract of bofutsushosan, a representative Kampo formulation, inhibited OATP2B1 function with sufficient levels to suppress absorption of OATP2B1 substrates in clinics. We further evaluated the inhibitory effects of several ingredients containing Rhei Rhizoma, Perillae Herba, and Moutan Cortex on OATP2B1. Because of crude drugs used in Kampo medicines might suppress absorption of OATP2B1 substrates, these results may contribute to the safe and effective use of Kampo medicine in clinics. A list of abbreviations: EC, (-)-epicatechin; ECG, epicatechin gallate; EGC, epigallocatechin; EGCG, Epigallocatechin gallate; FBS, fetal bovine serum; grapefruit juice; HEK293, Human embryonic kidney; IC 50, The half inhibitory concentration; OATP, organic anion-transporting polypeptide; β-PGG, penta-O-galloyl-β-D-glucose; t.i.d, 3 times a day. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optimizing tritium extraction from a Permeator Against Vacuum (PAV) by dimensional design using different tritium transport modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P., E-mail: pablomiguel.martinez@ciemat.es [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Moreno, C. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Martinez, I. [SENER Ingenieria y Sistemas, Provenca 392, 4a 08025 Barcelona (Spain); Sedano, L. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain)

    2012-08-15

    The Permeator Against Vacuum (PAV) has been conceived as the simplest, cost effective and reliable technology system dedicated to tritium extraction from breeding liquid metals. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges (HCLL at low velocities of {approx}1 mm/s or DCLL in the ranges of tens of cm/s). The present work analyses the PAV extraction efficiency dependency on the design parameters as optimum on-line Tritium Extraction System (TES). Three different models have been built for that purpose: one through physically refined 1D tritium transport computation using TMAP7 (unique simulation tool with QA for ITER); and two further detailed models on 2D/3D FEM tool (COMSOL Multi-physics 4.0). The geometry used in this work is a simplification of Fuskite{sup Registered-Sign} conceptual design developed at CIEMAT, consisting of a set of cylindrical and concentric {alpha}-Fe double membranes enclosing a vacuumed space and in contact with in-pipe flowing LiPb eutectic. The aim of this paper is to give the first steps to establish the optimal design parameters of a PAV and evaluate the state-of-the-art of these models.

  20. Solute transport and extraction by a single root in unsaturated soils: model development and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaisoo; Sung, Kijune; Corapcioglu, M. Yavuz; Drew, Malcolm C

    2004-09-01

    A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using {sup 14}C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on log K{sub ow} (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (R{sub ur}), and a new T{sub scf} equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.

  1. Quantification of natural phenomena

    International Nuclear Information System (INIS)

    Botero Alvarez, Javier

    1997-01-01

    The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories

  2. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  3. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  4. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  5. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  6. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  7. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  8. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  9. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  10. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  11. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  12. Current-transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Amin, G.; Hussain, I.; Zaman, S.; Bano, N.; Nur, O.; Willander, M. [Department of Science and Technology, Campus Norrkoeping, Linkoeping University, 60174 Norrkoeping (Sweden)

    2010-03-15

    High-quality zinc oxide (ZnO) nanotubes (NTs) were grown by the hydrothermal technique on n-Si substrate. The room temperature (RT) current-transport mechanisms of Au Schottky diodes fabricated from ZnO NTs and nanorods (NRs) reference samples have been studied and compared. The tunneling mechanisms via deep-level states was found to be the main conduction process at low applied voltage but at the trap-filled limit voltage (V{sub TFL}) all traps were filled and the space-charge-limited current conduction was the dominating current-transport mechanism. The deep-level trap energy and the trap concentration for the NTs were obtained as {proportional_to}0.27 eV and 2.1 x 10{sup 16} cm{sup -3}, respectively. The same parameters were also extracted for the ZnO NRs. The deep-level states observed crossponds to zinc interstitials (Zn{sub i}), which are responsible for the violet emission. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. LBNE lattice and optics for proton extraction at MI-10 and transport to a target above grade

    International Nuclear Information System (INIS)

    Johnstone, John A.

    2011-01-01

    For the Long Baseline Neutrino Experiment (LBNE) at Fermilab 120 GeV/c protons will be transported from the Main Injector (MI) to an on-site production target. The lattice design and optics discussed here has the beam extracted vertically upwards from MI-10 and the keeps the majority of the line at an elevation above the glacial till/rock interface and terminates on a target at 10 ft above grade. The LBNE beamline discussed here is a modular optics design comprised of 3 distinct lattice configurations, including the specialized MI → LBNE matching section and Final Focus. The remainder of the line is defined by six FODO cells, in which the length and phase advance are chosen specifically such that beam size does not exceed that of the MI while also making the most efficient use of space for achromatic insertions. Dispersion generated by variations in the beam trajectory are corrected locally and can not bleed out to corrupt the optics elsewhere in the line. Aperture studies indicate that the line should be able to transport the worst quality beam that the Main Injector might provide. New IDS dipole correctors located at every focusing center provide high-quality orbit control and further ensure that LBNE meets the stringent requirements for environmental protection.

  14. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  15. Membrane Transfer Phenomena (MTP)

    Science.gov (United States)

    Mason, Larry

    1996-01-01

    Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.

  16. EXPANDING EXTRACTIONS

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Lahr, Michael L.

    2013-01-01

    In this paper, we generalize hypothetical extraction techniques. We suggest that the effect of certain economic phenomena can be measured by removing them from an input-output (I-O) table and by rebalancing the set of I-O accounts. The difference between the two sets of accounts yields the

  17. Emergent Phenomena at Oxide Interfaces

    International Nuclear Information System (INIS)

    Hwang, H.Y.

    2012-01-01

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function Ψ is given by the phase factor e -iEt/h b ar with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign

  18. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  19. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  20. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  1. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  2. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling

    International Nuclear Information System (INIS)

    Lee, Jaeho; Asheghi, Mehdi; Goodson, Kenneth E

    2012-01-01

    The coupled transport of heat and electrical current, or thermoelectric phenomena, can strongly influence the temperature distribution and figures of merit for phase-change memory (PCM). This paper simulates PCM devices with careful attention to thermoelectric transport and the resulting impact on programming current during the reset operation. The electrothermal simulations consider Thomson heating within the phase-change material and Peltier heating at the electrode interface. Using representative values for the Thomson and Seebeck coefficients extracted from our past measurements of these properties, we predict a cell temperature increase of 44% and a decrease in the programming current of 16%. Scaling arguments indicate that the impact of thermoelectric phenomena becomes greater with smaller dimensions due to enhanced thermal confinement. This work estimates the scaling of this reduction in programming current as electrode contact areas are reduced down to 10 nm × 10 nm. Precise understanding of thermoelectric phenomena and their impact on device performance is a critical part of PCM design strategies. (paper)

  3. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  4. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  5. Mesoscopic phenomena in solids

    CERN Document Server

    Altshuler, BL; Webb, RA

    1991-01-01

    The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.

