WorldWideScience

Sample records for transport modeling capability

  1. Capabilities and requirements for modelling radionuclide transport in the geosphere

    International Nuclear Information System (INIS)

    Paige, R.W.; Piper, D.

    1989-02-01

    This report gives an overview of geosphere flow and transport models suitable for use by the Department of the Environment in the performance assessment of radioactive waste disposal sites. An outline methodology for geosphere modelling is proposed, consisting of a number of different types of model. A brief description of each of the component models is given, indicating the purpose of the model, the processes being modelled and the methodologies adopted. Areas requiring development are noted. (author)

  2. Development of an operational waterborne weaponized chemical agent transport modeling capability

    International Nuclear Information System (INIS)

    Ward, M.C.; Cragan, J.A.; Mueller, C.

    2009-01-01

    The fate of chemical warfare agents (CWAs) in aqueous environments is not well characterized. Limited physical and kinetic data are available for these chemicals in the open literature, partly due to their inherent lethality. As a result, the development of methods for determining the persistence and extent of impact for waterborne chemical agent releases is a significant challenge. In this study, a hydrolysis model was developed to track the fate of several critical CWAs. VX, sarin, soman, tabun, and cyclosarin modeling capabilities were developed for an instantaneous point source aqueous release. Hydrolysis products were tracked and the resulting change in pH was calculated for the local dispersive environment. Using this data, instantaneous hydrolysis rates were calculated. This framework was applied to assess the persistence and fate of the CWAs in different turbulent environments. From this hydrolysis model, estimates of the time and extent of lethality from an aqueous release can be made. Refinement to these estimates requires further investigation into the impact of potential catalysts on these chemicals. Enhanced understanding of equivalent acute percutaneous toxicity for solutions requires changes to current testing and estimation methods.(author)

  3. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : collaboration.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  4. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : culture.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  5. Group Capability Model

    Science.gov (United States)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  6. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Wankerl, M.W.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs

  7. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Wankerl, M.W.; Joy, D.S.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 465 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the DOE consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated

  8. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  9. Business models and dynamic capabilities

    OpenAIRE

    Teece, DJ

    2017-01-01

    © 2017 The Author. Business models, dynamic capabilities, and strategy are interdependent. The strength of a firm's dynamic capabilities help shape its proficiency at business model design. Through its effect on organization design, a business model influences the firm's dynamic capabilities and places bounds on the feasibility of particular strategies. While these relationships are understood at a theoretical level, there is a need for future empirical work to flesh out the details. In parti...

  10. Subsurface flow and transport of organic chemicals: an assessment of current modeling capability and priority directions for future research (1987-1995)

    Energy Technology Data Exchange (ETDEWEB)

    Streile, G.P.; Simmons, C.S.

    1986-09-01

    Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.

  11. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : business processes.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  12. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : performance measurement.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  13. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : systems and technology.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  14. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : organization and staffing.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  15. System Code Models and Capabilities

    International Nuclear Information System (INIS)

    Bestion, D.

    2008-01-01

    System thermalhydraulic codes such as RELAP, TRACE, CATHARE or ATHLET are now commonly used for reactor transient simulations. The whole methodology of code development is described including the derivation of the system of equations, the analysis of experimental data to obtain closure relation and the validation process. The characteristics of the models are briefly presented starting with the basic assumptions, the system of equations and the derivation of closure relationships. An extensive work was devoted during the last three decades to the improvement and validation of these models, which resulted in some homogenisation of the different codes although separately developed. The so called two-fluid model is the common basis of these codes and it is shown how it can describe both thermal and mechanical nonequilibrium. A review of some important physical models allows to illustrate the main capabilities and limitations of system codes. Attention is drawn on the role of flow regime maps, on the various methods for developing closure laws, on the role of interfacial area and turbulence on interfacial and wall transfers. More details are given for interfacial friction laws and their relation with drift flux models. Prediction of chocked flow and CFFL is also addressed. Based on some limitations of the present generation of codes, perspectives for future are drawn.

  16. Towards a national cybersecurity capability development model

    CSIR Research Space (South Africa)

    Jacobs, Pierre C

    2017-06-01

    Full Text Available - the incident management cybersecurity capability - is selected to illustrate the application of the national cybersecurity capability development model. This model was developed as part of previous research, and is called the Embryonic Cyberdefence Monitoring...

  17. Numerical modeling capabilities to predict repository performance

    International Nuclear Information System (INIS)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used

  18. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    respectively). There were only minor changes in output voltage within a 9 0C (48 0F) temperature change and exhibited little short -term drift ±0.04% of range ...longshore sand transport rate generated under obliquely incident waves. The LSTF instrumentation includes acoustic Doppler velocimeters (ADVs), wave gauges...pump flow meters, sediment trap weigh tanks, and beach profiling lidar . A detailed discussion of the original LSTF features and capabilities can be

  19. Size and transportation capabilities of the existing US cask fleet

    International Nuclear Information System (INIS)

    Danese, F.L.; Johnson, P.E.; Joy, D.S.

    1990-01-01

    This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade

  20. PHISICS multi-group transport neutronic capabilities for RELAP5

    International Nuclear Information System (INIS)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G.

    2012-01-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  1. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  2. Transport capabilities of environmental Pseudomonads for sulfur compounds.

    Science.gov (United States)

    Zerbs, Sarah; Korajczyk, Peter J; Noirot, Philippe H; Collart, Frank R

    2017-04-01

    Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligand-binding activities were identified and quantified in this set of solute-binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. Characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities. © 2017 The Protein Society.

  3. Business Models for Cost Sharing & Capability Sustainment

    Science.gov (United States)

    2012-08-18

    Masanell and Ricart (2010), we can arrive at the working definition of a business model used in this report, namely, that a business model is a...capabilities over a long time frame. In order to identify the key factors in the Harrier RTI success, a SWOT analysis was carried out. The results are shown in...Table 1. Table 1. SWOT Analysis of Harrier Strengths - Small team - UK/BAE controlled - RTI Weaknesses - Small program—little

  4. COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION

    Science.gov (United States)

    The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM) (Weaver et al., 1994) have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS (Zheng and Wang, 1999; Zheng, 2005). The linkage pro...

  5. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  6. Atmospheric Modelling of Tritium forms transport: review of capabilities and R and D needs for the assessment of fusion facilities environmental impact

    International Nuclear Information System (INIS)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J. M.; Sedano, L.

    2012-01-01

    The work model in detail the tritium forms dispersion and dosimetric impact of selected environmental patterns both inland and in-sea using real topography and forecast meteo data (ECMWF/FLEXPART). We explore specific values of this ratio in different levels and we examine the influence of meteorological conditions in the HTO behavior for 24 hours. For this purpose we have used a tool which consists on a coupled Lagrangian.

  7. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  8. Local Government GIS and Geospatial Capabilities : Suitability for Integrated Transportation & Land Use Planning (California SB 375)

    Science.gov (United States)

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates.

  9. Stochastic Capability Models for Degrading Satellite Constellations

    National Research Council Canada - National Science Library

    Gulyas, Cole W

    2005-01-01

    This thesis proposes and analyzes a new measure of functional capability for satellite constellations that incorporates the instantaneous availability and mission effectiveness of individual satellites...

  10. Improving emergency preparedness and crisis management capabilities in transportation.

    Science.gov (United States)

    2009-11-30

    Despite the heightened attention disaster preparedness and emergency management have received over the past decade, serious weaknesses in the United States emergency response capabilities remain at all levels of government and across a wide range ...

  11. Overview of ASC Capability Computing System Governance Model

    Energy Technology Data Exchange (ETDEWEB)

    Doebling, Scott W. [Los Alamos National Laboratory

    2012-07-11

    This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

  12. Guidelines for Applying the Capability Maturity Model Analysis to Connected and Automated Vehicle Deployment

    Science.gov (United States)

    2017-11-23

    The Federal Highway Administration (FHWA) has adapted the Transportation Systems Management and Operations (TSMO) Capability Maturity Model (CMM) to describe the operational maturity of Infrastructure Owner-Operator (IOO) agencies across a range of i...

  13. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  14. Modeling Radionuclide Transport in Clays

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.

  15. Capabilities of U.S. domestic transportation systems for the shipment of radioactive wastes

    International Nuclear Information System (INIS)

    Best, R.E.; Allen, J.H.; Aucoin, P.A.; Ball, G.D.; Hoffman, C.C.; Mason, M.E.; Propes, W.A.; Vizzini, T.A.

    1977-09-01

    This document is a compilation of data and reports that provide an overview of the capabilities of U.S. domestic transportation systems for the shipment of materials that are or may be classified as radioactive wastes

  16. Capabilities and accuracy of energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-11-01

    Full Text Available Energy modelling can be used in a number of different ways to fulfill different needs, including certification within building regulations or green building rating tools. Energy modelling can also be used in order to try and predict what the energy...

  17. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  18. Predictive capabilities of various constitutive models for arterial tissue.

    Science.gov (United States)

    Schroeder, Florian; Polzer, Stanislav; Slažanský, Martin; Man, Vojtěch; Skácel, Pavel

    2018-02-01

    Aim of this study is to validate some constitutive models by assessing their capabilities in describing and predicting uniaxial and biaxial behavior of porcine aortic tissue. 14 samples from porcine aortas were used to perform 2 uniaxial and 5 biaxial tensile tests. Transversal strains were furthermore stored for uniaxial data. The experimental data were fitted by four constitutive models: Holzapfel-Gasser-Ogden model (HGO), model based on generalized structure tensor (GST), Four-Fiber-Family model (FFF) and Microfiber model. Fitting was performed to uniaxial and biaxial data sets separately and descriptive capabilities of the models were compared. Their predictive capabilities were assessed in two ways. Firstly each model was fitted to biaxial data and its accuracy (in term of R 2 and NRMSE) in prediction of both uniaxial responses was evaluated. Then this procedure was performed conversely: each model was fitted to both uniaxial tests and its accuracy in prediction of 5 biaxial responses was observed. Descriptive capabilities of all models were excellent. In predicting uniaxial response from biaxial data, microfiber model was the most accurate while the other models showed also reasonable accuracy. Microfiber and FFF models were capable to reasonably predict biaxial responses from uniaxial data while HGO and GST models failed completely in this task. HGO and GST models are not capable to predict biaxial arterial wall behavior while FFF model is the most robust of the investigated constitutive models. Knowledge of transversal strains in uniaxial tests improves robustness of constitutive models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Facility Modeling Capability Demonstration Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sadasivan, Pratap [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aleman, Sebastian E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chiswell, Steven R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration’s (NNSA’s) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  20. Computable general equilibrium model fiscal year 2014 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Laboratory; Boero, Riccardo [Los Alamos National Laboratory

    2016-05-11

    This report provides an overview of the development of the NISAC CGE economic modeling capability since 2012. This capability enhances NISAC's economic modeling and analysis capabilities to answer a broader set of questions than possible with previous economic analysis capability. In particular, CGE modeling captures how the different sectors of the economy, for example, households, businesses, government, etc., interact to allocate resources in an economy and this approach captures these interactions when it is used to estimate the economic impacts of the kinds of events NISAC often analyzes.

  1. Affordable Freight Logistics Transport Information Management Optimisation and Asset Tracking Solution Using Smartphone GPS Capabilities

    Science.gov (United States)

    Muna, Joseph T.; Prescott, Kevin

    2011-08-01

    Traditionally, freight transport and telematics solutions that exploit the GPS capabilities of in- vehicle devices to provide innovative Location Based Services (LBS) including track and trace transport systems have been the preserve of a select cluster of transport operators and organisations with the financial resources to develop the requisite custom software and hardware on which they are deployed. The average cost of outfitting a typical transport vehicle or truck with the latest Intelligent Transport System (ITS) increases the cost of the vehicle by anything from a couple to several thousand Euros, depending on the complexity and completeness of the solution. Though this does not generally deter large fleet transport owners since they typically get Return on Investment (ROI) based on economies of scale, it presents a barrier for the smaller independent entities that constitute the majority of freight transport operators [1].The North Sea Freight Intelligent Transport Solution (NS FRITS), a project co-funded by the European Commission Interreg IVB North Sea Region Programme, aims to make acquisition of such transport solutions easier for those organisations that cannot afford the expensive, bespoke systems used by their larger competitors.The project addresses transport security threats by developing a system capable of informing major actors along the freight logistics supply chain, of changing circumstances within the region's major transport corridors and between transport modes. The project also addresses issues of freight volumes, inter-modality, congestion and eco-mobility [2].

  2. A Thermo-Optic Propagation Modeling Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  3. Hybrid Modeling Capability for Aircraft Electrical Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PC Krause and Associates is partnering with Purdue University, EleQuant, and GridQuant to create a hybrid modeling capability. The combination of PCKA's extensive...

  4. Assessing the LWR codes capability to address SFR BDBAs: Modeling of the ABCOVE tests

    International Nuclear Information System (INIS)

    Garcia, M.; Herranz, L. E.

    2012-01-01

    Tic present paper is aimed at assessing the current capability of LWR codes to model aerosol transport within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC and MELCOR codes lo relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have been adopted so that differences in boundary conditions between LWR and SFR containments under BDBA can be accommodated to some extent.

  5. Demonstration of a Model Averaging Capability in FRAMES

    Science.gov (United States)

    Meyer, P. D.; Castleton, K. J.

    2009-12-01

    Uncertainty in model structure can be incorporated in risk assessment using multiple alternative models and model averaging. To facilitate application of this approach to regulatory applications based on risk or dose assessment, a model averaging capability was integrated with the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) version 2 software. FRAMES is a software platform that allows the non-parochial communication between disparate models, databases, and other frameworks. Users have the ability to implement and select environmental models for specific risk assessment and management problems. Standards are implemented so that models produce information that is readable by other downstream models and accept information from upstream models. Models can be linked across multiple media and from source terms to quantitative risk/dose estimates. Parameter sensitivity and uncertainty analysis tools are integrated. A model averaging module was implemented to accept output from multiple models and produce average results. These results can be deterministic quantities or probability distributions obtained from an analysis of parameter uncertainty. Output from alternative models is averaged using weights determined from user input and/or model calibration results. A model calibration module based on the PEST code was implemented to provide FRAMES with a general calibration capability. An application illustrates the implementation, user interfaces, execution, and results of the FRAMES model averaging capabilities.

  6. Capability Maturity Model (CMM) for Software Process Improvements

    Science.gov (United States)

    Ling, Robert Y.

    2000-01-01

    This slide presentation reviews the Avionic Systems Division's implementation of the Capability Maturity Model (CMM) for improvements in the software development process. The presentation reviews the process involved in implementing the model and the benefits of using CMM to improve the software development process.

  7. Innovation and Regulatory Reform in Public Transport : Innovative Capabilities and Learning of the Public Transport Organisations

    NARCIS (Netherlands)

    S. Ongkittikul (Sumet)

    2006-01-01

    textabstractThis thesis is a result from a project funded by the co-operative research programme T3 of the Netherlands Organisation of Applied Scientific Research TNO and the Netherlands Research School for Transport, Infrastructure, and Logistics TRAIL TRAIL Thesis Series no. 2006/5, The

  8. Local government GIS and geospatial capabilities : suitability for integrated transportation and land use planning (California SB 375).

    Science.gov (United States)

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates. The particular examples ...

  9. Neural network modeling of a dolphin's sonar discrimination capabilities

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time...... and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer mounted on the dolphin's pen. The echoes were filtered by a bank of continuous constant-Q digital filters...

  10. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  11. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  12. Size and transportation capabilities of the existing U.S. cask fleet

    International Nuclear Information System (INIS)

    Danese, F.L.; Johnson, P.E.; Joy, D.S.

    1990-01-01

    This paper investigates the current spent nuclear fuel cask fleet capability in the United States. It assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade

  13. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...

  14. Experiences with the Capability Maturity Model in a research environment

    NARCIS (Netherlands)

    Velden, van der M.J.; Vreke, J.; Wal, van der B.; Symons, A.

    1996-01-01

    The project described here was aimed at evaluating the Capability Maturity Model (CMM) in the context of a research organization. Part of the evaluation was a standard CMM assessment. It was found that CMM could be applied to a research organization, although its five maturity levels were considered

  15. Uranium Transport Modeling

    International Nuclear Information System (INIS)

    Bostick, William D.

    2008-01-01

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO 2 2+ ) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range ∼ 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases

  16. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  17. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  18. GTEDGE-2 A new predictive and interpretive edge-boundary transport capability

    Science.gov (United States)

    Deshazer, E. W.; Hill, M. D.; Stacey, W. M.

    2017-10-01

    A new code is being assembled for the tokamak plasma and neutral particle transport in the plasma edge, Scrape-Off Layer (SOL) and divertor. The new code will differ from existing codes by including ion orbit loss of thermalized ions and retaining electromagnetic ``pinch'' forces in the momentum balance, thus conserving particles, momentum and energy. Edge plasma transport is based on a 1D Flux-Surface Averaged (FSA) transport solution of the extended fluid theory incorporating ion orbit loss and electromagnetic particle pinch, with flux surface compression-expansion effects of gradients and Shafranov shift accounted for using the Miller model. SOL-divertor plasma transport is initially based on a 1-D solution of the particle, momentum and energy equations in the core and edge plasma. Neutral particle transport is based on the GTNEUT interface current balance code. Theoretical models for the Code structure, integration and iteration issues are discussed.

  19. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  20. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  1. TBEST model enhancements : parcel level demographic data capabilities and exploration of enhanced trip attraction capabilities.

    Science.gov (United States)

    2011-09-01

    "FDOT, in pursuit of its role to assist in providing public transportation services in Florida, has made a substantial : research investment in a travel demand forecasting tool for public transportation known as Transit Boardings : Estimation and Sim...

  2. Uncertainty associated with selected environmental transport models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-11-01

    A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation

  3. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  4. Development of a fourth generation predictive capability maturity model.

    Energy Technology Data Exchange (ETDEWEB)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNLs mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  5. The interpersonal circumplex as a model of interpersonal capabilities.

    Science.gov (United States)

    Hofsess, Christy D; Tracey, Terence J G

    2005-04-01

    In this study, we sought to challenge the existing conceptualization of interpersonal capabilities as a distinct construct from interpersonal traits by explicitly taking into account the general factor inherent within most models of circumplexes. A sample of 206 college students completed a battery of measures including the Battery of Interpersonal Capabilities (BIC; Paulhus & Martin, 1987). Principal components analysis and the randomization test of hypothesized order relations demonstrated that contrary to previous findings, the BIC adhered to a circular ordering. Joint analysis of the BIC with the Interpersonal Adjective Scale (Wiggins, 1995) using principal components analysis and structural equation modeling demonstrated that the 2 measures represented similar constructs. Furthermore, the general factor in the BIC was not correlated with measures of general self-competence, satisfaction with life, or general pathology.

  6. Hybriding CMMI and requirement engineering maturity and capability models

    OpenAIRE

    Buglione, Luigi; Hauck, Jean Carlo R.; Gresse von Wangenheim, Christiane; Mc Caffery, Fergal

    2012-01-01

    peer-reviewed Estimation represents one of the most critical processes for any project and it is highly dependent on the quality of requirements elicitation and management. Therefore, the management of requirements should be prioritised in any process improvement program, because the less precise the requirements gathering, analysis and sizing, the greater the error in terms of time and cost estimation. Maturity and Capability Models (MCM) represent a good tool for assessing the status of ...

  7. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  8. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  9. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    Science.gov (United States)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2016-03-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.

  10. Evacuation emergency response model coupling atmospheric release advisory capability output

    International Nuclear Information System (INIS)

    Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.

    1983-01-01

    A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented

  11. Climbing the ladder: capability maturity model integration level 3

    Science.gov (United States)

    Day, Bryce; Lutteroth, Christof

    2011-02-01

    This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.

  12. Capability to model reactor regulating system in RFSP

    International Nuclear Information System (INIS)

    Chow, H.C.; Rouben, B.; Younis, M.H.; Jenkins, D.A.; Baudouin, A.; Thompson, P.D.

    1995-01-01

    The Reactor Regulating System package extracted from SMOKIN-G2 was linked within RFSP to the spatial kinetics calculation. The objective is to use this new capability in safety analysis to model the actions of RRS in hypothetical events such as in-core LOCA or moderator drain scenarios. This paper describes the RRS modelling in RFSP and its coupling to the neutronics calculations, verification of the RRS control routine functions, sample applications and comparisons to SMOKIN-G2 results for the same transient simulations. (author). 7 refs., 6 figs

  13. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  14. DOE International Collaboration; Seismic Modeling and Simulation Capability Project

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Lara D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-12

    The following report describes the development and exercise of a new capability at LLNL to model complete, non-linear, seismic events in 3-dimensions with a fully-coupled soil structure interaction response. This work is specifically suited to nuclear reactor design because this design space is exempt from the Seismic Design requirements of International Building Code (IBC) and the American Society of Civil Engineers (ASCE) [4,2]. Both IBC and ASCE-7 exempt nuclear reactors because they are considered “structures that require special consideration” and their design is governed only by “other regulations”. In the case of nuclear reactors, the regulations are from both the Nuclear Regulatory Commission (NRC) [10] and ASCE 43 [3]. This current framework of design guidance, coupled to this new and evolving capability to provide high fidelity design solutions as presented in this report, enables the growing field of Performance-Based Design (PBD) for nuclear reactors subjected to earthquake ground motions.

  15. "Multiscale Capabilities for Exploring Transport Phenomena in Batteries": Ab Initio Calculations on Defective LiFePO4

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Yosuke [Univ. of North Carolina, Chapel Hill, NC (United States); Tang, M [Univ. of North Carolina, Chapel Hill, NC (United States); Wood, B C [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-10-25

    We have began the project “Multiscale Capability for Exploring Transport Phenomena in Battery”, which is sponsored by Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory in February 2012 as the subcontract was approved. We have been performing first-principles quantum-mechanical calculations to first establish the general modeling framework. It was found that it is essential to employ advanced Density Functional Theory (DFT) calculations with Hubbard U correction, in order to describe the battery material, in particular, LiFePO4 (Figure 1). The presence of localized d-electrons at Fe ion sites requires the better treatment of non-local correlation beyond that of standard DFT. As our aim was to first identify and investigate key transport/reaction mechanisms affecting the performance of Lithium-ion based batteries, we have began out work by characterizing the standard structures and how the defects influence the important electronic structure.

