WorldWideScience

Sample records for transport methods development

  1. Particle transport methods for LWR dosimetry developed by the Penn State transport theory group

    International Nuclear Information System (INIS)

    Haghighat, A.; Petrovic, B.

    1997-01-01

    This paper reviews advanced particle transport theory methods developed by the Penn State Transport Theory Group (PSTTG) over the past several years. These methods have been developed in response to increasing needs for accuracy of results and for three-dimensional modeling of nuclear systems

  2. Recently developed methods in neutral-particle transport calculations: overview

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1982-01-01

    It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations

  3. Research on assessment methods for urban public transport development in China.

    Science.gov (United States)

    Zou, Linghong; Dai, Hongna; Yao, Enjian; Jiang, Tian; Guo, Hongwei

    2014-01-01

    In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method.

  4. Development of numerical methods for reactive transport

    International Nuclear Information System (INIS)

    Bouillard, N.

    2006-12-01

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  5. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external

  6. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  7. Development of a CAD-based neutron transport code with the method of characteristics

    International Nuclear Information System (INIS)

    Chen Zhenping; Wang Dianxi; He Tao; Wang Guozhong; Zheng Huaqing

    2012-01-01

    The main problem determining whether the method of characteristics (MOC) can be used in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. In this study, a new idea making use of MCAM, which is a Mutlti-Calculation Automatic Modeling for Neutronics and Radiation Transport program developed by FDS Team, for geometry description and ray tracing of particle transport was brought forward to solve the geometry problem mentioned above. Based on the theory and approach as the foregoing statement, a two dimensional neutron transport code was developed which had been integrated into VisualBUS, developed by FDS Team. Several benchmarks were used to verify the validity of the code and the numerical results were coincident with the reference values very well, which indicated the accuracy and feasibility of the method and the MOC code. (authors)

  8. Development of three-dimensional transport code by the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1985-01-01

    Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)

  9. Development of new multigrid schemes for the method of characteristics in neutron transport theory

    International Nuclear Information System (INIS)

    Grassi, G.

    2006-01-01

    This dissertation is based upon our doctoral research that dealt with the conception and development of new non-linear multigrid techniques for the Method of the Characteristics (MOC) within the TDT code. Here we focus upon a two-level scheme consisting of a fine level on which the neutron transport equation is iteratively solved using the MOC algorithm, and a coarse level defined by a more coarsely discretized phase space on which a low-order problem is considered. The solution of this problem is then used in order to correct the angular flux moments resulting from the previous transport iteration. A flux-volume homogenization procedure is employed to evaluate the coarse-level material properties after each transport iteration. This entails the non-linearity of the methods. According to the Generalised Equivalence Theory (GET), additional degrees of freedom are introduced for the low-order problem so that the convergence of the acceleration scheme can be ensured. We present two classes of non-linear methods: transport-like methods and discussion-like methods. Transport-like methods consider a homogenized low-order transport problem on the coarse level. This problem is iteratively solved using the same MOC algorithm as for the transport problem on the fine level. Discontinuity factors are then employed, per region or per surface, in order to reconstruct the currents evaluated by the low-order operator, which ensure the convergence of the acceleration scheme. On the other hand, discussion-like methods consider a low-order problem inspired by diffusion. We studied the non-linear Coarse Mesh Finite Difference (CMFD) method, already present in literature, in the perspective of integrating it into TDT code. Then, we developed a new non-linear method on the model of CMFD. From the latter, we borrowed the idea to establish a simple relation between currents and fluxes in order to obtain a problem involving only coarse fluxes. Finally, those non-linear methods have been

  10. To the development of numerical methods in problems of radiation transport

    International Nuclear Information System (INIS)

    Germogenova, T.A.

    1990-01-01

    Review of studies on the development of numerical methods and the discrete ordinate method in particular, used for solution of radiation protection physics problems is given. Consideration is given to the problems, which arise when calculating fields of penetrating radiation and when studying processes of charged-particle transport and cascade processes, generated by high-energy primary radiation

  11. Improvement of economic security management system of municipalities with account of transportation system development: methods of assessment

    Science.gov (United States)

    Khe Sun, Pak; Vorona-Slivinskaya, Lubov; Voskresenskay, Elena

    2017-10-01

    The article highlights the necessity of a complex approach to assess economic security of municipalities, which would consider municipal management specifics. The approach allows comparing the economic security level of municipalities, but it does not describe parameter differences between compared municipalities. Therefore, there is a second method suggested: parameter rank order method. Applying these methods allowed to figure out the leaders and outsiders of the economic security among municipalities and rank all economic security parameters according to the significance level. Complex assessment of the economic security of municipalities, based on the combination of the two approaches, allowed to assess the security level more accurate. In order to assure economic security and equalize its threshold values, one should pay special attention to transportation system development in municipalities. Strategic aims of projects in the area of transportation infrastructure development in municipalities include the following issues: contribution into creating and elaborating transportation logistics and manufacture transport complexes, development of transportation infrastructure with account of internal and external functions of the region, public transport development, improvement of transport security and reducing its negative influence on the environment.

  12. New methods in linear transport theory. Part of a coordinated programme on methods in neutron transport theory

    International Nuclear Information System (INIS)

    Mika, J.

    1975-09-01

    Originally the work was oriented towards two main topics: a) difference and integral methods in neutron transport theory. Two computers were used for numerical calculations GIER and CYBER-72. During the first year the main effort was shifted towards basic theoretical investigations. At the first step the ANIS code was adopted and later modified to check various finite difference approaches against each other. Then the general finite element method and the singular perturbation method were developed. The analysis of singularities of the one-dimensional neutron transport equation in spherical geometry has been done and presented. Later the same analysis for the case of cylindrical symmetry has been carried out. The second and the third year programme included the following topics: 1) finite difference methods in stationary neutron transport theory; 2)mathematical fundamentals of approximate methods for solving the transport equation; 3) singular perturbation method for the time-dependent transport equation; 4) investigation of various iterative procedures in reactor calculations. This investigation will help to better understanding of the mathematical basis for existing and developed numerical methods resulting in more effective algorithms for reactor computer codes

  13. Webcams, crowdsourcing, and enhanced crosswalks: Developing a novel method to analyze active transportation

    Directory of Open Access Journals (Sweden)

    J. Aaron eHipp

    2016-05-01

    Full Text Available Introduction: Active transportation opportunities and infrastructure are an important component of a community’s design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. Methods: 20,529 publicly available webcam images from two street intersections in Washington, D.C., were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data was collected from the National Oceanic and Atmospheric Administration, and precipitation data was annotated from images by trained research assistants. Results: Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (p<0.5. Conclusion: The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of

  14. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  15. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  16. New methods in transport theory. Part of a coordinated programme on methods in neutron transport theory

    International Nuclear Information System (INIS)

    Stefanovic, D.

    1975-09-01

    The research work of this contract was oriented towards the study of different methods in neutron transport theory. Authors studied analytical solution of the neutron slowing down transport equation and extension of this solution to include the energy dependence of the anisotropy of neutron scattering. Numerical solution of the fast and resonance transport equation for the case of mixture of scatterers including inelastic effects were also reviewed. They improved the existing formalism for treating the scattering of neutrons on water molecules; Identifying modal analysis as the Galerkin method, general conditions for modal technique applications have been investigated. Inverse problems in transport theory were considered. They obtained the evaluation of an advanced level distribution function, made improvement of the standard formalism for treating the inelastic scattering and development of a cluster nuclear model for this evaluation. Authors studied the neutron transport treatment in space energy groups for criticality calculation of a reactor core, and development of the Monte Carlo sampling scheme from the neutron transport equation

  17. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  18. Webcams, Crowdsourcing, and Enhanced Crosswalks: Developing a Novel Method to Analyze Active Transportation.

    Science.gov (United States)

    Hipp, J Aaron; Manteiga, Alicia; Burgess, Amanda; Stylianou, Abby; Pless, Robert

    2016-01-01

    Active transportation opportunities and infrastructure are an important component of a community's design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. The 20,529 publicly available webcam images from two street intersections in Washington, DC, USA were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data were collected from the National Oceanic and Atmospheric Administration, and precipitation data were annotated from images by trained research assistants. Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (P < 0.5). The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of settings as well as across different built

  19. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  20. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    Science.gov (United States)

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  1. Novel Parallel Numerical Methods for Radiation and Neutron Transport

    International Nuclear Information System (INIS)

    Brown, P N

    2001-01-01

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both

  2. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  3. Quantitative Efficiency Evaluation Method for Transportation Networks

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2014-11-01

    Full Text Available An effective evaluation of transportation network efficiency/performance is essential to the establishment of sustainable development in any transportation system. Based on a redefinition of transportation network efficiency, a quantitative efficiency evaluation method for transportation network is proposed, which could reflect the effects of network structure, traffic demands, travel choice, and travel costs on network efficiency. Furthermore, the efficiency-oriented importance measure for network components is presented, which can be used to help engineers identify the critical nodes and links in the network. The numerical examples show that, compared with existing efficiency evaluation methods, the network efficiency value calculated by the method proposed in this paper can portray the real operation situation of the transportation network as well as the effects of main factors on network efficiency. We also find that the network efficiency and the importance values of the network components both are functions of demands and network structure in the transportation network.

  4. Development and validation of a new fallout transport method using variable spectral winds

    International Nuclear Information System (INIS)

    Hopkins, A.T.

    1984-01-01

    A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud

  5. GREY STATISTICS METHOD OF TECHNOLOGY SELECTION FOR ADVANCED PUBLIC TRANSPORTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Chien Hung WEI

    2003-01-01

    Full Text Available Taiwan is involved in intelligent transportation systems planning, and is now selecting its prior focus areas for investment and development. The high social and economic impact associated with which intelligent transportation systems technology are chosen explains the efforts of various electronics and transportation corporations for developing intelligent transportation systems technology to expand their business opportunities. However, there has been no detailed research conducted with regard to selecting technology for advanced public transportation systems in Taiwan. Thus, the present paper demonstrates a grey statistics method integrated with a scenario method for solving the problem of selecting advanced public transportation systems technology for Taiwan. A comprehensive questionnaire survey was conducted to demonstrate the effectiveness of the grey statistics method. The proposed approach indicated that contactless smart card technology is the appropriate technology for Taiwan to develop in the near future. The significance of our research results implies that the grey statistics method is an effective method for selecting advanced public transportation systems technologies. We feel our information will be beneficial to the private sector for developing an appropriate intelligent transportation systems technology strategy.