  6. A new method to describe two-phase solvent extraction based on net transport potential derived as linear combinations of forward and reverse constituents

    International Nuclear Information System (INIS)

    Nabeshima, Masahiro

    1998-01-01

    With the view to avoiding the difficulties encountered in estimating thermodynamic activities of the multiple chemical species in two-phase liquid system, a set of forward, reverse, net and total transport potentials are defined to represent the chemical state of a transferring solute during transient using bulk concentrations. The net transport potential corresponds to that in the conventional two-film model of diffusion-controlled processes. The overall driving forces of mass transport are redefined as the derivatives of the relevant transport potentials differentiated with respect to a state variable newly defined in terms of the bulk concentrations of the solute contained in both phases. Net and total quantities, i.e. transport potentials, overall driving forces and the molar fluxes are obtained as linear combinations of those for forward and reverse directions. The topical features presented by these quantities and their mutual relations are discussed in detail. The experimental new overall transport coefficient for U(VI) varied in accord with the changes in the theoretical net transport potential and overall driving force. The present method permits describing the extractive mass transport consistently both to forward and reverse directions of transport. (author)

  7. UNEP (United Nations Environment Program) discussed the environmental impacts of extraction, transportation, and utilization of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    The UNEP (United Nations Environment Program) discussed the environmental impacts of extraction, transportation, and utilization of fossil fuels at a meeting in Warsaw, the first in a series of UNEP undertakings, to be followed by studies on nuclear energy and renewable energy sources. The major issues examined at the meeting were human health effects of atmospheric emissions, especially SO/sub 2/; effects of SO/sub 2/ on vegetation and bodies of fresh water; long-term ecologic effects of oil spills in the sea; and potential effects on climate from atmospheric CO/sub 2/ arising from fossil fuel combustion. A doubling of the atmospheric CO/sub 2/ concentration would cause an estimated 1.5/sup 0/-3.0/sup 0/C increase in the surface air temperature. With an amount of CO/sub 2/ equivalent to 0.5 x 10/sup 10/ tonnes of carbon annually injected into the atmosphere from fossil fuels, of which only 0.27 x 10/sup 10/ tonnes are removed by some exchange processes with ocean or land. A 17% increase in atmospheric CO/sub 2/ over the 1976 concentration of 332 ppm is expected by the year 2000.

  8. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  9. Introductory lectures on critical phenomena

    International Nuclear Information System (INIS)

    Khajehpour, M.R.H.

    1988-09-01

    After a presentation of classical models for phase transitions and critical phenomena (Van der Waals theory, Weiss theory of ferromagnetism) and theoretical models (Ising model, XY model, Heisenberg model, spherical model) the Landau theory of critical and multicritical points and some single applications of renormalization group method in static critical phenomena are presented. 115 refs, figs and tabs

  10. Effect of Aloe vera extract on the improvement of the respiratory activity of leukocytes of matrinxã during the transport stress

    Directory of Open Access Journals (Sweden)

    Fábio Sabbadin Zanuzzo

    2012-10-01

    Full Text Available This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus, to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS only at 0.1, 0.2, 0.5 and 1 mg/L. Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

  11. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  12. Comparison of different soil water extraction systems for the prognoses of solute transport at the field scale using numerical simulations, field and lysimeter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Weihermueller, L

    2005-07-01

    To date, the understanding of processes, factors, and interactions that influence the amount of extracted water and the solute composition sampled with suction cups is limited. But this information is required for process description of solute transport in natural soils. Improved system understanding can lead to a low cost and easy to install water sampling system which can help to predict solute transport in natural soils for the benefit of environmental protection. The main objectives of this work were to perform numerical simulations with different boundary conditions and to implement the findings in the interpretation of the lysimeter and field experiments. In a first part of this thesis, theoretical considerations on the processes affecting the spatial influence of a suction cup in soil and changes in solute transport initiated by the suction cups are presented, including testing and validation of available model and experimental approaches. In the second part, a detailed experimental study was conducted to obtain data for the comparison of the different soil water sampling systems. Finally, the numerical experiments of the suction cup influence were used for the interpretation of the experimental data. The main goals are summarized as follows: - Characterization of the suction cup activity domain (SCAD), suction cup extraction domain (SCED) and suction cup sampling area (SCSA) of active suction cups (definitions are given in Chapter 6). - Determination of the boundary conditions and soil properties [e.g. infiltration, applied suction, duration of water extraction, soil hydraulic properties and soil heterogeneity] affecting the activity domain, extraction domain and sampling area of a suction cup. - Identification of processes that change the travel time and travel time variance of solutes extracted by suction cups. - Validation of the numerically derived data with analytical and experimental data from literature. - Comparison of the experimental data obtained

  13. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  14. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  15. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  16. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  17. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  18. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  19. Can Transient Phenomena Help Improving Time Resolution in Scintillators?

    CERN Document Server

    Lecoq, P; Vasiliev, A

    2014-01-01

    The time resolution of a scintillator-based detector is directly driven by the density of photoelectrons generated in the photodetector at the detection threshold. At the scintillator level it is related to the intrinsic light yield, the pulse shape (rise time and decay time) and the light transport from the gamma-ray conversion point to the photodetector. When aiming at 10 ps time resolution, fluctuations in the thermalization and relaxation time of hot electrons and holes generated by the interaction of ionization radiation with the crystal become important. These processes last for up to a few tens of ps and are followed by a complex trapping-detrapping process, Poole-Frenkel effect, Auger ionization of traps and electron-hole recombination, which can last for a few ns with very large fluctuations. This paper will review the different processes at work and evaluate if some of the transient phenomena taking place during the fast thermalization phase can be exploited to extract a time tag with a precision in...

  20. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  1. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  2. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  3. Liquid-liquid transfer phenomena studies coupled with redox reactions: back-extraction of nitrous acid in the presence of scavengers in aqueous phase; Etude de reactions d`oxydoreduction couplees a des phenomenes de transfert liquide-liquide: cas de la desextraction de l`acide nitreux en presence de composes antinitreux en phase aqueuse

    Energy Technology Data Exchange (ETDEWEB)

    K`zerho, R

    1998-12-31

    This work deals with the investigation of redox reaction contribution to the kinetics of liquid-liquid transfer, in relation with PUREX reprocessing of spent nuclear fuel. The chemical system chosen concerns the tripping of nitrous acid from tributylphosphate organic phase into a nitric acid aqueous solution containing an `anti-nitrous` component, namely hydrazinium nitrate. According to the abundant literature, a major attention is devoted to the very important role of interfacial phenomena on the kinetics of solvent extraction with tributylphosphate. Although, a suitable experimental technique is chosen, using a constant interfacial area cell of the ARMOLLEX-type. Furthermore, the effects of the hydrodynamical and the physico-chemical parameters on the extraction rate led to the identification of the extraction regime nature: diffusional, then chemical limitation. When no `anti-nitrous` component is used, the diffusional resistance is found to be mainly located in the aqueous diffusion layer. The presence of hydrazinium nitrate into the aqueous solution has an overall accelerating effect on the rate of extraction, related to both a complete suppression of the aqueous diffusional resistance, and a very significant enhancement of the interfacial transfer of the nitrous acid, as a function of hydrazinium concentration. If the first effect could be expected because of the well known fast redox reaction in aqueous phase, the second phenomenon represents a quite original and new result which has never been explored before, to the best of our knowledge. A reaction mechanism is postulated and validated, taking into account the reactive effect of hydrazinium on the interfacial step. In order to support the drawn general patterns, different complementary studies were attempted. When hydroxyl-ammonium nitrate is used, a surprising interfacial transfer blockage is observed, pointing out the extreme performance and specificity of the common hydrazinium component. (author) 99

