Monte Carlo method for neutron transport problems
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-01-01
Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
Particle-transport simulation with the Monte Carlo method
International Nuclear Information System (INIS)
Carter, L.L.; Cashwell, E.D.
1975-01-01
Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
International Nuclear Information System (INIS)
Martin, William R.; Brown, Forrest B.
2001-01-01
We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Condensed history Monte Carlo methods for photon transport problems
International Nuclear Information System (INIS)
Bhan, Katherine; Spanier, Jerome
2007-01-01
We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions
Monte Carlo methods in electron transport problems. Pt. 1
International Nuclear Information System (INIS)
Cleri, F.
1989-01-01
The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage
Reliability analysis of neutron transport simulation using Monte Carlo method
International Nuclear Information System (INIS)
Souza, Bismarck A. de; Borges, Jose C.
1995-01-01
This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs
Monte Carlo methods for flux expansion solutions of transport problems
International Nuclear Information System (INIS)
Spanier, J.
1999-01-01
Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error
Advanced Monte Carlo methods for thermal radiation transport
Wollaber, Allan B.
During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more
A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT
International Nuclear Information System (INIS)
Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik
2012-01-01
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT
Energy Technology Data Exchange (ETDEWEB)
Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)
2012-08-20
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport
International Nuclear Information System (INIS)
McKinley, M S; Brooks III, E D; Daffin, F
2004-01-01
Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations
Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2006-01-01
Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations
Analysis of Monte Carlo methods for the simulation of photon transport
International Nuclear Information System (INIS)
Carlsson, G.A.; Kusoffsky, L.
1975-01-01
In connection with the transport of low-energy photons (30 - 140 keV) through layers of water of different thicknesses, various aspects of Monte Carlo methods are examined in order to improve their effectivity (to produce statistically more reliable results with shorter computer times) and to bridge the gap between more physical methods and more mathematical ones. The calculations are compared with results of experiments involving the simulation of photon transport, using direct methods and collision density ones (J.S.)
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
A Monte Carlo Green's function method for three-dimensional neutron transport
International Nuclear Information System (INIS)
Gamino, R.G.; Brown, F.B.; Mendelson, M.R.
1992-01-01
This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Monte Carlo Transport for Electron Thermal Transport
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport
International Nuclear Information System (INIS)
Serov, I.V.; John, T.M.; Hoogenboom, J.E.
1999-01-01
The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport
A Monte Carlo method using octree structure in photon and electron transport
International Nuclear Information System (INIS)
Ogawa, K.; Maeda, S.
1995-01-01
Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that with electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting
Energy Technology Data Exchange (ETDEWEB)
Dixon, D.A., E-mail: ddixon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, MS P365, Los Alamos, NM 87545 (United States); Prinja, A.K., E-mail: prinja@unm.edu [Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Franke, B.C., E-mail: bcfrank@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87123 (United States)
2015-09-15
This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data.
Comparison of Monte Carlo method and deterministic method for neutron transport calculation
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki
1987-01-01
The report outlines major features of the Monte Carlo method by citing various applications of the method and techniques used for Monte Carlo codes. Major areas of its application include analysis of measurements on fast critical assemblies, nuclear fusion reactor neutronics analysis, criticality safety analysis, evaluation by VIM code, and calculation for shielding. Major techniques used for Monte Carlo codes include the random walk method, geometric expression method (combinatorial geometry, 1, 2, 4-th degree surface and lattice geometry), nuclear data expression, evaluation method (track length, collision, analog (absorption), surface crossing, point), and dispersion reduction (Russian roulette, splitting, exponential transform, importance sampling, corrected sampling). Major features of the Monte Carlo method are as follows: 1) neutron source distribution and systems of complex geometry can be simulated accurately, 2) physical quantities such as neutron flux in a place, on a surface or at a point can be evaluated, and 3) calculation requires less time. (Nogami, K.)
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
International Nuclear Information System (INIS)
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
International Nuclear Information System (INIS)
Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin
2015-01-01
Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes
Present status of transport code development based on Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki
1985-01-01
The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)
Efendiev, Yalchin R.; Iliev, Oleg; Kronsbein, C.
2013-01-01
In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed
MORSE-C, Neutron Transport, Gamma Transport for Criticality Calculation by Monte-Carlo Method
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: MORSE-C is a Monte-Carlo code to solve the multiple energy group form of the Boltzmann transport equation in order to obtain the eigenvalue (multiplication) when fissionable materials are present. Cross sections for up to 100 energy groups may be employed. The angular scattering is treated by the usual Legendre expansion as used in the discrete ordinates codes. Up-scattering may be specified. The geometry is defined by relationships to general 1. or 2. degree surfaces. Array units may be specified. Output includes, besides the usual values of input quantities, plots of the geometry, calculated volumes and masses, and graphs of results to assist the user in determining the correctness of the problem's solution
Transport calculation of medium-energy protons and neutrons by Monte Carlo method
International Nuclear Information System (INIS)
Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.
1978-09-01
A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)
International Nuclear Information System (INIS)
Brown, Forrest B.; Martin, William R.
2001-01-01
We have investigated Monte Carlo schemes for analyzing particle transport through media with exponentially varying time-dependent cross sections. For such media, the cross sections are represented in the form Σ(t) = Σ 0 e -at (1) or equivalently as Σ(x) = Σ 0 e -bx (2) where b = av and v is the particle speed. For the following discussion, the parameters a and b may be either positive, for exponentially decreasing cross sections, or negative, for exponentially increasing cross sections. For most time-dependent Monte Carlo applications, the time and spatial variations of the cross-section data are handled by means of a stepwise procedure, holding the cross sections constant for each region over a small time interval Δt, performing the Monte Carlo random walk over the interval Δt, updating the cross sections, and then repeating for a series of time intervals. Continuously varying spatial- or time-dependent cross sections can be treated in a rigorous Monte Carlo fashion using delta-tracking, but inefficiencies may arise if the range of cross-section variation is large. In this paper, we present a new method for sampling collision distances directly for cross sections that vary exponentially in space or time. The method is exact and efficient and has direct application to Monte Carlo radiation transport methods. To verify that the probability density function (PDF) is correct and that the random-sampling procedure yields correct results, numerical experiments were performed using a one-dimensional Monte Carlo code. The physical problem consisted of a beam source impinging on a purely absorbing infinite slab, with a slab thickness of 1 cm and Σ 0 = 1 cm -1 . Monte Carlo calculations with 10 000 particles were run for a range of the exponential parameter b from -5 to +20 cm -1 . Two separate Monte Carlo calculations were run for each choice of b, a continuously varying case using the random-sampling procedures described earlier, and a 'conventional' case where the
Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)
International Nuclear Information System (INIS)
Pellegrino, Esteban
2011-01-01
Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es
Energy Technology Data Exchange (ETDEWEB)
Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1994-12-31
The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.
(U) Introduction to Monte Carlo Methods
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
International Nuclear Information System (INIS)
Kim, Jong Woo; Woo, Myeong Hyeon; Kim, Jae Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung
2017-01-01
In this study hybrid Monte Carlo/Deterministic method is explained for radiation transport analysis in global system. FW-CADIS methodology construct the weight window parameter and it useful at most global MC calculation. However, Due to the assumption that a particle is scored at a tally, less particles are transported to the periphery of mesh tallies. For compensation this space-dependency, we modified the module in the ADVANTG code to add the proposed method. We solved the simple test problem for comparing with result from FW-CADIS methodology, it was confirmed that a uniform statistical error was secured as intended. In the future, it will be added more practical problems. It might be useful to perform radiation transport analysis using the Hybrid Monte Carlo/Deterministic method in global transport problems.
International Nuclear Information System (INIS)
Karriem, Z.; Ivanov, K.; Zamonsky, O.
2011-01-01
This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhaoyuan Liu; Kord Smith; Benoit Forget; Javier Ortensi
2016-05-01
A new method for computing homogenized assembly neutron transport cross sections and dif- fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and only-recently-published CASMO transport method. The rigorous method is used to demonstrate the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also demonstrated that the newly developed method is directly applicable to lattice calculations per- formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections for arbitrarily heterogeneous lattices. Comparisons of several common transport cross section ap- proximations are presented for a simple problem of infinite medium hydrogen. The new method has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS benchmark.
Quasi-Monte Carlo methods: applications to modeling of light transport in tissue
Schafer, Steven A.
1996-05-01
Monte Carlo modeling of light propagation can accurately predict the distribution of light in scattering materials. A drawback of Monte Carlo methods is that they converge inversely with the square root of the number of iterations. Theoretical considerations suggest that convergence which scales inversely with the first power of the number of iterations is possible. We have previously shown that one can obtain at least a portion of that improvement by using van der Corput sequences in place of a conventional pseudo-random number generator. Here, we present our further analysis, and show that quasi-Monte Carlo methods do have limited applicability to light scattering problems. We also discuss potential improvements which may increase the applicability.
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
International Nuclear Information System (INIS)
Clouet, J.F.; Samba, G.
2005-01-01
We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)
Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system
International Nuclear Information System (INIS)
Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.
1992-01-01
Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs
Directory of Open Access Journals (Sweden)
Xueli Chen
2010-01-01
Full Text Available During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results.
The MC21 Monte Carlo Transport Code
International Nuclear Information System (INIS)
Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H
2007-01-01
MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities
International Nuclear Information System (INIS)
Noack, K.
1981-01-01
The perturbation source method is used in the Monte Carlo method in calculating small effects in a particle field. It offers primising possibilities for introducing positive correlation between subtracting estimates even in the cases where other methods fail, in the case of geometrical variations of a given arrangement. The perturbation source method is formulated on the basis of integral equations for the particle fields. The formulae for the second moment of the difference of events are derived. Explicity a certain class of transport games and different procedures for generating the so-called perturbation particles are considered [ru
Žukauskaite, A; Plukiene, R; Plukis, A
2007-01-01
Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.
Efendiev, Yalchin R.
2013-08-21
In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed multiscale finite element methods and (2) a novel use of mixed multiscale finite element methods within multilevel Monte Carlo techniques to speed up the computations. The main idea of ensemble level multiscale methods is to construct local multiscale basis functions that can be used for any member of the ensemble. In this paper, we consider two ensemble level mixed multiscale finite element methods: (1) the no-local-solve-online ensemble level method (NLSO); and (2) the local-solve-online ensemble level method (LSO). The first approach was proposed in Aarnes and Efendiev (SIAM J. Sci. Comput. 30(5):2319-2339, 2008) while the second approach is new. Both mixed multiscale methods use a number of snapshots of the permeability media in generating multiscale basis functions. As a result, in the off-line stage, we construct multiple basis functions for each coarse region where basis functions correspond to different realizations. In the no-local-solve-online ensemble level method, one uses the whole set of precomputed basis functions to approximate the solution for an arbitrary realization. In the local-solve-online ensemble level method, one uses the precomputed functions to construct a multiscale basis for a particular realization. With this basis, the solution corresponding to this particular realization is approximated in LSO mixed multiscale finite element method (MsFEM). In both approaches, the accuracy of the method is related to the number of snapshots computed based on different realizations that one uses to precompute a multiscale basis. In this paper, ensemble level multiscale methods are used in multilevel Monte Carlo methods (Giles 2008a, Oper.Res. 56(3):607-617, b). In multilevel Monte Carlo methods, more accurate
International Nuclear Information System (INIS)
Gang, Du; Xiao-Yan, Liu; Zhi-Liang, Xia; Jing-Feng, Yang; Ru-Qi, Han
2010-01-01
Interface roughness strongly influences the performance of germanium metal–organic–semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- and short- channel Ge MOSFETs inversion layers. The carrier effective mobility in the channel of Ge MOSFETs and the in non-equilibrium transport properties are investigated. Results show that both electron and hole mobility are strongly influenced by interface roughness scattering. The output curves for 50 nm channel-length double gate n and p Ge MOSFET show that the drive currents of n- and p-Ge MOSFETs have significant improvement compared with that of Si n- and p-MOSFETs with smooth interface between channel and gate dielectric. The 82% and 96% drive current enhancement are obtained for the n- and p-MOSFETs with the completely smooth interface. However, the enhancement decreases sharply with the increase of interface roughness. With the very rough interface, the drive currents of Ge MOSFETs are even less than that of Si MOSFETs. Moreover, the significant velocity overshoot also has been found in Ge MOSFETs. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
Monte Carlo methods for neutron transport on graphics processing units using Cuda - 015
International Nuclear Information System (INIS)
Nelson, A.G.; Ivanov, K.N.
2010-01-01
This work examined the feasibility of utilizing Graphics Processing Units (GPUs) to accelerate Monte Carlo neutron transport simulations. First, a clean-sheet MC code was written in C++ for an x86 CPU and later ported to run on GPUs using NVIDIA's CUDA programming language. After further optimization, the GPU ran 21 times faster than the CPU code when using single-precision floating point math. This can be further increased with no additional effort if accuracy is sacrificed for speed: using a compiler flag, the speedup was increased to 22x. Further, if double-precision floating point math is desired for neutron tracking through the geometry, a speedup of 11x was obtained. The GPUs have proven to be useful in this study, but the current generation does have limitations: the maximum memory currently available on a single GPU is only 4 GB; the GPU RAM does not provide error-checking and correction; and the optimization required for large speedups can lead to confusing code. (authors)
International Nuclear Information System (INIS)
Leimdoerfer, M.
1964-02-01
A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements
Energy Technology Data Exchange (ETDEWEB)
Leimdoerfer, M
1964-02-15
A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements.
International Nuclear Information System (INIS)
Arreola V, G.; Vazquez R, R.; Guzman A, J. R.
2012-10-01
In this work a comparative analysis of the results for the neutrons dispersion in a not multiplicative semi-infinite medium is presented. One of the frontiers of this medium is located in the origin of coordinates, where a neutrons source in beam form, i.e., μο=1 is also. The neutrons dispersion is studied on the statistical method of Monte Carlo and through the unidimensional transport theory and for an energy group. The application of transport theory gives a semi-analytic solution for this problem while the statistical solution for the flow was obtained applying the MCNPX code. The dispersion in light water and heavy water was studied. A first remarkable result is that both methods locate the maximum of the neutrons distribution to less than two mean free trajectories of transport for heavy water, while for the light water is less than ten mean free trajectories of transport; the differences between both methods is major for the light water case. A second remarkable result is that the tendency of both distributions is similar in small mean free trajectories, while in big mean free trajectories the transport theory spreads to an asymptote value and the solution in base statistical method spreads to zero. The existence of a neutron current of low energy and toward the source is demonstrated, in contrary sense to the neutron current of high energy coming from the own source. (Author)
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
Energy Technology Data Exchange (ETDEWEB)
Kocic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1977-07-01
General sampling Monte Carlo scheme for neutron transport equation has been described. Programme TRANSFER for neutron beam transmission analysis has been used to calculate the neutron leakage spectrum, detector efficiency and neutron angular distribution of the example problem (author) [Serbo-Croat] U radu se najpre razmatraju osnovni problemi resavanja transportne jednacine i nacin kako Monte Karlo metoda omogucuje da se prevazidju neki od njih: visedimenzionalnost zadatka, problem dubokog prodiranja i dovoljno fino tretiranje efikasnih preseka. Dalje, govori se o iskustvima sa primenom Monte Karlo metode u Laboratoriji za nuklearnu energetiku i tehnicku fiziku i o primeni ove metode na probleme zastite. Na kraju dati su i analizirani ilustrativni primeri proracuna transporta neutrona kroz ravan sloj zastitnog materijala koriscenjem Monte Karlo programa TRANSFER (author)
International Nuclear Information System (INIS)
Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.
International Nuclear Information System (INIS)
Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.
International Nuclear Information System (INIS)
Wagner, J.C.; Peplow, D.E.; Mosher, S.W.; Evans, T.M.
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications. (author)
Monte Carlo electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
A method for photon beam Monte Carlo multileaf collimator particle transport
Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe
2002-09-01
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV
A method for photon beam Monte Carlo multileaf collimator particle transport
Energy Technology Data Exchange (ETDEWEB)
Siebers, Jeffrey V. [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)]. E-mail: jsiebers@vcu.edu; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)
2002-09-07
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within {+-}1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within {+-}1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV
Žukauskaitėa, A; Plukienė, R; Ridikas, D
2007-01-01
Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.
A contribution Monte Carlo method
International Nuclear Information System (INIS)
Aboughantous, C.H.
1994-01-01
A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time
Energy Technology Data Exchange (ETDEWEB)
Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.
Exponential convergence on a continuous Monte Carlo transport problem
International Nuclear Information System (INIS)
Booth, T.E.
1997-01-01
For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described
Cost of splitting in Monte Carlo transport
International Nuclear Information System (INIS)
Everett, C.J.; Cashwell, E.D.
1978-03-01
In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined
International Nuclear Information System (INIS)
Asano, K.; Ohno, N.; Takamura, S.
2001-01-01
Monte Carlo simulation code on impurity transport has been developed by several groups to be utilized mainly for fusion related edge plasmas. State of impurity particle is determined by atomic and molecular processes such as ionization, charge exchange in plasma. A lot of atomic and molecular processes have been considered because the edge plasma has not only impurity atoms, but also impurity molecules mainly related to chemical erosion of carbon materials, and their cross sections have been given experimentally and theoretically. We need to reveal which process is essential in a given edge plasma condition. Monte Carlo simulation code, which takes such various atomic and molecular processes into account, is necessary to investigate the behavior of impurity particle in plasmas. Usually, the impurity transport simulation code has been intended for some specific atomic and molecular processes so that the introduction of a new process forces complicated programming work. In order to evaluate various proposed atomic and molecular processes, a flexible management of atomic and molecular reaction should be established. We have developed the impurity transport simulation code based on object-oriented method. By employing object-oriented programming, we can handle each particle as 'object', which enfolds data and procedure function itself. A user (notice, not programmer) can define property of each particle species and the related atomic and molecular processes and then each 'object' is defined by analyzing this information. According to the relation among plasma particle species, objects are connected with each other and change their state by themselves. Dynamic allocation of these objects to program memory is employed to adapt for arbitrary number of species and atomic/molecular reactions. Thus we can treat arbitrary species and process starting from, for instance, methane and acetylene. Such a software procedure would be useful also for industrial application plasmas
International Nuclear Information System (INIS)
Su, L.; Du, X.; Liu, T.; Xu, X. G.
2013-01-01
An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)
International Nuclear Information System (INIS)
Ryman, J.C.; Eckerman, K.F.; Shultis, J.K.; Faw, R.E.; Dillman, L.T.