  6. METHODS OF DIAGNOSTIC EFFECTIVENESS ORGANIZATIONAL CHANGES IN CARGO MOTOR TRANSPORTATION ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Denis Sergeevich Antipov

    2017-03-01

    Full Text Available The article propose methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations. The article contain the main results approbation of the developed methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations in 37 cargo motor transportation organizations of Saint-Petersburg and the Leningrad Region. Constructed diagrams of conformity specific weights resulting from organizational changes in cargo motor transportation organizations. Presents diagrams effectiveness organizational changes in cargo motor transportation organizations at every stages of the life cycle. The goal of the present paper is to development methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations.

  7. Assessment of sustainable urban transport development based on entropy and unascertained measure.

    Science.gov (United States)

    Li, Yancang; Yang, Jing; Shi, Huawang; Li, Yijie

    2017-01-01

    To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development.

  8. Concerning temporary method for return transport of plutonium

    International Nuclear Information System (INIS)

    1990-01-01

    One of the urgent matters under deliberation in the Working Group for Nuclear Fuel Cycle, Atomic Energy Comission of Japan, is to develop a method for smooth and safe transport of plutonium to be returned from Britain and France, where spent fuel sent from Japan is reprocessed by contract. Return transport of plutonium from these nations will start in 1992. Preparatory work has been conducted in Japan for air transport of plutonium, which is to be used by Power Reactor and Nuclear Fuel Development Corporation. For this, efforts have been made since 1984 to develop containers for air transport of plutonium. Though the corporation will continue research, it will take considerable time until practical containers are developed, so the material have to be transported by sea for the time being. The corporation should play the leading role in conducting the return transport operation in cooperation with other organizations concerned including power companies. To achieve this, the corporation should be active in making preparations including the development of transport plans. (N.K.)

  9. Recent developments in discrete ordinates electron transport

    International Nuclear Information System (INIS)

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  10. Research on new methods in transport theory

    International Nuclear Information System (INIS)

    Stefanovicj, D.

    1975-01-01

    Neutron transport theory is the basis for development of reactor theory and reactor calculational methods. It has to be acknowledged that recent applications of these disciplines have influenced considerably the development of power reactor concepts and technology. However, these achievements were implemented in a rather heuristic way, since the satisfaction of design demands were of utmost importance. Often this kind of approach turns out to be very restrictive and not even adequate for rather typical reactor applications. Many aspects and techniques of reactor theory and calculations ought to be reevaluated and/or reformulated on the more sound physical and mathematical foundations. At the same time, new reactor concepts and operational demands give rise to more sophisticated and complex design requirements. These new requirements can be met only by the development of new design techniques, which in the case of reactor neutronic calculation lead directly to the advanced transport theory methods. In addition, the rapid development of computer technology opens new opportunities for applications of advanced transport theory in practical calculations

  11. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  12. Environmental impact from different modes of transport. Method of comparison

    International Nuclear Information System (INIS)

    2002-03-01

    A prerequisite of long-term sustainable development is that activities of various kinds are adjusted to what humans and the natural world can tolerate. Transport is an activity that affects humans and the environment to a very great extent and in this project, several actors within the transport sector have together laid the foundation for the development of a comparative method to be able to compare the environmental impact at the different stages along the transport chain. The method analyses the effects of different transport concepts on the climate, noise levels, human health, acidification, land use and ozone depletion. Within the framework of the method, a calculation model has been created in Excel which acts as a basis for the comparisons. The user can choose to download the model from the Swedish EPA's on-line bookstore or order it on a floppy disk. Neither the method nor the model are as yet fully developed but our hope is that they can still be used in their present form as a basis and inspire further efforts and research in the field. In the report, we describe most of these shortcomings, the problems associated with the work and the existing development potential. This publication should be seen as the first stage in the development of a method of comparison between different modes of transport in non-monetary terms where there remains a considerable need for further development and amplification

  13. Range calculations using multigroup transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.

    1979-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of particle range distributions. These techniques are illustrated by analysis of Au-196 atoms recoiling from (n,2n) reactions with gold. The results of these calculations agree very well with range calculations performed with the atomistic code MARLOWE. Although some detail of the atomistic model is lost in the multigroup transport calculations, the improved computational speed should prove useful in the solution of fusion material design problems

  14. An inverse method for radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, J. A. (Jeffrey A.); Sanchez, R. (Richard)

    2004-01-01

    Adjoint functions have been used with forward functions to compute gradients in implicit (iterative) solution methods for inverse problems in optical tomography, geoscience, thermal science, and other fields, but only once has this approach been used for inverse solutions to the Boltzmann transport equation. In this paper, this approach is used to develop an inverse method that requires only angle-independent flux measurements, rather than angle-dependent measurements as was done previously. The method is applied to a simplified form of the transport equation that does not include scattering. The resulting procedure uses measured values of gamma-ray fluxes of discrete, characteristic energies to determine interface locations in a multilayer shield. The method was implemented with a Newton-Raphson optimization algorithm, and it worked very well in numerical one-dimensional spherical test cases. A more sophisticated optimization method would better exploit the potential of the inverse method.

  15. Innovative electron transport methods in EGS5

    International Nuclear Information System (INIS)

    Bielajew, A.F.; Wilderman, S.J.

    2000-01-01

    The initial formulation of a Monte Carlo scheme for the transport of high-energy (>≅ 100 keV) electrons was established by Berger in 1963. Calling his method the 'condensed history theory', Berger combined the theoretical results of the previous generation of research into developing approximate solutions of the Boltzmann transport equation with numerical algorithms for exploiting the power of computers to permit iterative, piece-wise solution of the transport equation in a computationally intensive but much less approximate fashion. The methods devised by Berger, with comparatively little modification, provide the foundation of all present day Monte Carlo electron transport simulation algorithms. Only in the last 15 years, beginning with the development and publication of the PRESTA algorithm, has there been a significant revisitation of the problem of simulating electron transport within the condensed history framework. Research in this area is ongoing, highly active, and far from complete. It presents an enormous challenge, demanding derivation of new analytical transport solutions based on underlying fundamental interaction mechanisms, intuitive insight in the development of computer algorithms, and state of the art computer science skills in order to permit deployment of these techniques in an efficient manner. The EGS5 project, a modern ground-up rewrite of the EGS4 code, is now in the design phase. EGS5 will take modern photon and electron transport algorithms and deploy them in an easy-to-maintain, modern computer language-ANSI-standard C ++. Moreover, the well-known difficulties of applying EGS4 to practical geometries (geometry code development, tally routine design) should be made easier and more intuitive through the use of a visual user interface being designed by Quantum Research, Inc., work that is presented elsewhere in this conference. This report commences with a historical review of electron transport models culminating with the proposal of a

  16. Method to develop data supporting consequence analyses of transporting nuclear materials in the United States

    International Nuclear Information System (INIS)

    Reese, R.T.; Sandoval, R.P.

    1980-01-01

    The Transportation System Safety Evaluation (TSSE) program at Sandia National Laboratories' Transportation Technology Center was initiated to provide the necessary information on source terms for nuclear materials subjected to extreme environments. The techniques for derivation of source terms for the fuel alone has been described as well as the outline for package response. An additional facet of this problem is the development of analytical methods to describe the transport of the released radionuclides from the fuel rods to possible release points. This work is also covered in the TSSE program. Not all the work required will be performed or funded by Sandia; rather existing work will be sought out and ongoing work will be utilized in an attempt to unify the presentation of data and thus increase its usefulness

  17. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

    International Nuclear Information System (INIS)

    Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

    2011-01-01

    A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

  18. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  19. Numerical methods: Analytical benchmarking in transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered

  20. The Random Ray Method for neutral particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Tramm, John R., E-mail: jtramm@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States); Smith, Kord S., E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegela@mcs.anl.gov [Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States)

    2017-08-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  1. The Random Ray Method for neutral particle transport

    International Nuclear Information System (INIS)

    Tramm, John R.; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2017-01-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  2. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  3. STIMULATION METHODS IMPROVEMENT OF EXIT ROUTE ON RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    A. I. Verlan

    2014-01-01

    Full Text Available Purpose. The purpose of the article is to assess the costs, which are redistributed in the system «shipper−railroad−consignee» during routing of rail transportation and the development of tariff simulation methods of shippers to the exit routes formation. Methodology. Using economic and mathematical analysis the distribution of costs among the various participants of transportation process during the exit routes formation is investigated in the article. Findings. For implementation of the tariff simulation methods of exit routes and retention of the existing tariff structure it is proposed to provide in the «Tariff catalogue for freight transportation by railway transport of Ukraine» the discount, differentiated from haulage distance. A new method for determining the fees amount for cars supply and removal on approach tracks by train locomotives was also offered. Originality. As a result of the research a new method for determination of the exit rout efficiency that, unlike the existing one, takes into account the various interests of the individual participants in the transportation process was proposed. The dependence of the correction factors to the tariff for freight transportation in their own cars by direct exit routes from distance haulage was obtained. Implementation of these coefficients provides an approximation of railway tariffs to the traffic handling costs. A method for determination the rate of fees for cars supply and removal on approach tracks by train locomotives was offered. Practical value. InUkraine creation of the tariff discounts system for freight transportation by exit routes consistent with international practice and allows bringing the tariff to the real traffic handling cost. This change on the one hand will provide stimulation for private capital investments in infrastructure development and shunting means of approach tracks, on the other – it will fix the shippers to the railroads and stop their outflow

  4. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  5. Hybrid subgroup decomposition method for solving fine-group eigenvalue transport problems

    International Nuclear Information System (INIS)

    Yasseri, Saam; Rahnema, Farzad

    2014-01-01

    Highlights: • An acceleration technique for solving fine-group eigenvalue transport problems. • Coarse-group quasi transport theory to solve coarse-group eigenvalue transport problems. • Consistent and inconsistent formulations for coarse-group quasi transport theory. • Computational efficiency amplified by a factor of 2 using hybrid SGD for 1D BWR problem. - Abstract: In this paper, a new hybrid method for solving fine-group eigenvalue transport problems is developed. This method extends the subgroup decomposition method to efficiently couple a new coarse-group quasi transport theory with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of the quasi transport theory are its high accuracy, straight-forward implementation and numerical stability. The hybrid method is analyzed for a 1D benchmark problem characteristic of boiling water reactors (BWR). It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computational efficiency up to 12 times compared to direct fine-group transport calculations

  6. A transport synthetic acceleration method for transport iterations

    International Nuclear Information System (INIS)

    Ramone, G.L.; Adams, M.L.