  4. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  5. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  6. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  7. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  8. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  9. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  10. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  11. Nonmodal phenomena in differentially rotating dusty plasmas

    Science.gov (United States)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  12. Nonmodal phenomena in differentially rotating dusty plasmas

    International Nuclear Information System (INIS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-01-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

  13. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    OpenAIRE

    Mozer, AJ; Sariciftci, NS; Osterbacka, R; Westerling, M; Juska, G; LUTSEN, Laurence; VANDERZANDE, Dirk

    2005-01-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C-61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after ...

  14. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  15. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  16. Polymer-immobilized liquid membrane transport of palladium (II) from nitric acid media using some thia extractants as novel receptors

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1996-01-01

    Carrier-facilitated co-transport of Pd (II) from dilute acidic nitrate solutions was examined across a polymer-immobilized liquid membrane (PILM) deploying S 6 -pentano-36 (S 6 -P-36), bis-(2-ethylhexyl) sulfoxide (BESO) and bis (2, 4, 4 trimethyl pentyl) monothio phosphinic acid (Cyanex 302) as the novel receptors. The study carried out to distinguish the driving force between H + and NO 3 - ion for the cation transport across PILM, indicated that NO 3 - ion not the H + ion seems to be the driving force for Pd (II) transport under the present conditions for both BESO-PILM and S 6 -P-36-PILM systems. Recovery of palladium from acidic process effluents generated in Purex reprocessing of spent fuels was successfully achieved. 39 refs., 8 figs., 7 tabs

  17. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  18. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  19. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  20. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico.

    Science.gov (United States)

    Duran, R; Beron-Vera, F J; Olascoaga, M J

    2018-03-26

    We construct a climatology of Lagrangian coherent structures (LCSs)-the concealed skeleton that shapes transport-with a twelve-year-long data-assimilative simulation of the sea-surface circulation in the Gulf of Mexico (GoM). Computed as time-mean Cauchy-Green strain tensorlines of the climatological velocity, the climatological LCSs (cLCSs) unveil recurrent Lagrangian circulation patterns. The cLCSs strongly constrain the ensemble-mean Lagrangian circulation of the instantaneous model velocity, showing that a climatological velocity can preserve meaningful transport information. The quasi-steady transport patterns revealed by the cLCSs agree well with aspects of the GoM circulation described in several previous observational and numerical studies. For example, the cLCSs identify regions of persistent isolation, and suggest that coastal regions previously identified as high-risk for pollution impact are regions of maximal attraction. We also show that cLCSs are remarkably accurate at identifying transport patterns observed during the Deepwater Horizon and Ixtoc oil spills, and during the Grand LAgrangian Deployment (GLAD) experiment. Thus it is shown that computing cLCSs is an efficient and meaningful way of synthesizing vast amounts of Lagrangian information. The cLCS method confirms previous GoM studies, and contributes to our understanding by revealing the persistent nature of the dynamics and kinematics treated therein.

  1. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    Science.gov (United States)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  2. Evaluation of stability of allergen extracts for sublingual immunotherapy during transport under unfavourable temperature conditions with an innovative thermal insulating packaging.

    Science.gov (United States)

    Puccinelli, P; Natoli, V; Dell'albani, I; Scurati, S; Incorvaia, C; Barbieri, S; Masieri, S; Frati, F

    2013-10-01

    Many pharmaceutical and biotechnological products are temperature-sensitive and should normally be kept at a controlled temperature, particularly during transport, in order to prevent the loss of their stability and activity. Therefore, stability studies should be performed for temperature-sensitive products, considering product characteristics, typical environmental conditions, and anticipating environmental extremes that may occur during product transport in a specific country. Staloral products for sublingual immunotherapy are temperature sensitive and are labelled for maintenance under refrigerated conditions (2-8°C). Given the peculiar climatic context of Italy and the great temperature fluctuations that may occur during transport, this study was aimed at evaluating the impact of a new engineered thermal insulating packaging for Staloral. In particular, the purpose was to assess whether the new packaging could create a container condition able to preserve the stability and immunological activity of the product during the transport phase throughout Italy. The results showed that the range of temperatures that can affect the product, in the area surrounding the product packaging, may reach a peak of 63°C during transport under the most unfavourable climatic conditions, i.e. in a non-refrigerated van during the summer season, from the site of production in France to the patient's house in Catania, the city with the highest temperatures in Italy. However, the highest temperature reached inside the vaccine did not exceed 45°C over a period of about 2 h. The ELISA inhibition test on samples subjected to the extreme temperature conditions previously defined (45°C) showed an immunological activity higher than 75% of that initially measured and was comparable to those obtained with samples stored at controlled temperature (5°C). This means that, even in the worst case scenario, the structure of the allergen extracts is not influenced and the vaccine potency is

  3. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    Science.gov (United States)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  4. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  5. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  6. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  7. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  8. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  9. Nonlinear phenomena in general relativity

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  10. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  11. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  12. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  13. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  14. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  15. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  16. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  17. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  18. Kinetic transport is needed to reliably extract shear viscosity from pA and AA data arXiv

    CERN Document Server

    Kurkela, Aleksi; Wu, Bin

    The azimuthal anisotropies $v_n$ of particle spectra measured in proton-nucleus (pA) and nucleus-nucleus (AA) collisions play a key role in constraining QCD matter properties like the shear viscosity over entropy density ratio $\\eta/s$. Here, we compare calculations of $v_n$'s from viscous fluid dynamics and from kinetic transport which start both from the same initial conditions and which implement the same matter properties. We observe that both approaches lead to parametrically different $\\eta/s$-dependencies of the elliptic anisotropy $v_2$ and they may thus lead to quantitatively different results for the phenomenologically inferred value of $\\eta/s$. The parametric differences can be traced to the boost-invariant longitudinal expansion of pA and AA collisions which induces in fluid dynamic results of the $\\eta/s$-dependence of $v_2$ a dominant sensitivity on the initial conditions. Transport theory is free of this problem and it accounts for the order of magnitude of experimentally observed signal stren...