1996-01-01
Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. Although the dose coefficients of this report are based on previously developed dosimetric methodologies, they are derived from new, detailed calculations of energy and angular distributions of the radiations incident on the body and the transport of these radiations within the body. Effort was devoted to expanding the information available for assessment of radiation dose from radionuclides distributed on or below the surface of the ground. A companion paper (External Exposure to Radionuclides in Air, Water, and Soil) discusses the significance of the new tabulations of coefficients and provides detiled comparisons to previously published values. This paper discusses details of the photon transport calculations
Simulation of neutron transport process, photons and charged particles within the Monte Carlo method
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.
1991-01-01
Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs
Discrete Diffusion Monte Carlo for Electron Thermal Transport
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
International Nuclear Information System (INIS)
Kowalok, M.; Mackie, T.R.
2001-01-01
A relatively new technique for achieving the right dose to the right tissue, is intensity modulated radiation therapy (IMRT). In this technique, a megavoltage x-ray beam is rotated around a patient, and the intensity and shape of the beam is modulated as a function of source position and patient anatomy. The relationship between beam-let intensity and patient dose can be expressed under a matrix form where the matrix D ij represents the dose delivered to voxel i by beam-let j per unit fluence. The D ij influence matrix is the key element that enables this approach. In this regard, sensitivity theory lends itself in a natural way to the process of computing beam weights for treatment planning. The solution of the adjoint form of the Boltzmann equation is an adjoint function that describes the importance of particles throughout the system in contributing to the detector response. In this case, adjoint methods can provide the sensitivity of the dose at a single point in the patient with respect to all points in the source field. The purpose of this study is to investigate the feasibility of using the adjoint method and Monte Carlo transport for radiation therapy treatment planning
International Nuclear Information System (INIS)
Carlsson, G.A.
1981-01-01
The analysis of Monte Carlo methods has been made in connection with a particular problem concerning the transport of low energy photons (30-140 keV) through layers of water with thicknesses between 5 and 20 cm. While not claiming to be a complete exposition of available Monte Carlo techniques, the methodological analyses are not restricted to this particular problem. The report describes in a general manner a number of methods which can be used in order to obtain results of greater precision in a fixed computing time. (Auth.)
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code
International Nuclear Information System (INIS)
Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.
2003-01-01
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k eff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Experience with the Monte Carlo Method
Energy Technology Data Exchange (ETDEWEB)
Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)
2007-06-15
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.
Experience with the Monte Carlo Method
International Nuclear Information System (INIS)
Hussein, E.M.A.
2007-01-01
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
International Nuclear Information System (INIS)
Authier, N.
1998-12-01
One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidence level may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)
International Nuclear Information System (INIS)
Wang Haifeng; Popov, Pavel P.; Pope, Stephen B.
2010-01-01
We study a class of methods for the numerical solution of the system of stochastic differential equations (SDEs) that arises in the modeling of turbulent combustion, specifically in the Monte Carlo particle method for the solution of the model equations for the composition probability density function (PDF) and the filtered density function (FDF). This system consists of an SDE for particle position and a random differential equation for particle composition. The numerical methods considered advance the solution in time with (weak) second-order accuracy with respect to the time step size. The four primary contributions of the paper are: (i) establishing that the coefficients in the particle equations can be frozen at the mid-time (while preserving second-order accuracy), (ii) examining the performance of three existing schemes for integrating the SDEs, (iii) developing and evaluating different splitting schemes (which treat particle motion, reaction and mixing on different sub-steps), and (iv) developing the method of manufactured solutions (MMS) to assess the convergence of Monte Carlo particle methods. Tests using MMS confirm the second-order accuracy of the schemes. In general, the use of frozen coefficients reduces the numerical errors. Otherwise no significant differences are observed in the performance of the different SDE schemes and splitting schemes.
Parallel processing Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
McKinney, G.W.
1994-01-01
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, Th.; Nimal, J.C.; Chiron, M
2001-07-01
The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)
Energy Technology Data Exchange (ETDEWEB)
Vergnaud, Th; Nimal, J C; Chiron, M
2001-07-01
The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)
Burnup calculations using Monte Carlo method
International Nuclear Information System (INIS)
Ghosh, Biplab; Degweker, S.B.
2009-01-01
In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code
Simulation of transport equations with Monte Carlo
International Nuclear Information System (INIS)
Matthes, W.
1975-09-01
The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa
2017-03-01
In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions. (author)
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa
2017-03-01
In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions. (author)
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Monte Carlo method for array criticality calculations
International Nuclear Information System (INIS)
Dickinson, D.; Whitesides, G.E.
1976-01-01
The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced
Study of the transport phenomena in III-V materials by the Monte Carlo method: application to INAS
International Nuclear Information System (INIS)
Bouazza, B.; Amer, L.; Guen-Bouazza, A.; Sayeh, C.; Chabanne-Sari, N.E.; Gontrand, C.
2004-01-01
Full text.The microelectronic comprehension of the phenomena which describes the behavior of the carriers in semiconductor materials requires the knowledge of energy distribution function. This distribution function is obtained by the resolution of Boltzmann equation which is very hard to solve analytically. Other methods based on modeling are actually successfully used to solve this equation. This Monte Carlo method is among of the most methods used for studying electronics components operations. It consists to follow the evolution of electron packets in real space, where each electron subjected to the electric field present in material goes interact with the crystal lattice. It is therefore an iterative process made up from a whole coasting flights stopped by acoustics interactions, polar and non polar optics, piezoelectric, inter-valley, impurity, ionization and surface. By applying this method to the III-V material: InAs. We can describe the behavior of the carriers from dynamic and energetic point of view (variation speed according to the field). The simulation is applied, taking into account variation of the carriers according to time in the non stationary mode, and the effect of temperature, and measurements doping. Results obtained are shown to be comparable to those of the theory
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
International Nuclear Information System (INIS)
Szoke, A; Brooks, E D; McKinley, M; Daffin, F
2005-01-01
The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media
International Nuclear Information System (INIS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-01-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Energy Technology Data Exchange (ETDEWEB)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland); Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr [Institut d' Electronique, de Microélectronique et de Nanotechnologies, UMR CNRS 8520, Université Lille 1, Avenue Poincaré, CS 60069, 59652 Villeneuve d' Ascq Cédex (France); Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland)
2017-07-15
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
TRIPOLI-4: Monte Carlo transport code functionalities and applications
International Nuclear Information System (INIS)
Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.
2003-01-01
Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)
Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo
2012-01-01
The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.
Weighted-delta-tracking for Monte Carlo particle transport
International Nuclear Information System (INIS)
Morgan, L.W.G.; Kotlyar, D.
2015-01-01
Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy
Energy Technology Data Exchange (ETDEWEB)
Both, J P; Lee, Y K; Mazzolo, A; Peneliau, Y; Petit, O; Roesslinger, B [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)
2003-07-01
Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1963-02-01
General mathematical Monte Carlo approach is described with the elements which enable solution of specific problems (verification was done by estimation of a simple integral). Special attention was devoted to systematic presentation which demanded explanation of fundamental topics of statistics and probability. This demands a procedure for modelling the stochastic process i.e. Monte Carlo method [sr
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki
2005-06-01
In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two vectorized Monte Carlo codes MVP and GMVP have been developed at JAERI. MVP is based on the continuous energy model and GMVP is on the multigroup model. Compared with conventional scalar codes, these codes achieve higher computation speed by a factor of 10 or more on vector super-computers. Both codes have sufficient functions for production use by adopting accurate physics model, geometry description capability and variance reduction techniques. The first version of the codes was released in 1994. They have been extensively improved and new functions have been implemented. The major improvements and new functions are (1) capability to treat the scattering model expressed with File 6 of the ENDF-6 format, (2) time-dependent tallies, (3) reaction rate calculation with the pointwise response function, (4) flexible source specification, (5) continuous-energy calculation at arbitrary temperatures, (6) estimation of real variances in eigenvalue problems, (7) point detector and surface crossing estimators, (8) statistical geometry model, (9) function of reactor noise analysis (simulation of the Feynman-α experiment), (10) arbitrary shaped lattice boundary, (11) periodic boundary condition, (12) parallelization with standard libraries (MPI, PVM), (13) supporting many platforms, etc. This report describes the physical model, geometry description method used in the codes, new functions and how to use them. (author)
Parallel MCNP Monte Carlo transport calculations with MPI
International Nuclear Information System (INIS)
Wagner, J.C.; Haghighat, A.
1996-01-01
The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Modified Monte Carlo procedure for particle transport problems
International Nuclear Information System (INIS)
Matthes, W.
1978-01-01
The simulation of photon transport in the atmosphere with the Monte Carlo method forms part of the EURASEP-programme. The specifications for the problems posed for a solution were such, that the direct application of the analogue Monte Carlo method was not feasible. For this reason the standard Monte Carlo procedure was modified in the sense that additional properly weighted branchings at each collision and transport process in a photon history were introduced. This modified Monte Carlo procedure leads to a clear and logical separation of the essential parts of a problem and offers a large flexibility for variance reducing techniques. More complex problems, as foreseen in the EURASEP-programme (e.g. clouds in the atmosphere, rough ocean-surface and chlorophyl-distribution in the ocean) can be handled by recoding some subroutines. This collision- and transport-splitting procedure can of course be performed differently in different space- and energy regions. It is applied here only for a homogeneous problem
Analysis of error in Monte Carlo transport calculations
International Nuclear Information System (INIS)
Booth, T.E.
1979-01-01
The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table
Monte Carlo simulation for the transport beamline
Energy Technology Data Exchange (ETDEWEB)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Monte Carlo simulation for the transport beamline
International Nuclear Information System (INIS)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.
2013-01-01
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery
International Nuclear Information System (INIS)
Cai, Li
2014-01-01
In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3 for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4). At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4 code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation. Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries. Finally, a B1 leakage model is implemented in the TRIPOLI-4 code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPOLI-4 code allows producing multi-group constants which can then be used in the core
Monte Carlo radiation transport: A revolution in science
International Nuclear Information System (INIS)
Hendricks, J.
1993-01-01
When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science
Automatic modeling for the Monte Carlo transport code Geant4
International Nuclear Information System (INIS)
Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team
2015-01-01
Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in Geometry Description Markup Language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. This method has been Studied based on Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)
Problems in radiation shielding calculations with Monte Carlo methods
International Nuclear Information System (INIS)
Ueki, Kohtaro
1985-01-01
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
Vectorization of Monte Carlo particle transport
International Nuclear Information System (INIS)
Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V.
1989-01-01
This paper reports that fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Adaptively Learning an Importance Function Using Transport Constrained Monte Carlo
International Nuclear Information System (INIS)
Booth, T.E.
1998-01-01
It is well known that a Monte Carlo estimate can be obtained with zero-variance if an exact importance function for the estimate is known. There are many ways that one might iteratively seek to obtain an ever more exact importance function. This paper describes a method that has obtained ever more exact importance functions that empirically produce an error that is dropping exponentially with computer time. The method described herein constrains the importance function to satisfy the (adjoint) Boltzmann transport equation. This constraint is provided by using the known form of the solution, usually referred to as the Case eigenfunction solution
Monte Carlo simulation of neutron transport phenomena
International Nuclear Information System (INIS)
Srinivasan, P.
2009-01-01
Neutron transport is one of the central problems in nuclear reactor related studies and other applied sciences. Some of the major applications of neutron transport include nuclear reactor design and safety, criticality safety of fissile material handling, neutron detector design and development, nuclear medicine, assessment of radiation damage to materials, nuclear well logging, forensic analysis etc. Most reactor and dosimetry studies assume that neutrons diffuse from regions of high to low density just like gaseous molecules diffuse to regions of low concentration or heat flow from high to low temperature regions. However while treatment of gaseous or heat diffusion is quite accurately modeled, treatment of neutron transport as simple diffusion is quite limited. In simple diffusion, the neutron trajectories are irregular, random and zigzag - where as in neutron transport low reaction cross sections (1 barn- 10 -24 cm 2 ) lead to long mean free paths which again depend on the nature and irregularities of the medium. Hence a more accurate representation of the neutron transport evolved based on the Boltzmann equation of kinetic gas theory. In fact the neutron transport equation is a linearized version of the Boltzmann gas equation based on neutron conservation with seven independent variables. The transport equation is difficult to solve except in simple cases amenable to numerical methods. The diffusion (equation) approximation follows from removing the angular dependence of the neutron flux
Energy Technology Data Exchange (ETDEWEB)
Arreola V, G. [IPN, Escuela Superior de Fisica y Matematicas, Posgrado en Ciencias Fisicomatematicas, area en Ingenieria Nuclear, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07730 Mexico D. F. (Mexico); Vazquez R, R.; Guzman A, J. R., E-mail: energia.arreola.uam@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)
2012-10-15
In this work a comparative analysis of the results for the neutrons dispersion in a not multiplicative semi-infinite medium is presented. One of the frontiers of this medium is located in the origin of coordinates, where a neutrons source in beam form, i.e., {mu}{omicron}=1 is also. The neutrons dispersion is studied on the statistical method of Monte Carlo and through the unidimensional transport theory and for an energy group. The application of transport theory gives a semi-analytic solution for this problem while the statistical solution for the flow was obtained applying the MCNPX code. The dispersion in light water and heavy water was studied. A first remarkable result is that both methods locate the maximum of the neutrons distribution to less than two mean free trajectories of transport for heavy water, while for the light water is less than ten mean free trajectories of transport; the differences between both methods is major for the light water case. A second remarkable result is that the tendency of both distributions is similar in small mean free trajectories, while in big mean free trajectories the transport theory spreads to an asymptote value and the solution in base statistical method spreads to zero. The existence of a neutron current of low energy and toward the source is demonstrated, in contrary sense to the neutron current of high energy coming from the own source. (Author)
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Load Balancing of Parallel Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
Procassini, R J; O'Brien, M J; Taylor, J M
2005-01-01
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
O'Brien, M; Taylor, J; Procassini, R
2004-01-01
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations
Monte Carlo method applied to medical physics
International Nuclear Information System (INIS)
Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.
2000-01-01
The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)
A residual Monte Carlo method for discrete thermal radiative diffusion
International Nuclear Information System (INIS)
Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.
2003-01-01
Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems
International Nuclear Information System (INIS)
Kling, A.; Barao, F.J.C.; Nakagawa, M.; Tavora, L.
2001-01-01
The following topics were dealt with: Electron and photon interactions and transport mechanisms, random number generation, applications in medical physisc, microdosimetry, track structure, radiobiological modeling, Monte Carlo method in radiotherapy, dosimetry, and medical accelerator simulation, neutron transport, high-energy hadron transport. (HSI)
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
A Multivariate Time Series Method for Monte Carlo Reactor Analysis
International Nuclear Information System (INIS)
Taro Ueki
2008-01-01
A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor
Some problems on Monte Carlo method development
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on some problems of Monte Carlo method development. The content consists of deep-penetration problems, unbounded estimate problems, limitation of Mdtropolis' method, dependency problem in Metropolis' method, random error interference problems and random equations, intellectualisation and vectorization problems of general software
Temperature variance study in Monte-Carlo photon transport theory
International Nuclear Information System (INIS)
Giorla, J.
1985-10-01
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems
International Nuclear Information System (INIS)
Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.
2001-01-01
Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed
Monte Carlo Methods in ICF (LIRPP Vol. 13)
Zimmerman, George B.
2016-10-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved SOX in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Proton therapy analysis using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)
2005-10-01
The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.
Development of ray tracing visualization program by Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro
1997-09-01
Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
Systat Software Asia-Pacific. Ltd., in Bangalore, where the technical work for the development of the statistica' software ... concepts that are relevant for the application of MCMC methods and ... joint distribution of the vector N of the numbers of.
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B
2003-07-01
This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k{sub eff} (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)
Error reduction techniques for Monte Carlo neutron transport calculations
International Nuclear Information System (INIS)
Ju, J.H.W.
1981-01-01
Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
levels. This is based on the famous Laws of Large Num- bers {LLN}: Let XI,X2,X3, ... of the volume of Ai nD to the volume of D (here volume ... This method depends on being able to generate' a sarnple ... casinos offering games of chance.
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Monte Carlo method in neutron activation analysis
International Nuclear Information System (INIS)
Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.
2009-01-01
Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
Monte Carlo method for random surfaces
International Nuclear Information System (INIS)
Berg, B.
1985-01-01
Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)
Variance Reduction Techniques in Monte Carlo Methods
Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.
2010-01-01
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the
Optix: A Monte Carlo scintillation light transport code
Energy Technology Data Exchange (ETDEWEB)
Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)
2014-02-11
The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.
Extending the alias Monte Carlo sampling method to general distributions
International Nuclear Information System (INIS)
Edwards, A.L.; Rathkopf, J.A.; Smidt, R.K.
1991-01-01
The alias method is a Monte Carlo sampling technique that offers significant advantages over more traditional methods. It equals the accuracy of table lookup and the speed of equal probable bins. The original formulation of this method sampled from discrete distributions and was easily extended to histogram distributions. We have extended the method further to applications more germane to Monte Carlo particle transport codes: continuous distributions. This paper presents the alias method as originally derived and our extensions to simple continuous distributions represented by piecewise linear functions. We also present a method to interpolate accurately between distributions tabulated at points other than the point of interest. We present timing studies that demonstrate the method's increased efficiency over table lookup and show further speedup achieved through vectorization. 6 refs., 12 figs., 2 tabs
Monte Carlo methods for shield design calculations
International Nuclear Information System (INIS)
Grimstone, M.J.
1974-01-01
A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Monte Carlo burnup codes acceleration using the correlated sampling method
International Nuclear Information System (INIS)
Dieudonne, C.
2013-01-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4 code will be discussed, as well as the precise calculation scheme used to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes. (author) [fr
bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT
International Nuclear Information System (INIS)
Ryan, B. R.; Gammie, C. F.; Dolence, J. C.
2015-01-01
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry
The OpenMC Monte Carlo particle transport code
International Nuclear Information System (INIS)
Romano, Paul K.; Forget, Benoit
2013-01-01
Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.
Prospect on general software of Monte Carlo method
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method
A computer code package for electron transport Monte Carlo simulation
International Nuclear Information System (INIS)
Popescu, Lucretiu M.