    1997-01-01

    A family of transport synthetic acceleration (TSA) methods for iteratively solving within group scattering problems is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation, which itself is a simplified transport problem. The method for isotropic-scattering problems in X-Y geometry is described. The Fourier analysis of a model problem for equations with no spatial discretization shows that a previously proposed TSA method is unstable in two dimensions but that the modifications make it stable and rapidly convergent. The same procedure for discretized transport equations, using the step characteristic and two bilinear discontinuous methods, shows that discretization enhances TSA performance. A conjugate gradient algorithm for the low-order problem is described, a crude quadrature set for the low-order problem is proposed, and the number of low-order iterations per high-order sweep is limited to a relatively small value. These features lead to simple and efficient improvements to the method. TSA is tested on a series of problems, and a set of parameters is proposed for which the method behaves especially well. TSA achieves a substantial reduction in computational cost over source iteration, regardless of discretization parameters or material properties, and this reduction increases with the difficulty of the problem

  7. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  8. Improved methods for operating public transportation services.

    Science.gov (United States)

    2013-03-01

    In this joint project, West Virginia University and the University of Maryland collaborated in developing improved methods for analyzing and managing public transportation services. Transit travel time data were collected using GPS tracking services ...

  9. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.

  10. Transportation and quantitative analysis of socio-economic development of relations

    Science.gov (United States)

    Chen, Yun

    2017-12-01

    Transportation has a close relationship with socio-economic. This article selects the indicators which can measure the development of transportation and socio-economic, using the method of correlation analysis, regression analysis, intensity of transportation analysis and transport elastic analysis, to analyze the relationship between them quantitatively, so that it has the fact guiding sense in the national development planning for the future.

  11. Development of a three-dimensional neutron transport code DFEM based on the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1996-01-01

    A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)

  12. A method for evaluating transport energy consumption in suburban areas

    International Nuclear Information System (INIS)

    Marique, Anne-Françoise; Reiter, Sigrid

    2012-01-01

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: ► The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. ► Home-to-work travels represent the most important part of calculated transport energy consumption. ► Energy savings can be achieved by reducing distances to travel through a good mix between activities at the

  13. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  14. Development of nuclear spent fuel Maritime transportation scenario

    International Nuclear Information System (INIS)

    Yoo, Min; Kang, Hyun Gook

    2014-01-01

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability

  15. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  16. Geant4-related R&D for new particle transport methods

    CERN Document Server

    Augelli, M; Evans, T; Gargioni, E; Hauf, S; Kim, C H; Kuster, M; Pia, M G; Filho, P Queiroz; Quintieri, L; Saracco, P; Santos, D Souza; Weidenspointner, G; Zoglauer, A

    2009-01-01

    A R&D project has been launched in 2009 to address fundamental methods in radiation transport simulation and revisit Geant4 kernel design to cope with new experimental requirements. The project focuses on simulation at different scales in the same experimental environment: this set of problems requires new methods across the current boundaries of condensed-random-walk and discrete transport schemes. An exploration is also foreseen about exploiting and extending already existing Geant4 features to apply Monte Carlo and deterministic transport methods in the same simulation environment. An overview of this new R&D associated with Geant4 is presented, together with the first developments in progress.

  17. An outline review of numerical transport methods

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)

  18. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  19. Investigating Environmentally Sustainable Transport Based on DALY weights and SIR Method

    Directory of Open Access Journals (Sweden)

    Hossein Nezamianpour Jahromi

    2012-09-01

    Full Text Available Accessibility is one of the main causes of well-being and growth in contemporary societies. Transportation is the backbone of accessibility systems that lead to the growth of economic and social networks and spatial dispersion of activities. Unfortunately, the adverse effects of transportation have a great impact on the natural and human environment. Since transportation is associated with fossil fuel combustion, it results in emissions of pollutants that cause damage to human health. To save the global eco-system, sustainable development has become an international priority. To deal with the sustainability of transportation systems is an important issue as testified by a growing number of initiatives framed to define and measure sustainability in transportation planning and infrastructure planning as well. The capability of environmental assessment as a sustainability instrument is well known. This study proposes a new approach to rank countries based on environmental sustainability development applying disability adjusted life year (DALY weights for transportation sector emissions. DALY weights consider actual impacts of pollutants on human health. By employing SIR method, a superiority and inferiority ranking method is presented for multiple criteria decision making, the sustainability ranking of a number of European countries is presented. Three various ranking methods extracted from SIR ranking method are discussed and the results and the correlation among them are demonstrated.

  20. A method for evaluating transport energy consumption in suburban areas

    Energy Technology Data Exchange (ETDEWEB)

    Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  1. Linear Discontinuous Expansion Method using the Subcell Balances for Unstructured Geometry SN Transport

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Jong Woon; Lee, Young Ouk; Kim, Kyo Youn

    2010-01-01

    The subcell balance methods have been developed for one- and two-dimensional SN transport calculations. In this paper, a linear discontinuous expansion method using sub-cell balances (LDEM-SCB) is developed for neutral particle S N transport calculations in 3D unstructured geometrical problems. At present, this method is applied to the tetrahedral meshes. As the name means, this method assumes the linear distribution of the particle flux in each tetrahedral mesh and uses the balance equations for four sub-cells of each tetrahedral mesh to obtain the equations for the four sub-cell average fluxes which are unknowns. This method was implemented in the computer code MUST (Multi-group Unstructured geometry S N Transport). The numerical tests show that this method gives more robust solution than DFEM (Discontinuous Finite Element Method)

  2. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  3. The influence of territory planning and social development on strategic decisions in passenger transport development

    Directory of Open Access Journals (Sweden)

    D. Griškevičienė

    2004-10-01

    Full Text Available The main factors of space planning and social development which play an important role in making strategic decisions in passenger transportation have been analysed. A number of strategic aims based on major principles of territory transport planning have been formulated. The investigation made has shown that the operation of public transport is not closely connected with the main carcass of urban territories. This decreases the efficiency of public transport, making it less popular and competitive compared to automobiles. The creation of the strategy of public transport development for the period of its integration into the EU system requires the use of methods taking into account territory planning and social and economic development of the country. The integration of new territories into the existing transportation system, optimization of routes and the increase of transport service quality are aimed to provide higher living standards and better social and economic conditions for the inhabitants. The appropriate tactical decisions in planning the development of modern passenger transport may be made only if the harmonized and well-grounded strategic aims are defined.

  4. A review of the facile (FN) method in particle transport theory

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    1986-02-01

    The facile F N method for solving particle transport problems is reviewed. The fundamentals of the method are summarized, recent developments are discussed and several applications of the method are described in detail. (author) [pt

  5. Transportation in African Development.

    Science.gov (United States)

    Altschul, Robert D.

    1980-01-01

    Examines the structure, role, and needs of Africa's national and intracontinental transportation system. Characteristics of rail, water, road, and air transportation are examined. The conclusion is that high investment in transportation systems is essential to the development process. (Author/KC)

  6. Evaluation of methods to compare consequences from hazardous materials transportation accidents

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Franklin, A.L.; Lavender, J.C.

    1986-10-01

    This report presents the results of a project to develop a framework for making meaningful comparisons of the consequences from transportation accidents involving hazardous materials. The project was conducted in two phases. In Phase I, methods that could potentially be used to develop the consequence comparisons for hazardous material transportation accidents were identified and reviewed. Potential improvements were identified and an evaluation of the improved methods was performed. Based on this evaluation, several methods were selected for detailed evaluation in Phase II of the project. The methods selected were location-dependent scenarios, figure of merit and risk assessment. This evaluation included application of the methods to a sample problem which compares the consequences of four representative hazardous materials - chlorine, propane, spent nuclear fuel and class A explosives. These materials were selected because they represented a broad class of hazardous material properties and consequence mechanisms. The sample case aplication relied extensively on consequence calculations performed in previous transportation risk assessment studies. A consultant was employed to assist in developing consequence models for explosives. The results of the detailed evaluation of the three consequence comparison methods indicates that methods are available to perform technically defensible comparisons of the consequences from a wide variety of hazardous materials. Location-dependent scenario and risk assessment methods are available now and the figure of merit method could be developed with additional effort. All of the methods require substantial effort to implement. Methods that would require substantially less effort were identified in the preliminary evaluation, but questions of technical accuracy preclude their application on a scale. These methods may have application to specific cases, however

  7. Development of 3-D FBR heterogeneous core calculation method based on characteristics method

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Maruyama, Manabu; Hamada, Yuzuru; Nishi, Hiroshi; Ishibashi, Junichi; Kitano, Akihiro

    2002-01-01

    A new 3-D transport calculation method taking into account the heterogeneity of fuel assemblies has been developed by combining the characteristics method and the nodal transport method. In the axial direction the nodal transport method is applied, and the characteristics method is applied to take into account the radial heterogeneity of fuel assemblies. The numerical calculations have been performed to verify 2-D radial calculations of FBR assemblies and partial core calculations. Results are compared with the reference Monte-Carlo calculations. A good agreement has been achieved. It is shown that the present method has an advantage in calculating reaction rates in a small region

  8. Developing strategies to reduce the risk of hazardous materials transportation in iran using the method of fuzzy SWOT analysis

    Directory of Open Access Journals (Sweden)

    A. S. Kheirkhah

    2009-12-01

    Full Text Available An increase in hazardous materials transportation in Iran along with the industrial development and increase of resulted deadly accidents necessitate the development and implementation of some strategies to reduce these incidents. SWOT analysis is an efficient method for developing strategies, however, its structural problems, including a lack of prioritizing internal and external factors and inability to consider two sided factors reducing its performance in the situations where the number of internal and external factors affecting the risk of hazardous materials is relatively high and some factors are two sided in nature are presented in the article. Fuzzy SWOT analysis is a method the use of which helps with solving these problems and is the issue of employing an effective methodology. Also, the article compares the resulted strategies of the fuzzy method with the strategies developed following SWOT in order to show the relative supremacy of the new method.