  16. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  17. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  18. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  19. Modelling pollutant transport

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    1994-01-01

    An attempt has been made here to present a brief outline of the major processes and problems in the environmental modelling with special reference to radionuclide migration in surface waters. The intention has been only to provide a bird's eye view of this fertile and socially relevant area of scientific pursuit. (author). 2 figs., 4 tabs

  20. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive

  1. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  2. Hybrid Corporate Performance Prediction Model Considering Technical Capability

    Directory of Open Access Journals (Sweden)

    Joonhyuck Lee

    2016-07-01

    Full Text Available Many studies have tried to predict corporate performance and stock prices to enhance investment profitability using qualitative approaches such as the Delphi method. However, developments in data processing technology and machine-learning algorithms have resulted in efforts to develop quantitative prediction models in various managerial subject areas. We propose a quantitative corporate performance prediction model that applies the support vector regression (SVR algorithm to solve the problem of the overfitting of training data and can be applied to regression problems. The proposed model optimizes the SVR training parameters based on the training data, using the genetic algorithm to achieve sustainable predictability in changeable markets and managerial environments. Technology-intensive companies represent an increasing share of the total economy. The performance and stock prices of these companies are affected by their financial standing and their technological capabilities. Therefore, we apply both financial indicators and technical indicators to establish the proposed prediction model. Here, we use time series data, including financial, patent, and corporate performance information of 44 electronic and IT companies. Then, we predict the performance of these companies as an empirical verification of the prediction performance of the proposed model.

  3. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    Science.gov (United States)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  4. Survey of state and tribal emergency response capabilities for radiological transportation incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J [Indiana Univ., Bloomington, IN (USA). School of Public and Environmental Affairs

    1990-05-01

    This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.

  5. Modeling axisymmetric flow and transport

    Science.gov (United States)

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  6. Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts

    Science.gov (United States)

    Odoni, Amedeo R.; Bowman, Jeremy; Delahaye, Daniel; Deyst, John J.; Feron, Eric; Hansman, R. John; Khan, Kashif; Kuchar, James K.; Pujet, Nicolas; Simpson, Robert W.

    1997-01-01

    ATM systems throughout the world are entering a period of major transition and change. The combination of important technological developments and of the globalization of the air transportation industry has necessitated a reexamination of some of the fundamental premises of existing Air Traffic Management (ATM) concepts. New ATM concepts have to be examined, concepts that may place more emphasis on: strategic traffic management; planning and control; partial decentralization of decision-making; and added reliance on the aircraft to carry out strategic ATM plans, with ground controllers confined primarily to a monitoring and supervisory role. 'Free Flight' is a case in point. In order to study, evaluate and validate such new concepts, the ATM community will have to rely heavily on models and computer-based tools/utilities, covering a wide range of issues and metrics related to safety, capacity and efficiency. The state of the art in such modeling support is adequate in some respects, but clearly deficient in others. It is the objective of this study to assist in: (1) assessing the strengths and weaknesses of existing fast-time models and tools for the study of ATM systems and concepts and (2) identifying and prioritizing the requirements for the development of additional modeling capabilities in the near future. A three-stage process has been followed to this purpose: 1. Through the analysis of two case studies involving future ATM system scenarios, as well as through expert assessment, modeling capabilities and supporting tools needed for testing and validating future ATM systems and concepts were identified and described. 2. Existing fast-time ATM models and support tools were reviewed and assessed with regard to the degree to which they offer the capabilities identified under Step 1. 3 . The findings of 1 and 2 were combined to draw conclusions about (1) the best capabilities currently existing, (2) the types of concept testing and validation that can be carried

  7. Genetics of traffic assignment models for strategic transport planning

    NARCIS (Netherlands)

    Bliemer, M.C.J.; Raadsen, M.P.H.; Brederode, L.J.N.; Bell, M.G.H.; Wismans, Luc Johannes Josephus; Smith, M.J.

    2016-01-01

    This paper presents a review and classification of traffic assignment models for strategic transport planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic

  8. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    Science.gov (United States)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  9. Session on High Speed Civil Transport Design Capability Using MDO and High Performance Computing

    Science.gov (United States)

    Rehder, Joe

    2000-01-01

    Since the inception of CAS in 1992, NASA Langley has been conducting research into applying multidisciplinary optimization (MDO) and high performance computing toward reducing aircraft design cycle time. The focus of this research has been the development of a series of computational frameworks and associated applications that increased in capability, complexity, and performance over time. The culmination of this effort is an automated high-fidelity analysis capability for a high speed civil transport (HSCT) vehicle installed on a network of heterogeneous computers with a computational framework built using Common Object Request Broker Architecture (CORBA) and Java. The main focus of the research in the early years was the development of the Framework for Interdisciplinary Design Optimization (FIDO) and associated HSCT applications. While the FIDO effort was eventually halted, work continued on HSCT applications of ever increasing complexity. The current application, HSCT4.0, employs high fidelity CFD and FEM analysis codes. For each analysis cycle, the vehicle geometry and computational grids are updated using new values for design variables. Processes for aeroelastic trim, loads convergence, displacement transfer, stress and buckling, and performance have been developed. In all, a total of 70 processes are integrated in the analysis framework. Many of the key processes include automatic differentiation capabilities to provide sensitivity information that can be used in optimization. A software engineering process was developed to manage this large project. Defining the interactions among 70 processes turned out to be an enormous, but essential, task. A formal requirements document was prepared that defined data flow among processes and subprocesses. A design document was then developed that translated the requirements into actual software design. A validation program was defined and implemented to ensure that codes integrated into the framework produced the same

  10. Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array

    Science.gov (United States)

    Busby, R. W.

    2016-12-01

    In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these

  11. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  12. Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities

    Science.gov (United States)

    Cook, Bruce D.

    2012-01-01

    Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.

  13. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  14. Quantitative Model for Supply Chain Visibility: Process Capability Perspective

    Directory of Open Access Journals (Sweden)

    Youngsu Lee

    2016-01-01

    Full Text Available Currently, the intensity of enterprise competition has increased as a result of a greater diversity of customer needs as well as the persistence of a long-term recession. The results of competition are becoming severe enough to determine the survival of company. To survive global competition, each firm must focus on achieving innovation excellence and operational excellence as core competency for sustainable competitive advantage. Supply chain management is now regarded as one of the most effective innovation initiatives to achieve operational excellence, and its importance has become ever more apparent. However, few companies effectively manage their supply chains, and the greatest difficulty is in achieving supply chain visibility. Many companies still suffer from a lack of visibility, and in spite of extensive research and the availability of modern technologies, the concepts and quantification methods to increase supply chain visibility are still ambiguous. Based on the extant researches in supply chain visibility, this study proposes an extended visibility concept focusing on a process capability perspective and suggests a more quantitative model using Z score in Six Sigma methodology to evaluate and improve the level of supply chain visibility.

  15. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  16. Innovation and dynamic capabilities of the firm: Defining an assessment model

    Directory of Open Access Journals (Sweden)

    André Cherubini Alves

    2017-05-01

    Full Text Available Innovation and dynamic capabilities have gained considerable attention in both academia and practice. While one of the oldest inquiries in economic and strategy literature involves understanding the features that drive business success and a firm’s perpetuity, the literature still lacks a comprehensive model of innovation and dynamic capabilities. This study presents a model that assesses firms’ innovation and dynamic capabilities perspectives based on four essential capabilities: development, operations, management, and transaction capabilities. Data from a survey of 1,107 Brazilian manufacturing firms were used for empirical testing and discussion of the dynamic capabilities framework. Regression and factor analyses validated the model; we discuss the results, contrasting with the dynamic capabilities’ framework. Operations Capability is the least dynamic of all capabilities, with the least influence on innovation. This reinforces the notion that operations capabilities as “ordinary capabilities,” whereas management, development, and transaction capabilities better explain firms’ dynamics and innovation.

  17. Spatial Preference Modelling for equitable infrastructure provision: an application of Sen's Capability Approach

    Science.gov (United States)

    Wismadi, Arif; Zuidgeest, Mark; Brussel, Mark; van Maarseveen, Martin

    2014-01-01

    To determine whether the inclusion of spatial neighbourhood comparison factors in Preference Modelling allows spatial decision support systems (SDSSs) to better address spatial equity, we introduce Spatial Preference Modelling (SPM). To evaluate the effectiveness of this model in addressing equity, various standardisation functions in both Non-Spatial Preference Modelling and SPM are compared. The evaluation involves applying the model to a resource location-allocation problem for transport infrastructure in the Special Province of Yogyakarta in Indonesia. We apply Amartya Sen's Capability Approach to define opportunity to mobility as a non-income indicator. Using the extended Moran's I interpretation for spatial equity, we evaluate the distribution output regarding, first, `the spatial distribution patterns of priority targeting for allocation' (SPT) and, second, `the effect of new distribution patterns after location-allocation' (ELA). The Moran's I index of the initial map and its comparison with six patterns for SPT as well as ELA consistently indicates that the SPM is more effective for addressing spatial equity. We conclude that the inclusion of spatial neighbourhood comparison factors in Preference Modelling improves the capability of SDSS to address spatial equity. This study thus proposes a new formal method for SDSS with specific attention on resource location-allocation to address spatial equity.

  18. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  19. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  20. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  1. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  2. A model based lean approach to capability management

    CSIR Research Space (South Africa)

    Venter, Jacobus P

    2017-09-01

    Full Text Available for cyberwar and counter terrorism capabilities as these are fairly new and rapidly changes environments. It is therefore necessary to employ a Capability Management mechanism that can provide answers in the short term, are able to handle continuous changes... is only included or excluded from the Mission Plan. A further refinement is to indicate the role that the FSC play in the mission. The following classification is used for this purpose: • c = the FSC can / should command (directly or indirectly, taking...

  3. MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    Grieshemer, D.P.; Gill, D.F.; Nease, B.R.; Carpenter, D.C.; Joo, H.; Millman, D.L.; Sutton, T.M.; Stedry, M.H.; Dobreff, P.S.; Trumbull, T.H.; Caro, E.

    2013-01-01

    MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10 -5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each

  4. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  5. Using Genome-scale Models to Predict Biological Capabilities

    DEFF Research Database (Denmark)

    O’Brien, Edward J.; Monk, Jonathan M.; Palsson, Bernhard O.

    2015-01-01

    growth capabilities on various substrates and the effect of gene knockouts at the genome scale. Thus, much interest has developed in understanding and applying these methods to areas such as metabolic engineering, antibiotic design, and organismal and enzyme evolution. This Primer will get you started....

  6. Business Models For Transport eBusiness

    OpenAIRE

    Dragan Cisic; Ivan Franciskovic; Ana Peric

    2003-01-01

    In this paper authors are presenting expectations from electronic commerce and its connotations on transport logistics. Based on trends, the relations between the companies in the international transport have to be strengthened using Internet business models. In the paper authors are investigating e-business information models for usage in transport

  7. Use of Models in Urban Transportation Planning

    Science.gov (United States)

    1973-04-01

    The report describes the most commonly used models in urban transportation planning. A background on urban transportation planning is given including changes in planning objectives and the effects of Federal legislation. General concepts and problems...

  8. Developing tolled-route demand estimation capabilities for Texas : opportunities for enhancement of existing models.

    Science.gov (United States)

    2014-08-01

    The travel demand models developed and applied by the Transportation Planning and Programming Division : (TPP) of the Texas Department of Transportation (TxDOT) are daily three-step models (i.e., trip generation, trip : distribution, and traffic assi...

  9. Nascap-2k Spacecraft-Plasma Environment Interactions Modeling: New Capabilities and Verification

    National Research Council Canada - National Science Library

    Davis, V. A; Mandell, M. J; Cooke, D. L; Ferguson, D. C

    2007-01-01

    .... Here we examine the accuracy and limitations of two new capabilities of Nascap-2k: modeling of plasma plumes such as generated by electric thrusters and enhanced PIC computational capabilities...

  10. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  11. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  12. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts

    Science.gov (United States)

    2016-11-10

    stress components which can be modeled by a turbulence closure model. In the present study, the standard Smagorinsky LES model is used. The conservation...is used to solve the pressure Poisson equation. The model is parallelized with Message Passing Interface (MPI). 2.2 Modification to NHWAVE

  13. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  14. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    Science.gov (United States)

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  15. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    Science.gov (United States)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  16. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  17. Improving emergency preparedness and crisis management capabilities in transportation : year 2.

    Science.gov (United States)

    2013-03-01

    While disaster preparedness and emergency management have had a high public : profile over the past decade, Hurricane Katrina revealed serious weaknesses in the : United States emergency response capabilities. There is thus much left to do : befor...

  18. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  19. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  20. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  1. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  2. Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard

    2016-05-01

    Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.

  3. Advanced capabilities for materials modelling with Quantum ESPRESSO

    Science.gov (United States)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  4. NGNP Data Management and Analysis System Modeling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  5. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  6. Atmospheric disturbance model for aircraft and space capable vehicles

    Science.gov (United States)

    Chimene, Beau C.; Park, Young W.; Bielski, W. P.; Shaughnessy, John D.; Mcminn, John D.

    1992-01-01

    An atmospheric disturbance model (ADM) is developed that considers the requirements of advanced aerospace vehicles and balances algorithmic assumptions with computational constraints. The requirements for an ADM include a realistic power spectrum, inhomogeneity, and the cross-correlation of atmospheric effects. The baseline models examined include the Global Reference Atmospheric Model Perturbation-Modeling Technique, the Dryden Small-Scale Turbulence Description, and the Patchiness Model. The Program to Enhance Random Turbulence (PERT) is developed based on the previous models but includes a revised formulation of large-scale atmospheric disturbance, an inhomogeneous Dryden filter, turbulence statistics, and the cross-correlation between Dryden Turbulence Filters and small-scale thermodynamics. Verification with the Monte Carlo approach demonstrates that the PERT software provides effective simulations of inhomogeneous atmospheric parameters.

  7. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    Science.gov (United States)

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  8. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    Science.gov (United States)

    2015-09-30

    wind-and thermohaline -forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486–1505. Bleck, R., 2002. An oceanic general... circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell. 4, 55–88. Buijsman, M.C., Kanarska, Y., McWilliams, J.C., 2010...continental margin. Cont. Shelf Res. 24 (6), 693–720. Nakayama, K. and Imberger, J. 2010 Residual circulation due to internal waves shoaling on a slope

  9. Capabilities For Modelling Of Conversion Processes In Life Cycle Assessment

    DEFF Research Database (Denmark)

    Damgaard, Anders; Zarrin, Bahram; Tonini, Davide

    Life cycle assessment was traditionally used for modelling of product design and optimization. This is also seen in the conventional LCA software which is optimized for the modelling of single materials streams of a homogeneous nature that is assembled into a final product. There has therefore been...

  10. The Creation and Use of an Analysis Capability Maturity Model (trademark) (ACMM)

    National Research Council Canada - National Science Library

    Covey, R. W; Hixon, D. J

    2005-01-01

    .... Capability Maturity Models (trademark) (CMMs) are being used in several intellectual endeavors, such as software engineering, software acquisition, and systems engineering. This Analysis CMM (ACMM...

  11. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  12. On the predictive capabilities of multiphase Darcy flow models

    KAUST Repository

    Icardi, Matteo

    2016-01-09

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  13. Computable general equilibrium model fiscal year 2013 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  14. Lattice Boltzmann model capable of mesoscopic vorticity computation.

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  15. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  16. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  17. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  18. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  19. Interfacial and Wall Transport Models for SPACE-CAP Code

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.

  20. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  1. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  2. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...... and quantities as well as for the waste technologies mentioned above. The model calculates environmental impacts and resource consumptions and allows the user to trace all impacts to their source in a waste treatment processes or in a specific waste material fraction. In addition to the traditional impact...

  3. Capabilities for modelling of conversion processes in LCA

    DEFF Research Database (Denmark)

    Damgaard, Anders; Zarrin, Bahram; Tonini, Davide

    2015-01-01

    , EASETECH (Clavreul et al., 2014) was developed which integrates a matrix approach for the functional unit which contains the full chemical composition for different material fractions, and also the number of different material fractions present in the overall mass being handled. These chemical substances...... able to set constraints for a possible flow on basis of other flows, and also do return flows for some material streams. We have therefore developed a new editor for the EASETECH software, which allows the user to make specific process modules where the actual chemical conversion processes can...... be modelled and then integrated into the overall LCA model. This allows for flexible modules which automatically will adjust the material flows it is handling on basis of its chemical information, which can be set for multiple input materials at the same time. A case example of this was carried out for a bio...

  4. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    Science.gov (United States)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  5. Plutonium air transportable package Model PAT-1. Safety analysis report

    International Nuclear Information System (INIS)

    1978-02-01

    The document is a Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1, which was developed by Sandia Laboratories under contract to the Nuclear Regulatory Commission (NRC). The document describes the engineering tests and evaluations that the NRC staff used as a basis to determine that the package design meets the requirements specified in the NRC ''Qualification Criteria to Certify a Package for Air Transport of Plutonium'' (NUREG-0360). By virtue of its ability to meet the NRC Qualification Criteria, the package design is capable of safely withstanding severe aircraft accidents. The document also includes engineering drawings and specifications for the package. 92 figs, 29 tables

  6. Expanding the modeling capabilities of the cognitive environment simulation

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Pople, H.E. Jr.

    1991-01-01

    The Nuclear Regulatory Commission has been conducting a research program to develop more effective tools to model the cognitive activities that underlie intention formation during nuclear power plant (NPP) emergencies. Under this program an artificial intelligence (AI) computer simulation called Cognitive Environment Simulation (CES) has been developed. CES simulates the cognitive activities involved in responding to a NPP accident situation. It is intended to provide an analytic tool for predicting likely human responses, and the kinds of errors that can plausibly arise under different accident conditions to support human reliability analysis. Recently CES was extended to handle a class of interfacing loss of coolant accidents (ISLOCAs). This paper summarizes the results of these exercises and describes follow-on work currently underway

  7. Multiple mode model of tokamak transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs

  8. Multiple mode model of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.

  9. Ground-water transport model selection and evaluation guidelines

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1983-01-01

    Guidelines are being developed to assist potential users with selecting appropriate computer codes for ground-water contaminant transport modeling. The guidelines are meant to assist managers with selecting appropriate predictive models for evaluating either arid or humid low-level radioactive waste burial sites. Evaluation test cases in the form of analytical solutions to fundamental equations and experimental data sets have been identified and recommended to ensure adequate code selection, based on accurate simulation of relevant physical processes. The recommended evaluation procedures will consider certain technical issues related to the present limitations in transport modeling capabilities. A code-selection plan will depend on identifying problem objectives, determining the extent of collectible site-specific data, and developing a site-specific conceptual model for the involved hydrology. Code selection will be predicated on steps for developing an appropriate systems model. This paper will review the progress in developing those guidelines. 12 references

  10. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  11. Localization of splenic cells with antigen-transporting capability in the chicken.

    Science.gov (United States)

    del Cacho, E; Gallego, M; Arnal, C; Bascuas, J A

    1995-01-01

    The objective of the present study is to investigate the migration pattern of the splenic dendritic cell of the chicken named the ellipsoid-associated cell (EAC) from the site of initial location at the periphery of the ellipsoid to the splenic T- and B-dependent areas. Bovine serum albumin bound to biotin and conjugated to gold particles was used as a histochemically identifiable antigen detected as a peroxidase reaction. The antigen was intravenously injected, and subsequently its pattern of distribution in a time sequence and within the tissue was examined at the light and electron microscopy levels. In addition, an hour prior to sacrifice, the chickens received a single injection of the thymidine analogue 5-bromo-2'-deoxyuridine, in order to quantify the number of DNA synthesizing cells and to establish a relationship between the migrating EAC and the rate of mitosis in the white pulp. The observations showed that between 12 hours and 3 days after the second antigen administration the labeled EAC, which was first located around the ellipsoid, progressively reached further areas with time towards the periarteriolar lymphoid sheaths, where newly formed germinal centers appeared. Furthermore, the rate of cell proliferation within the white pulp was associated with the arrival of the antigen-transporting EAC. The results suggest that migrating EAC have a role as both antigen-transporting cell and antigen-presenting cell in the T- and B-dependent areas, as a result of which migrating EAC is transiently found in periellipsoidal white pulp, then periarteriolar lymphoid sheaths, and finally germinal centers, where it may function as an interdigitating cell or as a follicular dendritic cell, depending on its location. Thus, we conclude that the EACs are precursors of both interdigitating and follicular dendritic cells.

  12. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  13. Multimodal transportation best practices and model element.

    Science.gov (United States)

    2014-06-01

    This report provides guidance in developing a multimodal transportation element of a local government comprehensive : plan. Two model elements were developed to address differences in statutory requirements for communities of different : sizes and pl...

  14. NODA for EPA's Updated Ozone Transport Modeling

    Science.gov (United States)

    Find EPA's NODA for the Updated Ozone Transport Modeling Data for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) along with the ExitExtension of Public Comment Period on CSAPR for the 2008 NAAQS.

  15. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  16. Flavonoid metabolites transport across a human BBB model.

    Science.gov (United States)

    Faria, Ana; Meireles, Manuela; Fernandes, Iva; Santos-Buelga, Celestino; Gonzalez-Manzano, Susana; Dueñas, Montserrat; de Freitas, Victor; Mateus, Nuno; Calhau, Conceição

    2014-04-15

    This study aimed to evaluate the transmembrane transport of different flavonoids (flavan-3-ols, anthocyanins and flavonols) and some of their metabolites (methylated and conjugated with glucuronic acid) across hCMEC/D3 cells (a blood-brain barrier (BBB) model). Further metabolism of the tested compounds was assayed and their transport modulated in an attempt to elucidate the mechanisms behind this process. The transport across hCMEC/D3 cells was monitored in basolateral media at 1, 3 and 18 h by HPLC-DAD/MS. All the flavonoids and their metabolites were transported across hCMEC/D3 cells in a time-dependent manner. In general, the metabolites showed higher transport efficiency than the native flavonoid. No further biotransformation of the metabolites was found as consequence of cellular metabolism. Anthocyanins and their metabolites crossed this BBB cell model in a lipophilicity-dependent way. Quercetin transport was influenced by phosphatase modulators, suggesting a phosphorylation/dephosphorylation regulation mechanism. Overall, this work suggests that flavonoids are capable of crossing the BBB and reaching the central nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An Analysis of the Space Transportation System Launch Rate Capability Utilizing Q-GERT Simulation Techniques.

    Science.gov (United States)

    1982-12-01

    VAPE was modeled to determine this launch rate and to determine the processing times for an Orbiter at VAPe . This informa- 21 tion was then used in the...year (node 79 and activity ?1). ETa are then selected to be sent to either KSC or VAPE (node 80). This decision is made (using Ur 8) on the basis of

  18. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  19. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    Science.gov (United States)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  20. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  1. Combining Inverse and Transport Modeling to Estimate Bacterial Loading and Transport in a Tidal Embayment

    Directory of Open Access Journals (Sweden)

    Mac Sisson

    2016-11-01

    Full Text Available Poquoson River is a tidal coastal embayment located along the Western Shore of the Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County, Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural, salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources, and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is not solely driven by precipitation. An inverse approach is introduced to estimate loading from unknown sources based on observations in the embayment. The estimated loadings were combined with loadings estimated from different sources (human, wildlife, agriculture, pets, etc. and input to the watershed model. The watershed model simulated long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate of the bacterial concentration in the embayment and is capable of determining the loading reduction needed to improve the water quality condition of the embayment. Combining inverse, watershed, and transport models is a sound approach for simulating bacterial transport correctly in the coastal embayment with complex unknown bacterial sources, which are not solely driven by precipitation.