1999-01-01
A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)
International Nuclear Information System (INIS)
Guerra, Bruno Teixeira
2011-01-01
The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN) of Brazilian Nuclear Energy Commission (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor. IPR-R1 works at 100 kW but it will be briefly licensed to operate at 250 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in 235 U. The goal this work is modelling of the IPR-R1 Research Reactor TRIGA using the codes MCNPX2.6.0 (Monte Carlo N-Particle Transport extend) and MCNP5 to the calculating the neutron flux in the carousel facility. In each simulation the sample was placed in a different position, totaling forty positions around of the reactor core. The comparison between the results obtained with experimental values from other work showing a relatively good agreement. Moreover, this methodology is a theoretical tool in validating of the experimental values and necessary for determining neutron flux which can not be accessible experimentally. (author)
OGRE, Monte-Carlo System for Gamma Transport Problems
International Nuclear Information System (INIS)
1984-01-01
1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50
A simple eigenfunction convergence acceleration method for Monte Carlo
International Nuclear Information System (INIS)
Booth, Thomas E.
2011-01-01
Monte Carlo transport codes typically use a power iteration method to obtain the fundamental eigenfunction. The standard convergence rate for the power iteration method is the ratio of the first two eigenvalues, that is, k_2/k_1. Modifications to the power method have accelerated the convergence by explicitly calculating the subdominant eigenfunctions as well as the fundamental. Calculating the subdominant eigenfunctions requires using particles of negative and positive weights and appropriately canceling the negative and positive weight particles. Incorporating both negative weights and a ± weight cancellation requires a significant change to current transport codes. This paper presents an alternative convergence acceleration method that does not require modifying the transport codes to deal with the problems associated with tracking and cancelling particles of ± weights. Instead, only positive weights are used in the acceleration method. (author)
Monte Carlo methods for preference learning
DEFF Research Database (Denmark)
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Monte Carlo methods to calculate impact probabilities
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
Energy Technology Data Exchange (ETDEWEB)
Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)
1990-01-01
The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S_{N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S_{N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S_{N} is well suited for by themselves. The fully coupled Monte Carlo/S_{N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S_{N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S_{N} region. The Monte Carlo and S_{N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S_{N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S_{N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S_{N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.
Response matrix Monte Carlo based on a general geometry local calculation for electron transport
International Nuclear Information System (INIS)
Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.
1991-01-01
A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs
Reactor perturbation calculations by Monte Carlo methods
International Nuclear Information System (INIS)
Gubbins, M.E.
1965-09-01
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Monte Carlo particle simulation and finite-element techniques for tandem mirror transport
International Nuclear Information System (INIS)
Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.
1987-01-01
A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. (author)
Monte Carlo particle simulation and finite-element techniques for tandem mirror transport
International Nuclear Information System (INIS)
Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.
1985-12-01
A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. 11 refs
Energy Technology Data Exchange (ETDEWEB)
Authier, N
1998-12-01
One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)
Energy Technology Data Exchange (ETDEWEB)
Authier, N
1998-12-01
One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)
Hybrid Monte-Carlo method for ICF calculations
International Nuclear Information System (INIS)
Clouet, J.F.; Samba, G.
2003-01-01
) conduction and ray-tracing for laser description. Radiation transport is usually solved by a Monte-Carlo method. In coupling diffusion approximation and transport description, the difficult part comes from the need for an implicit discretization of the emission-absorption terms: this problem was solved by using the symbolic Monte-Carlo method. This means that at each step of the simulation a matrix is computed by a Monte-Carlo method which accounts for the radiation energy exchange between the cells. Because of time step limitation by hydrodynamic motion, energy exchange is limited to a small number of cells and the matrix remains sparse. This matrix is added to usual diffusion matrix for thermal and radiative conductions: finally we arrive at a non-symmetric linear system to invert. A generalized Marshak condition describe the coupling between transport and diffusion. In this paper we will present the principles of the method and numerical simulation of an ICF hohlraum. We shall illustrate the benefits of the method by comparing the results with full implicit Monte-Carlo calculations. In particular we shall show how the spectral cut-off evolves during the propagation of the radiative front in the gold wall. Several issues are still to be addressed (robust algorithm for spectral cut- off calculation, coupling with ALE capabilities): we shall briefly discuss these problems. (authors)
Monte Carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
A Fano cavity test for Monte Carlo proton transport algorithms
International Nuclear Information System (INIS)
Sterpin, Edmond; Sorriaux, Jefferson; Souris, Kevin; Vynckier, Stefaan; Bouchard, Hugo
2014-01-01
Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE 0 and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E 0 and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE 0 )/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm 2 parallel virtual field and a cavity (2 × 2 × 0.2 cm 3 size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not
Methods for Monte Carlo simulations of biomacromolecules.
Vitalis, Andreas; Pappu, Rohit V
2009-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.
A New Monte Carlo Neutron Transport Code at UNIST
International Nuclear Information System (INIS)
Lee, Hyunsuk; Kong, Chidong; Lee, Deokjung
2014-01-01
Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results
Confidence interval procedures for Monte Carlo transport simulations
International Nuclear Information System (INIS)
Pederson, S.P.
1997-01-01
The problem of obtaining valid confidence intervals based on estimates from sampled distributions using Monte Carlo particle transport simulation codes such as MCNP is examined. Such intervals can cover the true parameter of interest at a lower than nominal rate if the sampled distribution is extremely right-skewed by large tallies. Modifications to the standard theory of confidence intervals are discussed and compared with some existing heuristics, including batched means normality tests. Two new types of diagnostics are introduced to assess whether the conditions of central limit theorem-type results are satisfied: the relative variance of the variance determines whether the sample size is sufficiently large, and estimators of the slope of the right tail of the distribution are used to indicate the number of moments that exist. A simulation study is conducted to quantify the relationship between various diagnostics and coverage rates and to find sample-based quantities useful in indicating when intervals are expected to be valid. Simulated tally distributions are chosen to emulate behavior seen in difficult particle transport problems. Measures of variation in the sample variance s 2 are found to be much more effective than existing methods in predicting when coverage will be near nominal rates. Batched means tests are found to be overly conservative in this regard. A simple but pathological MCNP problem is presented as an example of false convergence using existing heuristics. The new methods readily detect the false convergence and show that the results of the problem, which are a factor of 4 too small, should not be used. Recommendations are made for applying these techniques in practice, using the statistical output currently produced by MCNP
Automatic modeling for the monte carlo transport TRIPOLI code
International Nuclear Information System (INIS)
Zhang Junjun; Zeng Qin; Wu Yican; Wang Guozhong; FDS Team
2010-01-01
TRIPOLI, developed by CEA, France, is Monte Carlo particle transport simulation code. It has been widely applied to nuclear physics, shielding design, evaluation of nuclear safety. However, it is time-consuming and error-prone to manually describe the TRIPOLI input file. This paper implemented bi-directional conversion between CAD model and TRIPOLI model. Its feasibility and efficiency have been demonstrated by several benchmarking examples. (authors)
Verification of Monte Carlo transport codes by activation experiments
Chetvertkova, Vera
2013-01-01
With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is...
Generalized hybrid Monte Carlo - CMFD methods for fission source convergence
International Nuclear Information System (INIS)
Wolters, Emily R.; Larsen, Edward W.; Martin, William R.
2011-01-01
In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)
Applications of Monte Carlo method in Medical Physics
International Nuclear Information System (INIS)
Diez Rios, A.; Labajos, M.
1989-01-01
The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)
Some improved methods in neutron transport theory
Energy Technology Data Exchange (ETDEWEB)
Pop-Jordanov, J; Stefanovic, D; Kocic, A; Matausek, M; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1973-07-01
The methods described in this paper are: analytical approach to neutron spectra in case of energy dependent anisotropy of elastic scattering; Monte Carlo estimations of neutron absorption reaction rate during slowing down process; spherical harmonics treatment of space-angle-lethargy dependent slowing down transport equation; integral transport theory based on point-wise representation of variables.
International Nuclear Information System (INIS)
Ohta, Shigemi
1996-01-01
The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo method to characterize radioactive waste drums
International Nuclear Information System (INIS)
Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.
2013-01-01
Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)
International Nuclear Information System (INIS)
Misdaq, M.A.; Merzouki, A.; Bourzik, W.; Sfairi, T.
2000-01-01
The gamma dose rate due to the uranium and thorium series as well as the potassium 40 nuclei represents a large fraction of the total dose rate from the natural background. Natural gamma-activities of rock and soil samples collected from volcanic areas have been determined using gamma-ray spectrometry. The corresponding gamma dose rates in air have been measured by means of thermoluminescence (TL) dosimeters. Annual absorbed gamma dose rates have been evaluated in different soil samples belonging to an archaeological site by using experimental and calculational methods. Uranium and thorium contents in different geological samples have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption and transmission coefficients of the gamma photons emitted by the uranium and thorium families as well as the potassium 40 isotope for evaluating the gamma dose rate in the considered geological samples. Transport of gamma-photons across parallelepipedic blocks of the geological materials studied has been investigated. Gamma dose rates have been evaluated in the atmosphere of different geological deposits. (author)
A contribution to the Monte Carlo method in the reactor theory
International Nuclear Information System (INIS)
Lieberoth, J.
1976-01-01
The report gives a contribution to the further development of the Monte-Carlo Method to solve the neutron transport problem. The necessary fundamentals, mainly of statistical nature, are collected and partly derived, such as the statistical weight, the use of random numbers or the Monte-Carlo integration method. Special emphasis is put on the so-called team-method, which will help to reduce the statistical error of Monte-Carlo estimates, and on the path-method, which can be used to calculate the neutron fluxes in pre-defined local points
MC++: A parallel, portable, Monte Carlo neutron transport code in C++
International Nuclear Information System (INIS)
Lee, S.R.; Cummings, J.C.; Nolen, S.D.
1997-01-01
MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms
grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT
International Nuclear Information System (INIS)
Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika
2009-01-01
We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.
Importance estimation in Monte Carlo modelling of neutron and photon transport
International Nuclear Information System (INIS)
Mickael, M.W.
1992-01-01
The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)
Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Applications of the Monte Carlo method in radiation protection
International Nuclear Information System (INIS)
Kulkarni, R.N.; Prasad, M.A.
1999-01-01
This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
Monte Carlo perturbation theory in neutron transport calculations
International Nuclear Information System (INIS)
Hall, M.C.G.
1980-01-01
The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures
Electron transport in radiotherapy using local-to-global Monte Carlo
International Nuclear Information System (INIS)
Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.
1994-09-01
Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given
A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation
Energy Technology Data Exchange (ETDEWEB)
Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)
2012-11-01
This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.
A functional method for estimating DPA tallies in Monte Carlo calculations of Light Water Reactors
International Nuclear Information System (INIS)
Read, Edward A.; Oliveira, Cassiano R.E. de
2011-01-01
There has been a growing need in recent years for the development of methodology to calculate radiation damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is to discuss the development and implementation of a dpa method using Monte Carlo method for transport calculations. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and fuel depletion are assessed for radiation damage calculations and its capability demonstrated and compared to those of the Monte Carlo code MCNP for radiation damage calculations of a typical LWR configuration. (author)
SPHERE: a spherical-geometry multimaterial electron/photon Monte Carlo transport code
International Nuclear Information System (INIS)
Halbleib, J.A. Sr.
1977-06-01
SPHERE provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through multimaterial configurations possessing spherical symmetry. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. SPHERE combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies, with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. 8 figs., 3 tables
Exponentially-convergent Monte Carlo for the 1-D transport equation
International Nuclear Information System (INIS)
Peterson, J. R.; Morel, J. E.; Ragusa, J. C.
2013-01-01
We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)
Design of sampling tools for Monte Carlo particle transport code JMCT
International Nuclear Information System (INIS)
Shangguan Danhua; Li Gang; Zhang Baoyin; Deng Li
2012-01-01
A class of sampling tools for general Monte Carlo particle transport code JMCT is designed. Two ways are provided to sample from distributions. One is the utilization of special sampling methods for special distribution; the other is the utilization of general sampling methods for arbitrary discrete distribution and one-dimensional continuous distribution on a finite interval. Some open source codes are included in the general sampling method for the maximum convenience of users. The sampling results show sampling correctly from distribution which are popular in particle transport can be achieved with these tools, and the user's convenience can be assured. (authors)
Verification of Monte Carlo transport codes by activation experiments
Energy Technology Data Exchange (ETDEWEB)
Chetvertkova, Vera
2012-12-18
With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.
Adaptive multilevel splitting for Monte Carlo particle transport
Directory of Open Access Journals (Sweden)
Louvin Henri
2017-01-01
Full Text Available In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting (AMS is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algorithm, adapted for the first time to the field of particle transport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies like pulse-height tallies and other spectra. Furthermore, the efficiency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.
Cluster monte carlo method for nuclear criticality safety calculation
International Nuclear Information System (INIS)
Pei Lucheng
1984-01-01
One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further
KAMCCO, a reactor physics Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.
1976-06-01
KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods
International Nuclear Information System (INIS)
Menezes, C.J.M.; Lima, R. de A.; Peixoto, J.E.; Vieira, J.W.
2008-01-01
The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)
Monte Carlo analysis of radiative transport in oceanographic lidar measurements
Energy Technology Data Exchange (ETDEWEB)
Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale
2001-07-01
The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is
International Nuclear Information System (INIS)
Yamamoto, Toshihiro
2014-01-01
Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed
Multiple histogram method and static Monte Carlo sampling
Inda, M.A.; Frenkel, D.
2004-01-01
We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From
A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT
MIKOSCH, T; WANG, QA
We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.
Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo
International Nuclear Information System (INIS)
Evans, T.M.; Densmore, J.D.
2007-01-01
We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations
Overview and applications of the Monte Carlo radiation transport kit at LLNL
International Nuclear Information System (INIS)
Sale, K. E.
1999-01-01
Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions
Neutron flux calculation by means of Monte Carlo methods
International Nuclear Information System (INIS)
Barz, H.U.; Eichhorn, M.
1988-01-01
In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)
Chain segmentation for the Monte Carlo solution of particle transport problems
International Nuclear Information System (INIS)
Ragheb, M.M.H.
1984-01-01
A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems
International Nuclear Information System (INIS)
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-01-01
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results
Acceleration of a Monte Carlo radiation transport code
International Nuclear Information System (INIS)
Hochstedler, R.D.; Smith, L.M.
1996-01-01
Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics
New features of the mercury Monte Carlo particle transport code
International Nuclear Information System (INIS)
Procassini, Richard; Brantley, Patrick; Dawson, Shawn
2010-01-01
Several new capabilities have been added to the Mercury Monte Carlo transport code over the past four years. The most important algorithmic enhancement is a general, extensible infrastructure to support source, tally and variance reduction actions. For each action, the user defines a phase space, as well as any number of responses that are applied to a specified event. Tallies are accumulated into a correlated, multi-dimensional. Cartesian-product result phase space. Our approach employs a common user interface to specify the data sets and distributions that define the phase, response and result for each action. Modifications to the particle trackers include the use of facet halos (instead of extrapolative fuzz) for robust tracking, and material interface reconstruction for use in shape overlaid meshes. Support for expected-value criticality eigenvalue calculations has also been implemented. Computer science enhancements include an in-line Python interface for user customization of problem setup and output. (author)
International Nuclear Information System (INIS)
Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.
2015-01-01
Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.
Progress on RMC: a Monte Carlo neutron transport code for reactor analysis
International Nuclear Information System (INIS)
Wang, Kan; Li, Zeguang; She, Ding; Liu, Yuxuan; Xu, Qi; Shen, Huayun; Yu, Ganglin
2011-01-01
This paper presents a new 3-D Monte Carlo neutron transport code named RMC (Reactor Monte Carlo code), specifically intended for reactor physics analysis. This code is being developed by Department of Engineering Physics in Tsinghua University and written in C++ and Fortran 90 language with the latest version of RMC 2.5.0. The RMC code uses the method known as the delta-tracking method to simulate neutron transport, the advantages of which include fast simulation in complex geometries and relatively simple handling of complicated geometrical objects. Some other techniques such as computational-expense oriented method and hash-table method have been developed and implemented in RMC to speedup the calculation. To meet the requirements of reactor analysis, the RMC code has the calculational functions including criticality calculation, burnup calculation and also kinetics simulation. In this paper, comparison calculations of criticality problems, burnup problems and transient problems are carried out using RMC code and other Monte Carlo codes, and the results show that RMC performs quite well in these kinds of problems. Based on MPI, RMC succeeds in parallel computation and represents a high speed-up. This code is still under intensive development and the further work directions are mentioned at the end of this paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Morillon, B.
1996-12-31
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Only the Monte Carlo method offers such a possibility. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette technique.
Alternative implementations of the Monte Carlo power method
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
2002-01-01
We compare nominal efficiencies, i.e. variances in power shapes for equal running time, of different versions of the Monte Carlo eigenvalue computation, as applied to criticality safety analysis calculations. The two main methods considered here are ''conventional'' Monte Carlo and the superhistory method, and both are used in criticality safety codes. Within each of these major methods, different variants are available for the main steps of the basic Monte Carlo algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional Monte Carlo, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional Monte Carlo and, secondly, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on Monte Carlo computational efficiency
Monte Carlo methods and applications in nuclear physics
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs
Monte Carlo methods and applications in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
Radiation transport calculation methods in BNCT
International Nuclear Information System (INIS)
Koivunoro, H.; Seppaelae, T.; Savolainen, S.
2000-01-01
Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles
Energy Technology Data Exchange (ETDEWEB)
Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1963-02-15
General mathematical Monte Carlo approach is described with the elements which enable solution of specific problems (verification was done by estimation of a simple integral). Special attention was devoted to systematic presentation which demanded explanation of fundamental topics of statistics and probability. This demands a procedure for modelling the stochastic process i.e. Monte Carlo method. Dat je matematicki prilaz Monte Carlo metodi uopste, a po elementima koji dozvoljavaju konkretno resavanje izvesnih problema. (Provera je izvrsena na estimiranju prostog integrala). Narocito je vodjeno racuna o sistematicnosti izlaganja materije sto je mestimicno zahtevalo tretiranje i osnovnih pojmova, statistike i verovatnoce, a sve to skupa zahteva postupak modeliranja stohastickog procesa odnosno Monte Carlo metod (author)
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Recommender engine for continuous-time quantum Monte Carlo methods
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
A portable, parallel, object-oriented Monte Carlo neutron transport code in C++
International Nuclear Information System (INIS)
Lee, S.R.; Cummings, J.C.; Nolen, S.D.
1997-01-01
We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute α-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
Study of the Transition Flow Regime using Monte Carlo Methods
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
Modeling granular phosphor screens by Monte Carlo methods
International Nuclear Information System (INIS)
Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.