  19. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  20. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  1. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  2. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  3. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  4. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  5. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  6. Thiacalix[4]arene derivatives as extractants for metal ions in aqueous solutions: Application to the selective facilitated transport of Ag(I)

    Energy Technology Data Exchange (ETDEWEB)

    Zaghbani, Asma [Laboratoire Eau et Technologies Membranaires, CERTE, BP 273, 8020 Soliman (Tunisia); Fontas, Claudia [Department of Chemistry, University of Girona, 17071 Girona (Spain)], E-mail: claudia.fontas@udg.edu; Hidalgo, Manuela [Department of Chemistry, University of Girona, 17071 Girona (Spain); Tayeb, Rafik; Dhahbi, Mahmoud [Laboratoire Eau et Technologies Membranaires, CERTE, BP 273, 8020 Soliman (Tunisia); Vocanson, Francis; Lamartine, Roger [Universite de Lyon, Lyon, F-69003 (France); Universite Lyon 1, Villeurbanne, F-69622 (France); CNRS, UMR 5246, ICBMS, equipe CSAp, 43 boulevard du 11 novembre 1918, Villeurbanne, F-69622 (France); Seta, Patrick [Institut Europeen des Membranes, UMR CNRS 5635, 1919 route de Mende, 34293 Montpellier (France)

    2008-07-01

    The complexation abilities of different thiacalix[4]arene derivatives towards some rare earth metal ions, metallic pollutants, and noble metals have been investigated in liquid-liquid experiments. Thiacalix[4]arene dissolved in chloroform effectively extracts Pd(II) (in acidic chloride media) and also Ag(I), Cd(II), Sm(III) and Ce(III), all buffered at pH 6 or 8. The modification of this compound to form an amide derivative results in an effective extraction of noble metals, ranked according to Au(III) > Pd(II) > Pt(IV) > Ag(I). Moreover, a supported liquid membrane system for silver transport has been developed based on thiacalix[4]arene dissolved in NPOE, and parameters affecting its efficiency have been investigated, such as the stripping composition and the pH of the feed solution. Finally, the selectivity of the membrane system has been evaluated by using as feed sources mixtures of silver and other metal ion000.

  7. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Kinetic phenomena in Sc films

    International Nuclear Information System (INIS)

    Stasyuk, Z.V.

    1992-01-01

    Size effects in electrical conductivity, thermoelectric power and Hall coefficient of thin scandium films have been investigated. An analysis of experimental data was made within the framework of Mayadas-Shatzkes and Tellier-Tosser-Pichard models. The transport parameters of scandium have been found. (author)

  9. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  10. Interface-Induced Phenomena in Magnetism.

    Science.gov (United States)

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S D; Fullerton, Eric E; Leighton, Chris; MacDonald, Allan H; Ralph, Daniel C; Arena, Dario A; Dürr, Hermann A; Fischer, Peter; Grollier, Julie; Heremans, Joseph P; Jungwirth, Tomas; Kimel, Alexey V; Koopmans, Bert; Krivorotov, Ilya N; May, Steven J; Petford-Long, Amanda K; Rondinelli, James M; Samarth, Nitin; Schuller, Ivan K; Slavin, Andrei N; Stiles, Mark D; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

  11. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  12. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  13. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  14. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  15. Role of diluent on the separation of {sup 90}Y from {sup 90}Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S. [Planning and Coordination Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Raut, D.R. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Mohapatra, P.K., E-mail: mpatra@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2012-04-15

    The separation behaviour of {sup 90}Y from {sup 90}Sr was investigated by diluent variation using solvent extraction and supported liquid membrane techniques employing N,N,N Prime ,N Prime -tetra-2-ethylhexyldiglycolamide (T2EHDGA) as the extractant. Both D{sub Y} (distribution ratio of Y(III)) and S.F. (separation factor) were found to be high in the solvent extraction studies when chloroform was used as the diluent. Subsequent supported liquid membrane (SLM) studies using PTFE flat sheet membranes containing 0.2 M T2EHDGA in various diluents indicated the trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. However, the Sr(II) transport rates were also high with xylene, hexone, and carbon tetrachloride as the diluents which led us to carry out subsequent studies using chloroform and n-dodecane+30% iso-decanol mixture. Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Separation of {sup 90}Y from a mixture of {sup 90}Sr and {sup 90}Y was also attempted. - Highlights: Black-Right-Pointing-Pointer SLM studies using PTFE flat sheet membranes containing T2EHDGA as carrier was carried out for Y-90 separation from Sr-90. Black-Right-Pointing-Pointer The trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. Black-Right-Pointing-Pointer Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Black-Right-Pointing-Pointer The present studies suggested that T2EHDGA-SLM show limited promise if coupled to another separation method such as extraction chromatography.

  16. Interfacial Healing and Transport Phenomena Modeling ff Biopolymers

    Science.gov (United States)

    Lebron, Karla

    This research focuses on the characterization of bioplastics joined using ultrasonic welding and modeling of temperature distributions and interfacial healing. Polylactic acid (PLA), which is typically derived from starch-rich crops such as corn, was studied. While the measurement of activation energy for interfacial healing at weld interfaces of PLA films has been reported, here, this information is used to predict the weld strength of rigid PLA samples welded by ultrasonics. A characterization of the mechanical properties was completed with a tensile test to determine the effects of amplitude, melt velocity and collapse distance on weld strength. From previous interfacial healing activation energy measurements based on an impulse welding method, it was also possible to predict weld strength. It was found that the most influential parameters were weld time, collapse distance and weld velocity. In general, the model predicted weld strength reasonably well with r2 values between 0.77 and 0.78.

  17. Modelling of Transport Phenomena at Cement Matrix—Aggregate Interfaces

    DEFF Research Database (Denmark)

    van Breugel, Klaas; Koenders, Eddie; Ye, Guang

    2004-01-01

    The performance of a heterogeneous material like concrete is largely determined by the many interfaces in this material. This contribution focuses on the potential of numerical simulation models to investigate the character of the matrix-aggregate interfacial zone and to simulate hydration-induce...

  18. Observations of mass transport phenomena in multicomponent liquid mixtures

    International Nuclear Information System (INIS)

    Mruzek, M.T.; Musinski, D.L.; Jacobs, R.B.

    1985-01-01

    Examples of surface tension effects on liquid behavior are common, such as liquid rising in a capillary tube or the beading of rain drops on a freshly waxed car. Usually through, the surface tension forces are small compared to other forces such as gravity. Situations exist, however, where the simple statement attributed to Marangoni can explain striking and unexpected observations. ''If for any reason difference of surface tension exist along a free liquid surface, liquid will flow toward the region of higher surface tension''. Such flows are called Marangoni flows. Observations of isotopic hydrogen fuel mixtures in cryogenic Inertial Confinement Fusion (ICF) targets can be explained on the basis of Marangoni flows. Additional experiments at KMS with common room temperature mixtures have produced similar results

  19. Analysis of coupled transport phenomena in concrete at elevated temperatures

    OpenAIRE

    Beneš, Michal; Štefan, Radek; Zeman, Jan

    2010-01-01

    In this paper, we study a non-linear numerical scheme arising from the implicit time discretization of the Ba\\v{z}ant-Thonguthai model for hygro-thermal behavior of concrete at high temperatures. Existence and uniqueness of the time-discrete solution in two dimensions is established using the theory of pseudomonotone operators in Banach spaces. Next, the spatial discretization is accomplished by the conforming finite element method. An illustrative numerical example shows that the numerical m...