  2. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  3. Security Process Capability Model Based on ISO/IEC 15504 Conformant Enterprise SPICE

    Directory of Open Access Journals (Sweden)

    Mitasiunas Antanas

    2014-07-01

    Full Text Available In the context of modern information systems, security has become one of the most critical quality attributes. The purpose of this paper is to address the problem of quality of information security. An approach to solve this problem is based on the main assumption that security is a process oriented activity. According to this approach, product quality can be achieved by means of process quality - process capability. Introduced in the paper, SPICE conformant information security process capability model is based on process capability modeling elaborated by world-wide software engineering community during the last 25 years, namely ISO/IEC 15504 that defines the capability dimension and the requirements for process definition and domain independent integrated model for enterprise-wide assessment and Enterprise SPICE improvement

  4. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  5. Co-firing biomass and coal-progress in CFD modelling capabilities

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Yin, Chungen

    2005-01-01

    This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra-particle...

  6. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  7. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  8. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  9. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  10. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  11. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  12. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  13. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  14. Advective transport in heterogeneous aquifers: Are proxy models predictive?

    Science.gov (United States)

    Fiori, A.; Zarlenga, A.; Gotovac, H.; Jankovic, I.; Volpi, E.; Cvetkovic, V.; Dagan, G.

    2015-12-01

    We examine the prediction capability of two approximate models (Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW)) of non-Fickian transport, by comparison with accurate 2-D and 3-D numerical simulations. Both nonlocal in time approaches circumvent the need to solve the flow and transport equations by using proxy models to advection, providing the breakthrough curves (BTC) at control planes at any x, depending on a vector of five unknown parameters. Although underlain by different mechanisms, the two models have an identical structure in the Laplace Transform domain and have the Markovian property of independent transitions. We show that also the numerical BTCs enjoy the Markovian property. Following the procedure recommended in the literature, along a practitioner perspective, we first calibrate the parameters values by a best fit with the numerical BTC at a control plane at x1, close to the injection plane, and subsequently use it for prediction at further control planes for a few values of σY2≤8. Due to a similar structure and Markovian property, the two methods perform equally well in matching the numerical BTC. The identified parameters are generally not unique, making their identification somewhat arbitrary. The inverse Gaussian model and the recently developed Multi-Indicator Model (MIM), which does not require any fitting as it relates the BTC to the permeability structure, are also discussed. The application of the proxy models for prediction requires carrying out transport field tests of large plumes for a long duration.

  15. SIR rumor spreading model considering the effect of difference in nodes’ identification capabilities

    Science.gov (United States)

    Wang, Ya-Qi; Wang, Jing

    In this paper, we study the effect of difference in network nodes’ identification capabilities on rumor propagation. A novel susceptible-infected-removed (SIR) model is proposed, based on the mean-field theory, to investigate the dynamical behaviors of such model on homogeneous networks and inhomogeneous networks, respectively. Theoretical analysis and simulation results demonstrate that when we consider the influence of difference in nodes’ identification capabilities, the critical thresholds obviously increase, but the final rumor sizes are apparently reduced. We also find that the difference in nodes’ identification capabilities prolongs the time of rumor propagation reaching a steady state, and decreases the number of nodes that finally accept rumors. Additionally, under the influence of difference of nodes’ identification capabilities, compared with the homogeneous networks, the rumor transmission rate on the inhomogeneous networks is relatively large.

  16. User Instructions for the Systems Assessment Capability, Rev. 0, Computer Codes Volume 1: Inventory, Release, and Transport Modules

    International Nuclear Information System (INIS)

    Eslinger, Paul W.; Engel, David W.; Gerhardstein, Lawrence H.; Lopresti, Charles A.; Nichols, William E.; Strenge, Dennis L.

    2001-12-01

    One activity of the Department of Energy's Groundwater/Vadose Zone Integration Project is an assessment of cumulative impacts from Hanford Site wastes on the subsurface environment and the Columbia River. Through the application of a system assessment capability (SAC), decisions for each cleanup and disposal action will be able to take into account the composite effect of other cleanup and disposal actions. The SAC has developed a suite of computer programs to simulate the migration of contaminants (analytes) present on the Hanford Site and to assess the potential impacts of the analytes, including dose to humans, socio-cultural impacts, economic impacts, and ecological impacts. The general approach to handling uncertainty in the SAC computer codes is a Monte Carlo approach. Conceptually, one generates a value for every stochastic parameter in the code (the entire sequence of modules from inventory through transport and impacts) and then executes the simulation, obtaining an output value, or result. This document provides user instructions for the SAC codes that handle inventory tracking, release of contaminants to the environment, and transport of contaminants through the unsaturated zone, saturated zone, and the Columbia River

  17. Modelling Transition Towards Sustainable Transportation Sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    two energy sectors. In order to deal with the raised issue, authors of this paper developed amethodology for calculation of the transition towards sustainable transport sector, focusing on thesolutions that are already available. Furthermore, as a part of the model, a detailed mapping ofresources......In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatter...... needed has been carried out for each of the alternatives. It was shown that theelectrification of the transportation sector is a crucial point in transition, while for the transportmodes that cannot be electrified, or shifted to different transportation modes, four alternatives weredefined: synthetic...

  18. Models in Planning Urban Public Passenger Transport

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2007-07-01

    Full Text Available The solving of complex problems in public transport requiresthe usage of models that are based on the estimate of demandin planning the transport routes. The intention is to predictwhat is going to happen in the future, if the proposed solutionsare implemented. In the majority of cases, the publictransport system is formed as a network and stored in the computermemory in order to start the evaluation process by specifYingthe number of trip origins and destinations in each zone.The trip distribution model which is used to calculate the numberof trips between each pair in the zone is based on the overalltravel frictions from zone to zone.

  19. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    . Forthcoming: European Journal of Transport and Infrastructure Research, 15-3, 64-72. 4 The last paper4 examined uncertainty in the spatial composition of residence and workplace locations in the Danish National Transport Model. Despite the evidence that spatial structure influences travel behaviour...... to increase the quality of the decision process and to develop robust or adaptive plans. In fact, project evaluation processes that do not take into account model uncertainty produce not fully informative and potentially misleading results so increasing the risk inherent to the decision to be taken...

  20. Exploring a capability-demand interaction model for inclusive design evaluation

    OpenAIRE

    Persad, Umesh

    2012-01-01

    Designers are required to evaluate their designs against the needs and capabilities of their target user groups in order to achieve successful, inclusive products. This dissertation presents exploratory research into the specific problem of supporting analytical design evaluation for Inclusive Design. The analytical evaluation process involves evaluating products with user data rather than testing with actual users. The work focuses on the exploration of a capability-demand model of product i...

  1. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  2. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  3. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1997-12-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. The authors illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation

  4. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1998-01-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. We illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/Scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation. (authors)

  5. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack

    2014-09-01

    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  6. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  7. The capability and constraint model of recoverability: An integrated theory of continuity planning.

    Science.gov (United States)

    Lindstedt, David

    2017-01-01

    While there are best practices, good practices, regulations and standards for continuity planning, there is no single model to collate and sort their various recommended activities. To address this deficit, this paper presents the capability and constraint model of recoverability - a new model to provide an integrated foundation for business continuity planning. The model is non-linear in both construct and practice, thus allowing practitioners to remain adaptive in its application. The paper presents each facet of the model, outlines the model's use in both theory and practice, suggests a subsequent approach that arises from the model, and discusses some possible ramifications to the industry.

  8. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  9. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global

  10. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  11. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  12. Modelling soil transport by wind in drylands

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1994-01-01

    Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs

  13. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  14. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  15. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  16. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  17. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  18. A theoretical model for developing core capabilities from an intellectual capital perspective (Part 1

    Directory of Open Access Journals (Sweden)

    Marius Ungerer

    2005-10-01

    Full Text Available One of the basic assumptions associated with the theoretical model as described in this article is that an organisation (a system can acquire capabilities through intentional strategic and operational initiatives. This intentional capability-building process also implies that the organisation intends to use these capabilities in a constructive way to increase competitive advantage for the firm. Opsomming Een van die basiese aannames wat geassosieer word met die teoretiese model wat in hierdie artikel beskryf word, is dat ’n organisasie (’n stelsel vermoëns deur doelgerigte strategiese en operasionele inisiatiewe kan bekom. Hierdie voorgenome vermoë-skeppingsproses, veronderstel ook dat die onderneming daarop ingestel is om hierdie vermoëns op ’n konstruktiewe wyse te benut om die mededingende voordeel van die organisasie te verhoog.

  19. A theoretical model for developing core capabilities from an intellectual capital perspective (Part 2

    Directory of Open Access Journals (Sweden)

    Marius Ungerer

    2005-10-01

    Full Text Available One of the basic assumptions associated with the theoretical model as described in this article is that an organization (a system can acquire capabilities through intentional strategic and operational initiatives. This intentional capability-building process also implies that the organisation intends to use these capabilities in a constructive way to increase competitive advantage for the firm. Opsomming Een van die basiese aannames wat geassosieer word met die teoretiese model wat in hierdie artikel beskryf word, is dat ’n organisasie (’n stelsel vermoëns deur doelgerigte strategiese en operasionele inisiatiewe kan bekom. Hierdie voorgenome vermoë-skeppingsproses, veronderstel ook dat die onderneming daarop ingestel is om hierdie vermoëns op ’n konstruktiewe wyse te benut om die mededingende voordeel van die organisasie te verhoog.

  20. Capability-based Access Control Delegation Model on the Federated IoT Network

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Mahalle, Parikshit N.; Prasad, Neeli R.

    2012-01-01

    Flexibility is an important property for general access control system and especially in the Internet of Things (IoT), which can be achieved by access or authority delegation. Delegation mechanisms in access control that have been studied until now have been intended mainly for a system that has...... no resource constraint, such as a web-based system, which is not very suitable for a highly pervasive system such as IoT. To this end, this paper presents an access delegation method with security considerations based on Capability-based Context Aware Access Control (CCAAC) model intended for federated...... machine-to-machine communication or IoT networks. The main idea of our proposed model is that the access delegation is realized by means of a capability propagation mechanism, and incorporating the context information as well as secure capability propagation under federated IoT environments. By using...

  1. Numerical modelling of ion transport in flames

    Science.gov (United States)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  2. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  3. University-Industry Research Collaboration: A Model to Assess University Capability

    Science.gov (United States)

    Abramo, Giovanni; D'Angelo, Ciriaco Andrea; Di Costa, Flavia

    2011-01-01

    Scholars and policy makers recognize that collaboration between industry and the public research institutions is a necessity for innovation and national economic development. This work presents an econometric model which expresses the university capability for collaboration with industry as a function of size, location and research quality. The…

  4. Semantic Model of Variability and Capabilities of IoT Applications for Embedded Software Ecosystems

    DEFF Research Database (Denmark)

    Tomlein, Matus; Grønbæk, Kaj

    2016-01-01

    Applications in embedded open software ecosystems for Internet of Things devices open new challenges regarding how their variability and capabilities should be modeled. In collaboration with an industrial partner, we have recognized that such applications have complex constraints on the context. We...

  5. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  6. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  7. Modelling radioiodine transport across a capillary fringe

    International Nuclear Information System (INIS)

    Mathias, Simon A.; Butler, Adrian P.; Wheater, Howard S.

    2008-01-01

    Due to its long radioactive half-life, iodine-129 is considered to be an important radionuclide in the context of underground radioactive waste disposal safety assessment. Iodine speciates as iodide (I - ) in reducing conditions and iodate (IO 3 - ) in oxidizing conditions. As iodate is more reactive, it is much less mobile than iodide. Consequently, in considering vertically upward transport within a soil profile, iodine will tend to accumulate at the top of the capillary fringe. In this paper, a model of iodine transport across a capillary fringe is developed by coupling equations for variably saturated flow, oxygen dynamics and rate-limited sorption. Model parameters are obtained by consideration of literature values, calibration on soil column data and other supporting laboratory experiments. The results demonstrate the importance of rate kinetics on the migration and bioavailability of radioiodine in the near-surface environment

  8. Modelling radioiodine transport across a capillary fringe.

    Science.gov (United States)

    Mathias, Simon A; Butler, Adrian P; Wheater, Howard S

    2008-04-01

    Due to its long radioactive half-life, iodine-129 is considered to be an important radionuclide in the context of underground radioactive waste disposal safety assessment. Iodine speciates as iodide (I-) in reducing conditions and iodate (IO3-) in oxidizing conditions. As iodate is more reactive, it is much less mobile than iodide. Consequently, in considering vertically upward transport within a soil profile, iodine will tend to accumulate at the top of the capillary fringe. In this paper, a model of iodine transport across a capillary fringe is developed by coupling equations for variably saturated flow, oxygen dynamics and rate-limited sorption. Model parameters are obtained by consideration of literature values, calibration on soil column data and other supporting laboratory experiments. The results demonstrate the importance of rate kinetics on the migration and bioavailability of radioiodine in the near-surface environment.

  9. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  10. The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution

    Science.gov (United States)

    Edwards, David P.; Worden, Helen M.; Neil, Doreen; Francis, Gene; Valle, Tim; Arellano, Avelino F., Jr.

    2018-02-01

    The CHRONOS space mission concept provides time-resolved abundance for emissions and transport studies of the highly variable and highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit rate at fine (˜ 4 km) horizontal spatial resolution across a North American domain. CHRONOS can provide complete synoptic air pollution maps (snapshots) of the continental domain with less than 10 min of observations. This rapid mapping enables visualization of air pollution transport simultaneously across the entire continent and enables a sentinel-like capability for monitoring evolving, or unanticipated, air pollution sources in multiple locations at the same time with high temporal resolution. CHRONOS uses a compact imaging gas filter correlation radiometer for these observations, with heritage from more than 17 years of scientific data and algorithm advances by the science teams for the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA's Terra spacecraft in low Earth orbit. To achieve continental-scale sub-hourly sampling, the CHRONOS mission would be conducted from geostationary orbit, with the instrument hosted on a communications or meteorological platform. CHRONOS observations would contribute to an integrated observing system for atmospheric composition using surface, suborbital and satellite data with atmospheric chemistry models, as defined by the Committee on Earth Observing Satellites. Addressing the U.S. National Academy's 2007 decadal survey direction to characterize diurnal changes in tropospheric composition, CHRONOS observations would find direct societal applications for air quality management and forecasting to protect public health.

  11. Modelling sediment clasts transport during landscape evolution

    Science.gov (United States)

    Carretier, Sébastien; Martinod, Pierre; Reich, Martin; Godderis, Yves

    2016-03-01

    Over thousands to millions of years, the landscape evolution is predicted by models based on fluxes of eroded, transported and deposited material. The laws describing these fluxes, corresponding to averages over many years, are difficult to prove with the available data. On the other hand, sediment dynamics are often tackled by studying the distribution of certain grain properties in the field (e.g. heavy metals, detrital zircons, 10Be in gravel, magnetic tracers). There is a gap between landscape evolution models based on fluxes and these field data on individual clasts, which prevent the latter from being used to calibrate the former. Here we propose an algorithm coupling the landscape evolution with mobile clasts. Our landscape evolution model predicts local erosion, deposition and transfer fluxes resulting from hillslope and river processes. Clasts of any size are initially spread in the basement and are detached, moved and deposited according to probabilities using these fluxes. Several river and hillslope laws are studied. Although the resulting mean transport rate of the clasts does not depend on the time step or the model cell size, our approach is limited by the fact that their scattering rate is cell-size-dependent. Nevertheless, both their mean transport rate and the shape of the scattering-time curves fit the predictions. Different erosion-transport laws generate different clast movements. These differences show that studying the tracers in the field may provide a way to establish these laws on the hillslopes and in the rivers. Possible applications include the interpretation of cosmogenic nuclides in individual gravel deposits, provenance analyses, placers, sediment coarsening or fining, the relationship between magnetic tracers in rivers and the river planform, and the tracing of weathered sediment.

  12. Turbulence modification and multiphase turbulence transport modeling

    International Nuclear Information System (INIS)

    Besnard, D.C.; Kataoka, I.; Serizawa, A.

    1991-01-01

    It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases

  13. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  14. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  15. Transport Models for Inland and Coastal Waters

    Science.gov (United States)

    Hamilton, Peter

    This proceedings volume originates from a symposium held at Berkeley, California, in August 1980. The purpose of the symposium was to assess the ability of models to predict surface water flow and the transport of dissolved substances in natural systems. The authors were invited, after an initial call for papers, by a Scientific Committee of the International Association for Hydraulic Research.In this context, predictive modeling is limited to hydrodynamic and transport models as applied to rivers, estuaries, shallow coastal waters, lakes, and reservoirs. This is a large subject, though evidently not the whole story on predictive techniques applied to natural water bodies, and many different models are described with applications to a wide variety of natural systems. There is relatively little overlap of material between chapters. It is noteworthy that 21 out of 24 authors of the chapters are affiliated with institutions outside the United States, and many of these are from large European hydraulic laboratories. A number of the chapters summarize numerical modeling studies undertaken by these institutions and so provide the U.S. reader with valuable references to the European open literature and laboratory technical reports. The latter are not usually readily available in the United States. This bias reflects a greater willingness of European engineers to employ sophisticated hydrodynamic numerical models as tools for the solution of engineering and environmental problems of natural water bodies.

  16. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  17. On the Generalization Capabilities of the Ten-Parameter Jiles-Atherton Model

    Directory of Open Access Journals (Sweden)

    Gabriele Maria Lozito

    2015-01-01

    Full Text Available This work proposes an analysis on the generalization capabilities for the modified version of the classic Jiles-Atherton model for magnetic hysteresis. The modified model takes into account the use of dynamic parameterization, as opposed to the classic model where the parameters are constant. Two different dynamic parameterizations are taken into account: a dependence on the excitation and a dependence on the response. The identification process is performed by using a novel nonlinear optimization technique called Continuous Flock-of-Starling Optimization Cube (CFSO3, an algorithm belonging to the class of swarm intelligence. The algorithm exploits parallel architecture and uses a supervised strategy to alternate between exploration and exploitation capabilities. Comparisons between the obtained results are presented at the end of the paper.

  18. Konsep Tingkat Kematangan penerapan Internet Protokol versi 6 (Capability Maturity Model for IPv6 Implementation

    Directory of Open Access Journals (Sweden)

    Riza Azmi

    2015-03-01

    Full Text Available Internet Protocol atau IP merupakan standar penomoran internet di dunia yang jumlahnya terbatas. Di dunia, alokasi IP diatur oleh Internet Assignd Number Authority (IANA dan didelegasikan ke melalui otoritas masing-masing benua. IP sendiri terdiri dari 2 jenis versi yaitu IPv4 dan IPv6 dimana alokasi IPv4 dinyatakan habis di tingkat IANA pada bulan April 2011. Oleh karena itu, penggunaan IP diarahkan kepada penggunaan IPv6. Untuk melihat bagaimana kematangan suatu organisasi terhadap implementasi IPv6, penelitian ini mencoba membuat sebuah model tingkat kematangan penerapan IPv6. Konsep dasar dari model ini mengambil konsep Capability Maturity Model Integrated (CMMI, dengan beberapa tambahan yaitu roadmap migrasi IPv6 di Indonesia, Request for Comment (RFC yang terkait dengan IPv6 serta beberapa best-practice implementasi dari IPv6. Dengan konsep tersebut, penelitian ini menghasilkan konsep Capability Maturity for IPv6 Implementation.

  19. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  20. Parameterized Radiation Transport Model for Neutron Detection in Complex Scenes

    Science.gov (United States)

    Lavelle, C. M.; Bisson, D.; Gilligan, J.; Fisher, B. M.; Mayo, R. M.

    2013-04-01

    There is interest in developing the ability to rapidly compute the energy dependent neutron flux within a complex geometry for a variety of applications. Coupled with sensor response function information, this capability would allow direct estimation of sensor behavior in multitude of operational scenarios. In situations where detailed simulation is not warranted or affordable, it is desirable to possess reliable estimates of the neutron field in practical scenarios which do not require intense computation. A tool set of this kind would provide quantitative means to address the development of operational concepts, inform asset allocation decisions, and exercise planning. Monte Carlo and/or deterministic methods provide a high degree of precision and fidelity consistent with the accuracy with which the scene is rendered. However, these methods are often too computationally expensive to support the real-time evolution of a virtual operational scenario. High fidelity neutron transport simulations are also time consuming from the standpoint of user setup and post-simulation analysis. We pre-compute adjoint solutions using MCNP to generate a coarse spatial and energy grid of the neutron flux over various surfaces as an alternative to full Monte Carlo modeling. We attempt to capture the characteristics of the neutron transport solution. We report on the results of brief verification and validation measurements which test the predictive capability of this approach over soil and asphalt concrete surfaces. We highlight the sensitivity of the simulated and experimental results to the material composition of the environment.

  1. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  2. Modeling of radon transport in unsaturated soil

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.; Green, R.

    1995-01-01

    This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field-measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, as well-documented one-dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions, Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long-term average radon activity in shallow soils of an equal magnitude to the disturbed source parameter. Comparisons between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile. 41 refs., 10 figs., 2 tabs

  3. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Science.gov (United States)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-10-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of

  4. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  5. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  6. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    Science.gov (United States)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  7. New Modelling Capabilities in Commercial Software for High-Gain Antennas

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Lumholt, Michael; Meincke, Peter

    2012-01-01

    characterization of the reflectarray element, an initial phaseonly synthesis, followed by a full optimization procedure taking into account the near-field from the feed and the finite extent of the array. Another interesting new modelling capability is made available through the DIATOOL software, which is a new......This paper presents an overview of selected new modelling algorithms and capabilities in commercial software tools developed by TICRA. A major new area is design and analysis of printed reflectarrays where a fully integrated design environment is under development, allowing fast and accurate...... type of EM software tool aimed at extending the ways engineers can use antenna measurements in the antenna design process. The tool allows reconstruction of currents and near fields on a 3D surface conformal to the antenna, by using the measured antenna field as input. The currents on the antenna...

  8. Web-based reactive transport modeling using PFLOTRAN

    Science.gov (United States)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the

  9. Applicability of SEI's Capability Maturity Model in Joint Information Technology, Supreme Command Headquarters

    OpenAIRE

    Thongmuang, Jitti.