  9. Monte Carlo method in radiation transport problems

    International Nuclear Information System (INIS)

    Dejonghe, G.; Nimal, J.C.; Vergnaud, T.

    1986-11-01

    In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr

  10. Transport infrastructure development in China

    Directory of Open Access Journals (Sweden)

    Bouraima Mouhamed Bayane

    2017-05-01

    Full Text Available This paper reviews the historical configuration process of transportation systems in China and examines the relationship between economic development and transport system at three different levels. The current status of transport infrastructure system development in China is summarized at national and regional level. The investment trends for transport infrastructure in China are also depicted. The keys issues relating to government initiatives are presented.

  11. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  12. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  13. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  14. OPTIMIZATION METHODS IN TRANSPORTATION OF FOREST PRODUCTS

    Directory of Open Access Journals (Sweden)

    Selçuk Gümüş

    2008-04-01

    Full Text Available Turkey has total of 21.2 million ha (27 % forest land. In this area, average 9 million m3 of logs and 5 million stere of fuel wood have been annually produced by the government forest enterprises. The total annual production is approximately 13million m3 Considering the fact that the costs of transporting forest products was about . 160 million TL in the year of 2006, the importance of optimizing the total costs in transportation can be better understood. Today, there is not common optimization method used at whole transportation problems. However, the decision makers select the most appropriate methods according to their aims.Comprehending of features and capacity of optimization methods is important for selecting of the most appropriate method. The evaluation of optimization methods that can be used at forest products transportation is aimed in this study.

  15. Acceleration methods for assembly-level transport calculations

    International Nuclear Information System (INIS)

    Adams, Marvin L.; Ramone, Gilles

    1995-01-01

    A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs

  16. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  17. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  18. The spectral volume method as applied to transport problems

    International Nuclear Information System (INIS)

    McClarren, Ryan G.

    2011-01-01

    We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)

  19. Development scheme for the public electricity transport network - 2006-2020

    International Nuclear Information System (INIS)

    2006-01-01

    After having discussed the role of the development scheme and its mains requirements, presented its important components (energy needs, energy transport needs), and described its elaboration mode, this report gives an overview of the present status of the electricity transport network in France: 400.000 volts transport and interconnection networks, 225.000 volts and high voltage networks, development objectives, development context, transport network characteristics in 2006 (country gridding, development dynamics and consumption growth). Then, it presents a set of hypotheses about consumption, production and European exchanges. It identifies different types of constraints (customer connection, supply safety, electric and economic performance, robustness against extreme climate phenomena) and presents a method to assess these constraints (simulation of situations at risk, supply quality analysis, works expertise). The last part present the middle- and long-term constraints for the network

  20. A novel method for trace tritium transport studies

    International Nuclear Information System (INIS)

    Bonheure, Georges; Mlynar, Jan; Murari, A.; Giroud, C.; Popovichev, S.; Belo, P.; Bertalot, L.

    2009-01-01

    A new method combining a free-form solution for the neutron emissivity and the ratio method (Bonheure et al 2006 Nucl. Fusion 46 725-40) is applied to the investigation of tritium particle transport in JET plasmas. The 2D neutron emissivity is calculated using the minimum Fisher regularization method (MFR) (Anton et al 1996 Plasma Phys. Control. Fusion 38 1849, Mlynar et al 2003 Plasma Phys. Control. Fusion 45 169). This method is being developed and studied alongside other methods at JET. The 2D neutron emissivity was significantly improved compared with the first MFR results by constraining the emissivity along the magnetic flux surfaces. 1D profiles suitable for transport analysis are then obtained by subsequent poloidal integration. In methods on which previous JET publications are based (Stork et al 2005 Nucl. Fusion 45 S181, JET Team (prepared by Zastrow) 1999 Nucl. Fusion 39 1891, Zastrow et al 2004 Plasma Phys. Control. Fusion 46 B255, Adams et al 1993 Nucl. Instrum. Methods A 329 277, Jarvis et al 1997 Fusion Eng. Des. 34-35 59, Jarvis et al 1994 Plasma Phys. Control. Fusion 36 219), the 14.07 MeV D-T neutron line integrals measurements were simulated and the transport coefficients varied until good fits were obtained. In this novel approach, direct knowledge of tritium concentration or the fuel ratio n T /n D is obtained using all available neutron profile information, e.g both 2.45 MeV D-D neutron profiles and 14.07 MeV D-T neutron profiles (Bonheure et al 2006 Nucl.Fusion 46 725-40). Tritium particle transport coefficients are then determined using a linear regression from the dynamic response of the tritium concentration n T /n D profile. The temporal and spatial evolution of tritium particle concentration was studied for a set of JET discharges with tritium gas puffs from the JET trace tritium experiments. Local tritium transport coefficients were derived from the particle flux equation Γ = -D∇n T + Vn T , where D is the particle diffusivity and V

  1. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  2. Development of Indian passenger transport

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, R. [Indira Ghandi Institute of Development Research, Mumbai (India)

    1998-05-01

    The Indian transport sector has been studied using logistic substitution. The share of rail transport is declining, while road and air transport are increasing. These developments are not desirable from an energy-efficiency perspective. (author)

  3. Development of PEFC for transportable applications

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideo; Fuklumoto, Hisatoshi; Mitsuda, Kenro [Mitsubishi Electric Corp., Hyogo (Japan)] [and others

    1996-12-31

    Since FY1992, we have been developing PEFC technologies under NEDO`s R&D program. High power density and rapid start-up are essential requirements for transportable applications. Also, if reformed gas is used as fuel, the prevention of CO poisoning and improvement of response to loading are essential. In this paper, methods to increase the effective surface area of a cell, start-up and endurance test results, the study of CO poisoning with a pulse electrolyzing method and the demonstration of a hydrogen recovery subsystem are presented.

  4. Review of methods and indicators in sustainable urban transport studies overview from 2000 to 2016

    Directory of Open Access Journals (Sweden)

    Puji Adiatna Nadi

    2017-12-01

    Full Text Available The attention of countries either the developed or developing countries on sustainable urban transport is becoming more popular. The purpose of paper is to review the methods and the indicators used for measuring performance of sustainable urban transport. This study is based on the literature review and the case study observation and also uses the quantitative assessment. It reviews the theoretical aspects of sustainability factors at various research works and performance indicator in urban transportation. The indicators were classified into two major categories: (i assessment methods in sustainable urban transport (SUT, and (ii basic of sustainability indicators for urban transport. This study found several types of analytical techniques for measuring sustainability indicators in urban transport. It also identify five indicators as basic element to measure sustainable urban transport performance i.e. traffic congestion, traffic air pollution, traffic noise pollution, traffic accidents and land consumption for transport infrastructure.

  5. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  6. Condensed history Monte Carlo methods for photon transport problems

    International Nuclear Information System (INIS)

    Bhan, Katherine; Spanier, Jerome

    2007-01-01

    We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions

  7. Trans Ocean Gas CNG transportation development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    Liquefied natural gas (LNG) transportation is on the rise due to increased global demand for natural gas. However, the challenge of transporting LNG lies in finding suitable locations for import terminals. Compressed natural gas (CNG) transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets not practical for LNG or pipelines. The founder of Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. Financial support is needed to perform verification testing and for regulatory approval. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. 2 tabs., 3 figs.

  8. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1992-01-01

    The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs

  9. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1991-01-01

    This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented

  10. Analysis of forecasting methods of cargo flows in International transportation by land transport

    OpenAIRE

    Ponomareva, N.

    2005-01-01

    Advantages and disadvantages of the existing forecasting methods of cargo flows are presented. The improvement of cargo flows forecasting method in international transportation by land transport is considered on the basis of a interregional balance model to get more correct and fuller forecast.

  11. Magnetic method for stimulating transport in fluids

    Science.gov (United States)

    Martin, James E.; Solis, Kyle J.

    2016-10-18

    A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.

  12. Electre III method in assessment of variants of integrated urban public transport system in Cracow

    Directory of Open Access Journals (Sweden)

    Katarzyna SOLECKA

    2014-12-01

    Full Text Available There is a lot of methods which are currently used for assessment of urban public transport system development and operation e.g. economic analysis, mostly Cost-Benefit Analysis – CBA, Cost-Effectiveness Analysis - CEA, hybrid methods, measurement methods (survey e.g. among passengers and measurement of traffic volume, vehicles capacity etc., and multicriteria decision aiding methods (multicriteria analysis. The main aim of multicriteria analysis is the choice of the most desirable solution from among alternative variants according to different criteria which are difficult to compare against one another. There are several multicriteria methods for assessment of urban public transport system development and operation, e.g. AHP, ANP, Electre, Promethee, Oreste. The paper presents an application of one of the most popular variant ranking methods – Electre III method. The algorithm of Electre III method usage is presented in detail and then its application for assessment of variants of urban public transport system integration in Cracow is shown. The final ranking of eight variants of integration of urban public transport system in Cracow (from the best to the worst variant was drawn up with the application of the Electre III method. For assessment purposes 10 criteria were adopted: economical, technical, environmental, and social; they form a consistent criteria family. The problem was analyzed with taking into account different points of view: city authorities, public transport operators, city units responsible for transport management, passengers and others users. Separate models of preferences for all stakeholders were created.