  20. Diffusion and transport phenomena in a collisional magnetoplasma ...

    Indian Academy of Sciences (India)

    As is well-known in natural plasmas, the jets, solar wind etc. [8,9] the external beam injection along the magnetic field lines contribute to the source of anisotropy. (T ) and operates in a sink ..... The profiles show slow fall and straight saturation.

  1. Thermo-hydrodynamic transport phenomena in partially wetting ...

    Indian Academy of Sciences (India)

    Vyas Srinivasan

    ers and reactors, nuclear rod bundles, DNA separation and analysis, digital .... liquid film surrounding the gas/vapour bubble may not get formed in a regular fashion, ...... on-chips, two-phase catalytic reactors, pulsating heat pipes, etc. Further, liquid ... which can be used to develop a global model, for designing devices for ...

  2. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2016-01-01

    the very large number of modes present in the system. We showed that spin-independent disorder can actually wash out these interferences and promote the conservation of the spin signal. In the course of this PhD, we showed that while disorder-induced

  3. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    Science.gov (United States)

    2016-10-26

    the floating potential of wall material samples immersed in a low-temperature plasma were studied. Hysteresis is found to be due to secondary electron...continued research into plasma sheath physics. Hysteresis effects observed in the floating potential of wall material samples immersed in a low... Journal of Applied Physics, Volume 119, March 2016, pp. 113305 1-5. DISTRIBUTION A: Distribution approved for public release. 8 Figure 2

  4. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  5. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  6. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter.

    Science.gov (United States)

    Chieli, Elisabetta; Romiti, Nadia; Catiana Zampini, Iris; Garrido, Gabino; Inés Isla, María

    2012-12-18

    Zuccagnia punctata extracts (ZpE) are used in ethnomedicine as antimicrobial and anti-inflammatory drugs. The pharmacological properties of ZpE and their polyphenolic components suggest that they may be used as potential modulators on the P-glycoprotein (P-gp) multidrug transporter. P-gp is well known for its role in the acquired drug resistance by tumors following chemotherapy, causing a low drug bioavailability by extruding them out of the cells. To evaluate the effects of ZpE and three of their phenolic components: 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2',4'-dihydroxychalcone (DHC) on P-gp activity and expression. The effects of natural products on ABCB1/P-gp function and expression were evaluated by R-123 accumulation assay and western blot analysis using HK-2 cells as experimental model. The ABCB1 mRNA content was determined by SQRT-PCR. The accumulation of R-123 in HK-2 cells was significantly increased by ZpE and DHF, and to a lesser extent by DHC, indicating their roles on the efflux transporter activity. However, HF did not show any effect. HK-2 cells maintained in the presence of ZpE or DHF for 72 h, showed an increase in P-gp expression whereas activity was unchanged or decreased. No changes were observed in ABCB1 mRNA content. Furthermore, in these assay conditions, more sensibility of HK-2 cells to the cytotoxic action of cyclosporine A (P-gp substrate) was observed. These results may suggest an impact of Zuccagnia punctata and some of its components on the pharmacokinetics of drugs that are P-gp substrates, as well as a potential role on multidrug resistance modulation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  8. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band

  9. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  10. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  11. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  12. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells.

    Science.gov (United States)

    Chen, Bor-Yann; Liao, Jia-Hui; Hsu, An-Wei; Tsai, Po-Wei; Hsueh, Chung-Chuan

    2018-05-01

    This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Precedent Phenomena in Quebecois Linguistic World View

    Directory of Open Access Journals (Sweden)

    Ксения Эдуардовна Болотина

    2016-12-01

    Full Text Available This article is devoted to the linguocultural analysis of precedent phenomena as parts of Quebecois’ cognitive base. Precedent phenomena being cultural facts are one of the key issues in modern linguistic and cognitive studies. By precedent phenomena we mean, according to Y.E. Prohorov, such entities when verbalized in discourse that refer to a certain cultural fact behind them. In the article the precedent phenomena such as precedent text, precedent situation, precedent utterance, and precedent name are analyzed. The main theses of the precedence theory given in the article (Y.N. Karaulov, Y.E. Prohorov, V.V. Krasnyh, D.B. Gudkov are at the heart of precedence studies on the basis of different languages. However, a complex analysis of precedent phenomena in the Quebec national variant of French is new to Russian linguistics. The study of precedent phenomena enables us to elicit features of their functioning in ethnospecific discourse and determine cultural dominants existing in Quebecois’ linguistic world view. Given the fact that the size of the article is limited, we undertooke the analysis of eight phenomena precedent of the bearers of Quebec linguoculture. The choice of phenomena is determined by the frequency of their use in discourse. The facts analyzed are of national character, i.e. known to all members of the linguocultural community. A certain cultural fact is at the very core of each precedent phenomenon given in the article. To get the whole picture we analysed historic, political, and cultural context connected to the precedent phenomena in question. The study enables us to elicit distinctive features that are at the core of each phenomenon. The results are backed with the supportive material drawn from analysis of different types of discourse. The analysis of precedent phenomena undertaken in this article allows us to reconstruct, to a certain extent, Quebec cultural space and is a stepping stone to the reconstruction of the

  14. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  15. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  16. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  17. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  18. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  19. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  20. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  1. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  2. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  3. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  4. A model for hot electron phenomena: Theory and general results

    International Nuclear Information System (INIS)

    Carrillo, J.L.; Rodriquez, M.A.

    1988-10-01

    We propose a model for the description of the hot electron phenomena in semiconductors. Based on this model we are able to reproduce accurately the main characteristics observed in experiments of electric field transport, optical absorption, steady state photoluminescence and relaxation process. Our theory does not contain free nor adjustable parameters, it is very fast computerwise, and incorporates the main collision mechanisms including screening and phonon heating effects. Our description on a set of nonlinear rate equations in which the interactions are represented by coupling coefficients or effective frequencies. We calculate three coefficients from the characteristic constants and the band structure of the material. (author). 22 refs, 5 figs, 1 tab

  5. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data; Modelisation des phenomenes physiques dans les reacteurs de recherche a l'aide de developpements realises dans les methodes de transport et qualification

    Energy Technology Data Exchange (ETDEWEB)

    Rauck, St

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  6. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  7. The Beasts' model of percolative transport

    International Nuclear Information System (INIS)

    Dubois, M.A.; Beaufume, P.; Fromont, B.

    1991-12-01

    A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited

  8. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  9. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  10. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  11. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  12. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  13. Toward a CFD-grade database addressing LWR containment phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Andreani, Michele; Zboray, Robert; Dreier, Joerg [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. Black-Right-Pointing-Pointer The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. Black-Right-Pointing-Pointer The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  14. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  15. Toward a CFD-grade database addressing LWR containment phenomena

    International Nuclear Information System (INIS)

    Paladino, Domenico; Andreani, Michele; Zboray, Robert; Dreier, Jörg

    2012-01-01

    Highlights: ► The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. ► The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. ► The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  16. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to present...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  17. Polarization phenomena in two body systems

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-01-01

    A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references

  18. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  19. Evaluation of the transporter-mediated herb-drug interaction potential of DA-9801, a standardized dioscorea extract for diabetic neuropathy, in human in vitro and rat in vivo.