    1995-01-01

    The Software Engineering Institute's (SEI) Capability Maturity Model (CMM) is analyzed to identify its technological and economic applicability for the Joint Information Technology (JIT), Supreme Command Headquarters, Royal Thai Ministry of Defense. Kurt Lewin's force field theory was used to analyze different dimensions of CMM's applicability for JIT's organizational environment (defined by the stakeholder concept). It suggests that introducing CMM technology into JIT is unwarranted at this ...

  10. Three Quality Journeys - Capability Maturity Model Integration, Baldrige Performance Excellence Program, and ISO 9000 Series

    Science.gov (United States)

    2012-04-26

    management; also demands involvement by upper executives in order to integrate quality into the business. o ISO 9004:2000 standard provided method for...previously used methods . o Indicated that ISO 9000:2008 provided roadmap for creating a quality management system that addressed issues specific to this...Capability Maturity Model Integration CMMI-DEV – CMMI for Development PDCA – Plan-Do-Check-Act SCAMPI – Standard CMMI Appraisal Method for Process

  11. Some issues in two-dimensional modeling of tritium transport

    International Nuclear Information System (INIS)

    Tam, S.W.

    1991-01-01

    Among the major processes leading to tritium transport through Li ceramic breeders the percolation of gaseous tritium species through the connected porosity remains the lest amenable to a satisfactory treatment. The combination of diffusion and reaction through the convoluted transport pathways prescribed by the system of pores poses a formidable challenge. The key issue is to make the fundamental connection between the tortuousity of the medium with the transport processes in terms of only basic parameters that are amenable to fundamental understanding and experimental determinations. This fundamental challenges is met within the following approaches. The technique that we have employed is a random network percolation model. Local transport in each individual pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the medium is accounted for via Monte Carlo methods. In this way the approach requires as inputs only physical-chemical parameters that are amenable to clear basic understanding and experimental determination. In the sense it provides predictive capability. The approach has been applied to an analysis of the concept of tritium residence time which is associated with the first passage time, a direct output of our analysis. In the next stage of our work the tool that we have developed would be employed to investigate the issues of vary large networks, realistic microstructural information and the effect of varying pressure gradient along the purge channels. We have demonstrated that the approach that has been adopted can be utilized to analyze in a very illuminating way the underlying issues of the concept of residence time. We believe that the present approach is ideally suited to tackle these very important yet difficult issues

  12. Risk management model in road transport systems

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2016-08-01

    The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.

  13. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  14. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  15. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  16. Landscape capability models as a tool to predict fine-scale forest bird occupancy and abundance

    Science.gov (United States)

    Loman, Zachary G.; DeLuca, William; Harrison, Daniel J.; Loftin, Cynthia S.; Rolek, Brian W.; Wood, Petra

    2018-01-01

    ContextSpecies-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning.ObjectivesWe tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird species representative of spruce-fir, mixed conifer-hardwood, and riparian and wooded wetland macrohabitats.MethodsWe compiled point count data sets used for biological inventory, species monitoring, and field studies across the northeastern United States to create an independent validation data set. Our validation explicitly accounted for underestimation in validation data using joint distance and time removal sampling.ResultsBlackpoll warbler (Setophaga striata), wood thrush (Hylocichla mustelina), and Louisiana (Parkesia motacilla) and northern waterthrush (P. noveboracensis) models were validated as predicting variation in abundance, although this varied from not biologically meaningful (1%) to strongly meaningful (59%). We verified all seven species models [including ovenbird (Seiurus aurocapilla), blackburnian (Setophaga fusca) and cerulean warbler (Setophaga cerulea)], as all were positively related to occupancy data.ConclusionsLC models represent a useful tool for conservation planning owing to their predictive ability over a regional extent. As improved remote-sensed data become available, LC layers are updated, which will improve predictions.

  17. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  18. Modeling flow and transport in fracture networks using graphs

    Science.gov (United States)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  19. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  20. Meteorological implementation issues in chemistry and transport models

    Directory of Open Access Journals (Sweden)

    S. E. Strahan

    2006-01-01

    Full Text Available Offline chemistry and transport models (CTMs are versatile tools for studying composition and climate issues requiring multi-decadal simulations. They are computationally fast compared to coupled chemistry climate models, making them well-suited for integrating sensitivity experiments necessary for understanding model performance and interpreting results. The archived meteorological fields used by CTMs can be implemented with lower horizontal or vertical resolution than the original meteorological fields in order to shorten integration time, but the effects of these shortcuts on transport processes must be understood if the CTM is to have credibility. In this paper we present a series of sensitivity experiments on a CTM using the Lin and Rood advection scheme, each differing from another by a single feature of the wind field implementation. Transport effects arising from changes in resolution and model lid height are evaluated using process-oriented diagnostics that intercompare CH4, O3, and age tracer carried in the simulations. Some of the diagnostics used are derived from observations and are shown as a reality check for the model. Processes evaluated include tropical ascent, tropical-midlatitude exchange, poleward circulation in the upper stratosphere, and the development of the Antarctic vortex. We find that faithful representation of stratospheric transport in this CTM is possible with a full mesosphere, ~1 km resolution in the lower stratosphere, and relatively low vertical resolution (>4 km spacing in the middle stratosphere and above, but lowering the lid from the upper to lower mesosphere leads to less realistic constituent distributions in the upper stratosphere. Ultimately, this affects the polar lower stratosphere, but the effects are greater for the Antarctic than the Arctic. The fidelity of lower stratospheric transport requires realistic tropical and high latitude mixing barriers which are produced at 2°×2.5°, but not lower

  1. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  2. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  3. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  4. A Lagrangian mixing frequency model for transported PDF modeling

    Science.gov (United States)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  5. IMPACT OF CO-CREATION ON INNOVATION CAPABILITY AND FIRM PERFORMANCE: A STRUCTURAL EQUATION MODELING

    Directory of Open Access Journals (Sweden)

    FATEMEH HAMIDI

    Full Text Available ABSTRACT Traditional firms used to design products, evaluate marketing messages and control product distribution channels with no costumer interface. With the advancements in interaction technologies, however, users can easily make impacts on firms; the interaction between costumers and firms is now in peak condition in comparison to the past and is no longer controlled by firms. Customers are playing two roles of value creators and consumers simultaneously. We examine the role of co-creation on the influences of innovation capability and firm performance. We develop hypotheses and test them using researcher survey data. The results suggest that implement of co-creation partially mediate the effect of process innovation capability. We discuss the implications of these findings for research and practice on the depict and implement of unique value co-creation model.

  6. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  7. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  8. Modelling of electron transport and of sawtooth activity in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  9. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  10. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    Science.gov (United States)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  11. The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution

    Directory of Open Access Journals (Sweden)

    D. P. Edwards

    2018-02-01

    Full Text Available The CHRONOS space mission concept provides time-resolved abundance for emissions and transport studies of the highly variable and highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit rate at fine (∼ 4 km horizontal spatial resolution across a North American domain. CHRONOS can provide complete synoptic air pollution maps (snapshots of the continental domain with less than 10 min of observations. This rapid mapping enables visualization of air pollution transport simultaneously across the entire continent and enables a sentinel-like capability for monitoring evolving, or unanticipated, air pollution sources in multiple locations at the same time with high temporal resolution. CHRONOS uses a compact imaging gas filter correlation radiometer for these observations, with heritage from more than 17 years of scientific data and algorithm advances by the science teams for the Measurements of Pollution in the Troposphere (MOPITT instrument on NASA's Terra spacecraft in low Earth orbit. To achieve continental-scale sub-hourly sampling, the CHRONOS mission would be conducted from geostationary orbit, with the instrument hosted on a communications or meteorological platform. CHRONOS observations would contribute to an integrated observing system for atmospheric composition using surface, suborbital and satellite data with atmospheric chemistry models, as defined by the Committee on Earth Observing Satellites. Addressing the U.S. National Academy's 2007 decadal survey direction to characterize diurnal changes in tropospheric composition, CHRONOS observations would find direct societal applications for air quality management and forecasting to protect public health.

  12. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  13. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  14. Dust resuspension and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Corradini, M.L.; Sharpe, J.P.

    2007-01-01

    Plasma surface interactions in tokamaks are known to create significant quantities of dust, which settles onto surfaces and accumulates in the vacuum vessel. In ITER, a loss of vacuum accident may result in the release of dust which will be radioactive and/or toxic, and provides increased surface area for chemical reactions or dust explosion. A new method of analysis has been developed for modeling dust resuspension and transport in loss of vacuum accidents. The aerosol dynamic equation is solved via the user defined scalar (UDS) capability in the commercial CFD code Fluent. Fluent solves up to 50 generic transport equations for user defined scalars, and allows customization of terms in these equations through user defined functions (UDF). This allows calculation of diffusion coefficients based on local flow properties, inclusion of body forces such as gravity and thermophoresis in the convection term, and user defined source terms. The code accurately reproduces analytical solutions for aerosol deposition in simple laminar flows with diffusion and gravitational settling. Models for dust resuspension are evaluated, and code results are compared to available resuspension data, including data from the Toroidal Dust Mobilization Experiment (TDMX) at the Idaho National Laboratory. Extension to polydisperse aerosols and inclusion of coagulation effects is also discussed. (orig.)

  15. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  16. Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: An analysis of the Na ABCOVE tests

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Garcia, Monica; Morandi, Sonia

    2013-01-01

    Highlights: • Assessment of LWR codes capability to model aerosol deposition within SFR containments. • Original hypotheses proposed to partially accommodate drawbacks from Na oxidation reactions. • A defined methodology to derive a more accurate characterization of Na-based particles. • Key missing models in LWR codes for SFR applications are identified. - Abstract: Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide transport, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide deposition, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. The present paper is aimed at assessing the current capability of LWR codes to model aerosol deposition within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC, ECART and MELCOR codes to relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have been adopted so that

  17. Modeling transport phenomena and uncertainty quantification in solidification processes

    Science.gov (United States)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification

  18. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-31

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examples of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.

  19. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  20. Modelling Emission of Pollutants from transportation using mobile sensing data

    DEFF Research Database (Denmark)

    Lehmann, Anders

    to use data acquired from smartphones to im- prove transportation related air quality models and models for climate gas emission from transportation. These models can be used for planning of transportation net- works, monitoring of air quality, and automate transport related green accounting. More...... accurate transportation models can be obtained by using observed travel routes, acquired from smartphone data, rather than indirectly computed routes, as input to a model of route choice in a transportation network. Smartphone data can also be used to gain detailed knowledge of the driving style...... scientific contributions of the dissertation are: • Algorithm for origin destination demand matrix creation from smartphone data. • The development of a novel map matching algorithm suitable for a database. • Using user experienced routes as a seed for a transport model. • Driving mode detection from...

  1. Initiative-taking, Improvisational Capability and Business Model Innovation in Emerging Market

    DEFF Research Database (Denmark)

    Cao, Yangfeng

    . Many prior researches have shown that the foreign subsidiaries play important role in shaping the overall strategy of the parent company. However, little is known about how subsidiary specifically facilitates business model innovation (BMI) in emerging markets. Adopting the method of comparative......Business model innovation plays a very important role in developing competitive advantage when multinational small and medium-sized enterprises (SMEs) from developed country enter into emerging markets because of the large contextual distances or gaps between the emerging and developed economies...... innovation in emerging markets. We find that high initiative-taking and strong improvisational capability can accelerate the business model innovation. Our research contributes to the literatures on international and strategic entrepreneurship....

  2. Initiative-taking, Improvisational Capability and Business Model Innovation in Emerging Market

    DEFF Research Database (Denmark)

    Cao, Yangfeng

    Business model innovation plays a very important role in developing competitive advantage when multinational small and medium-sized enterprises (SMEs) from developed country enter into emerging markets because of the large contextual distances or gaps between the emerging and developed economies....... Many prior researches have shown that the foreign subsidiaries play important role in shaping the overall strategy of the parent company. However, little is known about how subsidiary specifically facilitates business model innovation (BMI) in emerging markets. Adopting the method of comparative...... and longitudinal case study, we tracked the BMI processes of four SMEs from Denmark operating in China. Using resource-based view (RBV), we develop one theoretical framework which indicates that initiative-taking and improvisational capability of subsidiary are the two primary facilitators of business model...

  3. Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

    Energy Technology Data Exchange (ETDEWEB)

    Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)

    1996-12-31

    A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

  4. Entry into new markets: the development of the business model and dynamic capabilities

    Directory of Open Access Journals (Sweden)

    Victor Wolowski Kenski

    2017-12-01

    Full Text Available This work shows the path through which companies enter new markets or bring new propositions to established ones. It presents the market analysis process, the strategical decisions that determine the company’s position on it and the required changes in the configurations for this new action. It also studies the process of selecting the business model and the conditions for its definition the adoption and subsequent development of resources and capabilities required to conquer this new market. It is presented the necessary conditions to remain and maintain its market position. These concepts are presented through a case study of a business group that takes part in different franchises.

  5. Computerized transportation model for the NRC Physical Protection Project. Versions I and II

    International Nuclear Information System (INIS)

    Anderson, G.M.

    1978-01-01

    Details on two versions of a computerized model for the transportation system of the NRC Physical Protection Project are presented. The Version I model permits scheduling of all types of transport units associated with a truck fleet, including truck trailers, truck tractors, escort vehicles and crews. A fixed-fleet itinerary construction process is used in which iterations on fleet size are required until the service requirements are satisfied. The Version II model adds an aircraft mode capability and provides for a more efficient non-fixed-fleet itinerary generation process. Test results using both versions are included

  6. A computerized coal-water slurry transportation model

    Energy Technology Data Exchange (ETDEWEB)

    Ljubicic, B.R.; Trostad, B. [Univ. of North Dakota, Grand Forks, ND (United States); Bukurov, Z.; Cvijanovic, P. [Univ. of Novi Sad (Yugoslavia)

    1995-12-01

    Coal-water fuel (CWF) technology has been developed to the point where full-scale commercialization is just a matter of gaining sufficient market confidence in the price stability of alternate fossil fuels. In order to generalize alternative fuel cost estimates for the desired combinations of processing and/or transportation, a great deal of flexibility is required owing to the understood lack of precision in many of the newly emerging coal technologies. Previously, decisions regarding the sequential and spatial arrangement of the various process steps were made strictly on the basis of experience, simplified analysis, and intuition. Over the last decade, computer modeling has progressed from empirically based correlation to that of intricate mechanistic analysis. Nomograms, charts, tables, and many simple rules of thumb have been made obsolete by the availability of complex computer models. Given the ability to view results graphically in real or near real time, the engineer can immediately verify, from a practical standpoint, whether the initial assumptions and inputs were indeed valid. If the feasibility of a project is being determined in the context of a lack of specific data, the ability to provide a dynamic software-based solution is crucial. Furthermore, the resulting model can be used to establish preliminary operating procedures, test control logic, and train plant/process operators. Presented in this paper is a computerized model capable of estimating the delivered cost of CWF. The model uses coal-specific values, process and transport requirements, terrain factors, and input costs to determine the final operating configuration, bill of materials, and, ultimately, the capital, operating, and unit costs.

  7. Assessment of Performance Measures for Security of the Maritime Transportation Network, Port Security Metrics : Proposed Measurement of Deterrence Capability

    Science.gov (United States)

    2007-01-03

    This report is the thirs in a series describing the development of performance measures pertaining to the security of the maritime transportation network (port security metrics). THe development of measures to guide improvements in maritime security ...

  8. Modelling total solar irradiance using a flux transport model

    Science.gov (United States)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  9. Modeling Oxygen Transport in the Human Placenta

    Science.gov (United States)

    Serov, Alexander; Filoche, Marcel; Salafia, Carolyn; Grebenkov, Denis

    Efficient functioning of the human placenta is crucial for the favorable pregnancy outcome. We construct a 3D model of oxygen transport in the placenta based on its histological cross-sections. The model accounts for both diffusion and convention of oxygen in the intervillous space and allows one to estimate oxygen uptake of a placentone. We demonstrate the existence of an optimal villi density maximizing the uptake and explain it as a trade-off between the incoming oxygen flow and the absorbing villous surface. Calculations performed for arbitrary shapes of fetal villi show that only two geometrical characteristics - villi density and the effective villi radius - are required to predict fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake are also identified: maximal oxygen inflow of a placentone and the Damköhler number. An automatic image analysis method is developed and applied to 22 healthy placental cross-sections demonstrating that villi density of a healthy human placenta lies within 10% of the optimal value, while overall geometry efficiency is rather low (around 30-40%). In a perspective, the model can constitute the base of a reliable tool of post partum oxygen exchange efficiency assessment in the human placenta. Also affiliated with Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

  10. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  11. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  12. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  13. Model complexities and requirements for multimodal transport network design : Assessment of classical, state-of-the-practice, and state-of-the-research models

    NARCIS (Netherlands)

    Van Eck, G.; Brands, T.; Wismans, L.J.J.; Pel, A.J.; Van Nes, R.

    2014-01-01

    In the aim for a more sustainable transport system, governments try to stimulate multimodal trip making by facilitating smooth transfers between modes. The assessment of related multimodal policy measures requires transport models that are capable of handling the complex nature of multimodality.

  14. Model complexities and requirements for multimodal transport network design: assessment of classical, state-of-the-practice, and state-of-the-research models

    NARCIS (Netherlands)

    van Eck, G.; Brands, Ties; Wismans, Luc Johannes Josephus; Pel, A.J.; van Nes, R.

    2014-01-01

    In the aim for a more sustainable transport system, governments try to stimulate multimodal trip making by facilitating smooth transfers between modes. The assessment of related multimodal policy measures requires transport models that are capable of handling the complex nature of multimodality.

  15. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  16. Modelling of tokamak plasmas with internal transport barriers using ion temperature gradient based models

    International Nuclear Information System (INIS)

    Kinsey, J.E.; Waltz, R.E.; Staebler, G.M.; St.John, H.

    1999-01-01

    The dynamic formation of an internal transport barrier resulting from an ExB driven bifurcation has been demonstrated in simulations of a DIII-D NCS discharge with an L-mode edge using the GLF23 model. Taking the sources, sinks, equilibrium, and the density profile from a power balance analysis, the thermal and toroidal momentum transport were simultaneously evolved while computing the effects of rotational shear stabilization. As the bifurcation point is approached, the mode growth rate and ExB shear become tangential and the profiles exhibit a dithering behavior. The input power, in particular the toroidal momentum, is sufficient to overcome the ITB threshold and a bifurcation in both the momentum and heat flux is observed. While the ion thermal and momentum transport show an significant improvement in confinement, the electron thermal transport remains anomalous due to the continued presence of the ETG mode. Comparing JET OS discharges to DIII-DNCS discharges, it is found that the ExB shear rate needs to be enhanced by a factor 2.65 in order to obtain profiles consistent with experimental data. Future work will focus on improving the robustness and efficiency of numerical techniques to allow wider application and increased predictive capability needed to conduct power threshold studies of internal transport barriers. (author)

  17. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  18. Functional capabilities of the breadboard model of SIDRA satellite-borne instrument

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Titov, K.G.; Prieto, M.; Sanchez, S.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.

  19. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  20. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.

    Science.gov (United States)

    Kumar Kondapi, Venkata Pavan; Soueidan, Olivier-Mohamad; Cheeseman, Christopher I; West, Frederick G

    2017-06-12

    The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A transport model with color confinement

    International Nuclear Information System (INIS)

    Loh, S.

    1997-01-01

    First the mostly important properties of QCD are dealt with. It is made plausible, how the QCD vacuum generates a screening of color charges and is by this responsible for the quark confinement in color singlets. in the following the behaviour of classical color charges and color fields is studied and it is concluded that by this approximation, the neglection of quantum-mechanical fluctuation, the quark confinement cannot be explained, because the mean-field approximation leads to a screening of the color charges. Motivated by this result the Friedberg-Lee soliton model is presented, in which the the color confinement and all further nonperturbative QCD effects are phenomenologically modelled by means of a scalar field. Thereafter a derivation of the transport equations for quarks in the framework of the Wigner-function is presented. An extension of the equation to the Friedberg-Lee model is explained. As results the ground-state properties of the model are studied. Mesonic and baryonic ground-state solutions (soliton solutions) of the equations are constructed, whereby the constituents are both light quarks and heavy quarks. Furthermore the color coupling constant of QCD is fixed by means of the string tension by dynamical separation of the quarks of the meson. The flux tubes formed dynamically in this way are applied, in order to study the interaction of two strings and to calculate a string-string potential. Excited states of the meson (isovectorial modes) are presented as well as the influence of the color confinement on the quark motion. Finally the dynamical formation and the break-up of a string by the production of light and heavy quark pairs is described

  2. Addressing capability computing challenges of high-resolution global climate modelling at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin

    2014-05-01

    ,640 equivalent cores. Scientific applications, such as CESM, are also required to demonstrate a "computational readiness capability" to efficiently scale across and utilize 20% of the entire system. The 0,25 deg configuration of the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), the atmospheric component of CESM, has been demonstrated to scale efficiently across more than 5,000 nodes (80,000 CPU cores) on Titan. The tracer transport routines of CAM-SE have also been ported to take advantage of the hybrid many-core architecture of Titan using GPUs [see EGU2014-4233], yielding over 2X speedup when transporting over 100 tracers. The high throughput I/O in CESM, based on the Parallel IO Library (PIO), is being further augmented to support even higher resolutions and enhance resiliency. The application performance of the individual runs are archived in a database and routinely analyzed to identify and rectify performance degradation during the course of the experiments. The various resources available at the OLCF now support a scientific workflow to facilitate high-resolution climate modelling. A high-speed center-wide parallel file system, called ATLAS, capable of 1 TB/s, is available on Titan as well as on the clusters used for analysis (Rhea) and visualization (Lens/EVEREST). Long-term archive is facilitated by the HPSS storage system. The Earth System Grid (ESG), featuring search & discovery, is also used to deliver data. The end-to-end workflow allows OLCF users to efficiently share data and publish results in a timely manner.

  3. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    Science.gov (United States)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  4. Survey of research reports in transportation modelling. Part 1

    NARCIS (Netherlands)

    Nijsse, A.; Wamsteker-Andriessen, S.J.

    1993-01-01

    A survey of research reports in transportation modelling in two parts. Part one is devided in reports concerning economic development and car mobility, analyzing large transportation data files and transportation planning and spatial development. Part two consists of reserach reports concerning

  5. Survey of research reports in transportation modelling. Part 2

    NARCIS (Netherlands)

    Nijsse, A.; Wamsteker-Andriessen, S.J.

    1993-01-01

    A survey of research reports in transportation modelling in two parts. Part one is devided in reports concerning economic development and car mobility, analyzing large transportation data files and transportation planning and spatial development. Part two consists of reserach reports concerning

  6. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  7. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  8. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  9. Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds

    Science.gov (United States)

    Day, B. H.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R. M.; Malhotra, S.; Sadaqathullah, S.