  13. AUTOMATION OF CALCULATION ALGORITHMS FOR EFFICIENCY ESTIMATION OF TRANSPORT INFRASTRUCTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sergey Kharitonov

    2015-06-01

    Full Text Available Optimum transport infrastructure usage is an important aspect of the development of the national economy of the Russian Federation. Thus, development of instruments for assessing the efficiency of infrastructure is impossible without constant monitoring of a number of significant indicators. This work is devoted to the selection of indicators and the method of their calculation in relation to the transport subsystem as airport infrastructure. The work also reflects aspects of the evaluation of the possibilities of algorithmic computational mechanisms to improve the tools of public administration transport subsystems.

  14. Railway optimal network simulation for the development of regional transport-logistics system

    Directory of Open Access Journals (Sweden)

    Mikhail Borisovich Petrov

    2013-12-01

    Full Text Available The dependence of logistics on mineral fuel is a stable tendency of regions development, though when making strategic plans of logistics in the regions, it is necessary to provide the alternative possibilities of power-supply sources change together with population density, transport infrastructure peculiarities, and demographic changes forecast. On the example of timber processing complex of the Sverdlovsk region, the authors suggest the algorithm of decision of the optimal logistics infrastructure allocation. The problem of regional railway network organization at the stage of slow transition from the prolonged stagnation to the new development is carried out. The transport networks’ configurations of countries on the Pacific Rim, which successfully developed nowadays, are analyzed. The authors offer some results of regional transport network simulation on the basis of artificial intelligence method. These methods let to solve the task with incomplete data. The ways of the transport network improvement in the Sverdlovsk region are offered.

  15. Development of modern methods with respect to neutron transport and uncertainty analyses for reactor core calculations. Interim report; Weiterentwicklung moderner Verfahren zu Neutronentransport und Unsicherheitsanalysen fuer Kernberechnungen. Zwischenbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, Winfried; Aures, Alexander; Bostelmann, Friederike; Pasichnyk, Ihor; Perin, Yann; Velkov, Kiril; Zilly, Matias

    2016-12-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1536 ''Development of modern methods with respect to neutron transport and uncertainty analyses for reactor core calculations'' as of the 3{sup rd} quarter of 2016. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts, in particular fast reactors cooled by liquid metal. The contributing individual goals are the further optimization and validation of deterministic calculation methods with high spatial and energy resolution, the development of a coupled calculation system using the Monte Carlo method for the neutron transport to describe time-dependent reactor core states, the processing and validation of nuclear data, particularly with regard to covariance data, the development, validation, and application of sampling-based methods for uncertainty and sensitivity analyses, the creation of a platform for performing systematic uncertainty analyses for fast reactor systems, as well as the description of states of severe core damage with the Monte Carlo method. Moreover, work regarding the European NURESAFE project, started in the preceding project RS1503, are being continued and completed.

  16. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  17. Development and application of neutron transport methods and uncertainty analyses for reactor core calculations. Technical report; Entwicklung und Einsatz von Neutronentransportmethoden und Unsicherheitsanalysen fuer Reaktorkernberechnungen. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Bernnat, W.; and others

    2013-06-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  18. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    Science.gov (United States)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  19. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  20. Deterministic methods in radiation transport

    International Nuclear Information System (INIS)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community

  1. ROLE OF TRANSPORT INFRASTRUCTURE IN EFFICIENCY IMPROVEMENT OF SPATIAL SOCIO-ECONOMIC DEVELOPMENT OF THE REGION

    Directory of Open Access Journals (Sweden)

    Ekaterina C. Chimitdorzhieva

    2013-01-01

    Full Text Available The problems of spatial socio-economic development of the region are considered in this article. Special attention is given to transport infrastructure. The authors propose methodical instruments for evaluating the influence of transport infrastructure on spatial development of region based on research of theoretic-methodical aspects of economic growth theory, location of economic activity and development concepts of infrastructural provision.

  2. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  3. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

    Science.gov (United States)

    Castaneda, Francisco; Kinne, Rolf K-H

    2005-12-01

    The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-alpha-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2.

  4. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  5. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  6. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric; Efendiev, Yalchin R.; Leung, Wing; Ren, Jun

    2015-01-01

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  7. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  8. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1989-01-01

    One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes

  9. The coordinated development of China' s inland water transport%The coordinated development of China' s inland water transport

    Institute of Scientific and Technical Information of China (English)

    Deng Aimin; Tian Feng; Haasis H.D; Mao Lang; Cai Jia

    2012-01-01

    The coordinated development is the core of sustainable development and the hot issue of international research. Inland water transport (IWT) is an important part of the water resources exploiting system and comprehensive transport system under socio-economic context of river basin, and also the country' s sustainable development priorities to achieve resource-conserving and environment-friendly strategy. Based on the coordinated development content, the paper combined Germany' s successful development experience, explored the elements and problem of the coordinated development of IWT system of China' s national economic strategy and basin economy, water resourse system, comprehensive transport system, and system itself, and their countermeasures and suggestions, in order to facilitate rapid and coordinated development of China' s inland water transport.

  10. Implementation of the quasi-static method for neutron transport

    International Nuclear Information System (INIS)

    Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero; Le Tellier, Romain; Suteau, Christophe

    2011-01-01

    The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)

  11. Alternating direction transport sweeps for linear discontinuous SN method

    International Nuclear Information System (INIS)

    Yavuz, M.; Aykanat, C.

    1993-01-01

    The performance of Alternating Direction Transport Sweep (ADTS) method is investigated for spatially differenced Linear Discontinuous S N (LD-S N ) problems on a MIMD multicomputer, Intel IPSC/2. The method consists of dividing a transport problem spatially into sub-problems, assigning each sub-problem to a separate processor. Then, the problem is solved by performing transport sweeps iterating on the scattering source and interface fluxes between the sub-problems. In each processor, the order of transport sweeps is scheduled such that a processor completing its computation in a quadrant of a transport sweep is able to use the most recent information (exiting fluxes of neighboring processor) as its incoming fluxes to start the next quadrant calculation. Implementation of this method on the Intel IPSC/2 multicomputer displays significant speedups over the one-processor method. Also, the performance of the method is compared with those reported previously for the Diamond Differenced S N (DD-S N ) method. Our experimental experience illustrates that the parallel performance of both the ADTS LD- and DD-S N methods is the same. (orig.)

  12. Rail freight transportation concerns of developing economies: A Namibian perspective

    Directory of Open Access Journals (Sweden)

    Fanny Saruchera

    2017-05-01

    Full Text Available Background: Although rail transport appears to be well established and outperforming other transport modes in Europe and beyond, in the majority of developing economies it was observed that firms and travellers were, on the contrary, shunning from the rail. Despite considerable infrastructural investments in the African rail systems, the sector has been deteriorating over the years. Objectives: This study identifies the freight rail transportation problems faced by African developing economies, focusing on Namibia, and examines the potential actions and factors for minimising such problems, drawing lessons from some of the developed world’s success stories. Method: The objectives of this study are achieved through a survey of Windhoek-based industrial and logistics firms operating in Namibia. Self-administered survey questionnaires were distributed through the aid of trained research assistants. Results: The study’s results show that some of the reasons of shunning rail transport are a matter of attitude, whereas some are related to operational challenges. The study confirms that the transport mode used and ownership of the freight transport services used can affect the degree of satisfaction for the transportation of goods in Namibia. Conclusion: Namibian industrial and logistics firms avoid using rail, owing to its low level of satisfaction obtained from its use. Besides engaging in Public Private Partnerships (PPPs in rail transport operations, the study contends that rail transport should receive attention similar to that given to other transport modes for African economies such as Namibia to overcome the costs associated with the increasing road congestion.

  13. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  14. Urban development control based on transportation carrying capacity

    Science.gov (United States)

    Miharja, M.; Sjafruddin, A. H.

    2017-06-01

    Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.

  15. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  16. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1997-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotropic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) method is proposed that converges (clock time) faster than the MDSA method. This method is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented

  17. Time space domain decomposition methods for reactive transport - Application to CO2 geological storage

    International Nuclear Information System (INIS)

    Haeberlein, F.

    2011-01-01

    Reactive transport modelling is a basic tool to model chemical reactions and flow processes in porous media. A totally reduced multi-species reactive transport model including kinetic and equilibrium reactions is presented. A structured numerical formulation is developed and different numerical approaches are proposed. Domain decomposition methods offer the possibility to split large problems into smaller subproblems that can be treated in parallel. The class of Schwarz-type domain decomposition methods that have proved to be high-performing algorithms in many fields of applications is presented with a special emphasis on the geometrical viewpoint. Numerical issues for the realisation of geometrical domain decomposition methods and transmission conditions in the context of finite volumes are discussed. We propose and validate numerically a hybrid finite volume scheme for advection-diffusion processes that is particularly well-suited for the use in a domain decomposition context. Optimised Schwarz waveform relaxation methods are studied in detail on a theoretical and numerical level for a two species coupled reactive transport system with linear and nonlinear coupling terms. Well-posedness and convergence results are developed and the influence of the coupling term on the convergence behaviour of the Schwarz algorithm is studied. Finally, we apply a Schwarz waveform relaxation method on the presented multi-species reactive transport system. (author)

  18. A new δf method for neoclassical transport studies

    International Nuclear Information System (INIS)

    Wang, W.X.; Nakajima, N.; Okamoto, M.; Murakami, S.