2006-01-01
The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd 2 O 2 S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd 2 O 2 S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd 2 O 2 S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)
Monte Carlo impurity transport modeling in the DIII-D transport
International Nuclear Information System (INIS)
Evans, T.E.; Finkenthal, D.F.
1998-04-01
A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed
Monte Carlo transport of electrons and positrons through thin foils
International Nuclear Information System (INIS)
Legarda, F.; Idoeta, R.
2000-01-01
In the different measurements made with electrons traversing matter it becomes useful the knowledge of its transmission through that medium, their paths and their angular distribution through matter so as to process and get information about the traversed medium and to improve and innovate the techniques that employ electrons, as medical applications or materials irradiation. This work presents a simulation of the transport of beams of electrons and positrons through thin foils using an analog Monte Carlo code that simulates in a detailed way every electron movement or interaction in matter. As those particles penetrate thin absorbers it has been assumed that they interact with matter only through elastic scattering, with negligible energy loss. This type of interaction has been described quite precisely because its angular form influences very much the angular distribution of electrons and positrons in matter. With this code it has been calculated the number of particles, with energies between 100 and 3000 keV, that are transmitted through different media of various thicknesses as well as its angular distribution, showing a good agreement with experimental data. The discrepancies are less than 5% for thicknesses lower than about 30% of the corresponding range in the tested material. As elastic scattering is very anisotropic, angular distributions resemble a collimated incident beam for very thin foils becoming slowly more isotropic when absorber thickness is increased. (author)
Monte Carlo simulation of the turbulent transport of airborne contaminants
International Nuclear Information System (INIS)
Watson, C.W.; Barr, S.
1975-09-01
A generalized, three-dimensional Monte Carlo model and computer code (SPOOR) are described for simulating atmospheric transport and dispersal of small pollutant clouds. A cloud is represented by a large number of particles that we track by statistically sampling simulated wind and turbulence fields. These fields are based on generalized wind data for large-scale flow and turbulent energy spectra for the micro- and mesoscales. The large-scale field can be input from a climatological data base, or by means of real-time analyses, or from a separate, subjectively defined data base. We introduce the micro- and mesoscale wind fluctuations through a power spectral density, to include effects from a broad spectrum of turbulent-energy scales. The role of turbulence is simulated in both meander and dispersal. Complex flow fields and time-dependent diffusion rates are accounted for naturally, and shear effects are simulated automatically in the ensemble of particle trajectories. An important adjunct has been the development of computer-graphics displays. These include two- and three-dimensional (perspective) snapshots and color motion pictures of particle ensembles, plus running displays of differential and integral cloud characteristics. The model's versatility makes it a valuable atmospheric research tool that we can adapt easily into broader, multicomponent systems-analysis codes. Removal, transformation, dry or wet deposition, and resuspension of contaminant particles can be readily included
Foucart, Francois
2018-04-01
General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
International Nuclear Information System (INIS)
Bellezzo, Murillo
2014-01-01
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)
Monte Carlo method: application to Phenix Reactor
International Nuclear Information System (INIS)
Baur, A.; Bourdet, L.; Dejonghe, G.; Gonnord, J.; Monnier, A.; Nimal, J.C.; Vergnaud, T.
1983-11-01
This article gives a description of the code TRIPOLI-2. This code solves in an exact manner the equation of transport (neutrons and gamma) in three-dimensional geometries. It can solves many problems of shielding or neutronics of core. Finally, an example of calculation carried out with the code TRIPOLI is given [fr
Quantum Monte Carlo diagonalization method as a variational calculation
International Nuclear Information System (INIS)
Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.
1997-01-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Acceleration of monte Carlo solution by conjugate gradient method
International Nuclear Information System (INIS)
Toshihisa, Yamamoto
2005-01-01
The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Monte Carlo Studies of Electron Transport In Semiconductor Nanostructures
Tierney, Brian David
An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrodinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrodinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for
Monte Carlo methods for the reliability analysis of Markov systems
International Nuclear Information System (INIS)
Buslik, A.J.
1985-01-01
This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1981-01-01
An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs
Computational methods of electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.
1983-01-01
A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes
International Nuclear Information System (INIS)
Tramm, J.R.; Siegel, A.R.
2013-01-01
The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)
Monte Carlo methods of PageRank computation
Litvak, Nelli
2004-01-01
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink
Creating and using a type of free-form geometry in Monte Carlo particle transport
International Nuclear Information System (INIS)
Wessol, D.E.; Wheeler, F.J.
1993-01-01
While the reactor physicists were fine-tuning the Monte Carlo paradigm for particle transport in regular geometries, the computer scientists were developing rendering algorithms to display extremely realistic renditions of irregular objects ranging from the ubiquitous teakettle to dynamic Jell-O. Even though the modeling methods share a common basis, the initial strategies each discipline developed for variance reduction were remarkably different. Initially, the reactor physicist used Russian roulette, importance sampling, particle splitting, and rejection techniques. In the early stages of development, the computer scientist relied primarily on rejection techniques, including a very elegant hierarchical construction and sampling method. This sampling method allowed the computer scientist to viably track particles through irregular geometries in three-dimensional space, while the initial methods developed by the reactor physicists would only allow for efficient searches through analytical surfaces or objects. As time goes by, it appears there has been some merging of the variance reduction strategies between the two disciplines. This is an early (possibly first) incorporation of geometric hierarchical construction and sampling into the reactor physicists' Monte Carlo transport model that permits efficient tracking through nonuniform rational B-spline surfaces in three-dimensional space. After some discussion, the results from this model are compared with experiments and the model employing implicit (analytical) geometric representation
Continuous energy Monte Carlo method based lattice homogeinzation
International Nuclear Information System (INIS)
Li Mancang; Yao Dong; Wang Kan
2014-01-01
Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)
Discrete elements method of neutron transport
International Nuclear Information System (INIS)
Mathews, K.A.
1988-01-01
In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution
Energy Technology Data Exchange (ETDEWEB)
Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)
2008-08-11
Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.
Multiple-time-stepping generalized hybrid Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport
International Nuclear Information System (INIS)
Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.
2002-01-01
After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments
Study on MPI/OpenMP hybrid parallelism for Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Liang Jingang; Xu Qi; Wang Kan; Liu Shiwen
2013-01-01
Parallel programming with mixed mode of messages-passing and shared-memory has several advantages when used in Monte Carlo neutron transport code, such as fitting hardware of distributed-shared clusters, economizing memory demand of Monte Carlo transport, improving parallel performance, and so on. MPI/OpenMP hybrid parallelism was implemented based on a one dimension Monte Carlo neutron transport code. Some critical factors affecting the parallel performance were analyzed and solutions were proposed for several problems such as contention access, lock contention and false sharing. After optimization the code was tested finally. It is shown that the hybrid parallel code can reach good performance just as pure MPI parallel program, while it saves a lot of memory usage at the same time. Therefore hybrid parallel is efficient for achieving large-scale parallel of Monte Carlo neutron transport. (authors)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Improved Monte Carlo Method for PSA Uncertainty Analysis
International Nuclear Information System (INIS)
Choi, Jongsoo
2016-01-01
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard
Improved Monte Carlo Method for PSA Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Choi, Jongsoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard.
Latent uncertainties of the precalculated track Monte Carlo method
International Nuclear Information System (INIS)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
2015-01-01
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D max . Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the
Latent uncertainties of the precalculated track Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Renaud, Marc-André; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Roberge, David [Département de radio-oncologie, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2L 4M1 (Canada)
2015-01-15
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of
The Hybrid Monte Carlo (HMC) method and dynamic fermions
International Nuclear Information System (INIS)
Amaral, Marcia G. do
1994-01-01
Nevertheless the Monte Carlo method has been extensively used in the simulation of many types of theories, the successful application has been established only for models containing boson fields. With the present computer generation, the development of faster and efficient algorithms became necessary and urgent. This paper studies the HMC and the dynamic fermions
Monte Carlo method for magnetic impurities in metals
Hirsch, J. E.; Fye, R. M.
1986-01-01
The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.
Markov chain Monte Carlo methods in radiotherapy treatment planning
International Nuclear Information System (INIS)
Hugtenburg, R.P.
2001-01-01
The Markov chain method can be used to incorporate measured data in Monte Carlo based radiotherapy treatment planning. This paper shows that convergence to the measured data, within the target precision, is achievable. Relative output factors for blocked fields and oblique beams are shown to compare well with independent measurements according to the same criterion. (orig.)
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
Energy Technology Data Exchange (ETDEWEB)
Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)
2014-06-15
virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
International Nuclear Information System (INIS)
Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I
2014-01-01
generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all
International Nuclear Information System (INIS)
Gast, R.C.
1981-08-01
A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program
A new method to assess the statistical convergence of monte carlo solutions
International Nuclear Information System (INIS)
Forster, R.A.
1991-01-01
Accurate Monte Carlo confidence intervals (CIs), which are formed with an estimated mean and an estimated standard deviation, can only be created when the number of particle histories N becomes large enough so that the central limit theorem can be applied. The Monte Carlo user has a limited number of marginal methods to assess the fulfillment of this condition, such as statistical error reduction proportional to 1/√N with error magnitude guidelines and third and fourth moment estimators. A new method is presented here to assess the statistical convergence of Monte Carlo solutions by analyzing the shape of the empirical probability density function (PDF) of history scores. Related work in this area includes the derivation of analytic score distributions for a two-state Monte Carlo problem. Score distribution histograms have been generated to determine when a small number of histories accounts for a large fraction of the result. This summary describes initial studies of empirical Monte Carlo history score PDFs created from score histograms of particle transport simulations. 7 refs., 1 fig
Improvement of correlated sampling Monte Carlo methods for reactivity calculations
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Asaoka, Takumi
1978-01-01
Two correlated Monte Carlo methods, the similar flight path and the identical flight path methods, have been improved to evaluate up to the second order change of the reactivity perturbation. Secondary fission neutrons produced by neutrons having passed through perturbed regions in both unperturbed and perturbed systems are followed in a way to have a strong correlation between secondary neutrons in both the systems. These techniques are incorporated into the general purpose Monte Carlo code MORSE, so as to be able to estimate also the statistical error of the calculated reactivity change. The control rod worths measured in the FCA V-3 assembly are analyzed with the present techniques, which are shown to predict the measured values within the standard deviations. The identical flight path method has revealed itself more useful than the similar flight path method for the analysis of the control rod worth. (auth.)
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
The Monte Carlo method in mining nuclear geophysics: Pt. 1
International Nuclear Information System (INIS)
Burmistenko, Yu.N.; Lukhminsky, B.E.
1990-01-01
Prospects for using a new generation of neutron generators in mining geophysics are discussed. For their evaluation we use Monte Carlo computational methods with a special package of FORTRAN programs code-named MOK. Among the methods of pulsed neutron logging we discuss the method of time-dependent slowing down for the measurement of resonance neutron absorbers (mercury, tungsten, silver, gold, gadolinium, etc.) and time dependent spectral analysis of capture γ-rays (mercury). Among the neutron activation methods, we discuss the two source methods ( 252 Cf + neutron generator) and the method of spectral activation ratio for bauxites ( 27 Al/ 27 Mg or 27 Al/ 24m Na). (author)
Superalloy design - A Monte Carlo constrained optimization method
CSIR Research Space (South Africa)
Stander, CM
1996-01-01
Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...
Development of general-purpose particle and heavy ion transport monte carlo code
International Nuclear Information System (INIS)
Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji
2002-01-01
The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)
Towards scalable parellelism in Monte Carlo particle transport codes using remote memory access
Energy Technology Data Exchange (ETDEWEB)
Romano, Paul K [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Forget, Benoit [MIT
2010-01-01
One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, they investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.
Towards scalable parallelism in Monte Carlo particle transport codes using remote memory access
International Nuclear Information System (INIS)
Romano, Paul K.; Forget, Benoit; Brown, Forrest
2010-01-01
One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, we investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. Initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations. (author)
BRAND program complex for neutron-physical experiment simulation by the Monte-Carlo method
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.
1984-01-01
Possibilities of the BRAND program complex for neutron and γ-radiation transport simulation by the Monte-Carlo method are described in short. The complex includes the following modules: geometric module, source module, detector module, modules of simulation of a vector of particle motion direction after interaction and a free path. The complex is written in the FORTRAN langauage and realized by the BESM-6 computer
R and D on automatic modeling methods for Monte Carlo codes FLUKA
International Nuclear Information System (INIS)
Wang Dianxi; Hu Liqin; Wang Guozhong; Zhao Zijia; Nie Fanzhi; Wu Yican; Long Pengcheng
2013-01-01
FLUKA is a fully integrated particle physics Monte Carlo simulation package. It is necessary to create the geometry models before calculation. However, it is time- consuming and error-prone to describe the geometry models manually. This study developed an automatic modeling method which could automatically convert computer-aided design (CAD) geometry models into FLUKA models. The conversion program was integrated into CAD/image-based automatic modeling program for nuclear and radiation transport simulation (MCAM). Its correctness has been demonstrated. (authors)
Innovative electron transport methods in EGS5
International Nuclear Information System (INIS)
Bielajew, A.F.; Wilderman, S.J.
2000-01-01
The initial formulation of a Monte Carlo scheme for the transport of high-energy (>≅ 100 keV) electrons was established by Berger in 1963. Calling his method the 'condensed history theory', Berger combined the theoretical results of the previous generation of research into developing approximate solutions of the Boltzmann transport equation with numerical algorithms for exploiting the power of computers to permit iterative, piece-wise solution of the transport equation in a computationally intensive but much less approximate fashion. The methods devised by Berger, with comparatively little modification, provide the foundation of all present day Monte Carlo electron transport simulation algorithms. Only in the last 15 years, beginning with the development and publication of the PRESTA algorithm, has there been a significant revisitation of the problem of simulating electron transport within the condensed history framework. Research in this area is ongoing, highly active, and far from complete. It presents an enormous challenge, demanding derivation of new analytical transport solutions based on underlying fundamental interaction mechanisms, intuitive insight in the development of computer algorithms, and state of the art computer science skills in order to permit deployment of these techniques in an efficient manner. The EGS5 project, a modern ground-up rewrite of the EGS4 code, is now in the design phase. EGS5 will take modern photon and electron transport algorithms and deploy them in an easy-to-maintain, modern computer language-ANSI-standard C ++. Moreover, the well-known difficulties of applying EGS4 to practical geometries (geometry code development, tally routine design) should be made easier and more intuitive through the use of a visual user interface being designed by Quantum Research, Inc., work that is presented elsewhere in this conference. This report commences with a historical review of electron transport models culminating with the proposal of a
New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors
International Nuclear Information System (INIS)
Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.
1997-01-01
A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)
A 3D Monte Carlo code for plasma transport in island divertors
International Nuclear Information System (INIS)
Feng, Y.; Sardei, F.; Kisslinger, J.; Grigull, P.
1997-01-01
A fully 3D self-consistent Monte Carlo code EMC3 (edge Monte Carlo 3D) for modelling the plasma transport in island divertors has been developed. In a first step, the code solves a simplified version of the 3D time-independent plasma fluid equations. Coupled to the neutral transport code EIRENE, the EMC3 code has been used to study the particle, energy and neutral transport in W7-AS island divertor configurations. First results are compared with data from different diagnostics (Langmuir probes, H α cameras and thermography). (orig.)
Application of Macro Response Monte Carlo method for electron spectrum simulation
International Nuclear Information System (INIS)
Perles, L.A.; Almeida, A. de
2007-01-01
During the past years several variance reduction techniques for Monte Carlo electron transport have been developed in order to reduce the electron computation time transport for absorbed dose distribution. We have implemented the Macro Response Monte Carlo (MRMC) method to evaluate the electron spectrum which can be used as a phase space input for others simulation programs. Such technique uses probability distributions for electron histories previously simulated in spheres (called kugels). These probabilities are used to sample the primary electron final state, as well as the creation secondary electrons and photons. We have compared the MRMC electron spectra simulated in homogeneous phantom against the Geant4 spectra. The results showed an agreement better than 6% in the spectra peak energies and that MRMC code is up to 12 time faster than Geant4 simulations
Simulation of quantum systems by the tomography Monte Carlo method
International Nuclear Information System (INIS)
Bogdanov, Yu I
2007-01-01
A new method of statistical simulation of quantum systems is presented which is based on the generation of data by the Monte Carlo method and their purposeful tomography with the energy minimisation. The numerical solution of the problem is based on the optimisation of the target functional providing a compromise between the maximisation of the statistical likelihood function and the energy minimisation. The method does not involve complicated and ill-posed multidimensional computational procedures and can be used to calculate the wave functions and energies of the ground and excited stationary sates of complex quantum systems. The applications of the method are illustrated. (fifth seminar in memory of d.n. klyshko)
Monte Carlo calculations of electron transport on microcomputers
International Nuclear Information System (INIS)
Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.
1990-01-01
In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case
Microwave transport in EBT distribution manifolds using Monte Carlo ray-tracing techniques
International Nuclear Information System (INIS)
Lillie, R.A.; White, T.L.; Gabriel, T.A.; Alsmiller, R.G. Jr.
1983-01-01
Ray tracing Monte Carlo calculations have been carried out using an existing Monte Carlo radiation transport code to obtain estimates of the microsave power exiting the torus coupling links in EPT microwave manifolds. The microwave power loss and polarization at surface reflections were accounted for by treating the microwaves as plane waves reflecting off plane surfaces. Agreement on the order of 10% was obtained between the measured and calculated output power distribution for an existing EBT-S toroidal manifold. A cost effective iterative procedure utilizing the Monte Carlo history data was implemented to predict design changes which could produce increased manifold efficiency and improved output power uniformity
Calculations of pair production by Monte Carlo methods
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs
Difficult Sudoku Puzzles Created by Replica Exchange Monte Carlo Method
Watanabe, Hiroshi
2013-01-01
An algorithm to create difficult Sudoku puzzles is proposed. An Ising spin-glass like Hamiltonian describing difficulty of puzzles is defined, and difficult puzzles are created by minimizing the energy of the Hamiltonian. We adopt the replica exchange Monte Carlo method with simultaneous temperature adjustments to search lower energy states efficiently, and we succeed in creating a puzzle which is the world hardest ever created in our definition, to our best knowledge. (Added on Mar. 11, the ...
POWER ANALYSIS FOR COMPLEX MEDIATIONAL DESIGNS USING MONTE CARLO METHODS
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex mediational models. The approach is based on the well known technique of generating a large number of samples in a Monte Carlo study, and estimating power...