    2015-12-01

    NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. Many of the recent enhancements to LMMP have been specifically in response to the requirements of NASA's proposed Resource Prospector lunar rover, and as such, provide an excellent example of the application of LMMP to mission planning. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. On March 31, 2015, the LMMP team released Vesta Trek (http://vestatrek.jpl.nasa.gov), a web-based application applying LMMP technology to visualizations of the asteroid Vesta. Data gathered from multiple instruments aboard Dawn have been compiled into Vesta Trek's user-friendly set of tools, enabling users to study the asteroid's features. With an initial release on July 1, 2015, Mars Trek replicates the functionality of Vesta Trek for the surface of Mars. While the entire surface of Mars is covered, higher levels of resolution and greater numbers of data products are provided for special areas of interest. Early releases focus on past, current, and future robotic sites of operation. Future releases will add many new data products and analysis tools as Mars Trek has been selected for use in site selection for the Mars 2020 rover and in identifying potential human landing sites on Mars. Other destinations will follow soon. The user community is invited to provide suggestions and requests as the development team continues to expand the capabilities of LMMP

  10. Progress in integrated 2-D models for analysis of scrape-off layer transport physics

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T.D. [Lawrence Livermore National Lab., CA (United States); Braams, B.J. [New York Univ., NY (United States); Knoll, D.A. [Idaho National Engineering Lab., Idaho Falls (United States)

    1996-08-01

    We present the status of comprehensive two-dimensional (2-D) transport modeling for the tokamak scrape-off layer (SOL) using the UEDGE and B2.5 codes. These codes are now able to integrate a variety of physics, including coupling of plasma and neutral transport leading to detachment, complicated diverto-plate geometries, multispecies impurities, and currents and E x B drifts. These new models are outlined and the capabilities are illustrated by a number of examples that emphasize the importance of including the 2-D geometry. (orig.)

  11. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  12. Modeling and analysis of transport in the mammary glands

    Science.gov (United States)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  13. Photo-chemical transport modelling of tropospheric ozone: A review

    Science.gov (United States)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  14. Defining Building Information Modeling implementation activities based on capability maturity evaluation: a theoretical model

    Directory of Open Access Journals (Sweden)

    Romain Morlhon

    2015-01-01

    Full Text Available Building Information Modeling (BIM has become a widely accepted tool to overcome the many hurdles that currently face the Architecture, Engineering and Construction industries. However, implementing such a system is always complex and the recent introduction of BIM does not allow organizations to build their experience on acknowledged standards and procedures. Moreover, data on implementation projects is still disseminated and fragmentary. The objective of this study is to develop an assistance model for BIM implementation. Solutions that are proposed will help develop BIM that is better integrated and better used, and take into account the different maturity levels of each organization. Indeed, based on Critical Success Factors, concrete activities that help in implementation are identified and can be undertaken according to the previous maturity evaluation of an organization. The result of this research consists of a structured model linking maturity, success factors and actions, which operates on the following principle: once an organization has assessed its BIM maturity, it can identify various weaknesses and find relevant answers in the success factors and the associated actions.

  15. UVM Transportation Research Center signature project 1B : integrated land-use, transportation and environmental modeling.

    Science.gov (United States)

    2014-05-01

    Land use and transportation are inextricably linked. Models that capture the dynamics and interactions : of both systems are indispensable for evaluating alternative courses of action in policy and investment. : These models must be spatially disaggr...

  16. Deep update with new water transport cost model

    International Nuclear Information System (INIS)

    Khamis, I.; Ibrahim, A.H.A.D.; Suleiman, S.

    2007-01-01

    DEEP 3.11 is a new version of DEEP which is capable to calculate the water transport cost in any place, with acceptable accuracy. The user needs only to specify water flow or the capacity, pipeline length and elevation of sites against sea level or difference in elevation of the beginning and end of the pipeline routs

  17. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-09-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst-Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants. PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  18. Overview of the development of a biosphere modelling capability for UK DoE (HMIP)

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Ashton, J.; Little, R.H.

    1990-01-01

    A programme of research has been funded, since 1982, by the United Kingdom Department of the Environment (Her Majesty's Inspectorate of Pollution, HMIP), to develop a procedure for post-closure radiological assessment of underground disposal facilities for low and intermediate level radioactive wastes. It is conventional to regard the disposal system as comprising the engineered barriers of the repository, the geological setting which provides natural barriers to migration, and the surface environment or biosphere. The requirement of a biosphere submodel, therefore, is to provide estimates, for given radionuclide inputs, of the dose or probability distribution function of dose to a maximally exposed individual as a function of time. This paper describes the development of the capability for biosphere modelling for HMIP in the context of the development of other assessment procedures. 11 refs., 3 figs., 2 tabs

  19. Modeling for Colloid and Chelator Facilitated Nuclide Transport in Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) program template, by which assessment of safety and performance for a radioactive waste repository with normal and/or abnormal nuclide release cases can be made has been developed. Colloid and chelator facilitated transport that is believed to result for faster nuclide transport in various mediabothinthegeosphereandbiospherehas been evaluated deterministically and probabilistically to demonstrate the capability of the template developed through this study. To this end colloid and chelator facilitated nuclide transport has been modeled rather strainghtforwardly with assumed data through this study by utilizing some powerful function offered by GoldSim. An evaluation in view of apparent influence of colloid and chelator on the nuclide transport in the various media in and around a repository system with data assumed are illustrated

  20. Capabilities of stochastic rainfall models as data providers for urban hydrology

    Science.gov (United States)

    Haberlandt, Uwe

    2017-04-01

    For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G

  1. Modelling global container freight transport demand

    NARCIS (Netherlands)

    Tavasszy, L.A.; Ivanova, O.; Halim, R.A.

    2015-01-01

    The objective of this chapter is to discuss methods and techniques for a quantitative and descriptive analysis of future container transport demand at a global level. Information on future container transport flows is useful for various purposes. It is instrumental for the assessment of returns of

  2. Modelling multicomponent solute transport in structured soils

    NARCIS (Netherlands)

    Beinum, van G.W.

    2007-01-01

    The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or

  3. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13% of the energy saving and 12% of the CO 2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies show the potential of drawing the transport demand to the more energy efficient vehicles; however, more initiatives are needed if the sustainable transport is the long term objective, such as the solutions to stabilise the private vehicle demands, to continuously improve the vehicle efficiency and to boost the alternative fuels produced from the renewable energy sources. - Highlights: • A Chinese transport model was created and three transport strategies were evaluated • Transport is the biggest driver of the oil demand in China not the industry • The energy demand of transport in 2020 will be twice as much as today • Strategies contribute 13% energy saving and 12% CO 2 emission reduction • More initiatives are needed if a sustainable transport is the long-term objective

  4. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  5. Seasonal Characteristics of Widespread Ozone Pollution in China and India: Current Model Capabilities and Source Attributions

    Science.gov (United States)

    Gao, M.; Song, S.; Beig, G.; Zhang, H.; Hu, J.; Ying, Q.; McElroy, M. B.

    2017-12-01

    Fast urbanization and industrialization in China and India have led to severe ozone pollution, threatening public health in these densely populated countries. We show the spatial and seasonal characteristics of ozone concentrations using nation-wide observations for these two countries in 2013. We used the Weather Research and Forecasting model coupled to chemistry (WRF-Chem) to conduct one-year simulations and to evaluate how current models capture the important photochemical processes using the exhaustive available datasets in China and India, including surface measurements, ozonesonde data and satellite retrievals. We also employed the factor separation approach to distinguish the contributions of different sectors to ozone during different seasons. The back trajectory model FLEXPART was applied to investigate the role of transport in highly polluted regions (e.g., North China Plain, Yangtze River delta, and Pearl River Delta) during different seasons. Preliminary results indicate that the WRF-Chem model provides a satisfactory representation of the temporal and spatial variations of ozone for both China and India. The factor separation approach offers valuable insights into relevant sources of ozone for both countries providing valuable guidance for policy options designed to mitigate the related problem.

  6. Research Capabilities Directed to all Electric Engineering Teachers, from an Alternative Energy Model

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Ordóñez Navea

    2017-08-01

    Full Text Available The purpose of this work was to contemplate research capabilities directed to all electric engineering teachers from an alternative energy model intro the explanation of a semiconductor in the National Training Program in Electricity. Some authors, such as. Vidal (2016, Atencio (2014 y Camilo (2012 point out to technological applications with semiconductor electrical devices. In this way; a diagnostic phase is presented, held on this field research as a descriptive type about: a how to identify the necessities of alternative energies, and b The research competences in the alternatives energies of researcher from a solar cell model, to boost and innovate the academic praxis and technologic ingenuity. Themselves was applied a survey for a group of 15 teachers in the National Program of Formation in electricity to diagnose the deficiencies in the research area of alternatives energies. The process of data analysis was carried out through descriptive statistic. Later the conclusions are presented the need to generate strategies for stimulate and propose exploration of alternatives energies to the development of research competences directed to the teachers of electrical engineering for develop the research competences in the enforcement of the teachers exercise for the electric engineering, from an alternative energy model and boost the technologic research in the renewal energies field.

  7. System Identification Theory Approach to Cohesive Sediment Transport Modelling

    OpenAIRE

    CHEN, HUIXIN

    1997-01-01

    Two aspects of the modelling sediment transport are investigated. One is the univariate time series modelling the current velocity dynamics. The other is the multivariate time series modelling the suspended sediment concentration dynamics. Cohesive sediment dynamics and numerical sediment transport model are reviewed and investigated. The system identification theory and time series analysis method are developed and applied to set up the time series model for current velocity a...

  8. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  9. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  10. Computer supported estimation of input data for transportation models

    OpenAIRE

    Cenek, Petr; Tarábek, Peter; Kopf, Marija

    2010-01-01

    Control and management of transportation systems frequently rely on optimization or simulation methods based on a suitable model. Such a model uses optimization or simulation procedures and correct input data. The input data define transportation infrastructure and transportation flows. Data acquisition is a costly process and so an efficient approach is highly desirable. The infrastructure can be recognized from drawn maps using segmentation, thinning and vectorization. The accurate definiti...

  11. Transportation of Dangerous Goods: Turkey Model

    Directory of Open Access Journals (Sweden)

    Murat Şencan

    2017-12-01

    Full Text Available The shortcomings in the implementation of hazardous substances transport in the world and in our country lead to very serious hazards. These problems lead to life, property and very serious environmental disasters. This is not only a matter of transportation, but also of the chemistry, textile and fuel industries. This study provides information on the legislation on dangerous goods transport in Turkey. It also contains technical information on hazardous substances, following the search of the relevant literature for the province of hazardous goods.

  12. Application of pesticide transport model for simulating diazinon runoff in California’s central valley

    Science.gov (United States)

    Joyce, Brian A.; Wallender, Wesley W.; Mailapalli, Damodhara R.

    2010-12-01

    Dormant spray application of pesticides to almond and other stone fruit orchards is the main source of diazinon during the winter in California's central valley. Understanding the pesticide transport and the tradeoffs associated with the various management practices is greatly facilitated by the use of physically-based contaminant transport models. In this study, performance of Joyce's et al. (2008) pesticide transport model was evaluated using experimental data collected from two ground treatments such as resident vegetation and bare soil. The model simulation results obtained in calibration and validation process were analyzed for pesticide concentration and total load. The pesticide transport model accurately predicted the pesticide concentrations and total load in the runoff from bare field and was capable of simulating chemical responses to rainfall-runoff events. In case of resident vegetation, the model results exhibited a larger range of variation than was observed in the bare soil simulations due to increased model parameterization with the addition of foliage and thatch compartments. Furthermore, the model was applied to study the effect of runoff lag time, extent of crop cover, organic content of soil and post-application irrigation on the pesticide peak concentration and total load. Based on the model results, recommendations were suggested to growers prior to implementing certain management decisions to mitigate diazinon transport in the orchard's spray runoff.

  13. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    International Nuclear Information System (INIS)

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs

  14. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow ...... is the first in a two-paper series describing contaminant transport at a waste residue site. III the second paper, reactive transport at the site is investigated.......An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...

  15. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken into account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  16. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken nto account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  17. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed. Keywords. Quark-gluon plasma; transport models; flow; jet quenching.

  18. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression ...

  19. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  20. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    Science.gov (United States)

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A quantum energy transport model for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Shohiro, E-mail: shoshohiro@gmail.com [Graduate School of Information Science and Technology, Osaka University, Osaka (Japan); Odanaka, Shinji [Computer Assisted Science Division, Cybermedia Center, Osaka University, Osaka (Japan)

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  2. European initiatives for modeling emissions from transport

    DEFF Research Database (Denmark)

    Joumard, Robert; Hickman, A. John; Samaras, Zissis

    1998-01-01

    In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the latest...... COST 319 action bringing together about 80 active scientists from the whole of Europe and considering all modes of transport and all inventory levels. The paper briefly presents the history of the various multilateral and EC initiatives and discusses the latest in more detail, from the collection...... of the raw data to the design of the inventory tools. The paper also considers the structures and the main assumptions of the current inventory methods for the various transport modes and various areas of application, including reference to work currently in progress or planned for the near future. Topics...

  3. Developing Materials Processing to Performance Modeling Capabilities and the Need for Exascale Computing Architectures (and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics and Engineering Models; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Advanced Simulation and Computing

    2016-09-06

    Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additive Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.

  4. Enhancing Interoperability and Capabilities of Earth Science Data using the Observations Data Model 2 (ODM2

    Directory of Open Access Journals (Sweden)

    Leslie Hsu

    2017-02-01

    Full Text Available Earth Science researchers require access to integrated, cross-disciplinary data in order to answer critical research questions. Partially due to these science drivers, it is common for disciplinary data systems to expand from their original scope in order to accommodate collaborative research. The result is multiple disparate databases with overlapping but incompatible data. In order to enable more complete data integration and analysis, the Observations Data Model Version 2 (ODM2 was developed to be a general information model, with one of its major goals to integrate data collected by 'in situ' sensors with those by 'ex-situ' analyses of field specimens. Four use cases with different science drivers and disciplines have adopted ODM2 because of benefits to their users. The disciplines behind the four cases are diverse – hydrology, rock geochemistry, soil geochemistry, and biogeochemistry. For each case, we outline the benefits, challenges, and rationale for adopting ODM2. In each case, the decision to implement ODM2 was made to increase interoperability and expand data and metadata capabilities. One of the common benefits was the ability to use the flexible handling and comprehensive description of specimens and data collection sites in ODM2’s sampling feature concept. We also summarize best practices for implementing ODM2 based on the experience of these initial adopters. The descriptions here should help other potential adopters of ODM2 implement their own instances or to modify ODM2 to suit their needs.

  5. Capability of Spaceborne Hyperspectral EnMAP Mission for Mapping Fractional Cover for Soil Erosion Modeling

    Directory of Open Access Journals (Sweden)

    Sarah Malec

    2015-09-01

    Full Text Available Soil erosion can be linked to relative fractional cover of photosynthetic-active vegetation (PV, non-photosynthetic-active vegetation (NPV and bare soil (BS, which can be integrated into erosion models as the cover-management C-factor. This study investigates the capability of EnMAP imagery to map fractional cover in a region near San Jose, Costa Rica, characterized by spatially extensive coffee plantations and grazing in a mountainous terrain. Simulated EnMAP imagery is based on airborne hyperspectral HyMap data. Fractional cover estimates are derived in an automated fashion by extracting image endmembers to be used with a Multiple End-member Spectral Mixture Analysis approach. The C-factor is calculated based on the fractional cover estimates determined independently for EnMAP and HyMap. Results demonstrate that with EnMAP imagery it is possible to extract quality endmember classes with important spectral features related to PV, NPV and soil, and be able to estimate relative cover fractions. This spectral information is critical to separate BS and NPV which greatly can impact the C-factor derivation. From a regional perspective, we can use EnMAP to provide good fractional cover estimates that can be integrated into soil erosion modeling.

  6. Multi-phase model development to assess RCIC system capabilities under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, Karen Vierow [Texas A & M Univ., College Station, TX (United States); Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beeny, Bradley [Texas A & M Univ., College Station, TX (United States); Luthman, Nicholas [Texas A& M Engineering Experiment Station, College Station, TX (United States); Strater, Zachary [Texas A & M Univ., College Station, TX (United States)

    2017-12-23

    The Reactor Core Isolation Cooling (RCIC) System is a safety-related system that provides makeup water for core cooling of some Boiling Water Reactors (BWRs) with a Mark I containment. The RCIC System consists of a steam-driven Terry turbine that powers a centrifugal, multi-stage pump for providing water to the reactor pressure vessel. The Fukushima Dai-ichi accidents demonstrated that the RCIC System can play an important role under accident conditions in removing core decay heat. The unexpectedly sustained, good performance of the RCIC System in the Fukushima reactor demonstrates, firstly, that its capabilities are not well understood, and secondly, that the system has high potential for extended core cooling in accident scenarios. Better understanding and analysis tools would allow for more options to cope with a severe accident situation and to reduce the consequences. The objectives of this project were to develop physics-based models of the RCIC System, incorporate them into a multi-phase code and validate the models. This Final Technical Report details the progress throughout the project duration and the accomplishments.

  7. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  8. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  9. Uncertainty quantification's role in modeling and simulation planning, and credibility assessment through the predictive capability maturity model

    Energy Technology Data Exchange (ETDEWEB)

    Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Witkowski, Walter R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mousseau, Vincent Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-13

    The importance of credible, trustworthy numerical simulations is obvious especially when using the results for making high-consequence decisions. Determining the credibility of such numerical predictions is much more difficult and requires a systematic approach to assessing predictive capability, associated uncertainties and overall confidence in the computational simulation process for the intended use of the model. This process begins with an evaluation of the computational modeling of the identified, important physics of the simulation for its intended use. This is commonly done through a Phenomena Identification Ranking Table (PIRT). Then an assessment of the evidence basis supporting the ability to computationally simulate these physics can be performed using various frameworks such as the Predictive Capability Maturity Model (PCMM). There were several critical activities that follow in the areas of code and solution verification, validation and uncertainty quantification, which will be described in detail in the following sections. Here, we introduce the subject matter for general applications but specifics are given for the failure prediction project. In addition, the first task that must be completed in the verification & validation procedure is to perform a credibility assessment to fully understand the requirements and limitations of the current computational simulation capability for the specific application intended use. The PIRT and PCMM are tools used at Sandia National Laboratories (SNL) to provide a consistent manner to perform such an assessment. Ideally, all stakeholders should be represented and contribute to perform an accurate credibility assessment. PIRTs and PCMMs are both described in brief detail below and the resulting assessments for an example project are given.

  10. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  11. Application of rrm as behavior mode choice on modelling transportation

    Science.gov (United States)

    Surbakti, M. S.; Sadullah, A. F.

    2018-03-01

    Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.

  12. Meeting Capability Goals through Effective Modelling and Experimentation of C4ISTAR Options

    Science.gov (United States)

    2011-06-01

    connection, management and visualisation capability provided by Salamander’s MooD ® software [13]. MooD has been chosen for this central role as it offers...suggested the use of capability ‘bullseye charts’ as the visualisation tool, using different colours to indicate the level of capability available at...based information environment (using Salamander’s MooD technology), containing all of the visualisations delivered by the project and the linkages

  13. Sediment Transport Model for a Surface Irrigation System

    OpenAIRE

    Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; Singh, Rajendra

    2013-01-01

    Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in fur...

  14. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  15. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  16. Review of petroleum transport network models and their applicability to a national refinery model

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J. N.

    1982-04-01

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  17. Transport Routes Optimization Model Through Application of Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Ivan Bortas

    2018-03-01

    Full Text Available The transport policy of the European Union is based on the mission of restructuring road traffic into other and energy-favourable transport modes which have not been sufficiently represented yet. Therefore, the development of the inland waterway and rail transport, and connectivity in the intermodal transport network are development planning priorities of the European transport strategy. The aim of this research study was to apply the scientific methodology and thus analyse the factors that affect the distribution of the goods flows and by using the fuzzy logic to make an optimization model, according to the criteria of minimizing the costs and negative impact on the environment, for the selection of the optimal transport route. Testing of the model by simulation, was performed on the basis of evaluating the criteria of the influential parameters with unprecise and indefinite input parameters. The testing results show that by the distribution of the goods flow from road transport network to inland waterways or rail transport, can be predicted in advance and determine the transport route with optimal characteristics. The results of the performed research study will be used to improve the process of planning the transport service, with the aim of reducing the transport costs and environmental pollution.

  18. Modeling of flow and reactive transport in IPARS

    KAUST Repository

    Wheeler, Mary Fanett

    2012-03-11

    In this work, we describe a number of efficient and locally conservative methods for subsurface flow and reactive transport that have been or are currently being implemented in the IPARS (Integrated Parallel and Accurate Reservoir Simulator). For flow problems, we consider discontinuous Galerkin (DG) methods and mortar mixed finite element methods. For transport problems, we employ discontinuous Galerkin methods and Godunov-mixed methods. For efficient treatment of reactive transport simulations, we present a number of state-of-the-art dynamic mesh adaptation strategies and implementations. Operator splitting approaches and iterative coupling techniques are also discussed. Finally, numerical examples are provided to illustrate the capability of IPARS to treat general biogeochemistry as well as the effectivity of mesh adaptations with DG for transport. © 2012 Bentham Science Publishers. All rights reserved.

  19. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  20. Transport services quality measurment using SERVQUAL model

    Directory of Open Access Journals (Sweden)

    Maksimović Mlađan V.

    2017-01-01

    Full Text Available Quality in the world is considered to be the most important phenomenon of our age, with a permanent and irreversible growing trend of its emphasis. Many companies have come to the conclusion that high quality of services can provide them with a potential competitive advantage, leading to superior sales results and profit making. The aim of this paper is to test the applicability of service SERVQUAL dimensions and measure the quality of services in the public transport of passengers. Based on the data obtained by researching the views of public transport users in Kragujevac using the SERVQUAL methodology and statistical analysis based on defined service quality dimensions, this research will show the level of quality of urban transport services in Kragujevac and based on this, make recommendations for improving the quality of service.

  1. Modeling radon transport in multistory residential buildings

    International Nuclear Information System (INIS)

    Persily, A.K.

    1993-01-01

    Radon concentrations have been studied extensively in single-family residential buildings, but relatively little work has been done in large buildings, including multistory residential buildings. The phenomena of radon transport in multistory residential buildings is made more complicated by the multizone nature of the airflow system and the numerous interzone airflow paths that must be characterized in such a system. This paper presents the results of a computer simulation of airflow and radon transport in a twelve-story residential building. Interzone airflow rates and radon concentrations were predicted using the multizone airflow and contaminant dispersal program (CON-TAM88). Limited simulations were conducted to study the influence of two different radon source terms, indoor-outdoor temperature difference and exterior wall leakage values on radon transport and radon concentration distributions

  2. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  3. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  4. Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model

    Directory of Open Access Journals (Sweden)

    Nuria Salazar

    2014-01-01

    Full Text Available Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models.