    1999-01-01

    A new δf method is presented in detail to solve the drift kinetic equation for the simulation study of neoclassical transport. It is demonstrated that valid results essentially rely on the correct evaluation of the marker density g in the weight calculation. A new weighting scheme is developed without assuming g in the weight equation for advancing particle weights, unlike previous schemes. This scheme employs an additional weight function to directly solve g from its kinetic equation based on the δf method itself. Therefore, the severe constraint that the real marker distribution must be consistent with the initially assumed g is relaxed. An improved like-particle collision scheme is also presented. By compensating for momentum, energy and particle losses, the conservations of all three quantities are greatly improved during collisions. With the improvement in both the like-particle collision scheme and the weighting scheme, the δf simulation shows a significantly improved performance. The new δf method is applied to the study of ion neoclassical transports due to self-collisions, taking the effect of finite orbit width into account. The ion thermal transport near the magnetic axis is shown to be greatly reduced from its conventional neoclassical level, like that of previous δf simulations. On the other hand, the direct particle loss from the confinement region may strongly increase the ion thermal transport near the edge. It is found that the ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. (author)

  19. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  20. The Impact of Transport on International Trade Development

    Directory of Open Access Journals (Sweden)

    Pavlović Duško

    2016-09-01

    Full Text Available International trade implies transport of specific quantity of goods to (frequently large distances, the success of which depends on the safety and speed of delivery. These are greatly conditioned by the quality of means of transport and infrastructure. This is why international trade development is affected by transport, and the development of means of transport and infrastructure is, to a great extent, influenced by demand for international delivery of various commodities. This paper looks at the interdependence of international trade and transport, showing how transport played a very significant role in international trade development in the past as it does today, commensurate to the role of international trade in the development of carriers and transport infrastructure.

  1. Influence of transport infrastructure on the industrial development of the Russian regions

    Directory of Open Access Journals (Sweden)

    Elizaveta Eduardovna Kolchinskaya

    2015-06-01

    Full Text Available Objective to build a model describing the relationship between the level of transport infrastructure development of the region and the level of industrial development in the region. Methods calculation of the integral indicators of a particular industry development regression analysis method of the production function constructing. For regression analysis the paper uses panel data models with random and fixed effects and the pooled panel data model. To check the quality of the regression model the Fisher and Student ttests were used. To test the model for heteroskedastic properties tests by Park Glazer GoldfeldQuandt and White were applied. Results models of linear and logarithmic specifications with random and fixed effects were built as well as pooled panel data models. Significant coefficients of transport infrastructure indicators were obtained in both cases only in the pooled panel data models. The model which considered the railway density index as one of the characteristics of the transport infrastructure of the region showed the negative coefficient of this variable. Scientific novelty for the first time on the basis of Russian regions statistics using regression models of panel data the dependence has been studied between the level of transport development in the region and the dynamics of industrial production in it. As the characteristic of transport infrastructure development the specially designed integral indicator was used i.e. the transport enterprises and communications functioning in the region summarizing several characteristics of enterprises in the industry. Practical value the obtained results can be used to predict effects of adopting decisions on improving the transport infrastructure in the Russian Federation regions. The results and conclusion can serve as a basis for further research on this topic and be applied in the characterization of the Russian economy. In addition the results can be used in the educational

  2. Development of the relaxation-assisted 2DIR method for accessing structures of molecules and its application for studying the energy transport on a molecular level

    Science.gov (United States)

    Kasyanenko, Valeriy Mitrofanovich

    Measuring the three-dimensional structure of molecules, dynamics of structural changes, and energy transport on a molecular scale is important for many areas of natural science. Supplementing the widely used methods of x-ray diffraction, NMR, and optical spectroscopies, a two-dimensional infrared spectroscopy (2DIR) method was introduced about a decade ago. The 2DIR method measures pair-wise interactions between vibrational modes in molecules, thus acquiring molecular structural constraints such as distances between vibrating groups and the angles between their transition dipoles. The 2DIR method has been applied to a variety of molecular systems but in studying larger molecules such as proteins and peptides the method is facing challenges associated with the congestion of their vibrational spectra and delocalized character of their vibrational modes. To help extract structural information from such spectra and make efficient use of vibrational modes separated by large distances, a novel relaxation-assisted 2DIR method (RA 2DIR) has recently been proposed, which exploits the transport of excess vibrational energy from the initially excited mode. With the goal of further development of RA 2DIR, we applied it to a variety of molecular systems, including model compounds, transition-metal complexes, and isomers. The experiments revealed several novel effects which both enhance the power of RA 2DIR and bring a deeper understanding to the fundamental process of energy transport on a molecular level. We demonstrated that RA 2DIR can enhance greatly (27-fold) the cross-peak amplitude among spatially remote modes, which leads to an increase of the range of distances accessible for structural measurements by several fold. We demonstrated that the energy transport time correlates with the intermode distance. This correlation offers a new way for identifying connectivity patterns in molecules. We developed two models of energy transport in molecules. In one, a spatial overlap

  3. An extended step characteristic method for solving the transport equation in general geometries

    International Nuclear Information System (INIS)

    DeHart, M.D.; Pevey, R.E.; Parish, T.A.

    1994-01-01

    A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs

  4. Monte Carlo methods in electron transport problems. Pt. 1

    International Nuclear Information System (INIS)

    Cleri, F.

    1989-01-01

    The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage

  5. Sustainable transportation initiatives in developing countries

    International Nuclear Information System (INIS)

    Figueroa, M.J.

    2000-01-01

    The primary goal of the workshop was to share experiences of sustainable transport practices from invited medium-sized cities in Latin America and Asia. The purpose was to learn how sustainable mechanisms have been incorporated into national planning and implementation systems. Emphasis was given to understand what concrete mechanism work to promote sustainable transport in the selected projects. The workshop included participation of transport economics and engineers, policy makers and policy-advisors, and key representatives from the transportation government and non-governmental sector in El Salvador. Among participants there were also members from academia, private consultants and international NGOs. The workshop provided a basis for outreach in terms of directly informing participants on the specific experiences brought in by the participating countries. The Workshop set out to address the following main objectives: To demonstrate successful examples of transportation initiatives that show positive sustainable economic, environmental and social benefits in selected developing countries; To provide a forum for discussion of sustainable transport paths; To develop a network for information exchange and capacity building; To gather information on concrete mechanisms to promote sustainable transportation; To demonstrate efficient mechanisms and tools for collection and analysis of data in transport; To create an inventory of success stories and alternative visions for the future. Several institutions collaborated in organising the event: the Intermediate Technology Development Group (ITDG-Sri Lanka), The Peace and Development Research Group from Goeteborg University and institutions within El Salvador: Centro Salvadeoreno de Tecnologia Apropiada (CESTA), and the Climate Change Communication office of the Ministry of Environment in Salvador. This volume contains reports of the presentations and discussions that took place at the workshop in San Salvador. The agenda

  6. Sustainable transportation initiatives in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M J [ed.

    2000-03-01

    The primary goal of the workshop was to share experiences of sustainable transport practices from invited medium-sized cities in Latin America and Asia. The purpose was to learn how sustainable mechanisms have been incorporated into national planning and implementation systems. Emphasis was given to understand what concrete mechanism work to promote sustainable transport in the selected projects. The workshop included participation of transport economics and engineers, policy makers and policy-advisors, and key representatives from the transportation government and non-governmental sector in El Salvador. Among participants there were also members from academia, private consultants and international NGOs. The workshop provided a basis for outreach in terms of directly informing participants on the specific experiences brought in by the participating countries. The Workshop set out to address the following main objectives: To demonstrate successful examples of transportation initiatives that show positive sustainable economic, environmental and social benefits in selected developing countries; To provide a forum for discussion of sustainable transport paths; To develop a network for information exchange and capacity building; To gather information on concrete mechanisms to promote sustainable transportation; To demonstrate efficient mechanisms and tools for collection and analysis of data in transport; To create an inventory of success stories and alternative visions for the future. Several institutions collaborated in organising the event: the Intermediate Technology Development Group (ITDG-Sri Lanka), The Peace and Development Research Group from Goeteborg University and institutions within El Salvador: Centro Salvadeoreno de Tecnologia Apropiada (CESTA), and the Climate Change Communication office of the Ministry of Environment in Salvador. This volume contains reports of the presentations and discussions that took place at the workshop in San Salvador. The agenda

  7. WHY DO LOGISTICS AND TRANSPORT MATTER FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Nedelescu-Ionescu Daniela

    2014-07-01

    Full Text Available In face of the challenges of global competition, business firms are concentrating more on the needs of customers and seeking ways to reduce costs, improve quality and meet the ever-rising expectation of their customers. To these ends, many of them have identified logistics as an area to build cost and service advantages. Logistical activities have always been vital to organizations, and therefore business logistics and supply chain management represents a synthesis of many concepts, principles, and methods from the more traditional areas of production, purchasing, transportation, economics, as well as from the disciplines of applied mathematics, and organizational behaviour. It concentrates on important activities of management such as planning, organizing, and controlling, and also on a three-way relationship of related transportation, inventory, and location strategies, which are at the heart of good logistics planning and decision making. Selecting a good logistics strategy may yield a competitive advantage. Transportation provides the flow of materials, products and persons between production facilities, warehouses, distribution centers, terminals and customer locations. The progress in techniques and management principles improves the moving load, delivery speed, service quality, operation costs, the usage of facilities and energy saving. A strong system needs a clear frame of logistics and a proper transport implements and techniques to link the producing procedures. The transportation takes a crucial part in the management of logistic. Without well-developed transportation systems, logistics could not bring its advantages into full play. A good transport system in logistics activities could provide better logistics efficiency, reduce operation cost, and promote service quality. The process determines the efficiency of moving products and energy saving. Improvements in transportation and logistics make valuable contribution to production

  8. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1998-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotopic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) methods is proposed. This method converges (Clock time) faster than the MDSA method. It is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented. (author). 9 refs., 2 tabs., 5 figs

  9. Direct-coupled-ray method for design-oriented three-dimensional transport analysis

    International Nuclear Information System (INIS)

    Bucholz, J.A.; Poncelet, C.G.

    1977-01-01

    A fast three-dimensional design-oriented transport method has been developed for the solution of both neutron and gamma transport problems. It combines a nodal approach with analytic integral transport to achieve relative speed and accuracy. An analytic solution is obtained for the angular flux in each of the 14 directions defined by the six faces and eight corners of a cubic mesh block. The scheme used to accommodate high-order anisotropic scattering is based on the formulation of ray-to-ray scattering probabilities in an integral sense. A variable mesh approximation has also been introduced to provide greater flexibility. The details of a direct-coupled-ray (DCR) → P 1 conversion technique have been developed but not yet implemented. The DCR method, as implemented in the TRANS3 code, has been used in a number of liquid-metal fast breeder reactor shielding applications. These included a one-dimensional deep penetration configuration and one-, two-, and three dimensional representations of the lower axial shield of the Clinch River Breeder Reactor. Comparisons with ANISN and DOT-III solutions indicated good to excellent agreement in most situations

  10. Strategy development management of Multimodal Transport Network

    Directory of Open Access Journals (Sweden)

    Nesterova Natalia S.