    Science.gov (United States)

    Song, Im-Sook; Kong, Tae Yeon; Jeong, Hyeon-Uk; Kim, Eun Nam; Kwon, Soon-Sang; Kang, Hee Eun; Choi, Sang-Zin; Son, Miwon; Lee, Hye Suk

    2014-07-17

    Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC50 values of 106, 174, 48.1, and 273 μg/mL, respectively, while the other transporters were not inhibited by 300 μg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the Cmax of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is

  20. Hall effects and related phenomena in disordered Rashba 2DEG

    International Nuclear Information System (INIS)

    Inoue, Jun-ichiro; Kato, Takashi; Bauer, Gerrit E W; Molenkamp, Laurens W

    2009-01-01

    We review our recent work on the spin and anomalous Hall effects and other related phenomena caused by the intrinsic spin–orbit interaction. We focus our attention on disorder effects on these transport properties by adopting a model of a two-dimensional electron gas with a Rashba-type spin–orbit interaction. A spin-polarized model is adopted to calculate the anomalous Hall effect and anisotropic magnetoresistance. It is shown that the spin Hall conductivity in the ballistic transport regime is cancelled by the so-called vertex corrections for the disorder scattering, and that the anomalous Hall conductivity and anisotropic magnetoresistance vanish unless the lifetime is spin dependent. We further present results on spin accumulation under an electric field

  1. [Spiritual phenomena occurring in everybody and health].

    Science.gov (United States)

    Krsiak, M

    2008-01-01

    The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.

  2. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    technology was up to the task but the programme was shelved mainly because of lack of demand. Finally, seven papers deal with laser processes. Two of them review the AVLIS program in the UK and one paper gives the status of the MLIS project in West Germany. One communication from China and three papers by French authors deal with specific problems currently met in AVLIS studies, on the vapour beam and the ion extraction. A number of phenomena observed in AVLIS needs satisfactory explanations: the high value of the vapour velocity, the low value of metastables in the vapour beam, the extraction of ions at high density, etc. Session 1: plasma separation (review of isotopic plasma separation processes; production of depleted zirconium using a plasma centrifuge; measurements of isotope separation in a vacuum arc centrifuge). Session 2: plasma separation and centrifugation (recent developments in stable isotope separation by ionic cyclotron resonance; some aspects of the separation of multi-isotope mixtures with gas centrifuges; review paper on centrifuge technology and status of the URENCO centrifuge project; solution of the two-fluid equations for flow in a centrifuge; influence of stationary poles in the central region of gas centrifuges; extension of the analytic sixth order theory; applications of different analytic solutions for the centrifuge flow). Sessions 4 and 5: rotating flows (convection flows driven by centrifugal buoyancy in rapidly rotating systems; experimental investigation of the flow in a rotating pie-shaped cylinder; temperature distribution on rotating spherical shells; centrifugal separation of a suspension in a rotating vessel; spin-up from rest of a suspension - preliminary insight). Session 6: particle fluid mixture (modelling, simulation and comprehension of the flow field of a particles-fluid mixture; the effect of shear and lift on particle-gas separation; on the hydrodynamics of electrolytic refining of metals). Session 7 (calculation of condensation

  3. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    technology was up to the task but the programme was shelved mainly because of lack of demand. Finally, seven papers deal with laser processes. Two of them review the AVLIS program in the UK and one paper gives the status of the MLIS project in West Germany. One communication from China and three papers by French authors deal with specific problems currently met in AVLIS studies, on the vapour beam and the ion extraction. A number of phenomena observed in AVLIS needs satisfactory explanations: the high value of the vapour velocity, the low value of metastables in the vapour beam, the extraction of ions at high density, etc. Session 1: plasma separation (review of isotopic plasma separation processes; production of depleted zirconium using a plasma centrifuge; measurements of isotope separation in a vacuum arc centrifuge). Session 2: plasma separation and centrifugation (recent developments in stable isotope separation by ionic cyclotron resonance; some aspects of the separation of multi-isotope mixtures with gas centrifuges; review paper on centrifuge technology and status of the URENCO centrifuge project; solution of the two-fluid equations for flow in a centrifuge; influence of stationary poles in the central region of gas centrifuges; extension of the analytic sixth order theory; applications of different analytic solutions for the centrifuge flow). Sessions 4 and 5: rotating flows (convection flows driven by centrifugal buoyancy in rapidly rotating systems; experimental investigation of the flow in a rotating pie-shaped cylinder; temperature distribution on rotating spherical shells; centrifugal separation of a suspension in a rotating vessel; spin-up from rest of a suspension - preliminary insight). Session 6: particle fluid mixture (modelling, simulation and comprehension of the flow field of a particles-fluid mixture; the effect of shear and lift on particle-gas separation; on the hydrodynamics of electrolytic refining of metals). Session 7 (calculation of condensation

  4. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  5. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  6. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  7. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  8. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  9. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  10. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  11. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  12. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  13. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2012-01-01

    Roč. 86, č. 1 (2012), 014405/1/-014405/8/ ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100520 Institutional support: RVO:68081723 Keywords : electronic transport * galvanomagnetic phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  14. CP violating phenomena and theoretical results

    International Nuclear Information System (INIS)

    Grimus, W.

    1987-01-01

    An introduction to CP violating phenomena is given and the standard model and its most popular low energy extensions in this context are reviewed. The discussion comprises the minimal supersymmetric extension of the standard model, left-right symmetry, the standard model with more than one Higgs doublet and gauged horizontal symmetries. (Author)

  15. Collision and interaction phenomena - a historical outline

    International Nuclear Information System (INIS)

    Radmaneche, R.

    1977-09-01

    Collisions and interactions have become important for the description of matter. The author presents an outline which deals with elastic and inelastic collisions, with strong interactions, electromagnetic interactions, weak interactions and gravitational interactions. It is shown that the description of such processes has developed parallel with the understanding of matter and with the mechanism of the phenomena. Current and unsolved problems are mentioned

  16. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  17. Novel experimentally observed phenomena in soft matter

    Indian Academy of Sciences (India)

    The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...

  18. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  19. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  20. Reduplication phenomena: body, mind and archetype.

    Science.gov (United States)

    Garner, J

    2000-09-01

    The many biological and few psychodynamic explanations of reduplicative syndromes tend to have paralleled the dualism of the phenomenon with organic theories concentrating on form and dynamic theories emphasising content. This paper extends the contribution of psychoanalytic thinking to an elucidation of the form of the delusion. Literature on clinical and aetiological aspects of reduplicative phenomena is reviewed alongside a brief examination of psychoanalytic models not overtly related to these phenomena. The human experience of doubles as universal archetype is considered. There is an obvious aetiological role for brain lesions in delusional misidentifications, but psychological symptoms in an individual can rarely be reduced to an organic disorder. The splitting and doubling which occurs in the phenomena have resonances in cultural mythology and in theories from different schools of psychodynamic thought. For the individual patient and doctor, it is a diverting but potentially empty debate to endeavour to draw strict divisions between what is physical and what is psychological although both need to be investigated. Nevertheless, in patients in whom there is clear evidence of an organic contribution to aetiology a psychodynamic understanding may serve to illuminate the patient's experience. Organic brain disease or serious functional illness predispose to regression to earlier modes of archetypical and primitive thinking with concretization of the metaphorical and mythological world. Psychoanalytic models have a contribution in describing the form as well as the content of reduplicative phenomena.