  5. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.

    Science.gov (United States)

    Serrano, Francisco José; Chiappe, Luis María

    2017-07-01

    Several flight modes are thought to have evolved during the early evolution of birds. Here, we use a combination of computational modelling and morphofunctional analyses to infer the flight properties of the raven-sized, Early Cretaceous bird Sapeornis chaoyangensis -a likely candidate to have evolved soaring capabilities. Specifically, drawing information from (i) mechanical inferences of the deltopectoral crest of the humerus, (ii) wing shape (i.e. aspect ratio), (iii) estimations of power margin (i.e. difference between power required for flight and available power from muscles), (iv) gliding behaviour (i.e. forward speed and sinking speed), and (v) palaeobiological evidence, we conclude that S. chaoyangensis was a thermal soarer with an ecology similar to that of living South American screamers. Our results indicate that as early as 125 Ma, some birds evolved the morphological and aerodynamic requirements for soaring on continental thermals, a conclusion that highlights the degree of ecological, functional and behavioural diversity that resulted from the first major evolutionary radiation of birds. © 2017 The Author(s).

  6. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Fabian [Salzburg Univ. (Austria); Engel, Dominik [Salzburg Univ. (Austria); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.

  7. Neutron transport model for standard calculation experiment

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.; Lyutostanskij, Yu.S.; Lyashchuk, V.I.; Panov, I.V.

    1989-01-01

    The neutron transport calculation algorithms in complex composition media with a predetermined geometry are realized by the multigroups representations within Monte Carlo methods in the MAMONT code. The code grade was evaluated with benchmark experiments comparison. The neutron leakage spectra calculations in the spherical-symmetric geometry were carried out for iron and polyethylene. The MAMONT code utilization for metrological furnishes of the geophysics tasks is proposed. The code is orientated towards neutron transport and secondary nuclides accumulation calculations in blankets and geophysics media. 7 refs.; 2 figs

  8. Exploring morphological indicators for improved model parameterization in transport modeling

    Science.gov (United States)

    Kumahor, Samuel K.; Vogel, Hans-Jörg

    2017-04-01

    Two phenomena that control transport of colloidal materials, including nanoparticles, are interaction at the air-water and solid-water interfaces for unsaturated flow. Current approaches for multiphase inverse modeling to quantify the associated processes utilize empirical parameters and/or assumptions to characterise these interactions. This introduces uncertainty in model outcomes. Two classical examples are: (i) application of the Young-Laplace Equation, assuming spherical air-water interfaces, to quantify interactions at the air-water interface and (ii) the choice of parameters that define the nature and shape of retention profiles for modeling straining at the solid-water interface. In this contribution, an alternate approach using some morphological indicators derived from X-ray micro-computed tomography (µ-CT) to quantify interaction at both the air-water interface and solid-water interface is presented. These indicators, related to air-water and solid-water interface densities, are thought to alleviate the deficiencies associated with modeling interaction at both the solid-water and air-water interfaces.

  9. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  10. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  11. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  12. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  13. Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network

    Science.gov (United States)

    Le Pichon, A.; Ceranna, L.; Vergoz, J.

    2012-03-01

    To monitor compliance with the Comprehensive Nuclear-Test ban Treaty (CTBT), a dedicated International Monitoring System (IMS) is being deployed. Recent global scale observations recorded by this network confirm that its detection capability is highly variable in space and time. Previous studies estimated the radiated source energy from remote observations using empirical yield-scaling relations which account for the along-path stratospheric winds. Although the empirical wind correction reduces the variance in the explosive energy versus pressure relationship, strong variability remains in the yield estimate. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. In this study, the effects of the source frequency and the stratospheric wind speed are simulated. In order to characterize fine-scale atmospheric structures which are excluded from the current atmospheric specifications, model predictions are further enhanced by the addition of perturbation terms. A theoretical attenuation relation is thus developed from massive numerical simulations using the Parabolic Equation method. Compared with previous studies, our approach provides a more realistic physical description of long-range infrasound propagation. We obtain a new relation combining a near-field and a far-field term, which account for the effects of both geometrical spreading and absorption. In the context of the future verification of the CTBT, the derived attenuation relation quantifies the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

  14. Incorporating numerical modelling into estimates of the detection capability of the IMS infrasound network

    Science.gov (United States)

    Le Pichon, A.; Ceranna, L.

    2011-12-01

    To monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a dedicated International Monitoring System (IMS) is being deployed. Recent global scale observations recorded by this network confirm that its detection capability is highly variable in space and time. Previous studies estimated the radiated source energy from remote observations using empirical yield-scaling relations which account for the along-path stratospheric winds. Although the empirical wind correction reduces the variance in the explosive energy versus pressure relationship, strong variability remains in the yield estimate. Today, numerical modelling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. In this study, the effects of the source frequency and the stratospheric wind speed are simulated. In order to characterize fine-scale atmospheric structures which are excluded from the current atmospheric specifications, model predictions are further enhanced by the addition of perturbation terms. Thus, a theoretical attenuation relation is developed from massive numerical simulations using the Parabolic Equation method. Compared with previous studies, our approach provides a more realistic physical description of infrasound propagation. We obtain a new relation combining a near-field and far-field term which account for the effects of both geometrical spreading and dissipation on the pressure wave attenuation. By incorporating real ambient infrasound noise at the receivers which significantly limits the ability to detect and identify signals of interest, the minimum detectable source amplitude can be derived in a broad frequency range. Empirical relations between the source spectrum and the yield of explosions are used to infer detection thresholds in tons of TNT equivalent. In the context of the future verification of the CTBT, the obtained attenuation relation quantifies

  15. Mathematical modelling on transport of petroleum hydrocarbons

    Indian Academy of Sciences (India)

    A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly ...

  16. Strategic Network Modelling for Passenger Transport Pricing

    NARCIS (Netherlands)

    Smits, E.-S.

    2017-01-01

    In the last decade the Netherlands has experienced an economic recession. Now, in 2017, the economy is picking up again. This growth does not only come with advantages because economic growth demands more from the transport system. Congestion is increasing again, the capacity of the train system is

  17. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...

  18. State-of-the-art in modeling solute and sediment transport in rivers

    International Nuclear Information System (INIS)

    Sayre, W.W.

    1980-01-01

    This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed

  19. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  20. Structural Design of Oligopeptides for Intestinal Transport Model.

    Science.gov (United States)

    Hong, Seong-Min; Tanaka, Mitsuru; Koyanagi, Riho; Shen, Weilin; Matsui, Toshiro

    2016-03-16

    Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.

  1. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  2. Development and verification of a high performance multi-group SP3 transport capability in the ARTEMIS core simulator

    International Nuclear Information System (INIS)

    Van Geemert, Rene

    2008-01-01

    For satisfaction of future global customer needs, dedicated efforts are being coordinated internationally and pursued continuously at AREVA NP. The currently ongoing CONVERGENCE project is committed to the development of the ARCADIA R next generation core simulation software package. ARCADIA R will be put to global use by all AREVA NP business regions, for the entire spectrum of core design processes, licensing computations and safety studies. As part of the currently ongoing trend towards more sophisticated neutronics methodologies, an SP 3 nodal transport concept has been developed for ARTEMIS which is the steady-state and transient core simulation part of ARCADIA R . For enabling a high computational performance, the SP N calculations are accelerated by applying multi-level coarse mesh re-balancing. In the current implementation, SP 3 is about 1.4 times as expensive computationally as SP 1 (diffusion). The developed SP 3 solution concept is foreseen as the future computational workhorse for many-group 3D pin-by-pin full core computations by ARCADIA R . With the entire numerical workload being highly parallelizable through domain decomposition techniques, associated CPU-time requirements that adhere to the efficiency needs in the nuclear industry can be expected to become feasible in the near future. The accuracy enhancement obtainable by using SP 3 instead of SP 1 has been verified by a detailed comparison of ARTEMIS 16-group pin-by-pin SP N results with KAERI's DeCart reference results for the 2D pin-by-pin Purdue UO 2 /MOX benchmark. This article presents the accuracy enhancement verification and quantifies the achieved ARTEMIS-SP 3 computational performance for a number of 2D and 3D multi-group and multi-box (up to pin-by-pin) core computations. (authors)

  3. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  4. Physics and modelling of scrape-off layer transport

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Allen, S.L.; Crotinger, J.A.; Kaiser, T.B.; Milovich, J.L.; Mattor, N.; Nevins, W.M.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D. [Lawrence Livermore National Lab., CA (United States); Berk, H.L. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Campbell, R.B. [Sandia National Labs., Albuquerque, NM (United States); Diamond, P.H.; Rosenbluth, M.N. [California Univ., San Diego, CA (United States); Hinton, F.L.; Staebler, G.M. [General Atomics, San Diego, CA (United States); Knoll, D.A. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Modi, B.; Xu, X.Q. [California Univ., Berkeley, CA (United States); Prinja, A.K. [New Mexico Univ., Albuquerque, NM (United States); Ryutov, D.D.; Tsidulko, Y.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russia)

    1992-12-31

    We present studies of three schemes for reducing the peak heat flux on divertor plates, divertor biasing, impurity injection (``radiative divertor``) and neutral gas injection (``gas target divertor``). We report on theoretical analysis of a likely source of turbulent transport in the SOL and incorporation of the resultant transport coefficients into self-consistent models.

  5. Physics and modelling of scrape-off layer transport

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Allen, S.L.; Crotinger, J.A.; Kaiser, T.B.; Milovich, J.L.; Mattor, N.; Nevins, W.M.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D. (Lawrence Livermore National Lab., CA (United States)); Berk, H.L. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Campbell, R.B. (Sandia National Labs., Albuquerque, NM (United States)); Diamond, P.H.; Rosenbluth, M.N. (California Univ., San Di

    1992-01-01

    We present studies of three schemes for reducing the peak heat flux on divertor plates, divertor biasing, impurity injection ( radiative divertor'') and neutral gas injection ( gas target divertor''). We report on theoretical analysis of a likely source of turbulent transport in the SOL and incorporation of the resultant transport coefficients into self-consistent models.

  6. A model for assessing the environmental impact of transport

    OpenAIRE

    Malgorzata Latuszynska; Roma Strulak-Wojcikiewicz

    2013-01-01

    Environmental effects of transport, with a particular focus on the natural environment have been discussed. The authors present methods for assessing the influence of investments in transport infrastructure on the environment, as well as the concept of a simulation model which integrates various methods and approaches used to assess the impact of such investments on the environment. (original abstract)

  7. Physics and modelling of scrape-off layer transport

    International Nuclear Information System (INIS)

    Cohen, R.H.; Allen, S.L.; Crotinger, J.A.; Kaiser, T.B.; Milovich, J.L.; Mattor, N.; Nevins, W.M.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D.; Berk, H.L.; Diamond, P.H.; Rosenbluth, M.N.; Hinton, F.L.; Staebler, G.M.; Knoll, D.A.; Modi, B.; Xu, X.Q.; Prinja, A.K.; Ryutov, D.D.; Tsidulko, Y.A.

    1992-01-01

    We present studies of three schemes for reducing the peak heat flux on divertor plates, divertor biasing, impurity injection (''radiative divertor'') and neutral gas injection (''gas target divertor''). We report on theoretical analysis of a likely source of turbulent transport in the SOL and incorporation of the resultant transport coefficients into self-consistent models

  8. PHT3D-UZF: A Reactive Transport Model for Variably-Saturated Porous Media.

    Science.gov (United States)

    Wu, Ming Zhi; Post, Vincent E A; Salmon, S Ursula; Morway, Eric D; Prommer, Henning

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns. © 2015, National Ground Water Association.

  9. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  10. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  11. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  12. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  13. Implementation and display of Computer Aided Design (CAD) models in Monte Carlo radiation transport and shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T.J.

    1994-03-01

    An Xwindow application capable of importing geometric information directly from two Computer Aided Design (CAD) based formats for use in radiation transport and shielding analyses is being developed at ORNL. The application permits the user to graphically view the geometric models imported from the two formats for verification and debugging. Previous models, specifically formatted for the radiation transport and shielding codes can also be imported. Required extensions to the existing combinatorial geometry analysis routines are discussed. Examples illustrating the various options and features which will be implemented in the application are presented. The use of the application as a visualization tool for the output of the radiation transport codes is also discussed.

  14. Implementation and display of Computer Aided Design (CAD) models in Monte Carlo radiation transport and shielding applications

    International Nuclear Information System (INIS)

    Burns, T.J.

    1994-01-01

    An Xwindow application capable of importing geometric information directly from two Computer Aided Design (CAD) based formats for use in radiation transport and shielding analyses is being developed at ORNL. The application permits the user to graphically view the geometric models imported from the two formats for verification and debugging. Previous models, specifically formatted for the radiation transport and shielding codes can also be imported. Required extensions to the existing combinatorial geometry analysis routines are discussed. Examples illustrating the various options and features which will be implemented in the application are presented. The use of the application as a visualization tool for the output of the radiation transport codes is also discussed

  15. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    Science.gov (United States)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  16. Transport modeling of L/H transition in Tokamaks

    International Nuclear Information System (INIS)

    Fuji, Y.; Fukuyama, A.; Itoh, K.; Itoh, S.I.

    1995-01-01

    In order to study the particle transport and the mechanism of the L/H transition in tokamaks, a one-dimensional transport code which describes the toroidal and poloidal plasma rotation as well as the radial electric field has been developed. The neoclassical transport, turbulent transport and ion orbit loss are included. Using a turbulent transport model based on the current diffusive high-n ballooning mode and a fixed temperature profile, the density profile in a steady state and the dependence on the edge temperature are studied. With high edge temperature, the density gradient near the edge becomes steep and a H-mode like density profile is obtained. The preliminary calculation including heat transport is also presented. 10 refs., 3 figs

  17. Metal transport across biomembranes: emerging models for a distinct chemistry.

    Science.gov (United States)

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  18. An architecture model for communication of safety in public transportation

    NARCIS (Netherlands)

    Rajabalinejad, Mohammad; Horváth, Imre; Pernot, Jean-Paul; Rusák, Zoltan

    2016-01-01

    Safety in transportation is under the influence of the rising complexity, increasing demands for capacity and decreasing cost. Furthermore, the interdisciplinary environment of operation and altered safety regulations invite for a centralized (integrated) modelling/ communication approach. This

  19. Modelling of hydrodynamics and mecury transport in lake Velenje. Part 2, Modelling and model verification

    OpenAIRE

    Kotnik, Jože; Žagar, Dušan; Rajar, Rudi; Horvat, Milena

    2004-01-01

    PCFLOW3D - a three-dimensional mathematical model that was developed at the Chair of Fluid Mechanics of the Faculty of Civil and Geodetic Engineering, University of Ljubljana, was used for hydrodynamic and Hg transport simulations in Lake Velenje. The model is fully non-linear and computes three velocity components, water elevation and pressure. Transport-dispersion equations for salinity and heat (and/or any pollutant) are further used to compute the distributions of these par...

  20. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    Science.gov (United States)

    Pusateri, Elise Noel

    abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. The swarm model is also updated from the original HLO model by including

  1. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  2. Modeling of pollutant emissions from road transport; Modelisation des emissions de polluants par le transport routier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    COPERT III (computer programme to calculate emissions from road transport) is the third version of an MS Windows software programme aiming at the calculation of air pollutant emissions from road transport. COPERT estimates emissions of all regulated air pollutants (CO, NO{sub x}, VOC, PM) produced by different vehicle categories as well as CO{sub 2} emissions on the basis of fuel consumption. This research seminar was organized by the French agency of environment and energy mastery (Ademe) around the following topics: the uncertainties and sensitiveness analysis of the COPERT III model, the presentation of case studies that use COPERT III for the estimation of road transport emissions, and the future of the modeling of road transport emissions: from COPERT III to ARTEMIS (assessment and reliability of transport emission models and inventory systems). This document is a compilation of 8 contributions to this seminar and dealing with: the uncertainty and sensitiveness analysis of the COPERT III model; the road mode emissions of the ESCOMPTE program: sensitivity study; the sensitivity analysis of the spatialized traffic at the time-aggregation level: application in the framework of the INTERREG project (Alsace); the road transport aspect of the regional air quality plan of Bourgogne region: exhaustive consideration of the road network; intercomparison of tools and methods for the inventory of emissions of road transport origin; evolution of the French park of vehicles by 2025: new projections; application of COPERT III to the French context: a new version of IMPACT-ADEME; the European ARTEMIS project: new structural considerations for the modeling of road transport emissions. (J.S.)

  3. Development of a geotechnical GIS for subsurface characterization with three dimensional modeling capabilities.

    Science.gov (United States)

    2006-06-01

    The New Hampshire Department of Transportation initiated this research to develop a geographical information system (GIS) that : visualizes subsurface conditions three dimensionally by pulling together geotechnical data containing spatial references....

  4. Modeling the fate and transport of plastic debris in freshwaters

    OpenAIRE

    Kooi, Merel; Besseling, Ellen; Kroeze, Carolien; Wenzel, van, Annemarie P.; Koelmans, Albert A.

    2018-01-01

    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement information from measurements and will play an important role in the prospective risk assessment of plastic debris. We review the present knowledge with respect to fate and transport modeling of plastic...

  5. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  6. Reactive transport simulation via combination of a multiphase-capable transport code for unstructured meshes with a Gibbs energy minimization solver of geochemical equilibria

    Science.gov (United States)

    Fowler, S. J.; Driesner, T.; Hingerl, F. F.; Kulik, D. A.; Wagner, T.

    2011-12-01

    We apply a new, C++-based computational model for hydrothermal fluid-rock interaction and scale formation in geothermal reservoirs. The model couples the Complex System Modelling Platform (CSMP++) code for fluid flow in porous and fractured media (Matthai et al., 2007) with the Gibbs energy minimization numerical kernel GEMS3K of the GEM-Selektor (GEMS3) geochemical modelling package (Kulik et al., 2010) in a modular fashion. CSMP++ includes interfaces to commercial file formats, accommodating complex geometry construction using CAD (Rhinoceros) and meshing (ANSYS) software. The CSMP++ approach employs finite element-finite volume spatial discretization, implicit or explicit time discretization, and operator splitting. GEMS3K can calculate complex fluid-mineral equilibria based on a variety of equation of state and activity models. A selection of multi-electrolyte aqueous solution models, such as extended Debye-Huckel, Pitzer (Harvie et al., 1984), EUNIQUAC (Thomsen et al., 1996), and the new ELVIS model (Hingerl et al., this conference), makes it well-suited for application to a wide range of geothermal conditions. An advantage of the GEMS3K solver is simultaneous consideration of complex solid solutions (e.g., clay minerals), gases, fluids, and aqueous solutions. Each coupled simulation results in a thermodynamically-based description of the geochemical and physical state of a hydrothermal system evolving along a complex P-T-X path. The code design allows efficient, flexible incorporation of numerical and thermodynamic database improvements. We demonstrate the coupled code workflow and applicability to compositionally and physically complex natural systems relevant to enhanced geothermal systems, where temporally and spatially varying chemical interactions may take place within diverse lithologies of varying geometry. Engesgaard, P. & Kipp, K. L. (1992). Water Res. Res. 28: 2829-2843. Harvie, C. E.; Møller, N. & Weare, J. H. (1984). Geochim. Cosmochim. Acta 48

  7. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  8. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  9. Baseline requirements of the proposed action for the Transportation Management Division routing models

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.

    1995-02-01

    The potential impacts associated with the transportation of hazardous materials are important to shippers, carriers, and the general public. This is particularly true for shipments of radioactive material. The shippers are primarily concerned with safety, security, efficiency, and equipment requirements. The carriers are concerned with the potential impact that radioactive shipments may have on their operations--particularly if such materials are involved in an accident. The general public has also expressed concerns regarding the safety of transporting radioactive and other hazardous materials through their communities. Because transportation routes are a central concern in hazardous material transport, the prediction of likely routes is the first step toward resolution of these issues. In response to these routing needs, several models have been developed over the past fifteen years at Oak Ridge National Laboratory (ORNL). The HIGHWAY routing model is used to predict routes for truck transportation, the INTERLINE routing model is used to predict both rail and barge routes, and the AIRPORT locator model is used to determine airports with specified criteria near a specific location. As part of the ongoing improvement of the US Department of Energy's (DOE) Environmental Management Transportation Management Division's (EM-261) computer systems and development efforts, a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models was held at ORNL on April 27, 1994. The purpose of this meeting was to discuss the existing capabilities of the models and data bases and to review enhancements of the models and data bases to expand their usefulness. The results of the Baseline Requirements Assessment Section will be discussed in this report. The discussions pertaining to the different models are contained in separate sections

  10. Transport modelling in coastal waters using stochastic differential equations

    NARCIS (Netherlands)

    Charles, W.M.

    2007-01-01

    In this thesis, the particle model that takes into account the short term correlation behaviour of pollutants dispersion has been developed. An efficient particle model for sediment transport has been developed. We have modified the existing particle model by adding extra equations for the

  11. Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX Experiments Report. Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    International Nuclear Information System (INIS)

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones

  12. Economic model of pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-07-29

    The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.

  13. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  14. Re-framing Inclusive Education Through the Capability Approach: An Elaboration of the Model of Relational Inclusion

    Directory of Open Access Journals (Sweden)

    Maryam Dalkilic

    2016-09-01

    Full Text Available Scholars have called for the articulation of new frameworks in special education that are responsive to culture and context and that address the limitations of medical and social models of disability. In this article, we advance a theoretical and practical framework for inclusive education based on the integration of a model of relational inclusion with Amartya Sen’s (1985 Capability Approach. This integrated framework engages children, educators, and families in principled practices that acknowledge differences, rather than deficits, and enable attention to enhancing the capabilities of children with disabilities in inclusive educational environments. Implications include the development of policy that clarifies the process required to negotiate capabilities and valued functionings and the types of resources required to permit children, educators, and families to create relationally inclusive environments.