ETRAN, Electron Transport and Gamma Transport with Secondary Radiation in Slab by Monte-Carlo
International Nuclear Information System (INIS)
1992-01-01
A - Nature of physical problem solved: ETRAN computes the transport of electrons and photons through plane-parallel slab targets that have a finite thickness in one dimension and are unbound in the other two-dimensions. The incident radiation can consist of a beam of either electrons or photons with specified spectral and directional distribution. Options are available by which all orders of the electron-photon cascade can be included in the calculation. Thus electrons are allowed to give rise to secondary knock-on electrons, continuous Bremsstrahlung and characteristic x-rays; and photons are allowed to produce photo-electrons, Compton electrons, and electron- positron pairs. Annihilation quanta, fluorescence radiation, and Auger electrons are also taken into account. If desired, the Monte- Carlo histories of all generations of secondary radiations are followed. The information produced by ETRAN includes the following items: 1) reflection and transmission of electrons or photons, differential in energy and direction; 2) the production of continuous Bremsstrahlung and characteristic x-rays by electrons and the emergence of such radiations from the target (differential in photon energy and direction); 3) the spectrum of the amounts of energy left behind in a thick target by an incident electron beam; 4) the deposition of energy and charge by an electron beam as function of the depth in the target; 5) the flux of electrons, differential in energy, as function of the depth in the target. B - Method of solution: A programme called DATAPAC-4 takes data for a particular material from a library tape and further processes them. The function of DATAPAC-4 is to produce single-scattering and multiple-scattering data in the form of tabular arrays (again stored on magnetic tape) which facilitate the rapid sampling of electron and photon Monte Carlo histories in ETRAN. The photon component of the electron-photon cascade is calculated by conventional random sampling that imitates
Comparison of deterministic and Monte Carlo methods in shielding design.
Oliveira, A D; Oliveira, C
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.
Comparison of deterministic and Monte Carlo methods in shielding design
International Nuclear Information System (INIS)
Oliveira, A. D.; Oliveira, C.
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions. (authors)
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
International Nuclear Information System (INIS)
Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.
2010-01-01
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
Monte Carlo methods for medical physics a practical introduction
Schuemann, Jan; Paganetti, Harald
2018-01-01
The Monte Carlo (MC) method, established as the gold standard to predict results of physical processes, is now fast becoming a routine clinical tool for applications that range from quality control to treatment verification. This book provides a basic understanding of the fundamental principles and limitations of the MC method in the interpretation and validation of results for various scenarios. It shows how user-friendly and speed optimized MC codes can achieve online image processing or dose calculations in a clinical setting. It introduces this essential method with emphasis on applications in hardware design and testing, radiological imaging, radiation therapy, and radiobiology.
Advanced Markov chain Monte Carlo methods learning from past samples
Liang, Faming; Carrol, Raymond J
2010-01-01
This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically weight
Novel extrapolation method in the Monte Carlo shell model
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio
2010-01-01
We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.
International Nuclear Information System (INIS)
Weinhorst, Bastian; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Wilson, Paul
2015-01-01
Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.
Energy Technology Data Exchange (ETDEWEB)
Weinhorst, Bastian, E-mail: bastian.weinhorst@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Wilson, Paul [University of Wisconsin-Madison, Computational Nuclear Engineering Research Group, Madison, WI (United States)
2015-10-15
Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.
ITS, TIGER System of Coupled Electron Photon Transport by Monte-Carlo
International Nuclear Information System (INIS)
Halbleib, J.A.; Mehlhorn, T.A.; Young, M.F.
1996-01-01
1 - Description of program or function: ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/ photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. 2 - Method of solution: Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors. With the ITS-3.0 release the PSR-0245/UPEML package is included to perform these functions. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/ photon cascade from 1.0 GeV down to 1.0 keV. Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures. 3 - Restrictions on the complexity of the problem: - Restrictions and/or limitations for ITS depend upon the local operating system
GPU-based high performance Monte Carlo simulation in neutron transport
Energy Technology Data Exchange (ETDEWEB)
Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br
2009-07-01
Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)
GPU-based high performance Monte Carlo simulation in neutron transport
International Nuclear Information System (INIS)
Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A.
2009-01-01
Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)
International Nuclear Information System (INIS)
Murata, Isao; Mori, Takamasa; Nakagawa, Masayuki; Shirai, Hiroshi.
1996-03-01
High Temperature Gas-cooled Reactors (HTGRs) employ spherical fuels named coated fuel particles (CFPs) consisting of a microsphere of low enriched UO 2 with coating layers in order to prevent FP release. There exist many spherical fuels distributed randomly in the cores. Therefore, the nuclear design of HTGRs is generally performed on the basis of the multigroup approximation using a diffusion code, S N transport code or group-wise Monte Carlo code. This report summarizes a Monte Carlo hard sphere packing simulation code to simulate the packing of equal hard spheres and evaluate the necessary probability distribution of them, which is used for the application of the new Monte Carlo calculation method developed to treat randomly distributed spherical fuels with the continuous energy Monte Carlo method. By using this code, obtained are the various statistical values, namely Radial Distribution Function (RDF), Nearest Neighbor Distribution (NND), 2-dimensional RDF and so on, for random packing as well as ordered close packing of FCC and BCC. (author)
International Nuclear Information System (INIS)
Chauvet, Y.
1985-01-01
This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in neutron transport problems, the authors briefly describe the work done in order to get a vector code. Vectorization principles are presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples are presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example they propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion they prove that Monte Carlo algorithms are very well suited to future vector and parallel computers
International Nuclear Information System (INIS)
Chauvet, Y.
1985-01-01
This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in our neutron transport problems, we briefly describe the work we have done in order to get a vector code. Vectorization principles will be presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples will be presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example we propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion we prove that Monte Carlo algorithms are very well suited to future vector and parallel computers. (orig.)
Design of tallying function for general purpose Monte Carlo particle transport code JMCT
International Nuclear Information System (INIS)
Shangguan Danhua; Li Gang; Deng Li; Zhang Baoyin
2013-01-01
A new postponed accumulation algorithm was proposed. Based on JCOGIN (J combinatorial geometry Monte Carlo transport infrastructure) framework and the postponed accumulation algorithm, the tallying function of the general purpose Monte Carlo neutron-photon transport code JMCT was improved markedly. JMCT gets a higher tallying efficiency than MCNP 4C by 28% for simple geometry model, and JMCT is faster than MCNP 4C by two orders of magnitude for complicated repeated structure model. The available ability of tallying function for JMCT makes firm foundation for reactor analysis and multi-step burnup calculation. (authors)
International Nuclear Information System (INIS)
Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.
2011-01-01
The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)
Applications to shielding design and others of monte carlo method
Energy Technology Data Exchange (ETDEWEB)
Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)
2001-01-01
One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)
Application of the Monte Carlo method to diagnostic radiology
International Nuclear Information System (INIS)
Persliden, J.
1986-01-01
A Monte Carlo program for photon transport is developed. The program is used to investigate the energy imparted to water slabs (simulating patients), and the related backscattered and transmitted energies as functions of primary photon energy and water slab thickness. The accuracy of the results depends on the cross-section data for the probabilities of the various interactions in the slab and on the physical quantity calculated. Backscattered energy fractions can vary by as much as 10-20 %, using different sets of published data for the photoelectric cross section while imparted fractions are only slightly affected. The results are used to calculate improved conversion factors for determining the energy imparted to the patient in X-ray diagnostic examinations from measurements of the air collision kerma integrated over beam area. The small angle distribution of scattered photons transmitted through a water slab, relevant to problems of image quality, is calculated taking into account the diffraction phenomena of liquid water. The calculations are performed with a collision density estimator. This estimator makes it possible to calculate important physical quantities which are virtually impracticable to assess with the Monte Carlo codes commonly used in medical physics or in experiments. With the collision density estimator, the influence of air gaps on the reduction of scattered radiation is investigated for different detectors, field areas and primary X-ray spectra. Contrast degradation and contrast improvement factors are given as functions of field area for various air gaps. (With 105 refs.) (author)
A Monte-Carlo method for ex-core neutron response
International Nuclear Information System (INIS)
Gamino, R.G.; Ward, J.T.; Hughes, J.C.
1997-10-01
A Monte Carlo neutron transport kernel capability primarily for ex-core neutron response is described. The capability consists of the generation of a set of response kernels, which represent the neutron transport from the core to a specific ex-core volume. This is accomplished by tagging individual neutron histories from their initial source sites and tracking them throughout the problem geometry, tallying those that interact in the geometric regions of interest. These transport kernels can subsequently be combined with any number of core power distributions to determine detector response for a variety of reactor Thus, the transport kernels are analogous to an integrated adjoint response. Examples of pressure vessel response and ex-core neutron detector response are provided to illustrate the method
Research on Monte Carlo improved quasi-static method for reactor space-time dynamics
International Nuclear Information System (INIS)
Xu Qi; Wang Kan; Li Shirui; Yu Ganglin
2013-01-01
With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)
Development of Monte Carlo decay gamma-ray transport calculation system
Energy Technology Data Exchange (ETDEWEB)
Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)
2001-06-01
In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)
Material motion corrections for implicit Monte Carlo radiation transport
International Nuclear Information System (INIS)
Gentile, N.A.; Morel, Jim E.
2011-01-01
We describe changes to the Implicit Monte Carlo (IMC) algorithm to include the effects of material motion. These changes assume that the problem can be embedded in a global Lorentz frame. We also assume that the material in each zone can be characterized by a single velocity. With this approximation, we show how to make IMC Lorentz invariant, so that the material motion corrections are correct to all orders of v/c. We develop thermal emission and face sources in moving material and discuss the coupling of IMC to the non- relativistic hydrodynamics equations via operator splitting. We discuss the effect of this coupling on the value of the 'Fleck factor' in IMC. (author)
SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo
International Nuclear Information System (INIS)
2003-01-01
1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes
International Nuclear Information System (INIS)
Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.
1993-01-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures
ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes
Energy Technology Data Exchange (ETDEWEB)
Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.
1993-06-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.
Analytic continuation of quantum Monte Carlo data. Stochastic sampling method
Energy Technology Data Exchange (ETDEWEB)
Ghanem, Khaldoon; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany)
2016-07-01
We apply Bayesian inference to the analytic continuation of quantum Monte Carlo (QMC) data from the imaginary axis to the real axis. Demanding a proper functional Bayesian formulation of any analytic continuation method leads naturally to the stochastic sampling method (StochS) as the Bayesian method with the simplest prior, while it excludes the maximum entropy method and Tikhonov regularization. We present a new efficient algorithm for performing StochS that reduces computational times by orders of magnitude in comparison to earlier StochS methods. We apply the new algorithm to a wide variety of typical test cases: spectral functions and susceptibilities from DMFT and lattice QMC calculations. Results show that StochS performs well and is able to resolve sharp features in the spectrum.
DEFF Research Database (Denmark)
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael
2015-01-01
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...
Uniform distribution and quasi-Monte Carlo methods discrepancy, integration and applications
Kritzer, Peter; Pillichshammer, Friedrich; Winterhof, Arne
2014-01-01
The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology.
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
Optimization of sequential decisions by least squares Monte Carlo method
DEFF Research Database (Denmark)
Nishijima, Kazuyoshi; Anders, Annett
change adaptation measures, and evacuation of people and assets in the face of an emerging natural hazard event. Focusing on the last example, an efficient solution scheme is proposed by Anders and Nishijima (2011). The proposed solution scheme takes basis in the least squares Monte Carlo method, which...... is proposed by Longstaff and Schwartz (2001) for pricing of American options. The present paper formulates the decision problem in a more general manner and explains how the solution scheme proposed by Anders and Nishijima (2011) is implemented for the optimization of the formulated decision problem...
Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method
International Nuclear Information System (INIS)
Olbricht, C.; Hahn, F.; Sadiki, A.; Janicka, J.
2007-01-01
This contribution introduces a hybrid LES-Monte-Carlo method for a coupled solution of the flow and the multi-dimensional scalar joint pdf in two complex mixing devices. For this purpose an Eulerian Monte-Carlo method is used. First, a complex mixing device (jet-in-crossflow, JIC) is presented in which the stochastic convergence and the coherency between the scalar field solution obtained via finite-volume methods and that from the stochastic solution of the pdf for the hybrid method are evaluated. Results are compared to experimental data. Secondly, an extensive investigation of the micromixing on the basis of assumed shape and transported SGS-pdfs in a configuration with practical relevance is carried out. This consists of a mixing chamber with two opposite rows of jets penetrating a crossflow (multi-jet-in-crossflow, MJIC). Some numerical results are compared to available experimental data and to RANS based results. It turns out that the hybrid LES-Monte-Carlo method could achieve a detailed analysis of the mixing at the subgrid level
Discrete elements method of neutral particle transport
International Nuclear Information System (INIS)
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method
Françoise Benz
2006-01-01
2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...
Load balancing in highly parallel processing of Monte Carlo code for particle transport
International Nuclear Information System (INIS)
Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji
1998-01-01
In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)
Research on Monte Carlo simulation method of industry CT system
International Nuclear Information System (INIS)
Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan
2010-01-01
There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)
International Nuclear Information System (INIS)
Zazula, J.M.
1983-01-01
The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)
General-purpose Monte Carlo codes for neutron and photon transport calculations. MVP version 3
International Nuclear Information System (INIS)
Nagaya, Yasunobu
2017-01-01
JAEA has developed a general-purpose neutron/photon transport Monte Carlo code MVP. This paper describes the recent development of the MVP code and reviews the basic features and capabilities. In addition, capabilities implemented in Version 3 are also described. (author)
FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation
International Nuclear Information System (INIS)
Taormina, A.
1978-05-01
FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)
International Nuclear Information System (INIS)
Maconald, J.L.; Cashwell, E.D.
1978-09-01
The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
International Nuclear Information System (INIS)
Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.
2014-08-01
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom
Energy Technology Data Exchange (ETDEWEB)
Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)
2014-08-15
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)
SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques
International Nuclear Information System (INIS)
Ilic, Radovan D.
2005-01-01
1 - Description of program or function: SRNA-2K5 performs Monte Carlo transport simulation of proton in 3D source and 3D geometry of arbitrary materials. The proton transport based on condensed history model, and on model of compound nuclei decays that creates in nonelastic nuclear interaction by proton absorption. 2 - Methods: The SRNA-2K5 package is developed for time independent simulation of proton transport by Monte Carlo techniques for numerical experiments in complex geometry, using PENGEOM from PENELOPE with different material compositions, and arbitrary spectrum of proton generated from the 3D source. This package developed for 3D proton dose distribution in proton therapy and dosimetry, and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our and Russian MSDM models using ICRU 49 and ICRU 63 data. If protons trajectory is divided on great number of steps, protons passage can be simulated according to Berger's Condensed Random Walk model. Conditions of angular distribution and fluctuation of energy loss determinate step length. Physical picture of these processes is described by stopping power, Moliere's angular distribution, Vavilov's distribution with Sulek's correction per all electron orbits, and Chadwick's cross sections for nonelastic nuclear interactions, obtained by his GNASH code. According to physical picture of protons passage and with probabilities of protons transition from previous to next stage, which is prepared by SRNADAT program, simulation of protons transport in all SRNA codes runs according to usual Monte Carlo scheme: (i) proton from the spectrum prepared for random choice of energy, position and space angle is emitted from the source; (ii) proton is loosing average energy on the step; (iii) on that step, proton experience a great number of collisions, and it changes direction of movement randomly chosen from angular distribution; (iv) random fluctuation is added to average energy loss; (v
International Nuclear Information System (INIS)
Badal, Andreu; Badano, Aldo
2009-01-01
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
Energy Technology Data Exchange (ETDEWEB)
Badal, Andreu; Badano, Aldo [Division of Imaging and Applied Mathematics, OSEL, CDRH, U.S. Food and Drug Administration, Silver Spring, Maryland 20993-0002 (United States)
2009-11-15
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
MCSLTT, Monte Carlo Simulation of Light Transport in Tissue
International Nuclear Information System (INIS)
2008-01-01
Description of program or function: Understanding light-tissue interaction is fundamental in the field of Biomedical Optics. It has important implications for both therapeutic and diagnostic technologies. In this program, light transport in scattering tissue is modeled by absorption and scattering events as each photon travels through the tissue. The path of each photon is determined statistically by calculating probabilities of scattering and absorption. Other measured quantities are total reflected light, total transmitted light, and total heat absorbed
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1980-01-01
1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can
Romano, Paul Kollath
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with
International Nuclear Information System (INIS)
Franke, B.C.; Kensek, R.P.; Prinja, A.K.
2013-01-01
Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
International Nuclear Information System (INIS)
Chi, Y; Tian, Z; Jiang, S; Jia, X
2015-01-01
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
Energy Technology Data Exchange (ETDEWEB)
Chi, Y; Tian, Z; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)
2015-06-15
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)
2015-05-15
Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.
Continuous energy adjoint Monte Carlo for coupled neutron-photon transport
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.
2001-07-01
Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)
Modelling a gamma irradiation process using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Soares, Gabriela A.; Pereira, Marcio T., E-mail: gas@cdtn.br, E-mail: mtp@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2011-07-01
In gamma irradiation service it is of great importance the evaluation of absorbed dose in order to guarantee the service quality. When physical structure and human resources are not available for performing dosimetry in each product irradiated, the appliance of mathematic models may be a solution. Through this, the prediction of the delivered dose in a specific product, irradiated in a specific position and during a certain period of time becomes possible, if validated with dosimetry tests. At the gamma irradiation facility of CDTN, equipped with a Cobalt-60 source, the Monte Carlo method was applied to perform simulations of products irradiations and the results were compared with Fricke dosimeters irradiated under the same conditions of the simulations. The first obtained results showed applicability of this method, with a linear relation between simulation and experimental results. (author)
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Modelling a gamma irradiation process using the Monte Carlo method
International Nuclear Information System (INIS)
Soares, Gabriela A.; Pereira, Marcio T.
2011-01-01
In gamma irradiation service it is of great importance the evaluation of absorbed dose in order to guarantee the service quality. When physical structure and human resources are not available for performing dosimetry in each product irradiated, the appliance of mathematic models may be a solution. Through this, the prediction of the delivered dose in a specific product, irradiated in a specific position and during a certain period of time becomes possible, if validated with dosimetry tests. At the gamma irradiation facility of CDTN, equipped with a Cobalt-60 source, the Monte Carlo method was applied to perform simulations of products irradiations and the results were compared with Fricke dosimeters irradiated under the same conditions of the simulations. The first obtained results showed applicability of this method, with a linear relation between simulation and experimental results. (author)
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
Energy Technology Data Exchange (ETDEWEB)
Bellezzo, Murillo
2014-09-01
As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)
International Nuclear Information System (INIS)
Schaefer, C.; Jansen, A. P. J.