  1. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  2. Interface-induced phenomena in magnetism

    NARCIS (Netherlands)

    Hellman, Frances; Hoffmann, A.; Tserkovnyak, Yaroslav; Beach, Geoffrey S.D.; Fullerton, Eric E.; Leighton, Chris; Macdonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, B.; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on

  3. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  4. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  5. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  6. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  7. Understanding the physics of changing mass phenomena

    NARCIS (Netherlands)

    Ellermeijer, A.L.

    2008-01-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee

  8. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  9. Hopping transport in solids

    CERN Document Server

    Pollak, M

    1991-01-01

    The hopping process, which differs substantially from conventional transport processes in crystals, is the central process in the transport phenomena discussed in this book. Throughout the book the term ``hopping'' is defined as the inelastic tunneling transfer of an electron between two localized electronic states centered at different locations. Such processes do not occur in conventional electronic transport in solids, since localized states are not compatible with the translational symmetry of crystals.The rapid growth of interest in hopping transport has followed in the footsteps of the

  10. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  11. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  12. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  13. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    KAUST Repository

    Tsai, Yu-Lin

    2016-09-06

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via nanoscaled phenomena have also been demonstrated as a promising way for further modifying/improving the device performance. The accomplishments achieved by photon management via nanoscaled phenomena include strain-induced polarization field management, crystal quality improvement, light extraction/harvesting enhancement, radiation pattern control, and spectrum management. In this review, we summarize recent development, challenges and underlying physics of photon management in GaN-based light emitting diodes and solar cells. (C) 2016 Elsevier Ltd. All rights reserved.

  14. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  15. Critical Phenomena of the Disorder Driven Localization-Delocalization Transition

    International Nuclear Information System (INIS)

    Marc Ruehlaender

    2001-01-01

    Metal-to-insulator transitions are generally linked to two phenomena: electron-electron correlations and disorder. Although real systems are usually responding to a mixture of both, they can be classified as undergoing a Mott-transition, if the former process dominates, or an Anderson-transition, if the latter dominates. High-T c superconductors, e.g., are a candidate for the first class. Materials in which disorder drives the metal-to-insulator transition include doped semiconductors and amorphous materials. After briefly reviewing the previous research on transport in disordered materials and the disorder-induced metal-to-insulator transition, a summary of the model and the methods used in subsequent chapters is given

  16. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  17. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  18. Monitoring corrosion and chemistry phenomena in supercritical aqueous systems

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Pang, J.; Liu, C.; Kriksunov, L.; Medina, E.; Villa, J.; Bueno, J.

    1994-01-01

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensors for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from ∼250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly

  19. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    INSPIRE-00305407

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  20. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  1. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  2. Tunable caustic phenomena in electron wavefields

    Energy Technology Data Exchange (ETDEWEB)

    Tavabi, Amir Hossein, E-mail: a.tavabi@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-10-15

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. - Highlights: • Electron-optical caustics are observed in defocused images of biased metallic tips. • The caustics depend on defocus, on the bias between the tips and on their separation. • The setup offers the flexibility to study a wide variety of caustic phenomena.

  3. Transport Statistics - Transport - UNECE

    Science.gov (United States)

    Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6

  4. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  5. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  6. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  7. From critical phenomena to gauge gields

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1988-01-01

    In this book the author gives an introduction to the following questions: critical phenomena (Landau theory, renormalization group, two dimensional models); Perturbation theory and renormalization, scalar euclidian field (Feynman diagrams, Callan-Symanzik equations); Quantum theory of scalar fields (path integrals in quantum mechanics and statistical mechanics, green functions and S matrix, quantization of Klein-Gordon field); Gauge theories (quantization of Dirac field and electromagnetic field, quantum electrodynamics, non-abelian gauge theories) [fr

  8. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  9. Occult Phenomena in Sherlock Holmes the Movie

    OpenAIRE

    NAMAZCARRA, CHRIESHER

    2014-01-01

    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  10. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  11. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  12. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  13. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  14. Physical phenomena as sense determinate occurrences

    International Nuclear Information System (INIS)

    Sommer, H.J.

    2005-01-01

    In the view of El Naschie's E Infinity theory [Chaos, Solitons and Fractals 22 (2004) 495], our physical laws emerge from a chaotic underground, a 'Dirac-sea'. But we have no direct access from our observations to this chaotic world and this implies that the meaning of the correspondence between the phenomena we obtain by our cognition and their causal structures remains hidden to us. The fundamental process which produces our cognition is the 'constitution of sense'. A formal description of this process will be presented. We use Dempster Shafer's belief calculus to define 'belief' and motivate an Anticipation Principle: 'Put the measurements obtained from the world in such an order that the credibility of your forecasts will be maximized.' From this specification of the basic idea of what physical science ideally strives for, we are able to deduce a frame of reference for the formation of phenomena out of arbitrary sets of measurements. Reality is formed by these 'observable phenomena'. In this emerging reality, we recognize characteristic effects and principles of modern physics: Einstein's Postulate of Relativity, Entanglement, and the Quantum Zeno Effect. The presented view of reality is closely related to the ideas that had been presented hundred years ago by Ernst Mach and which recently J. Anandan generalized in his concept of a 'Relational Reality'

  15. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  16. Effect of Papaya Seed Extract (Carica papaya Linn. on Glucose Transporter 4 (GLUT 4 Expression of Skeletal Muscle Tissue in Diabetic Mice Induced by High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Devyani Diah Wulansari

    2017-08-01

    Full Text Available Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05 in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05, meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.

  17. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  18. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  19. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  20. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  1. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  2. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  3. Jets and large Psub(T) phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, D. S.

    1980-07-01

    Jets have been observed in hadron-hadron collisions and e/sup +/e/sup -/ annihilation at high energies. An attempt is made to explain the mechanism for the production of jets. The mechanism of quark-fragmentation is described with illustrations. Basic concepts and assumptions are used to study the distribution of quarks and gluons in a hadron. Quark and gluon decay distributions, and the transverse momentum distributions of quarks and gluons, Monte-Carlo methods in the study of jets, large Psub(T) phenomena in hadrons, QCD effects in hadronization of quark jets are discussed.

  4. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  5. General unifying features of controlled quantum phenomena

    International Nuclear Information System (INIS)

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  6. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  7. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  8. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  9. Current position on severe accident phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Robert E [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    2004-07-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors.

  10. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    Henry, Robert E.

    2004-01-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  11. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine [ed.