  15. Groundwater flow and transport modelling during a glaciation period

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2003-01-01

    Subsequent to earlier work, SKB has decided to carry out additional hydrogeological modelling studies related to glaciation effects at Aespoe. In particular, sub glacial groundwater flow and the impact assessment on a repository require further studies. As compared to the previous model, the domain geometry and processes involved remain identical, but this time, numerical calculations are performed with the NAMMU package (version 7.1.1) using a finite element formulation. Modified assumptions corresponding to specific boundary conditions are implemented and additional variations of the base case are simulated. The objectives of the study are based on the technical specifications established by SKB. The main objectives may be summarised as follows: Enhancement of the understanding of sub glacial groundwater flow due to basal ice melting. Evaluation of the impact of sub glacial roundwater flow on a repository with respect to its position to the ice margin of the glacier. Assessment of the feasibility of performing large 3D simulations of density-driven flow induced by variable salinity of the groundwater using the NAMMU package. The report begins with an account of the modelling approach applied. Then, the results of the different cases simulated are described, analysed and interpreted in detail. Finally, conclusions are drawn up together with some recommendations related to potential modelling issues for the future. The objectives proposed for the groundwater flow and transport modelling for period of glaciation have been met: The results have shown the importance of the ice tunnels in governing sub glacial groundwater flow due to basal ice melting. The influence of the ice tunnels on the salinity distribution is significant as is their impact on the flow trajectories and, hence, on the resulting travel times. The results of simulation S0 have revealed that no steady-state flow conditions are reached. Due to the chosen salt boundary conditions, salt will continue to

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  17. Radiative Transport Modelling of Thermal Barrier Coatings

    Science.gov (United States)

    2017-03-24

    derived by Thrane et al from Fresnel-Huygens diffraction theory .5 The Thrane model defines the normalized signal current as a function of integrated...problem is in part application-driven, namely based on the need to be able to extract the radiative properties from the shape the LCI signal . On the...walk model to test model approaches 75 June 2017 4 Apply the theory to experimental data on TBCs 20 June 2017 5 Report on results and future

  18. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  19. Contact and Impact Dynamic Modeling Capabilities of LS-DYNA for Fluid-Structure Interaction Problems

    Science.gov (United States)

    2010-12-02

    2003, providing a summary of the major theoretical, experimental and numerical accomplishments in the field. Melis and Khanh Bui (2003) studied the ALE...and Khanh Bui (2003) studied the ALE capability to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust

  20. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.

    1988-11-01

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  1. Application of the Geophysical Scale Multi-Block Transport Modeling System to Hydrodynamic Forcing of Dredged Material Placement Sediment Transport within the James River Estuary

    Science.gov (United States)

    Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.

    2016-12-01

    The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material

  2. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  3. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  4. Modeling the atmospheric transport of radioactive contamination using the ETA model

    International Nuclear Information System (INIS)

    Telenta, B.; Antic, D.

    1996-01-01

    The atmosphere is the main medium that transports and disperses the radioactive and/or chemical contaminants in operational use and in accidents. Atmospheric models can be used to simulate the transport of contaminants in typical accidents and for realistic meteorological conditions. This paper describes an approach to simulating the Chernobyl accident and similar hypothetical cases. The study is based on an atmospheric model extended by an additional equation that models the transport of a certain radioactive concentration. A step mountain synoptic model, called the ETA model (well-known model for weather forecasting), is used to investigate the transport and deposition of radioactive material in the Chernobyl accident zone

  5. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite.

  6. Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modeling

    Directory of Open Access Journals (Sweden)

    Pooya Najaf

    2013-07-01

    Full Text Available Road freight transportation between provinces of a country has an important effect on the traffic flow of intercity transportation networks. Therefore, an accurate estimation of the road freight transportation for provinces of a country is so crucial to improve the rural traffic operation in a large scale management. Accordingly, the focused case study database in this research is the information related to Iran’s provinces in the year 2008. Correlation between road freight transportation with variables such as transport cost and distance, population, average household income and Gross Domestic Product (GDP of each province is calculated. Results clarify that the population is the most effective factor in the prediction of provinces’ transported freight. Linear Regression Model (LRM is calibrated based on the population variable, and afterwards Fuzzy Regression Algorithm (FRA is generated on the basis of the LRM. The proposed FRA is an intelligent modified algorithm with an accurate prediction and fitting ability. This methodology can be significantly useful in macro-level planning problems where decreasing prediction error values is one of the most important concerns for decision makers. In addition, Back-Propagation Neural Network (BPNN is developed to evaluate the prediction capability of the models and to be compared with FRA. According to the final results, the modified FRA estimates road freight transportation values more accurately than the BPNN and LRM. Finally, in order to predict the road freight transportation values, the reliability of the calibrated models is analyzed using the information of the year 2009. Results show higher reliability for the proposed modified FRA.

  7. UNCERTAINTY SUPPLY CHAIN MODEL AND TRANSPORT IN ITS DEPLOYMENTS

    Directory of Open Access Journals (Sweden)

    Fabiana Lucena Oliveira

    2014-05-01

    Full Text Available This article discusses the Model Uncertainty of Supply Chain, and proposes a matrix with their transportation modes best suited to their chains. From the detailed analysis of the matrix of uncertainty, it is suggested transportation modes best suited to the management of these chains, so that transport is the most appropriate optimization of the gains previously proposed by the original model, particularly when supply chains are distant from suppliers of raw materials and / or supplies.Here we analyze in detail Agile Supply Chains, which is a result of Uncertainty Supply Chain Model, with special attention to Manaus Industrial Center. This research was done at Manaus Industrial Pole, which is a model of industrial agglomerations, based in Manaus, State of Amazonas (Brazil, which contemplates different supply chains and strategies sharing same infrastructure of transport, handling and storage and clearance process and uses inbound for suppliers of raw material.  The state of art contemplates supply chain management, uncertainty supply chain model, agile supply chains, Manaus Industrial Center (MIC and Brazilian legislation, as a business case, and presents concepts and features, of each one. The main goal is to present and discuss how transport is able to support Uncertainty Supply Chain Model, in order to complete management model. The results obtained confirms the hypothesis of integrated logistics processes are able to guarantee attractivity for industrial agglomerations, and open discussions when the suppliers are far from the manufacturer center, in a logistics management.

  8. A new nuclide transport model in soil in the GENII-LIN health physics code

    Science.gov (United States)

    Teodori, F.

    2017-11-01

    The nuclide soil transfer model, originally included in the GENII-LIN software system, was intended for residual contamination from long term activities and from waste form degradation. Short life nuclides were supposed absent or at equilibrium with long life parents. Here we present an enhanced soil transport model, where short life nuclide contributions are correctly accounted. This improvement extends the code capabilities to handle incidental release of contaminant to soil, by evaluating exposure since the very beginning of the contamination event, before the radioactive decay chain equilibrium is reached.

  9. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    Science.gov (United States)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  10. Asian dust transport during the springtime of year 2001 and 2002 with a nested version of dust transport model

    Science.gov (United States)

    Uno, I.; Satake, S.; Hara, Y.; Takemura, T.; Wang, Z.; Carmichael, G. R.

    2002-12-01

    Number of yellow sand (Kosa) observation has been surprisingly increasing in Japan and Korea since 2000. Especially extremely high PM10 concentration (exceeding 0.5mg/m3) was observed in Japan several times in 2002, so we have an urgent scientific and political need to forecast/reproduce the detailed dust emission, transport and deposition processes. Intensive modeling studies have already been conducted to examine transport of Sahara dust and its impact on global radiation budget. One of the important differences between the Sahara desert and the Asian desert (mainly Gobi Desert and Takla Makan Desert) is the elevation of the dust source. The averaged elevation of Gobi Desert is approximately 1500 to 2500 m. These deserts are surrounded by high mountains. Furthermore advance of the recent manmade desertification made complicated land use patches for the arid region in Inner Mongolia. Therefore the development of a high horizontal resolution dust model is highly required. In this study, we will report a newly developed nested version of the dust transport model (as a part of Chemical weather FORecasting System; CFORS) in order to have a better understanding of Asian springtime heady dust episode. Here, CFORS is a multi-tracer, on-line, system built within the RAMS mesoscale meteorological model. A unique feature of nested CFORS is that multiple tracers are run on-line in RAMS under the two-way nesting, so that all the fine-scale on-line meteorological information such as 3-D winds, boundary-layer turbulence, surface fluxes and precipitation amount are directly used by the dust emission and transport at every time step. As a result, nested-CFORS produces with high time resolution 3-dimensional fields of dust distributions and major meteorological parameters under the nesting capability of RAMS. In this work, the dust transport model simulation with the nested-CFORS was conducted between March and April of the years 2001 and 2002, respectively. The sensititivy

  11. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  12. Tokamak transport based on the Braginskii model

    International Nuclear Information System (INIS)

    Weitzner, H.

    1987-01-01

    The two-fluid model of Braginskii is applied to the case of a moderately large tokamak. By estimation of the order of magnitude of the various effects and omission of small terms a somewhat simpler reduced two-fluid Braginskii model is obtained. The model applies on a time scale of order τ e m i /m e , where τ e is the electron-electron collision time, and energy confinement time is of this order. With electron and ion flow velocities no larger than is necessary to obtain the correct equilibrium currents, classical parallel viscosity becomes a dominant dissipative mechanism. The model allows for the slow evolution of equilibrium states. The equilibria, which include static, ideal magnetohydrodynamic equilibria as a special case, are described. Generally the number density, electrostatic potential, and flows are not constant on a flux surface. The procedure for determination of the slow evolution of the equilibrium is sketched. (orig.)

  13. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  14. Stencil method: a Markov model for transport in porous media

    Science.gov (United States)

    Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.

    2016-12-01

    In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.

  15. A colloid-facilitated transport model with variable colloid transport properties

    Science.gov (United States)

    Robinson, Bruce A.; Wolfsberg, Andrew V.; Viswanathan, Hari S.; Reimus, Paul W.

    2007-05-01

    Anomalous contaminant transport velocities in groundwater for species generally considered to be immobile are often attributed to the mechanism of colloid-facilitated transport. In some of the field observations attributed to colloid facilitation, an extremely small fraction of the total contaminant mass introduced to the groundwater is detected downstream. In this study, a new model of colloid-facilitated contaminant transport is proposed that explains this phenomenon as the variability of mobility of individual colloids in the population. The process of retardation via attachment and detachment of colloids on immobile surfaces is often modeled with time and space invariant parameters; here it is modeled assuming a diverse population of transport properties that account for the inherent variability of colloid size, surface charge and chemical properties, mineralogy, and the concomitant impact on colloid mobility. When the contaminant is assumed to irreversibly attach to or form colloids, the migration of the contaminant plume exhibits extremely non-Fickian behavior. The plume's center of mass travels with a velocity governed by the groundwater velocity divided by the mean colloid retardation factor. However, small quantities of contaminant attached to a few highly mobile colloids travel at velocities up to the groundwater velocity, far exceeding the velocity of the centroid of the plume. This paper introduces the colloid diversity model, presents some sensitivity calculations for an idealized case, and discusses the implications of such a model on data needs, simulation of field observations, and model scaling.

  16. A Model-Based Architecture Approach to Ship Design Linking Capability Needs to System Solutions

    Science.gov (United States)

    2012-06-01

    Summers are rainy and warm with frequent typhoons. Fog is very common along the coasts and the water depth is very shallow on average, approximately...India, Iraq, Kuwait, Libya, Oman, Pakistan, Peru , Qatar, Saudia Arabia, Singapore, South Africa, UAE, Venezuela The threat aircraft used to deploy...system from performing this mission lies in the AAW mission area and sustained independent operation in littoral waters . The fictional capability gap

  17. A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities

    Science.gov (United States)

    2017-10-01

    to get new capability to the field. A single management structure provides a portfolio perspective and enables strategic management . Decisions... strategic management across all of the medium to high altitude UAS portfolio there will continue to be tension in achieving the joint nature of these... managing the medium to high altitude UAS assets. This would be done by employing agile methodology at the strategic level and by eliminating redundant

  18. Project AIR FORCE Modeling Capabilities for Support of Combat Operations in Denied Environments

    Science.gov (United States)

    2015-01-01

    typical MINLP maximization algorithm would approach finding the tallest peak in a mountain range. The solver begins by generally randomly selecting...organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more...illustrate ROBOT’s capabilities using two scenarios: a relatively complex, real- world scenario based on prior PAF research and the simpler, notional

  19. A multimodal location and routing model for hazardous materials transportation.

    Science.gov (United States)

    Xie, Yuanchang; Lu, Wei; Wang, Wen; Quadrifoglio, Luca

    2012-08-15

    The recent US Commodity Flow Survey data suggest that transporting hazardous materials (HAZMAT) often involves multiple modes, especially for long-distance transportation. However, not much research has been conducted on HAZMAT location and routing on a multimodal transportation network. Most existing HAZMAT location and routing studies focus exclusively on single mode (either highways or railways). Motivated by the lack of research on multimodal HAZMAT location and routing and the fact that there is an increasing demand for it, this research proposes a multimodal HAZMAT model that simultaneously optimizes the locations of transfer yards and transportation routes. The developed model is applied to two case studies of different network sizes to demonstrate its applicability. The results are analyzed and suggestions for future research are provided. Published by Elsevier B.V.

  20. Sustainable logistics and transportation optimization models and algorithms

    CERN Document Server

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  1. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  2. Mathematical models for volume rendering and neutron transport

    International Nuclear Information System (INIS)

    Max, N.

    1994-09-01

    This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect

  3. HYDROïD humanoid robot head with perception and emotion capabilities :Modeling, Design and Experimental Results

    Directory of Open Access Journals (Sweden)

    Samer eAlfayad

    2016-04-01

    Full Text Available In the framework of the HYDROïD humanoid robot project, this paper describes the modeling and design of an electrically actuated head mechanism. Perception and emotion capabilities are considered in the design process. Since HYDROïD humanoid robot is hydraulically actuated, the choice of electrical actuation for the head mechanism addressed in this paper is justified. Considering perception and emotion capabilities leads to a total number of 15 degrees of freedom for the head mechanism which are split on four main sub-mechanisms: the neck, the mouth, the eyes and the eyebrows. Biological data and kinematics performances of human head are taken as inputs of the design process. A new solution of uncoupled eyes is developed to possibly address the master-slave process that links the human eyes as well as vergence capabilities. Modeling each sub-system is carried out in order to get equations of motion, their frequency responses and their transfer functions. The neck pitch rotation is given as a study example. Then, the head mechanism performances are presented through a comparison between model and experimental results validating the hardware capabilities. Finally, the head mechanism is integrated on the HYDROïD upper-body. An object tracking experiment coupled with emotional expressions is carried out to validate the synchronization of the eye rotations with the body motions.

  4. An assessment system for the system safety engineering capability maturity model in the case of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Zhenghai; Liu Zhiming; Wan Yaping; Bai Xiaofeng

    2012-01-01

    We can improve the processing, the evaluation of capability and promote the user's trust by using system security engineering capability maturity model (SSE-CMM). SSE-CMM is the common method for organizing and implementing safety engineering, and it is a mature method for system safety engineering. Combining capability maturity model (CMM) with total quality management and statistic theory, SSE-CMM turns systems security engineering into a well-defined, mature, measurable, advanced engineering discipline. Lack of domain knowledge, the size of data, the diversity of evidences, the cumbersomeness of processes, and the complexity of matching evidences with problems are the main issues that SSE-CMM assessment has to face. To improve effectively the efficiency of assessment of spent fuel reprocessing system security engineering capability maturity model (SFR-SSE-CMM), in this paper we de- signed an intelligent assessment software based on domain ontology and that uses methods such as ontology, evidence theory, semantic web, intelligent information retrieval and intelligent auto-matching techniques. This software includes four subsystems, which are domain ontology creation and management system, evidence auto collection system, and a problem and evidence matching system. The architecture of the software is divided into five layers: a data layer, an oncology layer, a knowledge layer, a service layer arid a presentation layer. (authors)

  5. Routing and Scheduling Optimization Model of Sea Transportation

    Science.gov (United States)

    barus, Mika debora br; asyrafy, Habib; nababan, Esther; mawengkang, Herman

    2018-01-01

    This paper examines the routing and scheduling optimization model of sea transportation. One of the issues discussed is about the transportation of ships carrying crude oil (tankers) which is distributed to many islands. The consideration is the cost of transportation which consists of travel costs and the cost of layover at the port. Crude oil to be distributed consists of several types. This paper develops routing and scheduling model taking into consideration some objective functions and constraints. The formulation of the mathematical model analyzed is to minimize costs based on the total distance visited by the tanker and minimize the cost of the ports. In order for the model of the problem to be more realistic and the cost calculated to be more appropriate then added a parameter that states the multiplier factor of cost increases as the charge of crude oil is filled.

  6. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  7. Modeling and simulation of emergent behavior in transportation infrastructure restoration

    Science.gov (United States)

    Ojha, Akhilesh; Corns, Steven; Shoberg, Thomas G.; Qin, Ruwen; Long, Suzanna K.

    2018-01-01

    The objective of this chapter is to create a methodology to model the emergent behavior during a disruption in the transportation system and that calculates economic losses due to such a disruption, and to understand how an extreme event affects the road transportation network. The chapter discusses a system dynamics approach which is used to model the transportation road infrastructure system to evaluate the different factors that render road segments inoperable and calculate economic consequences of such inoperability. System dynamics models have been integrated with business process simulation model to evaluate, design, and optimize the business process. The chapter also explains how different factors affect the road capacity. After identifying the various factors affecting the available road capacity, a causal loop diagram (CLD) is created to visually represent the causes leading to a change in the available road capacity and the effects on travel costs when the available road capacity changes.

  8. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  9. Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media

    KAUST Repository

    Marder, M.

    2018-03-29

    We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.

  10. A transport model for prediction of wildfire behavior

    Energy Technology Data Exchange (ETDEWEB)

    Linn, R.R.

    1997-07-01

    Wildfires are a threat to human life and property, yet they are an unavoidable part of nature. In the past people have tried to predict wildfire behavior through the use of point functional models but have been unsuccessful at adequately predicting the gross behavior of the broad spectrum of fires that occur in nature. The majority of previous models do not have self-determining propagation rates. The author uses a transport approach to represent this complicated problem and produce a model that utilizes a self-determining propagation rate. The transport approach allows one to represent a large number of environments including transition regions such as those with nonhomogeneous vegetation and terrain. Some of the most difficult features to treat are the imperfectly known boundary conditions and the fine scale structure that is unresolvable, such as the specific location of the fuel or the precise incoming winds. The author accounts for the microscopic details of a fire with macroscopic resolution by dividing quantities into mean and fluctuating parts similar to what is done in traditional turbulence modelling. The author develops a complicated model that includes the transport of multiple gas species, such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and other stationary solids and liquids. From this model the author also forms a simplified local burning model with which he performs a number of simulations for the purpose of demonstrating the properties of a self-determining transport-based wildfire model.

  11. Modelling of transport phenomena and defects in crystal growth ...

    Indian Academy of Sciences (India)

    A brief review of single crystal growth techniques and the associated problems is presented. Emphasis is placed on models for various transport and defect phenomena involoved in the growth process with the ultimate aim of integrating them into a comprehensive numerical model. The sources of dislocation nucleation in ...

  12. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  13. Spatial Economics Model Predicting Transport Volume

    Directory of Open Access Journals (Sweden)

    Lu Bo

    2016-10-01

    Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.

  14. Modelling radon transport in Dutch dwellings

    NARCIS (Netherlands)

    Janssen MPM; Vries L de; Phaff JC; Graaf ER van der; Blaauboer RO; Stoop P; Lembrechts J; TNO-Bouw; KVI; LSO

    1998-01-01

    Radon concentrations and external exposure by nuclides of the U-238 decay chain were quantified for a typical Dutch townhouse using a series of interconnected computer models. The effect is studied of changes in parameter values which have simulated changes in building practices over the past

  15. Predictive data-derived Bayesian statistic-transport model and simulator of sunken oil mass

    Science.gov (United States)

    Echavarria Gregory, Maria Angelica

    Sunken oil is difficult to locate because remote sensing techniques cannot as yet provide views of sunken oil over large areas. Moreover, the oil may re-suspend and sink with changes in salinity, sediment load, and temperature, making deterministic fate models difficult to deploy and calibrate when even the presence of sunken oil is difficult to assess. For these reasons, together with the expense of field data collection, there is a need for a statistical technique integrating limited data collection with stochastic transport modeling. Predictive Bayesian modeling techniques have been developed and demonstrated for exploiting limited information for decision support in many other applications. These techniques brought to a multi-modal Lagrangian modeling framework, representing a near-real time approach to locating and tracking sunken oil driven by intrinsic physical properties of field data collected following a spill after oil has begun collecting on a relatively flat bay bottom. Methods include (1) development of the conceptual predictive Bayesian model and multi-modal Gaussian computational approach based on theory and literature review; (2) development of an object-oriented programming and combinatorial structure capable of managing data, integration and computation over an uncertain and highly dimensional parameter space; (3) creating a new bi-dimensional approach of the method of images to account for curved shoreline boundaries; (4) confirmation of model capability for locating sunken oil patches using available (partial) real field data and capability for temporal projections near curved boundaries using simulated field data; and (5) development of a stand-alone open-source computer application with graphical user interface capable of calibrating instantaneous oil spill scenarios, obtaining sets maps of relative probability profiles at different prediction times and user-selected geographic areas and resolution, and capable of performing post

  16. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  17. Contaminant transport modeling studies of Russian sites

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu

    1993-01-01

    Lawrence Berkeley Laboratory (LBL) established mechanisms that promoted cooperation between U.S. and Russian scientists in scientific research as well as environmental technology transfer. Using Russian experience and U.S technology, LBL developed approaches for field investigations, site evaluation, waste disposal, and remediation at Russian contaminated sites. LBL assessed a comprehensive database as well as an actual, large-scale contaminated site to evaluate existing knowledge of and test mathematical models used for the assessment of U.S. contaminated sites

  18. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    Science.gov (United States)

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  19. The Airlift Capabilities Estimation Prototype: A Case Study in Model Validation

    Science.gov (United States)

    1993-03-01

    34 Airlif" 18 - 21 (Spring 1988). 2.4 Hflliard, Michael R., Rajendra S. Solanki, Cheng Liu, Ingrid K. Busch, Gleu Harrison, and Ronald D. Kraemer...aircraft. Again, it is assumed that any non-preferred capability will be in cargo classes "bulk" or "passengers" only. UYlu V lr 7,uXtUp2r, (5) ’. YUy ...New York: McGraw-Hill Book Company, 1986. ’ •,Hilliaid, Michael R., Rajendra S. Solanki, Cheng Liu, Ingrid K. Busch, Glen Harrison and y Ronald D

  20. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  1. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    Science.gov (United States)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  2. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by

  3. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    Science.gov (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  4. Model development for transport studies in negative shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Spang, M.C.; Casper, T.B.; Thomassen, K.I.

    1997-05-01

    This study develops a simple transport model which can be used predictively for tokamak negative central shear (NCS) modes, with the assistance of Lawrence Livermore National Laboratory`s core plasma simulation code, CORSICA. The results show that the the Rebut-Lallia-Watkins Critical Electron Temperature Gradient Model, coupled with an NCS transport model and TRANSP data, renders a reasonably close match to experimental temperature profiles. Additionally, this research offers the first benchmark calculation indicating that the CORSICA code itself, when given transport coefficients from the analysis of experimental data, replicates the experimental profiles, indicating that both TRANSP and CORSICA together are consistent in their analysis of the plasma evolution. This means CORSICA is working properly and has no known major internal flaws. 14 refs., 12 figs.