2013-01-01
We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.
A new Monte Carlo method for neutron noise calculations in the frequency domain
International Nuclear Information System (INIS)
Rouchon, Amélie; Zoia, Andrea; Sanchez, Richard
2017-01-01
Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently proposed in the literature by using particles with complex-valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algorithm that solves the transport neutron noise equations in the frequency domain. The stochastic method presented here relies on a modified collision operator and does not need any weight cancellation technique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic and anisotropic noise sources. Our stochastic method shows better performances in the frequency region of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source problems.
Parallel processing of Monte Carlo code MCNP for particle transport problem
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Kawasaki, Takuji
1996-06-01
It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)
Data decomposition of Monte Carlo particle transport simulations via tally servers
International Nuclear Information System (INIS)
Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit; Smith, Kord
2013-01-01
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations
International Nuclear Information System (INIS)
Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.
1995-01-01
This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)
International Nuclear Information System (INIS)
Taylor, Michael; Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick
2012-01-01
Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm 3 regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of “generic” tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.
Energy Technology Data Exchange (ETDEWEB)
Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)
2012-04-01
Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.
Alternative Implementations of the Monte Carlo Power Method
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
2002-01-01
We compare nominal efficiencies, i.e., variances in power shapes for equal running time, of different versions of the Monte Carlo (MC) eigenvalue computation. The two main methods considered here are 'conventional' MC and the superhistory method. Within each of these major methods, different variants are available for the main steps of the basic MC algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or they may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional MC, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional MC and, second, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on MC computational efficiency
Interacting multiagent systems kinetic equations and Monte Carlo methods
Pareschi, Lorenzo
2014-01-01
The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...
Optimal mesh hierarchies in Multilevel Monte Carlo methods
Von Schwerin, Erik
2016-01-08
I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.
Optimal mesh hierarchies in Multilevel Monte Carlo methods
Von Schwerin, Erik
2016-01-01
I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.
MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS
Energy Technology Data Exchange (ETDEWEB)
Richers, Sherwood; Ott, Christian D. [TAPIR, Mailcode 350-17, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasen, Daniel; Fernández, Rodrigo [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); O’Connor, Evan [Department of Physics, Campus Code 8202, North Carolina State University, Raleigh, NC 27695 (United States)
2015-11-01
We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.
MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS
International Nuclear Information System (INIS)
Richers, Sherwood; Ott, Christian D.; Kasen, Daniel; Fernández, Rodrigo; O’Connor, Evan
2015-01-01
We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10 46 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10 48 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet
International Nuclear Information System (INIS)
Hoogenboom, J. Eduard
2003-01-01
Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems
Recursive Monte Carlo method for deep-penetration problems
International Nuclear Information System (INIS)
Goldstein, M.; Greenspan, E.
1980-01-01
The Recursive Monte Carlo (RMC) method developed for estimating importance function distributions in deep-penetration problems is described. Unique features of the method, including the ability to infer the importance function distribution pertaining to many detectors from, essentially, a single M.C. run and the ability to use the history tape created for a representative region to calculate the importance function in identical regions, are illustrated. The RMC method is applied to the solution of two realistic deep-penetration problems - a concrete shield problem and a Tokamak major penetration problem. It is found that the RMC method can provide the importance function distributions, required for importance sampling, with accuracy that is suitable for an efficient solution of the deep-penetration problems considered. The use of the RMC method improved, by one to three orders of magnitude, the solution efficiency of the two deep-penetration problems considered: a concrete shield problem and a Tokamak major penetration problem. 8 figures, 4 tables
Energy Technology Data Exchange (ETDEWEB)
Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)
2012-07-01
In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)
International Nuclear Information System (INIS)
Millman, D. L.; Griesheimer, D. P.; Nease, B. R.; Snoeyink, J.
2012-01-01
In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)
Simulation of Rossi-α method with analog Monte-Carlo method
International Nuclear Information System (INIS)
Lu Yuzhao; Xie Qilin; Song Lingli; Liu Hangang
2012-01-01
The analog Monte-Carlo code for simulating Rossi-α method based on Geant4 was developed. The prompt neutron decay constant α of six metal uranium configurations in Oak Ridge National Laboratory were calculated. α was also calculated by Burst-Neutron method and the result was consistent with the result of Rossi-α method. There is the difference between results of analog Monte-Carlo simulation and experiment, and the reasons for the difference is the gaps between uranium layers. The influence of gaps decrease as the sub-criticality deepens. The relative difference between results of analog Monte-Carlo simulation and experiment changes from 19% to 0.19%. (authors)
The use of Monte Carlo radiation transport codes in radiation physics and dosimetry
CERN. Geneva; Ferrari, Alfredo; Silari, Marco
2006-01-01
Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...
International Nuclear Information System (INIS)
1982-01-01
1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence
Crop canopy BRDF simulation and analysis using Monte Carlo method
Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.
2006-01-01
This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and
Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media
International Nuclear Information System (INIS)
Giacobbo, F.; Patelli, E.
2007-01-01
In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported
Tripoli-3: monte Carlo transport code for neutral particles - version 3.5 - users manual
International Nuclear Information System (INIS)
Vergnaud, Th.; Nimal, J.C.; Chiron, M.
2001-01-01
The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)
Monte Carlo study of the mechanisms of transport of fast neutrons in various media
International Nuclear Information System (INIS)
Ku, L.
1976-01-01
The technique of analyzing Monte Carlo histories was used to study the details of neutron transport and slowing down mechanisms. The statistical properties of life histories of ''exceptional'' neutrons, i.e., those staying closer to the source or penetrating to larger distances from the source, were compared to those of the general population. The macroscopic behavior of ''exceptional'' neutrons was also related to the interaction mechanics and to the microscopic properties of the medium
Automatic modeling for the Monte Carlo transport code Geant4 in MCAM
International Nuclear Information System (INIS)
Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team
2014-01-01
Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in geometry description markup language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. The conversion program was integrated into Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)
Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)
International Nuclear Information System (INIS)
Kirk, B.L.; West, J.T.
1984-06-01
The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided
Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program
International Nuclear Information System (INIS)
Moskowitz, B.S.
2000-01-01
This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2003-01-01
The Variational Variance Reduction (VVR) method is an effective technique for increasing the efficiency of Monte Carlo simulations [Ann. Nucl. Energy 28 (2001) 457; Nucl. Sci. Eng., in press]. This method uses a variational functional, which employs first-order estimates of forward and adjoint fluxes, to yield a second-order estimate of a desired system characteristic - which, in this paper, is the criticality eigenvalue k. If Monte Carlo estimates of the forward and adjoint fluxes are used, each having global 'first-order' errors of O(1/√N), where N is the number of histories used in the Monte Carlo simulation, then the statistical error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical possibility and demonstrate with numerical examples that implementations of the VVR method for criticality problems can approximate O(1/N) convergence for significantly large values of N
Monteray Mark-I: Computer program (PC-version) for shielding calculation with Monte Carlo method
International Nuclear Information System (INIS)
Pudjijanto, M.S.; Akhmad, Y.R.
1998-01-01
A computer program for gamma ray shielding calculation using Monte Carlo method has been developed. The program is written in WATFOR77 language. The MONTERAY MARH-1 is originally developed by James Wood. The program was modified by the authors that the modified version is easily executed. Applying Monte Carlo method the program observe photon gamma transport in an infinity planar shielding with various thick. A photon gamma is observed till escape from the shielding or when its energy less than the cut off energy. Pair production process is treated as pure absorption process that annihilation photons generated in the process are neglected in the calculation. The out put data calculated by the program are total albedo, build-up factor, and photon spectra. The calculation result for build-up factor of a slab lead and water media with 6 MeV parallel beam gamma source shows that they are in agreement with published data. Hence the program is adequate as a shielding design tool for observing gamma radiation transport in various media
A vectorized Monte Carlo code for modeling photon transport in SPECT
International Nuclear Information System (INIS)
Smith, M.F.; Floyd, C.E. Jr.; Jaszczak, R.J.
1993-01-01
A vectorized Monte Carlo computer code has been developed for modeling photon transport in single photon emission computed tomography (SPECT). The code models photon transport in a uniform attenuating region and photon detection by a gamma camera. It is adapted from a history-based Monte Carlo code in which photon history data are stored in scalar variables and photon histories are computed sequentially. The vectorized code is written in FORTRAN77 and uses an event-based algorithm in which photon history data are stored in arrays and photon history computations are performed within DO loops. The indices of the DO loops range over the number of photon histories, and these loops may take advantage of the vector processing unit of our Stellar GS1000 computer for pipelined computations. Without the use of the vector processor the event-based code is faster than the history-based code because of numerical optimization performed during conversion to the event-based algorithm. When only the detection of unscattered photons is modeled, the event-based code executes 5.1 times faster with the use of the vector processor than without; when the detection of scattered and unscattered photons is modeled the speed increase is a factor of 2.9. Vectorization is a valuable way to increase the performance of Monte Carlo code for modeling photon transport in SPECT
International Nuclear Information System (INIS)
Stefanovic, D.
1975-09-01
The research work of this contract was oriented towards the study of different methods in neutron transport theory. Authors studied analytical solution of the neutron slowing down transport equation and extension of this solution to include the energy dependence of the anisotropy of neutron scattering. Numerical solution of the fast and resonance transport equation for the case of mixture of scatterers including inelastic effects were also reviewed. They improved the existing formalism for treating the scattering of neutrons on water molecules; Identifying modal analysis as the Galerkin method, general conditions for modal technique applications have been investigated. Inverse problems in transport theory were considered. They obtained the evaluation of an advanced level distribution function, made improvement of the standard formalism for treating the inelastic scattering and development of a cluster nuclear model for this evaluation. Authors studied the neutron transport treatment in space energy groups for criticality calculation of a reactor core, and development of the Monte Carlo sampling scheme from the neutron transport equation
On solution to the problem of criticality by alternative Monte Carlo method
International Nuclear Information System (INIS)
Kyncl, J.
2005-03-01
The problem of criticality for the neutron transport equation is analyzed. The problem is transformed into an equivalent problem in a suitable set of complex functions, and the existence and uniqueness of its solution is demonstrated. The source iteration method is discussed. It is shown that the final result of the iterative process is strongly affected by the insufficient accuracy of the individual iterations. A modified method is suggested to circumvent this problem based on the theory of positive operators; the criticality problem is solved by the Monte Carlo method constructing special random process and variable so that the difference between the result and the true value can be arbitrarily small. The efficiency of this alternative method is analysed
International Nuclear Information System (INIS)
Dupre, Corinne.
1982-10-01
The Monte Carlo method was applied to simulate the transport of a photon beam in an organic liquid scintillation detector. The interactions of secondary gamma rays and electrons with the detector and its peripheral materials components such as the pyrex glass container are included. The pulse height spectra and the detectors efficiency are compared with calculated and measured results. Calculations and programmation methods are presented in the same way as results concerning cobalt and cesium sources [fr
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Miyoshi, Yoshinori
2004-01-01
A new algorithm of Monte Carlo criticality calculations for implementing Wielandt's method, which is one of acceleration techniques for deterministic source iteration methods, is developed, and the algorithm can be successfully implemented into MCNP code. In this algorithm, part of fission neutrons emitted during random walk processes are tracked within the current cycle, and thus a fission source distribution used in the next cycle spread more widely. Applying this method intensifies a neutron interaction effect even in a loosely-coupled array where conventional Monte Carlo criticality methods have difficulties, and a converged fission source distribution can be obtained with fewer cycles. Computing time spent for one cycle, however, increases because of tracking fission neutrons within the current cycle, which eventually results in an increase of total computing time up to convergence. In addition, statistical fluctuations of a fission source distribution in a cycle are worsened by applying Wielandt's method to Monte Carlo criticality calculations. However, since a fission source convergence is attained with fewer source iterations, a reliable determination of convergence can easily be made even in a system with a slow convergence. This acceleration method is expected to contribute to prevention of incorrect Monte Carlo criticality calculations. (author)
International Nuclear Information System (INIS)
Trubey, D.K.; McGill, B.L.
1980-08-01
This report consists of 24 papers which were presented at the seminar on Theory and Application of Monte Carlo Methods, held in Oak Ridge on April 21-23, plus a summary of the three-man panel discussion which concluded the seminar and two papers which were not given orally. These papers constitute a current statement of the state of the art of the theory and application of Monte Carlo methods for radiation transport problems in shielding and reactor physics
Energy Technology Data Exchange (ETDEWEB)
Trubey, D.K.; McGill, B.L. (eds.)
1980-08-01
This report consists of 24 papers which were presented at the seminar on Theory and Application of Monte Carlo Methods, held in Oak Ridge on April 21-23, plus a summary of the three-man panel discussion which concluded the seminar and two papers which were not given orally. These papers constitute a current statement of the state of the art of the theory and application of Monte Carlo methods for radiation transport problems in shielding and reactor physics.
Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael
2017-01-01
The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…
LISA data analysis using Markov chain Monte Carlo methods
International Nuclear Information System (INIS)
Cornish, Neil J.; Crowder, Jeff
2005-01-01
The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands of low-frequency gravitational wave signals. This presents a data analysis challenge that is very different to the one encountered in ground based gravitational wave astronomy. LISA data analysis requires the identification of individual signals from a data stream containing an unknown number of overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed in order to avoid biasing the solution. However, performing such a global fit requires the exploration of an enormous parameter space with a dimension upwards of 50 000. Markov Chain Monte Carlo (MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms are able to efficiently explore large parameter spaces, simultaneously providing parameter estimates, error analysis, and even model selection. Here we present the first application of MCMC methods to simulated LISA data and demonstrate the great potential of the MCMC approach. Our implementation uses a generalized F-statistic to evaluate the likelihoods, and simulated annealing to speed convergence of the Markov chains. As a final step we supercool the chains to extract maximum likelihood estimates, and estimates of the Bayes factors for competing models. We find that the MCMC approach is able to correctly identify the number of signals present, extract the source parameters, and return error estimates consistent with Fisher information matrix predictions
Application to risk analysis of Monte Carlo method
International Nuclear Information System (INIS)
Mihara, Takashi
2001-01-01
Phased mission analysis code, PHAMMON by means of monte carlo method is developed for reliability assessment of decay heat removal system in LMFBR. Success criteria and grace periods of the decay heat removal system which has long mission times (∼1 week or ∼1 month) change as a function of time. It is necessary to divide mission time into some phases. In probability safety assessment (PSA) of real systems, it usually happens that the mean time to component failure (MTTF) is considerably long (1000-10 6 hours) and the mean time to component repair (MTTR) is short (∼10 hours). The failure probability of the systems, therefore, is extremely small (10 -6 -10 -9 ). Suitable variance reduction techniques are needed. The PHAMMON code involved two kinds of variance reduction techniques: (1) forced time transitions, and (2) failure biasing. For further reducing the variance of the result from the PHAMMON code execution, a biasing method of the transitions towards the closest cut set incorporating a new distance concept is introduced to the PHAMMON code. Failure probability and it's fractional standard deviation for the decay heat removal system are calculated by the PHAMMON code under the conditions of various success criteria over 168hrs after reactor shutdown. The biasing of the transition towards the closet cut set is an effective means of reducing the variance. (M. Suetake)
Methods for testing transport models
International Nuclear Information System (INIS)
Singer, C.; Cox, D.
1991-01-01
Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data
Deterministic methods in radiation transport
International Nuclear Information System (INIS)
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community
Energy Technology Data Exchange (ETDEWEB)
Belicev, P [Vojnotehnicki Inst., Belgrade (Yugoslavia)
1988-07-01
An outline of the problems encountered in the multigroup calculations of the neutron transport in the resonance region is given. The difference between subgroup and multigroup approximation is described briefly. The features of the Monte Carlo code SUBGR are presented. The results of the calculations of the neutron transmission and albedo for infinite iron slabs are given. (author)
Usefulness of the Monte Carlo method in reliability calculations
International Nuclear Information System (INIS)
Lanore, J.M.; Kalli, H.
1977-01-01
Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels
International Nuclear Information System (INIS)
Macdonald, J.L.
1975-08-01
Statistical and deterministic pattern recognition systems are designed to classify the state space of a Monte Carlo transport problem into importance regions. The surfaces separating the regions can be used for particle splitting and Russian roulette in state space in order to reduce the variance of the Monte Carlo tally. Computer experiments are performed to evaluate the performance of the technique using one and two dimensional Monte Carlo problems. Additional experiments are performed to determine the sensitivity of the technique to various pattern recognition and Monte Carlo problem dependent parameters. A system for applying the technique to a general purpose Monte Carlo code is described. An estimate of the computer time required by the technique is made in order to determine its effectiveness as a variance reduction device. It is recommended that the technique be further investigated in a general purpose Monte Carlo code. (auth)
Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald
2017-09-01
In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.
Directory of Open Access Journals (Sweden)
Chapoutier Nicolas
2017-01-01
Full Text Available In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics. Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.
Medical Imaging Image Quality Assessment with Monte Carlo Methods
International Nuclear Information System (INIS)
Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia
2015-01-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2
International Nuclear Information System (INIS)
Briesmeister, J.F.
1986-09-01
This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The first chapter is a primer for the novice user. The second chapter describes the mathematics, data, physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be exhaustive - details of the particular techniques and of the Monte Carlo method itself will have to be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and the fifth chapter explains the output. The appendices show how to use MCNP on particular computer systems at the Los Alamos National Laboratory and also give details about some of the code internals that those who wish to modify the code may find useful. 57 refs
Aurora T: a Monte Carlo code for transportation of neutral atoms in a toroidal plasma
International Nuclear Information System (INIS)
Bignami, A.; Chiorrini, R.
1982-01-01
This paper contains a short description of Aurora code. This code have been developed at Princeton with Monte Carlo method for calculating neutral gas in cylindrical plasma. In this work subroutines such one can take in account toroidal geometry are developed
Safety assessment of infrastructures using a new Bayesian Monte Carlo method
Rajabali Nejad, Mohammadreza; Demirbilek, Z.
2011-01-01
A recently developed Bayesian Monte Carlo (BMC) method and its application to safety assessment of structures are described in this paper. We use a one-dimensional BMC method that was proposed in 2009 by Rajabalinejad in order to develop a weighted logical dependence between successive Monte Carlo
Marseguerra, M.; Zoia, A.