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  12. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  13. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  14. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  15. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  16. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  17. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  18. Critical Phenomena Associated with Boson Stars

    OpenAIRE

    Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via co...

  19. Development of INCTAC code for analyzing criticality accident phenomena

    International Nuclear Information System (INIS)

    Mitake, Susumu; Hayashi, Yamato; Sakurai, Shungo

    2003-01-01

    Aiming at understanding nuclear transients and thermal- and hydraulic-phenomena of the criticality accident, a code named INCTAC has been newly developed at the Institute of Nuclear Safety. The code is applicable to the analysis of criticality accident transients of aqueous homogenous fuel solution system. Neutronic transient model is composed of equations for the kinetics and for the spatial distributions, which are deduced from the time dependent multi-group transport equations with the quasi steady state assumption. Thermal-hydraulic transient model is composed of a complete set of the mass, momentum and energy equations together with the two-phase flow assumptions. Validation tests of INCTAC were made using the data obtained at TRACY, a transient experiment criticality facility of JAERI. The calculated results with INCTAC showed a very good agreement with the experiment data, except a slight discrepancy of the time when the peak of reactor power was attained. But, the discrepancy was resolved with the use of an adequate model for movement and transfer of the void in the fuel solution mostly generated by radiolysis. With a simulation model for the transport of radioactive materials through ventilation systems to the environment, INCTAC will be used as an overall safety evaluation code of the criticality accident. (author)

  20. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  1. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  2. WHC natural phenomena hazards mitigation implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  3. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  4. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  5. Syntactic Idioms and Precedent Phenomena: Intersection Zones

    Directory of Open Access Journals (Sweden)

    Hanna Sytar

    2016-08-01

    Full Text Available Background: One examined mainly structural and semantic features of syntactic idioms so far. The pragmatic dimension of these original units that are on the verge of syntax and phraseology, has not been highlighted properly in the scientific literature, so it needs theoretical understanding. The combination of syntactic idiom and phraseological phenomenon refers to the communication techniques impacting on message recipient. Purpose: to analyze the intersection zones of syntactic idioms and precedent phenomena. Results: Analysis of the collected factual material allows to distinguish two areas of interpenetration of syntactic idioms and precedent units: 1 construction of expression according to the phraseologized model, within which the position of variable component is filled by the precedent name or precedent expression; 2 the model of sentence itself is precedent, and lexical content does not comply with generally known one that does not affect on understanding of model content by recipient. With a combination of syntactic idiom and precedent phenomena speakers provide drawing of recipients’ attention, carry out a hidden influence on them, express their own attitude to the realities, so that perform phatic, manipulative and expressive-evaluative functions. The modifications and transformations of precedent expressions and names appeared to be regular in such interpenetrations. Discussion: The obtained results reflect the general trend towards transform (transformation, modification, variation, etc. of precedent, as well as phraseological units, and can be used for the analysis of patterns of their formation and modifications. Further research phase implies tracing patterns of syntactic idioms combination with other means of expressive syntax.

  6. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  7. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  8. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  9. Cavitation phenomena in extracorporeal microexplosion lithotripsy

    Science.gov (United States)

    Tomita, Y.; Obara, T.; Takayama, K.; Kuwahara, M.

    1994-09-01

    An experimental investigation was made of cavitation phenomena induced by underwater shock wave focusing applied to the extracorporeal microexplosion lithotripsy (microexplosion ESWL). Firstly an underwater microexplosion generated by detonation of a 10 mg silver azide pellet was studied and secondly underwater shock focusing and its induced cavitation phenomena were investgated. Underwater shock wave was focused by using a semi-ellipsoidal reflector in which a shock wave generated at the first focal point of the reflector was reflected and focused at the second focal point. It is found that an explosion product gas bubble did not produce any distinct rebound shocks. Meantime cavitation appeared after shock focusing at the second focal point where expansion waves originated at the exit of the reflector were simultaneously collected. A shock/bubble interaction is found to contribute not only to urinary tract stone disintegration but also tissue damage. The cavitation effect associated with the microexplosion ESWL was weaker in comparison with a spark discharge ESWL. The microexplosion ESWL is an effective method which can minimize the number of shock exposures hence decreasing tissue damage by conducting precise positioning of urinary tract stones.

  10. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  11. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  12. Physical resuspension and revaporisation phenomena in control rod aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Browsher, B.R.

    1988-12-01

    Physical resuspension and revaporisation processes could play a significant role in the transport of fission products in a severe reactor accident. The processes involved in physical resuspension and revaporisation of control rod alloy aerosol particles from a stainless steel substrate have been studied at room temperature under laminar and turbulent flow conditions (Reynolds numbers of between 70 and 7000), and at temperatures in the range from 370 K to 870 K under laminar and intermediate flow conditions (Reynolds numbers of between 7 and 1400) in the absence and presence of steam. The phenomena were investigated using bulk analyses to determine the quantity of material remaining on a coupon after each experiment, and standard surface analysis techniques were used to examine the composition and morphology of the particles. The main conclusions of this work are that: (i) physical resuspension is only significant in turbulent flow, (ii) two processes are involved in physical resuspension: the removal of surface layers which are only loosely bound to the substrate, and the removal of a more tightly-bound layer, (iii) the amount of material resuspended decreases exponentially with time, and the data have been correlated with a reverse isotherm model, (iv) the weight loss from the revaporisation experiments can be interpreted in terms of the effective vapour pressure of the deposit, and an equation has been derived to express this vapour pressure as a function of temperature. These studies have demonstrated the importance of a number of resuspension processes in generating a source of radioactive material that could be released after failure of the containment. Efforts are in hand to include these phenomena in the relevant modelling studies. (author)

  13. The influence of chemistry on severe accident phenomena in integral tests

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Osetek, D.J.; Hagrman, D.L.

    1988-01-01

    The influence of chemical processes on severe accident phenomena in integral tests is reviewed and recommendations for areas of additional work are made. The results reviewed include those from tests conducted in the in-pile facilities at ACRR, PBF, and TREAT and the TMI-2 accident. Progress has been made in understanding the influence of chemistry on important severe accident phenomena such as core melt progression, hydrogen generation, aerosol generation and transport, and fission product release and transport (including revaporization). An example is the chemistry of volatile fission products, especially iodine and tellurium. Areas where understanding is inadequate are also apparent, such as chemical interactions between fission product vapors and aerosols. Influential chemical processes reviewed include oxidation by steam and interactions among control, structural, fuel, fission product, and aerosol materials

  14. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    International Nuclear Information System (INIS)

    Field, A.R.; Buechl, K.; Fuchs, C.J.; Fussmann, G.; Herrmann, A.; Lieder, G.; Napiontek, B.; Radtke, R.; Wenzel, U.; Zohm, H.

    1993-01-01

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs

  15. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Field, A R; Buechl, K; Fuchs, C J; Fussmann, G; Herrmann, A; Lieder, G; Napiontek, B; Radtke, R; Wenzel, U; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs.

  16. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  17. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  18. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  19. Nuclear disarmament verification via resonant phenomena.

    Science.gov (United States)

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  20. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.