  5. Model development for transport studies in negative shear modes

    International Nuclear Information System (INIS)

    Spang, M.C.; Casper, T.B.; Thomassen, K.I.

    1997-05-01

    This study develops a simple transport model which can be used predictively for tokamak negative central shear (NCS) modes, with the assistance of Lawrence Livermore National Laboratory's core plasma simulation code, CORSICA. The results show that the the Rebut-Lallia-Watkins Critical Electron Temperature Gradient Model, coupled with an NCS transport model and TRANSP data, renders a reasonably close match to experimental temperature profiles. Additionally, this research offers the first benchmark calculation indicating that the CORSICA code itself, when given transport coefficients from the analysis of experimental data, replicates the experimental profiles, indicating that both TRANSP and CORSICA together are consistent in their analysis of the plasma evolution. This means CORSICA is working properly and has no known major internal flaws. 14 refs., 12 figs

  6. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  7. GIS-Based Analytical Tools for Transport Planning: Spatial Regression Models for Transportation Demand Forecast

    Directory of Open Access Journals (Sweden)

    Simone Becker Lopes

    2014-04-01

    Full Text Available Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included. This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

  8. Physics models in the toroidal transport code PROCTR

    Energy Technology Data Exchange (ETDEWEB)

    Howe, H.C.

    1990-08-01

    The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.

  9. Multiscale modeling for fluid transport in nanosystems.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.

    2013-09-01

    Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.

  10. A self-organized criticality model for plasma transport

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC). The SOC concept brings together the self-similarity on space and time scales that is common to many of these phenomena. The application of the SOC modelling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad band fluctuation spectra with universal characteristics and fast time scales. A model realization of self-organized criticality for plasma transport in a magnetic confinement device is presented. The model is based on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based on this model show the existence of transport under subcritical conditions. This model that includes fluctuation dynamics leads to results very similar to the running sandpile paradigm

  11. The Global Modeling Initiative Assessment Model: Model Description, Integration and Testing of the Transport Shell

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D.A.; Tannahill, J.R.; Kinnison, D.E.; Connell, P.S.; Bergmann, D.; Proctor, D.; Rodriquez, J.M.; Lin, S.J.; Rood, R.B.; Prather, M.J.; Rasch, P.J.; Considine, D.B.; Ramaroson, R.; Kawa, S.R.

    2000-04-25

    We describe the three dimensional global stratospheric chemistry model developed under the NASA Global Modeling Initiative (GMI) to assess the possible environmental consequences from the emissions of a fleet of proposed high speed civil transport aircraft. This model was developed through a unique collaboration of the members of the GMI team. Team members provided computational modules representing various physical and chemical processes, and analysis of simulation results through extensive comparison to observation. The team members' modules were integrated within a computational framework that allowed transportability and simulations on massively parallel computers. A unique aspect of this model framework is the ability to interchange and intercompare different submodules to assess the sensitivity of numerical algorithms and model assumptions to simulation results. In this paper, we discuss the important attributes of the GMI effort, describe the GMI model computational framework and the numerical modules representing physical and chemical processes. As an application of the concept, we illustrate an analysis of the impact of advection algorithms on the dispersion of a NO{sub y}-like source in the stratosphere which mimics that of a fleet of commercial supersonic transports (High-Speed Civil Transport (HSCT)) flying between 17 and 20 kilometers.

  12. Modelling of JET hybrid scenarios with GLF23 transport model: E × B shear stabilization of anomalous transport

    NARCIS (Netherlands)

    Voitsekhovitch, I.; Belo, da Silva Ares; Citrin, J.; Fable, E.; Ferreira, J.; Garcia, J.; Garzotti, L.; Hobirk, J.; Hogeweij, G. M. D.; Joffrin, E.; Kochl, F.; Litaudon, X.; Moradi, S.; Nabais, F.; JET-EFDA Contributors,; EU-ITM ITER Scenario Modelling group,

    2014-01-01

    The E × B shear stabilization of anomalous transport in JET hybrid discharges is studied via self-consistent predictive modelling of electron and ion temperature, ion density and toroidal rotation velocity performed with the GLF23 model. The E × B shear

  13. The Extended Generalized Cost Concept and its Application in Freight Transport and General Equilibrium Modeling

    NARCIS (Netherlands)

    Tavasszy, L.; Davydenko, I.; Ruijgrok, K.

    2009-01-01

    The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by

  14. Evaluation of lesion detection capabilities of anatomically based MAP image reconstruction methods using the computer observer model

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya; Kudo, Hiroyuki

    2010-01-01

    This study was conducted to evaluate the lesion detection capabilities of anatomically based maximum a posteriori (MAP) image reconstruction methods in emission computed tomography using the computer observer model. In lesion detection tasks, conventional anatomically based MAP reconstruction methods cannot preserve lesions not present in the anatomical image with high contrast and at the same time suppress noise in the background regions. We previously proposed a new anatomically based MAP reconstruction method called the SOS-MAP method, which is based on the spots-on-smooth image model in which the image is modeled by the sum of the smooth background image and the sparse spot image, and showed that the SOS-MAP method can overcome the above-mentioned drawback of conventional anatomically based MAP methods. However, the lesion detection capabilities of the SOS-MAP method remained to be clarified. In the present study, the computer observer model was used to evaluate the lesion detection capabilities of the SOS-MAP method, and it was found that the SOS-MAP method is superior to conventional anatomically based MAP methods for the detection of lesions. (author)

  15. High throughput ab initio modeling of charge transport for bio-molecular-electronics

    Science.gov (United States)

    Bruque, Nicolas Alexander

    2009-12-01

    Self-assembled nanostructures, composed of inorganic and organic materials, have multiple applications in the fields of engineering and nanotechnology. Experimental research using nanoscaled materials, such as semiconductor/metallic nanocrystals, nanowires (NW), and carbon nanotube (CNT)-molecular systems have potential applications in next generation nano electronic devices. Many of these molecular systems exhibit electronic device functionality. However, experimental analytical techniques to determine how the chemistry and geometry affects electron transport through these devices does not yet exist. Using theory and modeling, one can approximate the chemistry and geometry at the atomic level and also determine how the chemistry and geometry governs electron current. Nanoelectronic devices however, contain several thousand atoms which makes quantum modeling difficult. Popular atomistic modeling approaches are capable of handling small molecular systems, which are of scientific interest, but have little engineering value. The lack of large scale modeling tools has left the scientific and engineering community with a limited ability to understand, explore, and design complex systems of engineering interest. To address these issues, I have developed a high performance general quantum charge transport model based on the non-equilibrium Green function (NEGF) formalism using density functional theory (DFT) as implemented in the FIREBALL software. FIREBALL is a quantum molecular dynamics code which has demonstrated the ability to model large molecular systems. This dissertation project of integrating NEGF into FIREBALL provides researchers with a modeling tool capable of simulating charge current in large inorganic/organic systems. To provide theoretical support for experimental efforts, this project focused on CNT-molecular systems, which includes the discovery of a CNT-molecular resonant tunneling diode (RTD) for electronic circuit applications. This research also

  16. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  17. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  18. Consistency between 2D-3D Sediment Transport models

    Science.gov (United States)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  19. Modelling and simulation of soot generation and transport

    OpenAIRE

    Hu, Xiaoqin

    2016-01-01

    Soot released from fires not only causes danger to lives and property damage, but also effects fire spread by altering the radiation characteristics of fire effluents. In many situations, it is the soot concentration that controls the fire development. Therefore, soot modelling is of great importance in fire safety science. This necessitates the development of a global and general soot model within fire field models that can simulate the amount of soot generated and transported in large-scale...

  20. Computer-based modelling and optimization in transportation

    CERN Document Server

    Rossi, Riccardo

    2014-01-01

    This volume brings together works resulting from research carried out by members of the EURO Working Group on Transportation (EWGT) and presented during meetings and workshops organized by the Group under the patronage of the Association of European Operational Research Societies in 2012 and 2013. The main targets of the EWGT include providing a forum to share research information and experience, encouraging joint research and the development of both theoretical methods and applications, and promoting cooperation among the many institutions and organizations which are leaders at national level in the field of transportation and logistics. The primary fields of interest concern operational research methods, mathematical models and computation algorithms, to solve and sustain solutions to problems mainly faced by public administrations, city authorities, public transport companies, service providers and logistic operators. Related areas of interest are: land use and transportation planning, traffic control and ...

  1. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  2. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    Directory of Open Access Journals (Sweden)

    Na Wei

    2013-01-01

    Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

  3. Modeling studies of transport bifurcation phenomena in a collisional drift wave turbulence

    Science.gov (United States)

    Hajjar, Rima; Diamond, Patrick; Tynan, Georges; Ashourvan, Arash

    2016-10-01

    Self-organization of drift wave turbulence via particle transport and Reynolds stresses is a mechanism for turbulence suppression and reduction of cross field transport. This energy transfer mechanism between microscale drift waves and mesoscale zonal flows can create a transport bifurcation and trigger the formation of an internal transport barrier. We report here on studies investigating transport bifurcation dynamics in the CSDX linear device using a 1D reduced turbulence and mean field evolution model. This two-mixing scale Hasegawa-Wakatani based model evolves spatio-temporal variations of three plasma fields: the mean density n, the mean vorticity u and the turbulent potential enstrophy e. The model adopts inhomogeneous potential vorticity mixing on a mixing length the expression of which is related to the Rhines' scale and to the mode scale (i.e. is ∇n and ∇u dependent). The model is based on expressions for turbulent fluxes of n, u and e derived from mixing length concepts. Turbulent particle and enstrophy transport are written as diffusive, but a residual stress part is included in the expression for the vorticity flux. Mixed boundary conditions are used at both ends of the domain and an external boundary fueling source is added. Simulation results show a steepening in the particle density profiles with B along with the formation of a net flow shear layer resulting from the vorticity mixing. These results suggest that the system dynamic is capable of sustaining the plasma core by means of a purely diffusive particle flux, without any explicit inward particle pinch.

  4. Visualization and Modeling of Nanoparticle Transport in Porous Media

    Science.gov (United States)

    Berkowitz, B.; Naftaly, A.; Dror, I.

    2015-12-01

    We examine transport of nanoparticles (NPs) in a refraction index-matched, three-dimensional, water-saturated porous medium, consisting of polyacrylamide beads which carry a negative surface charge. Flow cell experiments involved use of synthesized, negatively-charged gold and silver nanoparticles (AuNPs, AgNPs) and positively-charged AgNPs, to determine the effect of surface charge on NP transport behavior. From sequential imaging of the flow cell and detailed image analysis, we obtained measurements of the temporally evolving spatial NP concentration distribution. The current experiments focused on point source, pulse injection of AuNPs and AgNPs into a uniform flow field. Parallel experiments employing a conservative (Congo red) tracer demonstrated the transport to be mildly non-Fickian. A continuous time random walk (CTRW) particle tracking (PT) model was then used to quantify the spatial and temporal migration of both the conservative and reactive tracer plumes; model parameters related to the non-Fickian transport were determined from conservative (column and flow cell) tracer experiments. The results show that the negatively-charged NPs behaved similarly to the conservative tracer. These results are in accord with previous measurements of transport of negatively-charged AgNPs in sand columns. The positively-charged AgNPs, in contrast, displayed a decreasing tendency over distance to attach to the negatively-charged porous medium. Further analysis showed that the decreasing tendency of these NPs to attach to the porous medium may be correlated to the particle residence time. This transport behavior is understood by DLS and ζ potential measurements, which showed that aggregation processes and inversion in particle surface charge occurred during the transport of the positively-charged NPs. Modeling results indicated the transport to be more non-Fickian for the positively-charged AgNPs, highlighting a coupling between attachment and transport processes. We

  5. Modelling radon transport in Dutch dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, M.P.M.; De Vries, L.; Phaff, J.C.; Van der Graaf, E.R.; Blaauboer, R.O.; Stoop, P.; Lembrechts, J

    1998-07-01

    Radon concentrations and external exposure by nuclides of the U-238 decay chain were quantified for a typical Dutch townhouse using a series of interconnected computer models. The effect is studied of changes in parameter values which have simulated changes in building practices over the past decades. Three groups of parameters were distinguished: (1) the air-tightness of the building shell and the distribution of leaks over outer walls and ground floor, (2) the radon-relevant characteristics of the building materials, and 3) those characterising 'habits of the occupant', such as changing mechanical ventilation rate and opening of air inlets or doors. The relative importance of increased air-tightness and of substitution of concrete by other building materials in new dwellings is illustrated. On average changes in building practices clearly enhanced the radon concentration in the living room without affecting external exposure. In new, airtight dwellings the relative effect of occupant behaviour is demonstrated as considerably larger than in old ones.

  6. Green Transport Balanced Scorecard Model with Analytic Network Process Support

    Directory of Open Access Journals (Sweden)

    David Staš

    2015-11-01

    Full Text Available In recent decades, the performance of economic and non-economic activities has required them to be friendly with the environment. Transport is one of the areas having considerable potential within the scope. The main assumption to achieve ambitious green goals is an effective green transport evaluation system. However, these systems are researched from the industrial company and supply chain perspective only sporadically. The aim of the paper is to design a conceptual framework for creating the Green Transport (GT Balanced Scorecard (BSC models from the viewpoint of industrial companies and supply chains using an appropriate multi-criteria decision making method. The models should allow green transport performance evaluation and support of an effective implementation of green transport strategies. Since performance measures used in Balanced Scorecard models are interdependent, the Analytic Network Process (ANP was used as the appropriate multi-criteria decision making method. The verification of the designed conceptual framework was performed on a real supply chain of the European automotive industry.

  7. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  8. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    Science.gov (United States)

    Simunek, J.; Jacques, D.; Mayer, K. U.; Gerard, F.

    2016-12-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases hard-coded in terms of pools, kinetics and dependency on environmental variables. The input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, sorption and colloid-facilitated transport are not incorporated in many of these models. Furthermore, these models are combined with simplified representations of flow and transport processes. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes and/or kinetic reaction networks. The flexibility of these type of codes allows for straightforward extension of reaction networks with new model components and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow, solute transport, heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (biodiffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic

  9. Analysing Models as a Knowledge Technology in Transport Planning

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    2011-01-01

    critical analytic literature on knowledge utilization and policy influence. A simple scheme based in this literature is drawn up to provide a framework for discussing the interface between urban transport planning and model use. A successful example of model use in Stockholm, Sweden is used as a heuristic......Models belong to a wider family of knowledge technologies, applied in the transport area. Models sometimes share with other such technologies the fate of not being used as intended, or not at all. The result may be ill-conceived plans as well as wasted resources. Frequently, the blame...... device to illuminate how such an analytic scheme may allow patterns of insight about the use, influence and role of models in planning to emerge. The main contribution of the paper is to demonstrate that concepts and terminologies from knowledge use literature can provide interpretations of significance...

  10. System convergence in transport models: algorithms efficiency and output uncertainty

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker

    2015-01-01

    of this paper is to analyse convergence performance for the external loop and to illustrate how an improper linkage between the converging parts can lead to substantial uncertainty in the final output. Although this loop is crucial for the performance of large-scale transport models it has not been analysed......-scale in the Danish National Transport Model (DNTM). It is revealed that system convergence requires that either demand or supply is without random noise but not both. In that case, if MSA is applied to the model output with random noise, it will converge effectively as the random effects are gradually dampened...... in the MSA process. In connection to DNTM it is shown that MSA works well when applied to travel-time averaging, whereas trip averaging is generally infected by random noise resulting from the assignment model. The latter implies that the minimum uncertainty in the final model output is dictated...

  11. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  12. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  13. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  14. Analytical model of reactive transport processes with spatially variable coefficients.

    Science.gov (United States)

    Simpson, Matthew J; Morrow, Liam C

    2015-05-01

    Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

  15. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip......Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...

  16. A deterministic model of electron transport for electron probe microanalysis

    Science.gov (United States)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  17. Inverse modelling for flow and transport in porous media

    International Nuclear Information System (INIS)

    Giudici, M.

    2004-01-01

    The problem of parameter identification for flow and transport model in porous media is discussed in this communication. First, a general framework for the development and application of environmental models is discussed. Then the forward and inverse problems for discrete models are described in detail, introducing fundamental concepts (uniqueness, identifiability, stability, conditioning). The importance of model scales is reviewed and is shown its link with the stability and conditioning issues. Finally some remarks are given to the use of several independent sets of data in inverse modelling

  18. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  19. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  20. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  1. Modelling of Human Transplacental Transport as Performed in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Mathiesen, L.; Morck, T. A.; Zuri, G.

    2014-01-01

    classes of chemicals and nanoparticles for comparisons across chemical structures as well as different test systems. Our test systems are based on human material to bypass the extrapolation from animal data. By combining data from our two test systems, we are able to rank and compare the transport...... the relationships between maternal and foetal exposures to various compounds including pollutants such as polychlorinated biphenyls, polybrominated flame retardants, nanoparticles as well as recombinant human antibodies. The compounds have been studied in the human placenta perfusion model and to some extent...... in vitro with an established human monolayer trophoblast cell culture model. Results from our studies distinguish placental transport of substances by physicochemical properties, adsorption to placental tissue, binding to transport and receptor proteins and metabolism. We have collected data from different...

  2. Review of modeling and control during transport airdrop process

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-12-01

    Full Text Available This article presents the review of modeling and control during the airdrop process of transport aircraft. According to the airdrop height, technology can be classified into high and low altitude airdrop and in this article, the research is reviewed based on the two scenarios. While high altitude airdrop is mainly focusing on the precise landing control of cargo, the low altitude flight airdrop is on the control of transport aircraft dynamics to ensure flight safety. The history of high precision airdrop system is introduced first, and then the modeling and control problem of the ultra low altitude airdrop in transport aircraft is presented. Finally, the potential problems and future direction of low altitude airdrop are discussed.

  3. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models

  4. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    Science.gov (United States)

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  5. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  6. Revisiting low-fidelity two-fluid models for gas-solids transport

    Science.gov (United States)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  7. Revisiting low-fidelity two-fluid models for gas–solids transport

    Energy Technology Data Exchange (ETDEWEB)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    2016-08-15

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  8. Revisiting low-fidelity two-fluid models for gas–solids transport

    International Nuclear Information System (INIS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-01-01

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  9. Using data from colloid transport experiments to parameterize filtration model parameters for favorable conditions

    Science.gov (United States)

    Kamai, Tamir; Nassar, Mohamed K.; Nelson, Kirk E.; Ginn, Timothy R.

    2017-04-01

    Colloid filtration in porous media spans across many disciplines and includes scenarios such as in-situ bioremediation, colloid-facilitated transport, water treatment of suspended particles and pathogenic bacteria, and transport of natural and engineered nanoparticles in the environment. Transport and deposition of colloid particles in porous media are determined by a combination of complex processes and forces. Given the convoluted physical, chemical, and biological processes involved, and the complexity of porous media in natural settings, it should not come as surprise that colloid filtration theory does not always sufficiently predict colloidal transport, and that there is still a pressing need for improved predictive capabilities. Here, instead of developing the macroscopic equation from pore-scale models, we parametrize the different terms in the macroscopic collection equation through fitting it to experimental data, by optimizing the parameters in the different terms of the equation. This way we combine a mechanistically-based filtration-equation with empirical evidence. The impact of different properties of colloids and porous media are studied by comparing experimental properties with different terms of the correlation equation. This comparison enables insight about different processes that occur during colloid transport and retention under in porous media under favorable conditions, and provides directions for future theoretical developments.

  10. Comparison of mechanistic transport cycle models of ABC exporters.

    Science.gov (United States)

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  12. Petroleum system modeling capabilities for use in oil and gas resource assessments

    Science.gov (United States)

    Higley, Debra K.; Lewan, Michael; Roberts, Laura N.R.; Henry, Mitchell E.

    2006-01-01

    Summary: Petroleum resource assessments are among the most highly visible and frequently cited scientific products of the U.S. Geological Survey. The assessments integrate diverse and extensive information on the geologic, geochemical, and petroleum production histories of provinces and regions of the United States and the World. Petroleum systems modeling incorporates these geoscience data in ways that strengthen the assessment process and results are presented visually and numerically. The purpose of this report is to outline the requirements, advantages, and limitations of one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) petroleum systems modeling that can be applied to the assessment of oil and gas resources. Primary focus is on the application of the Integrated Exploration Systems (IES) PetroMod? software because of familiarity with that program as well as the emphasis by the USGS Energy Program on standardizing to one modeling application. The Western Canada Sedimentary Basin (WCSB) is used to demonstrate the use of the PetroMod? software. Petroleum systems modeling quantitatively extends the 'total petroleum systems' (TPS) concept (Magoon and Dow, 1994; Magoon and Schmoker, 2000) that is employed in USGS resource assessments. Modeling allows integration of state-of-the-art analysis techniques, and provides the means to test and refine understanding of oil and gas generation, migration, and accumulation. Results of modeling are presented visually, numerically, and statistically, which enhances interpretation of the processes that affect TPSs through time. Modeling also provides a framework for the input and processing of many kinds of data essential in resource assessment, including (1) petroleum system elements such as reservoir, seal, and source rock intervals; (2) timing of depositional, hiatus, and erosional events and their influences on petroleum systems; (3) incorporation of vertical and lateral distribution and lithologies of

  13. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    Science.gov (United States)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  14. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2013-06-01

    Full Text Available Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  15. Solute transport modelling with the variable temporally dependent ...

    Indian Academy of Sciences (India)

    Pintu Das

    2018-02-07

    Feb 7, 2018 ... In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous ..... Clay (0.40). Analytical solution. Numerical solution. Figure 3. Comparison of concentration distribution for sinu- soidal velocity pattern for boundary condition c0. 2 1 ю sec wt р. Ю.

  16. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  17. Modeling the fate and transport of plastic debris in freshwaters

    NARCIS (Netherlands)

    Kooi, Merel; Besseling, Ellen; Kroeze, Carolien; Wenzel, van Annemarie P.; Koelmans, Albert A.

    2018-01-01

    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement

  18. Development of a transport model for the microbial degradation of ...

    African Journals Online (AJOL)

    A mathematical model for first order reaction rate under isothermal condition was developed for predicting the diffusivity and transport rate of anthracene and pyrene during biodegradation using two microbial strains (corynebacteria spp and pseudomonas putida) in a heterogeneous porous medium. The formulation ...

  19. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  20. Mathematical modelling on transport of petroleum hydrocarbons in ...

    Indian Academy of Sciences (India)

    However, such studies in saturated fractured rocks are highly complex and limited, and hence, deserve a special attention as the fate and transport of the petroleum hydrocarbons are not uncommon in saturated fractured rocks. In this context, an improved mathematical model has been proposed that will better describe the ...