2007-04-01
Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.
International Nuclear Information System (INIS)
Erpenbeck, J.J.
1989-01-01
The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion
Unbiased estimators of coincidence and correlation in non-analogous Monte Carlo particle transport
International Nuclear Information System (INIS)
Szieberth, M.; Kloosterman, J.L.
2014-01-01
Highlights: • The history splitting method was developed for non-Boltzmann Monte Carlo estimators. • The method allows variance reduction for pulse-height and higher moment estimators. • It works in highly multiplicative problems but Russian roulette has to be replaced. • Estimation of higher moments allows the simulation of neutron noise measurements. • Biased sampling of fission helps the effective simulation of neutron noise methods. - Abstract: The conventional non-analogous Monte Carlo methods are optimized to preserve the mean value of the distributions. Therefore, they are not suited to non-Boltzmann problems such as the estimation of coincidences or correlations. This paper presents a general method called history splitting for the non-analogous estimation of such quantities. The basic principle of the method is that a non-analogous particle history can be interpreted as a collection of analogous histories with different weights according to the probability of their realization. Calculations with a simple Monte Carlo program for a pulse-height-type estimator prove that the method is feasible and provides unbiased estimation. Different variance reduction techniques have been tried with the method and Russian roulette turned out to be ineffective in high multiplicity systems. An alternative history control method is applied instead. Simulation results of an auto-correlation (Rossi-α) measurement show that even the reconstruction of the higher moments is possible with the history splitting method, which makes the simulation of neutron noise measurements feasible
International Nuclear Information System (INIS)
Allam, Kh. A.
2017-01-01
In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)
Tripoli-4, a three-dimensional poly-kinetic particle transport Monte-Carlo code
International Nuclear Information System (INIS)
Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.; Soldevila, M.
2003-01-01
In this updated of the Monte-Carlo transport code Tripoli-4, we list and describe its current main features. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. Tripoli-4 enables the user to compute the following physical quantities: a flux, a multiplication factor, a current, a reaction rate, a dose equivalent rate as well as deposit of energy and recoil energies. For each interesting physical quantity, a Monte-Carlo simulation offers different types of estimators. Tripoli-4 has support for execution in parallel mode. Special features and applications are also presented
International Nuclear Information System (INIS)
Sarkar, P.K.; Prasad, M.A.
1989-01-01
A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs
Tripoli-4, a three-dimensional poly-kinetic particle transport Monte-Carlo code
Energy Technology Data Exchange (ETDEWEB)
Both, J P; Lee, Y K; Mazzolo, A; Peneliau, Y; Petit, O; Roesslinger, B; Soldevila, M [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DM2S/SERMA/LEPP), 91 - Gif sur Yvette (France)
2003-07-01
In this updated of the Monte-Carlo transport code Tripoli-4, we list and describe its current main features. The code computes coupled neutron-photon propagation as well as the electron-photon cascade shower. While providing the user with common biasing techniques, it also implements an automatic weighting scheme. Tripoli-4 enables the user to compute the following physical quantities: a flux, a multiplication factor, a current, a reaction rate, a dose equivalent rate as well as deposit of energy and recoil energies. For each interesting physical quantity, a Monte-Carlo simulation offers different types of estimators. Tripoli-4 has support for execution in parallel mode. Special features and applications are also presented.
Application of Monte Carlo method for dose calculation in thyroid follicle
International Nuclear Information System (INIS)
Silva, Frank Sinatra Gomes da
2008-02-01
The Monte Carlo method is an important tool to simulate radioactive particles interaction with biologic medium. The principal advantage of the method when compared with deterministic methods is the ability to simulate a complex geometry. Several computational codes use the Monte Carlo method to simulate the particles transport and they have the capacity to simulate energy deposition in models of organs and/or tissues, as well models of cells of human body. Thus, the calculation of the absorbed dose to thyroid's follicles (compound of colloid and follicles' cells) have a fundamental importance to dosimetry, because these cells are radiosensitive due to ionizing radiation exposition, in particular, exposition due to radioisotopes of iodine, because a great amount of radioiodine may be released into the environment in case of a nuclear accidents. In this case, the goal of this work was use the code of particles transport MNCP4C to calculate absorbed doses in models of thyroid's follicles, for Auger electrons, internal conversion electrons and beta particles, by iodine-131 and short-lived iodines (131, 132, 133, 134 e 135), with diameters varying from 30 to 500 μm. The results obtained from simulation with the MCNP4C code shown an average percentage of the 25% of total absorbed dose by colloid to iodine- 131 and 75% to short-lived iodine's. For follicular cells, this percentage was of 13% to iodine-131 and 87% to short-lived iodine's. The contributions from particles with low energies, like Auger and internal conversion electrons should not be neglected, to assessment the absorbed dose in cellular level. Agglomerative hierarchical clustering was used to compare doses obtained by codes MCNP4C, EPOTRAN, EGS4 and by deterministic methods. (author)
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
A perturbation-based susbtep method for coupled depletion Monte-Carlo codes
International Nuclear Information System (INIS)
Kotlyar, Dan; Aufiero, Manuele; Shwageraus, Eugene; Fratoni, Massimiliano
2017-01-01
Highlights: • The GPT method allows to calculate the sensitivity coefficients to any perturbation. • Full Jacobian of sensitivities, cross sections (XS) to concentrations, may be obtained. • The time dependent XS is obtained by combining the GPT and substep methods. • The proposed GPT substep method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. - Abstract: Coupled Monte Carlo (MC) methods are becoming widely used in reactor physics analysis and design. Many research groups therefore, developed their own coupled MC depletion codes. Typically, in such coupled code systems, neutron fluxes and cross sections are provided to the depletion module by solving a static neutron transport problem. These fluxes and cross sections are representative only of a specific time-point. In reality however, both quantities would change through the depletion time interval. Recently, Generalized Perturbation Theory (GPT) equivalent method that relies on collision history approach was implemented in Serpent MC code. This method was used here to calculate the sensitivity of each nuclide and reaction cross section due to the change in concentration of every isotope in the system. The coupling method proposed in this study also uses the substep approach, which incorporates these sensitivity coefficients to account for temporal changes in cross sections. As a result, a notable improvement in time dependent cross section behavior was obtained. The method was implemented in a wrapper script that couples Serpent with an external depletion solver. The performance of this method was compared with other existing methods. The results indicate that the proposed method requires substantially less MC transport solutions to achieve the same accuracy.
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes
International Nuclear Information System (INIS)
Halbleib, J.A.; Mehlhorn, T.A.
1985-01-01
The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence
BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER
Energy Technology Data Exchange (ETDEWEB)
Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)
2016-03-20
In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.
Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons
International Nuclear Information System (INIS)
Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír
2013-01-01
Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239 Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film
MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES
Energy Technology Data Exchange (ETDEWEB)
Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)
2013-08-15
A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.
Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2002-01-01
Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)
2010-07-15
Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
International Nuclear Information System (INIS)
Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M.
2010-01-01
Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres
García Muñoz, A.; Mills, F. P.
2017-08-01
PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.
International Nuclear Information System (INIS)
Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi
1987-02-01
Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)
Monte Carlo investigation of minority electron transport in InP
International Nuclear Information System (INIS)
Osman, M.A.; Grubin, H.L.
1989-01-01
This paper discusses the investigation of the transport of minority electrons in p-type InP for acceptor doping level of 10 18 cm 3 using Monte Carlo procedures. It is found that the velocity of minority electrons are significantly lower than that of majority electrons for fields below 15 kV/cm and slightly higher at higher fields. The study shows that the interaction between the electrons and majority holes leads to reducing the mobility of electrons from 2000 cm 2 /Vs to 1500 cm 2 /Vs
International Nuclear Information System (INIS)
Greenman, G.M.; O'Brien, M.J.; Procassini, R.J.; Joy, K.I.
2009-01-01
Two enhancements to the combinatorial geometry (CG) particle tracker in the Mercury Monte Carlo transport code are presented. The first enhancement is a hybrid particle tracker wherein a mesh region is embedded within a CG region. This method permits efficient calculations of problems with contain both large-scale heterogeneous and homogeneous regions. The second enhancement relates to the addition of parallelism within the CG tracker via spatial domain decomposition. This permits calculations of problems with a large degree of geometric complexity, which are not possible through particle parallelism alone. In this method, the cells are decomposed across processors and a particles is communicated to an adjacent processor when it tracks to an interprocessor boundary. Applications that demonstrate the efficacy of these new methods are presented
Directory of Open Access Journals (Sweden)
Jia-Cheng Yu
2018-02-01
Full Text Available A three-dimensional topography simulation of deep reactive ion etching (DRIE is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.
International Nuclear Information System (INIS)
Feng, Y.; Sardei, F.; Kisslinger, J.
2005-01-01
The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations
International Nuclear Information System (INIS)
Roncali, Emilie; Schmall, Jeffrey P; Viswanath, Varsha; Berg, Eric; Cherry, Simon R
2014-01-01
Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm 3 crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Method of transporting fuel assemblies
International Nuclear Information System (INIS)
Okada, Katsutoshi.
1979-01-01
Purpose: To enable safety transportation of fuel assemblies for FBR type reactors by surrounding each of fuel elements in a wrapper tube by a rubbery, hollow cylindrical container and by sealing medium such as air to the inside of the container. Method: A fuel element is contained in a hollow cylindrical rubber-like tube. The fuel element has an upper end plug, a lower end plug and a wire spirally wound around the outer periphery. Upon transportation of the fuel assemblies, each of the fuel elements is covered with the container and arranged in the wrapper tube and then the fuel assemblies are assembled. Then, medium such as air is sealed for each of the fuel elements by way of an opening and then the opening is tightly closed. Before loading the transported fuel assemblies in the reactor, the medium is discharged through the opening and the container is completely extracted and removed from the inside of the wrapper tube. (Seki, T.)
International Nuclear Information System (INIS)
Yamaguchi, Yasuhiro
1991-01-01
The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)
Review of quantum Monte Carlo methods and results for Coulombic systems
International Nuclear Information System (INIS)
Ceperley, D.
1983-01-01
The various Monte Carlo methods for calculating ground state energies are briefly reviewed. Then a summary of the charged systems that have been studied with Monte Carlo is given. These include the electron gas, small molecules, a metal slab and many-body hydrogen
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji Ali, Abdul Lateef; Tempone, Raul
2017-01-01
of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting
Fourier path-integral Monte Carlo methods: Partial averaging
International Nuclear Information System (INIS)
Doll, J.D.; Coalson, R.D.; Freeman, D.L.
1985-01-01
Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects
Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media
International Nuclear Information System (INIS)
Giacobbo, F.; Patelli, E.; Zio, E.
2005-01-01
In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)
International Nuclear Information System (INIS)
Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.
1981-01-01
The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)
Methods for testing transport models
International Nuclear Information System (INIS)
Singer, C.; Cox, D.
1993-01-01
This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.; Kagalenko, I.Eh.; Mironovich, Yu.N.
1992-01-01
Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P 1 -approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs
Cooper, M A
2000-01-01
We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.
TREEDE, Point Fluxes and Currents Based on Track Rotation Estimator by Monte-Carlo Method
International Nuclear Information System (INIS)
Dubi, A.
1985-01-01
1 - Description of problem or function: TREEDE is a Monte Carlo transport code based on the Track Rotation estimator, used, in general, to calculate fluxes and currents at a point. This code served as a test code in the development of the concept of the Track Rotation estimator, and therefore analogue Monte Carlo is used (i.e. no importance biasing). 2 - Method of solution: The basic idea is to follow the particle's track in the medium and then to rotate it such that it passes through the detector point. That is, rotational symmetry considerations (even in non-spherically symmetric configurations) are applied to every history, so that a very large fraction of the track histories can be rotated and made to pass through the point of interest; in this manner the 1/r 2 singularity in the un-collided flux estimator (next event estimator) is avoided. TREEDE, being a test code, is used to estimate leakage or in-medium fluxes at given points in a 3-dimensional finite box, where the source is an isotropic point source at the centre of the z = 0 surface. However, many of the constraints of geometry and source can be easily removed. The medium is assumed homogeneous with isotropic scattering, and one energy group only is considered. 3 - Restrictions on the complexity of the problem: One energy group, a homogeneous medium, isotropic scattering
International Nuclear Information System (INIS)
Zazula, J.M.
1984-01-01
This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs
Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method
International Nuclear Information System (INIS)
Vieira, W.J.
1982-01-01
With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt
Transport appraisal and Monte Carlo simulation by use of the CBA-DK model
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2011-01-01
calculation, where risk analysis is carried out using Monte Carlo simulation. Special emphasis has been placed on the separation between inherent randomness in the modeling system and lack of knowledge. These two concepts have been defined in terms of variability (ontological uncertainty) and uncertainty......This paper presents the Danish CBA-DK software model for assessment of transport infrastructure projects. The assessment model is based on both a deterministic calculation following the cost-benefit analysis (CBA) methodology in a Danish manual from the Ministry of Transport and on a stochastic...... (epistemic uncertainty). After a short introduction to deterministic calculation resulting in some evaluation criteria a more comprehensive evaluation of the stochastic calculation is made. Especially, the risk analysis part of CBA-DK, with considerations about which probability distributions should be used...
International Nuclear Information System (INIS)
Popescu, Lucretiu M.
2000-01-01
A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented
Vectorization and parallelization of Monte-Carlo programs for calculation of radiation transport
International Nuclear Information System (INIS)
Seidel, R.
1995-01-01
The versatile MCNP-3B Monte-Carlo code written in FORTRAN77, for simulation of the radiation transport of neutral particles, has been subjected to vectorization and parallelization of essential parts, without touching its versatility. Vectorization is not dependent on a specific computer. Several sample tasks have been selected in order to test the vectorized MCNP-3B code in comparison to the scalar MNCP-3B code. The samples are a representative example of the 3-D calculations to be performed for simulation of radiation transport in neutron and reactor physics. (1) 4πneutron detector. (2) High-energy calorimeter. (3) PROTEUS benchmark (conversion rates and neutron multiplication factors for the HCLWR (High Conversion Light Water Reactor)). (orig./HP) [de
Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study
International Nuclear Information System (INIS)
George, Christopher B.; Szleifer, Igal; Ratner, Mark A.
2010-01-01
Graphical abstract: Electron hopping between electroactive sites in a monolayer composed of redox-active and redox-passive molecules. - Abstract: Using Monte Carlo simulations, we study lateral electronic diffusion in dense monolayers composed of a mixture of redox-active and redox-passive chains tethered to a surface. Two charge transport mechanisms are considered: the physical diffusion of electroactive chains and electron hopping between redox-active sites. Results indicate that by varying the monolayer density, the mole fraction of electroactive chains, and the electron hopping range, the dominant charge transport mechanism can be changed. For high density monolayers in a semi-crystalline phase, electron diffusion proceeds via electron hopping almost exclusively, leading to static percolation behavior. In fluid monolayers, the diffusion of chains may contribute more to the overall electronic diffusion, reducing the observed static percolation effects.
Monte Carlo Simulation of Electron Transport in 4H- and 6H-SiC
International Nuclear Information System (INIS)
Sun, C. C.; You, A. H.; Wong, E. K.
2010-01-01
The Monte Carlo (MC) simulation of electron transport properties at high electric field region in 4H- and 6H-SiC are presented. This MC model includes two non-parabolic conduction bands. Based on the material parameters, the electron scattering rates included polar optical phonon scattering, optical phonon scattering and acoustic phonon scattering are evaluated. The electron drift velocity, energy and free flight time are simulated as a function of applied electric field at an impurity concentration of 1x10 18 cm 3 in room temperature. The simulated drift velocity with electric field dependencies is in a good agreement with experimental results found in literature. The saturation velocities for both polytypes are close, but the scattering rates are much more pronounced for 6H-SiC. Our simulation model clearly shows complete electron transport properties in 4H- and 6H-SiC.
Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments
International Nuclear Information System (INIS)
Cupini, E.
1999-01-01
The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it
Energy Technology Data Exchange (ETDEWEB)
O' Brien, M. J.; Brantley, P. S.
2015-01-20
In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 2^{21} = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.
Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport
International Nuclear Information System (INIS)
2006-01-01
The computer code system PENELOPE (version 2006) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. These proceedings contain the corresponding manual and teaching notes of the PENELOPE-2006 workshop and training course, held on 4-7 July 2006 in Barcelona, Spain. (author)
A study of certain Monte Carlo search and optimisation methods
International Nuclear Information System (INIS)
Budd, C.
1984-11-01
Studies are described which might lead to the development of a search and optimisation facility for the Monte Carlo criticality code MONK. The facility envisaged could be used to maximise a function of k-effective with respect to certain parameters of the system or, alternatively, to find the system (in a given range of systems) for which that function takes a given value. (UK)
Application of Monte Carlo method to solving boundary value problem of differential equations
International Nuclear Information System (INIS)
Zuo Yinghong; Wang Jianguo
2012-01-01
This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)
International Nuclear Information System (INIS)
Wagner, John C.; Mosher, Scott W.; Evans, Thomas M.; Peplow, Douglas E.; Turner, John A.
2010-01-01
This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which
International Nuclear Information System (INIS)
Wagner, J.C.; Mosher, S.W.; Evans, T.M.; Peplow, D.E.; Turner, J.A.
2010-01-01
This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method
Quasi-Monte Carlo methods for lattice systems. A first look
International Nuclear Information System (INIS)
Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2013-02-01
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Randomly dispersed particle fuel model in the PSG Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Leppaenen, J.
2007-01-01
High-temperature gas-cooled reactor fuels are composed of thousands of microscopic fuel particles, randomly dispersed in a graphite matrix. The modelling of such geometry is complicated, especially using continuous-energy Monte Carlo codes, which are unable to apply any deterministic corrections in the calculation. This paper presents the geometry routine developed for modelling randomly dispersed particle fuels using the PSG Monte Carlo reactor physics code. The model is based on the delta-tracking method, and it takes into account the spatial self-shielding effects and the random dispersion of the fuel particles. The calculation routine is validated by comparing the results to reference MCNP4C calculations using uranium and plutonium based fuels. (authors)
International Nuclear Information System (INIS)
Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang
2014-01-01
The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)
Calculation of neutron importance function in fissionable assemblies using Monte Carlo method
International Nuclear Information System (INIS)
Feghhi, S. A. H.; Afarideh, H.; Shahriari, M.