    2016-01-01

    Full Text Available The article gives a brief overview of works on the development of transport infrastructure for multimodal transportation and integration of Russian transport system into the international transport corridors. The technology for control of the strategy, that changes shape and capacity of Multi-modal Transport Network (MTN, is considered as part of the methodology for designing and development of MTN. This technology allows to carry out strategic and operational management of the strategy implementation based on the use of the balanced scorecard.

  11. Development of Nanoscale Graphitic Devices and The Transport Characterization

    International Nuclear Information System (INIS)

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  12. Neutron transport by collision probability method in complicated geometries

    International Nuclear Information System (INIS)

    Constantin, Marin

    2000-01-01

    For the first flight collision probability (FFCP) method a rapidly increasing of the memory requirements and execution time with the number of discrete regions occurs. Generally, the use of the method is restricted at cell/supercell level. However, the amazing developments both in computer hardware and computer architecture allow a real extending of the problems' domain and a more detailed treatment of the geometry. Two ways are discussed into the paper: the direct design of new codes and the improving of the mainframe old versions. The author's experience is focused on the performances' improving of the 3D integral transport code PIJXYZ (from an old version to a modern one) and on the design and developing of the 2D transport code CP 2 D in the last years. In the first case an optimization process have been performed before the parallelization. In the second a modular design and the newest techniques (factorization of the geometry, the macrobands method, the mobile set of chords, the automatic calculation of the integration error, optimal algorithms for the innermost programming level, the mixed method for tracking process and CPs calculation, etc.) were adopted. In both cases the parallelization uses a PCs network system. Some short examples for CP 2 D and PIJXYZ calculation are presented: reactivity void effect in typical CANDU cells using a multistratified coolant model, a problem of some adjacent fuel assemblies, CANDU reactivity devices 3D simulation. (author)

  13. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.

    2004-01-01

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  14. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  15. Indirect Inverse Substructuring Method for Multibody Product Transport System with Rigid and Flexible Coupling

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available The aim of this paper is to develop a new frequency response function- (FRF- based indirect inverse substructuring method without measuring system-level FRFs in the coupling DOFs for the analysis of the dynamic characteristics of a three-substructure coupled product transport system with rigid and flexible coupling. By enforcing the dynamic equilibrium conditions at the coupling coordinates and the displacement compatibility conditions, a closed-form analytical solution to inverse substructuring analysis of multisubstructure coupled product transport system is derived based on the relationship of easy-to-monitor component-level FRFs and the system-level FRFs at the coupling coordinates. The proposed method is validated by a lumped mass-spring-damper model, and the predicted coupling dynamic stiffness is compared with the direct computation, showing exact agreement. The method developed offers an approach to predict the unknown coupling dynamic stiffness from measured FRFs purely. The suggested method may help to obtain the main controlling factors and contributions from the various structure-borne paths for product transport system.

  16. Transport and diffusion of material quantities on propagating interfaces via level set methods

    CERN Document Server

    Adalsteinsson, D

    2003-01-01

    We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies.

  17. Transport and diffusion of material quantities on propagating interfaces via level set methods

    International Nuclear Information System (INIS)

    Adalsteinsson, David; Sethian, J.A.

    2003-01-01

    We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies

  18. New developments in the Csub(N) method

    International Nuclear Information System (INIS)

    Grandjean, Paul; Kavenoky, Alain.

    1975-01-01

    The most recent developments of the Csub(N) method used for solving transport equations are presented: treatment of the Rayleigh scattering kernel in plane geometry and of the cylindrical problems with an isotropic scattering law [fr

  19. Transport Canada's sustainable development action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-30

    Transport Canada's sustainable development strategy, tabled in the House of Commons in December 1997, sets out the direction for the Department to integrate environmental concerns with safety and efficiency in developing policies and programs and in carrying out its day-to-day activities. While recognizing that moving towards sustainable development is a long-term undertaking, the department is determined to turn 'words' into 'work'. The action plan outlined in this document is organized according to the challenges laid out in the original Sustainable Development Strategy document. Accordingly, the department shall endeavour to minimize risk of environmental damage from transportation accidents; promote greening of operations in the transportation sector; reduce emissions of hazardous substances from transportation sources; promote education and awareness on sustainable transportation; refine sustainable performance indicators; and develop and promote the application of cleaner transportation systems and transportation technologies. The bulk of the report is devoted to brief summaries of progress achieved in each of these areas to date.

  20. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  1. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  2. Formal Methods Applications in Air Transportation

    Science.gov (United States)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  3. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  4. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  5. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  6. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  7. Some improved methods in neutron transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J; Stefanovic, D; Kocic, A; Matausek, M; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1973-07-01

    The methods described in this paper are: analytical approach to neutron spectra in case of energy dependent anisotropy of elastic scattering; Monte Carlo estimations of neutron absorption reaction rate during slowing down process; spherical harmonics treatment of space-angle-lethargy dependent slowing down transport equation; integral transport theory based on point-wise representation of variables.

  8. Bilinear nodal transport method in weighted diamond difference form

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion

  9. Evaluation of alternative public transportation systems in Izmit urban transportation via axiomatic design method

    Directory of Open Access Journals (Sweden)

    Gülşen AKMAN

    2016-02-01

    Full Text Available In the world and in our country, most of urban transportation is performed by public transportation. Public transportation is a system which provides transportation easiness and opportunity to people, not to vehicles. Therefore, giving priority to public transportation system is necessary in organizing urban transportation. In this study, in order to reduce traffic intensity and to facilitate passenger transportation in Izmit urban transportation, It is tried to determine appropriate public transportation system. For this, firstly, alternatives which could be used for public transportation were determined. These alternatives are metro, metrobus, tram, light rail system and monorail. Afterwards, the variables affecting decision making about public transportation were determined. These variables are cost, transportation line features, vehicle characteristics, sensitivity to environment and customer satisfaction. Lastly, most appropriate public transportation system is proposed by using the axiomatic design method. As a result, light trail system and metrobus are determined as the most appropriate alternatives for Izmit public transportation system.Keywords: Urban transportation, Multi criteria decision making, Axiomatic design

  10. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  11. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    International Nuclear Information System (INIS)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-01-01

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable

  12. Method of transporting fuel assemblies

    International Nuclear Information System (INIS)

    Okada, Katsutoshi.

    1979-01-01

    Purpose: To enable safety transportation of fuel assemblies for FBR type reactors by surrounding each of fuel elements in a wrapper tube by a rubbery, hollow cylindrical container and by sealing medium such as air to the inside of the container. Method: A fuel element is contained in a hollow cylindrical rubber-like tube. The fuel element has an upper end plug, a lower end plug and a wire spirally wound around the outer periphery. Upon transportation of the fuel assemblies, each of the fuel elements is covered with the container and arranged in the wrapper tube and then the fuel assemblies are assembled. Then, medium such as air is sealed for each of the fuel elements by way of an opening and then the opening is tightly closed. Before loading the transported fuel assemblies in the reactor, the medium is discharged through the opening and the container is completely extracted and removed from the inside of the wrapper tube. (Seki, T.)

  13. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  14. An improved method for lifting and transporting anesthetized pigs within an animal facility

    DEFF Research Database (Denmark)

    Schumacher-Petersen, Camilla; Hammelev, Karsten Pharao; Flescher, Jens Erik

    2014-01-01

    Transporting anesthetized pigs in a laboratory setting often requires strenuous manual lifting, posing a hazard to the safety of animal care personnel and to the welfare of the pigs. The authors developed an improved approach to lifting and transporting anesthetized pigs weighing up to 350 kg using...... mechanical lifts. Different equipment was used to accommodate pigs of different sizes as well as the building designs of three animal facilities. Using the lifts, anesthetized pigs are carried on sheets to maintain their comfort while being transported. The approach refines previous methods for handling...

  15. Developing sustainable transportation performance measures for ALDOT.

    Science.gov (United States)

    2013-06-01

    Sustainable transportation is generally used to refer to transportation that contributes to the sustainable development of the community that owns and uses the system. The Transportation Research Board defines sustainability as: Sustainability is ...

  16. Transport methods: general. 3. An Additive Angular-Dependent Re-balance Acceleration Method for Neutron Transport Equations

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Park, Chang Je

    2001-01-01

    An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DP N and low-order S N re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results

  17. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  18. Methodical approaches to providing sustainable development of the transport industry management system based on self-organization

    Science.gov (United States)

    Belyantseva, Oksana; Panenkov, Andrey; Safonova, Nataliya

    2017-10-01

    Current conditions of the cognitive economy formation demand to take into account the leading role of information, knowledge and human capital in the development of the transport industry management system. The article substantiates the conceptual approach to the self-organization of a management system on the basis of innovative changes. Human capital is the key aspect of self-organization, so the directions of improving the workforce quality are justified. Basing on the information-innovative genesis of the process of self-organization, the authors justified the necessity of preventing asymmetric information. For this pupose the actions against the resistance to innovations were proposed. The implementation of certain measures contributes to the effective development of the transport management system.

  19. THE ANALYSIS OF WAYS TO IMPROVE ECONOMIC DEVELOPMENT AND TRADE ORGANIZATION OF TRANSPORTATION ON AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanov

    2015-01-01

    Full Text Available In transport system of Russia air transport is one of main types of passenger and cargo transport. Demand for air transportation constantly increases that allows to consider reasonably improvement of transportations on air transport as the priority direction of development in civil aviation. The article considers issues of development of the branch air transport.

  20. The Lattice Boltzmann Method applied to neutron transport

    International Nuclear Information System (INIS)

    Erasmus, B.; Van Heerden, F. A.