2007-01-01
The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor
Energy Technology Data Exchange (ETDEWEB)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.
Monte-Carlo simulation of complex vapor-transport systems for RIB applications
International Nuclear Information System (INIS)
Zhang, Y.; Alton, G.D.
2005-01-01
In order to minimize decay losses of short-lived radioactive species at ISOL based RIB facilities, effusive-flow particle transit times between target and ion source must be as short as practically achievable. A Monte-Carlo code has been developed for simulating the effusive-flow of neutral particles through vapor-transport systems independent of materials of construction. The code provides average distance traveled and time information associated with the transit of individual particles through a system. It offers a cost effective and accurate means for arriving at vapor-transport system designs. In this report, the code will be described and results obtained by its use in evaluating several prototype vapor-transport systems using specular reflection, cosine and isotropic particle re-emission about the normal to the surface models following adsorption. Simulation results obtained with an isotropic distribution are in close agreement with experimental measurements of the properties of prototype vapor-transport systems fabricated at the Holifield Radioactive Ion Beam Facility
The electron transport problem sampling by Monte Carlo individual collision technique
International Nuclear Information System (INIS)
Androsenko, P.A.; Belousov, V.I.
2005-01-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
The electron transport problem sampling by Monte Carlo individual collision technique
Energy Technology Data Exchange (ETDEWEB)
Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)
2005-07-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
Study of the quantitative analysis approach of maintenance by the Monte Carlo simulation method
International Nuclear Information System (INIS)
Shimizu, Takashi
2007-01-01
This study is examination of the quantitative valuation by Monte Carlo simulation method of maintenance activities of a nuclear power plant. Therefore, the concept of the quantitative valuation of maintenance that examination was advanced in the Japan Society of Maintenology and International Institute of Universality (IUU) was arranged. Basis examination for quantitative valuation of maintenance was carried out at simple feed water system, by Monte Carlo simulation method. (author)
Review of Monte Carlo methods for particle multiplicity evaluation
Armesto-Pérez, Nestor
2005-01-01
I present a brief review of the existing models for particle multiplicity evaluation in heavy ion collisions which are at our disposal in the form of Monte Carlo simulators. Models are classified according to the physical mechanisms with which they try to describe the different stages of a high-energy collision between heavy nuclei. A comparison of predictions, as available at the beginning of year 2000, for multiplicities in central AuAu collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and PbPb collisions at the CERN Large Hadron Collider (LHC) is provided.
Review of Monte Carlo methods for particle multiplicity evaluation
International Nuclear Information System (INIS)
Armesto, Nestor
2005-01-01
I present a brief review of the existing models for particle multiplicity evaluation in heavy ion collisions which are at our disposal in the form of Monte Carlo simulators. Models are classified according to the physical mechanisms with which they try to describe the different stages of a high-energy collision between heavy nuclei. A comparison of predictions, as available at the beginning of year 2000, for multiplicities in central AuAu collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and PbPb collisions at the CERN Large Hadron Collider (LHC) is provided
Estimation of coincidence and correlation in non-analogous Monte Carlo particle transport - 159
International Nuclear Information System (INIS)
Szieberth, M.; Leen Kloosterman, J.
2010-01-01
The conventional non-analogous Monte Carlo methods are optimized to preserve the mean value of the distributions and therefore they are not suited for non-Boltzmann problems like the estimation of coincidences or correlations. This paper presents a general method called history splitting for the non-analogous estimation of such quantities. The basic principle of the method is that a non-analogous particle history can be interpreted as a collection of analogous histories with different weights according to the probability of their realization. Calculations with a simple Monte Carlo program for a pulse-height-type estimator prove that the method is feasible and provides unbiased estimation. Different variance reduction techniques have been tried with the method and Russian roulette turned out to be ineffective in high multiplicity systems. An alternative history control method is applied instead. Simulation results of a Feynman-α measurement shows that even the reconstruction of the higher moments is possible with the history splitting method, which makes the simulation of neutron noise measurements feasible. (authors)
Methods of making transportation fuel
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2012-04-10
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.
International Nuclear Information System (INIS)
Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung
2004-05-01
In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy
International Nuclear Information System (INIS)
Androsenko, P.; Joloudov, D.; Kompaniyets, A.
2001-01-01
Questions, related to Monte-Carlo method for solution of neutron and photon transport equation, are discussed in the work concerned. Problems dealing with direct utilization of information from evaluated nuclear data files in run-time calculations are considered. ENDF-6 format libraries have been used for calculations. Approaches provided by the rules of ENDF-6 files 2, 3-6, 12-15, 23, 27 and algorithms for reconstruction of resolved and unresolved resonance region cross sections under preset energy are described. The comparison results of calculations made by NJOY and GRUCON programs and computed cross sections data are represented. Test computation data of neutron leakage spectra for spherical benchmark-experiments are also represented. (authors)
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
Calculation of neutron importance function in fissionable assemblies using Monte Carlo method
International Nuclear Information System (INIS)
Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.
2007-01-01
The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor
Directory of Open Access Journals (Sweden)
José Luiz Ferreira Martins
2011-09-01
Full Text Available O objetivo deste artigo é o de analisar a viabilidade da utilização do método de Monte Carlo para estimar a produtividade na soldagem de tubulações industriais de aço carbono com base em amostras pequenas. O estudo foi realizado através de uma análise de uma amostra de referência contendo dados de produtividade de 160 juntas soldadas pelo processo Eletrodo Revestido na REDUC (refinaria de Duque de Caxias, utilizando o software ControlTub 5.3. A partir desses dados foram retiradas de forma aleatória, amostras com, respectivamente, 10, 15 e 20 elementos e executadas simulações pelo método de Monte Carlo. Comparando-se os resultados da amostra com 160 elementos e os dados gerados por simulação se observa que bons resultados podem ser obtidos usando o método de Monte Carlo para estimativa da produtividade da soldagem. Por outro lado, na indústria da construção brasileira o valor da média de produtividade é normalmente usado como um indicador de produtividade e é baseado em dados históricos de outros projetos coletados e avaliados somente após a conclusão do projeto, o que é uma limitação. Este artigo apresenta uma ferramenta para avaliação da execução em tempo real, permitindo ajustes nas estimativas e monitoramento de produtividade durante o empreendimento. Da mesma forma, em licitações, orçamentos e estimativas de prazo, a utilização desta técnica permite a adoção de outras estimativas diferentes da produtividade média, que é comumente usada e como alternativa, se sugerem três critérios: produtividade otimista, média e pessimista.The aim of this article is to analyze the feasibility of using Monte Carlo method to estimate productivity in industrial pipes welding of carbon steel based on small samples. The study was carried out through an analysis of a reference sample containing productivity data of 160 welded joints by SMAW process in REDUC (Duque de Caxias Refinery, using ControlTub 5.3 software
International Nuclear Information System (INIS)
Biondo, Elliott D.; Wilson, Paul P. H.
2017-01-01
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation of an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 _± 5 • _1_0_"_4 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.
Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement
Directory of Open Access Journals (Sweden)
Joko Siswantoro
2014-01-01
Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.
Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari
2014-01-01
Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
An outline review of numerical transport methods
International Nuclear Information System (INIS)
Budd, C.
1981-01-01
A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)
Monte Carlo modelling of impurity ion transport for a limiter source/sink
International Nuclear Information System (INIS)
Stangeby, P.C.; Farrell, C.; Hoskins, S.; Wood, L.
1988-01-01
In relating the impurity influx Φ I (0) (atoms per second) into a plasma from the edge to the central impurity ion density n I (0) (ions·m -3 ), it is necessary to know the value of τ I SOL , the average dwell time of impurity ions in the scrape-off layer. It is usually assumed that τ I SOL =L c /c s , the hydrogenic dwell time, where L c is the limiter connection length and c s is the hydrogenic ion acoustic speed. Monte Carlo ion transport results are reported here which show that, for a wall (uniform) influx, τ I SOL is longer than L c /c s , while for a limiter influx it is shorter. Thus for a limiter influx n I (0) is predicted to be smaller than the reference value. Impurities released from the limiter form ever large 'clouds' of successively higher ionization stages. These are reproduced by the Monte Carlo code as are the cloud shapes for a localized impurity injection far from the limiter. (author). 23 refs, 18 figs, 6 tabs
penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE
International Nuclear Information System (INIS)
Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.
2015-01-01
The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high-performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
Smith, L.M.; Hochstedler, R.D.
1997-01-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)
TOPIC: a debugging code for torus geometry input data of Monte Carlo transport code
International Nuclear Information System (INIS)
Iida, Hiromasa; Kawasaki, Hiromitsu.
1979-06-01
TOPIC has been developed for debugging geometry input data of the Monte Carlo transport code. the code has the following features: (1) It debugs the geometry input data of not only MORSE-GG but also MORSE-I capable of treating torus geometry. (2) Its calculation results are shown in figures drawn by Plotter or COM, and the regions not defined or doubly defined are easily detected. (3) It finds a multitude of input data errors in a single run. (4) The input data required in this code are few, so that it is readily usable in a time sharing system of FACOM 230-60/75 computer. Example TOPIC calculations in design study of tokamak fusion reactors (JXFR, INTOR-J) are presented. (author)
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
Smith, L. M.; Hochstedler, R. D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).
Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations
International Nuclear Information System (INIS)
Hadad, K.
2000-01-01
A study was done to evaluate a 3-D S N charged particle transport code called SMARTEPANTS 1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS 2 . The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S 8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations
A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT
Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J
2001-01-01
We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...
Space applications of the MITS electron-photon Monte Carlo transport code system
International Nuclear Information System (INIS)
Kensek, R.P.; Lorence, L.J.; Halbleib, J.A.; Morel, J.E.
1996-01-01
The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction
Improved cache performance in Monte Carlo transport calculations using energy banding
Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.
2014-04-01
We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.
Monte Carlo photon transport on shared memory and distributed memory parallel processors
International Nuclear Information System (INIS)
Martin, W.R.; Wan, T.C.; Abdel-Rahman, T.S.; Mudge, T.N.; Miura, K.
1987-01-01
Parallelized Monte Carlo algorithms for analyzing photon transport in an inertially confined fusion (ICF) plasma are considered. Algorithms were developed for shared memory (vector and scalar) and distributed memory (scalar) parallel processors. The shared memory algorithm was implemented on the IBM 3090/400, and timing results are presented for dedicated runs with two, three, and four processors. Two alternative distributed memory algorithms (replication and dispatching) were implemented on a hypercube parallel processor (1 through 64 nodes). The replication algorithm yields essentially full efficiency for all cube sizes; with the 64-node configuration, the absolute performance is nearly the same as with the CRAY X-MP. The dispatching algorithm also yields efficiencies above 80% in a large simulation for the 64-processor configuration
Monte Carlo electron-transport calculations for clinical beams using energy grouping
Energy Technology Data Exchange (ETDEWEB)
Teng, S P; Anderson, D W; Lindstrom, D G
1986-01-01
A Monte Carlo program has been utilized to study the penetration of broad electron beams into a water phantom. The MORSE-E code, originally developed for neutron and photon transport, was chosen for adaptation to electrons because of its versatility. The electron energy degradation model employed logarithmic spacing of electron energy groups and included effects of elastic scattering, inelastic-moderate-energy-loss-processes and inelastic-large-energy-loss-processes (catastrophic). Energy straggling and angular deflections were modeled from group to group, using the Moeller cross section for energy loss, and Goudsmit-Saunderson theory to describe angular deflections. The resulting energy- and electron-deposition distributions in depth were obtained at 10 and 20 MeV and are compared with ETRAN results and broad beam experimental data from clinical accelerators.
MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners
International Nuclear Information System (INIS)
Prettyman, T.H.; Gardner, R.P.; Verghese, K.
1990-01-01
MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)
SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research
DEFF Research Database (Denmark)
Bassler, Niels; Hansen, David Christoffer; Lühr, Armin
2014-01-01
. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction......Abstract. Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The “-A” fork of SHIELD-HIT also aims to attach SHIELD....... It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms...
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Report on some methods of determining the state of convergence of Monte Carlo risk estimates
International Nuclear Information System (INIS)
Orford, J.L.; Hufton, D.; Johnson, K.
1991-05-01
The Department of the Environment is developing a methodology for assessing potential sites for the disposal of low and intermediate level radioactive wastes. Computer models are used to simulate the groundwater transport of radioactive materials from a disposal facility back to man. Monte Carlo methods are being employed to conduct a probabilistic risk assessment (pra) of potential sites. The models calculate time histories of annual radiation dose to the critical group population. The annual radiation dose to the critical group in turn specifies the annual individual risk. The distribution of dose is generally highly skewed and many simulation runs are required to predict the level of confidence in the risk estimate i.e. to determine whether the risk estimate is converged. This report describes some statistical methods for determining the state of convergence of the risk estimate. The methods described include the Shapiro-Wilk test, calculation of skewness and kurtosis and normal probability plots. A method for forecasting the number of samples needed before the risk estimate is converged is presented. Three case studies were conducted to examine the performance of some of these techniques. (author)
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Ilic, R D; Stankovic, S J
2002-01-01
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...
New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation
International Nuclear Information System (INIS)
Sauvan, P.; Sanz, J.; Ogando, F.
2010-01-01
Several important research programs are dedicated to the development of facilities based on deuteron accelerators. In designing these facilities, the definition of a validated computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision is a very important issue. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculations use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in those facilities. We present a new computational tool, resulting from an extension of the MCNPX code, which improve significantly the treatment of problems where any secondary product (neutrons, photons, tritons, etc.) generated by low energy deuterons reactions could play a major role. Firstly, it handles deuteron evaluated data libraries, which allow describing better low deuteron energy interactions. Secondly, it includes a reduction variance technique for production of secondary particles by charged particle-induced nuclear interactions, which allow reducing drastically the computing time needed in transport and nuclear response calculations. Verification of the computational tool is successfully achieved. This tool can be very helpful in addressing design issues such as selection of the dedicated neutron production target and accelerator radioprotection analysis. It can be also helpful to test the deuteron cross-sections under development in the frame of different international nuclear data programs.
International Nuclear Information System (INIS)
Warren, Kevin; Reed, Robert; Weller, Robert; Mendenhall, Marcus; Sierawski, Brian; Schrimpf, Ronald
2011-01-01
MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University's Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. In addition to basic radiation transport physics contained in the Geant4 core, MRED has the capability to track energy loss in tetrahedral geometric objects, includes a cross section biasing and track weighting technique for variance reduction, and additional features relevant to semiconductor device applications. The crucial element of predicting Single Event Upset (SEU) parameters using radiation transport software is the creation of a dosimetry model that accurately approximates the net collected charge at transistor contacts as a function of deposited energy. The dosimetry technique described here is the multiple sensitive volume (MSV) model. It is shown to be a reasonable approximation of the charge collection process and its parameters can be calibrated to experimental measurements of SEU cross sections. The MSV model, within the framework of MRED, is examined for heavy ion and high-energy proton SEU measurements of a static random access memory.
Directory of Open Access Journals (Sweden)
Xin Ran
2018-05-01
Full Text Available The knowledge of interfacial phonon transport accounting for detailed phonon spectral properties is desired because of its importance for design of nanoscale energy systems. In this work, we investigate the interfacial phonon transport through Si/Ge multilayer films using an efficient Monte Carlo scheme with spectral transmissivity, which is validated for cross-plane phonon transport through both Si/Ge single-layer and Si/Ge bi-layer thin films by comparing with the discrete-ordinates solution. Different thermal boundary conductances between even the same material pair are declared at different interfaces within the multilayer system. Furthermore, the thermal boundary conductances at different interfaces show different trends with varying total system size, with the variation slope, very different as well. The results are much different from those in the bi-layer thin film or periodic superlattice. These unusual behaviors can be attributed to the combined interfacial local non-equilibrium effect and constraint effect from other interfaces.
Monte Carlo simulation of ballistic transport in high-mobility channels
Energy Technology Data Exchange (ETDEWEB)
Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R [Institut d' Electronique du Sud (CNRS UMR 5214) - Universite Montpellier II (France); Rodilla, H; Gonzalez, T; Mateos, J, E-mail: sabatini@ies.univ-montp2.f [Departamento de Fisica Aplicada - Universidad de Salamanca (Spain)
2009-11-15
By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10{sup 5} m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.
Monte Carlo simulation of ballistic transport in high-mobility channels
International Nuclear Information System (INIS)
Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R; Rodilla, H; Gonzalez, T; Mateos, J
2009-01-01
By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10 5 m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.
Monte Carlo modeling of transport in PbSe nanocrystal films
Energy Technology Data Exchange (ETDEWEB)
Carbone, I., E-mail: icarbone@ucsc.edu; Carter, S. A. [University of California, Santa Cruz, California 95060 (United States); Zimanyi, G. T. [University of California, Davis, California 95616 (United States)
2013-11-21
A Monte Carlo hopping model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated hopping events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of particle size, charging, interparticle coupling, and energetic disorder on electron and hole mobilities were investigated. Results of simulated field-effect measurements confirm that electron mobilities and conductivities at constant carrier densities increase with particle diameter by an order of magnitude up to 5 nm and begin to decrease above 6 nm. We find that as particle size increases, fewer hops are required to traverse the same distance and that site energy disorder significantly inhibits transport in films composed of smaller nanoparticles. The dip in mobilities and conductivities at larger particle sizes can be explained by a decrease in tunneling amplitudes and by charging penalties that are incurred more frequently when carriers are confined to fewer, larger nanoparticles. Using a nearly identical set of parameter values as the electron simulations, hole mobility simulations confirm measurements that increase monotonically with particle size over two orders of magnitude.
Stencil method: a Markov model for transport in porous media
Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.
2016-12-01
In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
1979-11-01
The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables
Novel Parallel Numerical Methods for Radiation and Neutron Transport
International Nuclear Information System (INIS)
Brown, P N
2001-01-01
In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both
The calculation of neutron flux using Monte Carlo method
Günay, Mehtap; Bardakçı, Hilal
2017-09-01
In this study, a hybrid reactor system was designed by using 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2 fluids, ENDF/B-VII.0 evaluated nuclear data library and 9Cr2WVTa structural material. The fluids were used in the liquid first wall, liquid second wall (blanket) and shield zones of a fusion-fission hybrid reactor system. The neutron flux was calculated according to the mixture components, radial, energy spectrum in the designed hybrid reactor system for the selected fluids, library and structural material. Three-dimensional nucleonic calculations were performed using the most recent version MCNPX-2.7.0 the Monte Carlo code.