    2013-01-01

    In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

  1. Mixed Transportation Network Design under a Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2013-01-01

    Full Text Available A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  2. Mixed Transportation Network Design under a Sustainable Development Perspective

    Science.gov (United States)

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142

  3. The discontinuous finite element method for solving Eigenvalue problems of transport equations

    International Nuclear Information System (INIS)

    Yang, Shulin; Wang, Ruihong

    2011-01-01

    In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

  4. In-service inspection methods for graphite-epoxy structures on commercial transport aircraft

    Science.gov (United States)

    Phelps, M. L.

    1981-01-01

    In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.

  5. Capacity Development for Sustainable Urban Transportation in Developing Countries

    OpenAIRE

    Senbil, Metin; Fujiwara, Akimasa; Zhang, Junyi

    2008-01-01

    To make urban transport sustainable, effective and efficient, first and foremost, there is a need for capacity development-capacity is defined as the ability to deal with problems in efficient and effective ways-in developing countries. Apart from many important capacity related problems such as lack of adequate infrastructure, older vehicle population, etc., policy makers in developing countries have to consider changing individual behavior to realize sustainable urban transportation policie...

  6. ECONOMIC AND LEGAL GROUNDS FOR INVESTMENT IN DEVELOPMENT OF TRANSPORT INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    V. V. Zhelezniak

    2017-02-01

    Full Text Available Purpose. In Ukraine, as in many countries of the world, transport is one of the most fundamental sectors of the national economy, important part of the industrial and social spheres. But in the conditions of industry reforming there are problems of investing in development of rail transport. So the work is devoted to the grounds of potentially available sources of investment in infrastructure of railway transport of Ukraine. The work stresses the importance of the problem of attracting foreign investment in the economy, highlights the proposals to solve this problem. Methodology. To solve the problems of this class the work presents the proposed methods of analysis, synthesis and comparison, deduction, induction, logic and abstraction. It becomes necessary to search for and study of new conceptual approaches to organization of investment processes at railway transport enterprises, appropriate management and financial decisions and schemes of railway infrastructure development. Findings. The paper shows ways to optimize investment for modernization and technical re-equipment of the transport complex of Ukraine. It proposes the ways of attracting capital of investors for development of transport infrastructure: compliance with European laws and regulations; reforming of the tax system of Ukraine; combating corruption in the country; implementation of public-private partnership tools into the mechanism of state regulation of investment processes; creating a favourable investment climate for implementation of rail transport infrastructure projects; creating a system of compensation to investors; guarantees of transport infrastructure investment protection. Originality. The work offers the sources of investment for development of railway infrastructure in Ukraine, which should include: state budget funds, use of targeted loans and leasing. The main direction of the state policy concerning infrastructure should be a gradual transition of activity in

  7. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    International Nuclear Information System (INIS)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-01-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  8. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  9. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box.

    Directory of Open Access Journals (Sweden)

    Mikiko Tokoro

    Full Text Available Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes-usually used for molecular analysis-were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine.

  10. Transport methods: general. 8. Formulation of Transport Equation in a Split Form

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)

  11. Methods of assessment of individual and collective doses to transport workers and members of the public during the transport of radioactive material

    International Nuclear Information System (INIS)

    Vohra, K.G.; Subrahmanian, G.; Nandakumar, A.N.; Kher, R.K.; Iyer, S.R.K.

    1986-01-01

    Transport workers handling radioactive cargoes are generally exposed to the highest dose rates of any population group. Methods of assessment of dose received by transport workers are studied to arrive at a useful method. An empirical model based on a detailed work study of individuals handling radioactive cargoes and the exposure rates at various distances from specific individual packages is developed. The personnel doses thus calculated compared reasonably well with the doses recorded on personnel monitoring badges. The personnel doses were also evaluated with reference to the total transport index handled by the workers, yielding results consistent with those reported elsewhere by earlier researchers. For assessing the collective dose to the public due to urban transport of radioactive material, the space around the vehicle transporting cargo was divided into a number of cells of dimensions 1mx1m. The radiation level in each cell was measured and the pedestrian density along the route was obtained. Using the pedestrian occupancy in the cells and the measured radiation levels, the total dose to the public was assessed. A similar assessment was made with respect to the passengers in the neighbouring vehicles. The suggested method of calculation may aid determination of the route and time of transport and the preferable traffic configuration for the vehicle carrying the radioactive consignments for optimizing the dose to the urban public

  12. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation

    International Nuclear Information System (INIS)

    Fournier, D.

    2011-01-01

    The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

  13. The research into development of passanger transport by land

    Directory of Open Access Journals (Sweden)

    J. Butkevičius

    2004-10-01

    Full Text Available This is the first scientific work in Lithuania carrying out a complex research into passenger transport by land, covering all problematic issues related to the field such as development, market planning, organization, management, competition, contractual relations, financing, development of transport technologies, implementation of new transport technologies elaborating the theoretical base for the development of passenger transport. The research shows the analysis of the movement of passenger transport volumes and determines the regularity of these changes. The forecast of passenger transport by land is based on a multiple analysis. The work determines the perspective markets of rail and road transport as well as elaborates the principles of the improvement of road and rail transport interaction.The author originates the principles of the development of passenger transport technologies and the principles of the implementation of advanced technologies. The author also founds the principles of planning, organization and management of land transport as well as the principles of security of equal conditions of competition and contractual relations between customers and haulers.

  14. Overview of development and design of MPACT: Michigan parallel characteristics transport code

    Energy Technology Data Exchange (ETDEWEB)

    Kochunas, B.; Collins, B.; Jabaay, D.; Downar, T. J.; Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2200 Bonisteel, Ann Arbor, MI 48109 (United States)

    2013-07-01

    MPACT (Michigan Parallel Characteristics Transport Code) is a new reactor analysis tool. It is being developed by students and research staff at the University of Michigan to be used for an advanced pin-resolved transport capability within VERA (Virtual Environment for Reactor Analysis). VERA is the end-user reactor simulation tool being produced by the Consortium for the Advanced Simulation of Light Water Reactors (CASL). The MPACT development project is itself unique for the way it is changing how students do research to achieve the instructional and research goals of an academic institution, while providing immediate value to industry. The MPACT code makes use of modern lean/agile software processes and extensive testing to maintain a level of productivity and quality required by CASL. MPACT's design relies heavily on object-oriented programming concepts and design patterns and is programmed in Fortran 2003. These designs are explained and illustrated as to how they can be readily extended to incorporate new capabilities and research ideas in support of academic research objectives. The transport methods currently implemented in MPACT include the 2-D and 3-D method of characteristics (MOC) and 2-D and 3-D method of collision direction probabilities (CDP). For the cross section resonance treatment, presently the subgroup method and the new embedded self-shielding method (ESSM) are implemented within MPACT. (authors)

  15. Application of the finite element method to the neutron transport equation

    International Nuclear Information System (INIS)

    Martin, W.R.

    1976-01-01

    This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions

  16. Discrete elements method of neutron transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  17. The quasidiffusion method for transport problems on unstructured meshes

    Science.gov (United States)

    Wieselquist, William A.

    2009-06-01

    In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

  18. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    International Nuclear Information System (INIS)

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-01-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  19. Resolution of the neutron transport equation by a three-dimensional least square method

    International Nuclear Information System (INIS)

    Varin, Elisabeth

    2001-01-01

    The knowledge of space and time distribution of neutrons with a certain energy or speed allows the exploitation and control of a nuclear reactor and the assessment of the irradiation dose about an irradiated nuclear fuel storage site. The neutron density is described by a transport equation. The objective of this research thesis is to develop a software for the resolution of this stationary equation in a three-dimensional Cartesian domain by means of a deterministic method. After a presentation of the transport equation, the author gives an overview of the different deterministic resolution approaches, identifies their benefits and drawbacks, and discusses the choice of the Ressel method. The least square method is precisely described and then applied. Numerical benchmarks are reported for validation purposes

  20. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  1. A computationally efficient moment-preserving Monte Carlo electron transport method with implementation in Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A., E-mail: ddixon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, MS P365, Los Alamos, NM 87545 (United States); Prinja, A.K., E-mail: prinja@unm.edu [Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Franke, B.C., E-mail: bcfrank@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87123 (United States)

    2015-09-15

    This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data.

  2. Developments in tokamak transport modeling

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger; Lao, L.L.

    1981-01-01

    A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements

  3. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  4. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik

    2012-01-01

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  5. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  6. Method for delivery of small molecules and proteins across the cell wall of algae using molecular transporters

    Science.gov (United States)

    Geihe, Erika; Trantow, Brian; Wender, Paul; Hyman, Joel M.; Parvin, Bahram

    2017-11-14

    The introduction of tools to study, control or expand the inner-workings of algae has been slow to develop. Provided are embodiments of a molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing molecular cargos into algal cells. The methods of the disclosure have been shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae, including Neochloris oleoabundans and Scenedesmus dimorphus, thus providing a new and versatile tool for algal research and modification. The method of delivering a cargo compound to an algal cell comprises contacting an algal cell with a guanidinium-rich delivery vehicle comprising a guanidinium-rich molecular transporter (GR-MoTr) linked to a cargo compound desired to be delivered to the algal cell, whereby the guanidinium-rich molecular transporter can traverse the algal cell wall, thereby delivering the cargo compound to the algal cell.

  7. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  8. A CUMULATIVE MIGRATION METHOD FOR COMPUTING RIGOROUS TRANSPORT CROSS SECTIONS AND DIFFUSION COEFFICIENTS FOR LWR LATTICES WITH MONTE CARLO

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyuan Liu; Kord Smith; Benoit Forget; Javier Ortensi

    2016-05-01

    A new method for computing homogenized assembly neutron transport cross sections and dif- fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and only-recently-published CASMO transport method. The rigorous method is used to demonstrate the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also demonstrated that the newly developed method is directly applicable to lattice calculations per- formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections for arbitrarily heterogeneous lattices. Comparisons of several common transport cross section ap- proximations are presented for a simple problem of infinite medium hydrogen. The new method has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS benchmark.

  9. GPU - Accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using 6 GPU cards

    International Nuclear Information System (INIS)

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-01-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)

  10. New developments in transportation for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mondanel, J.L. [Transnucleaire, F-75008 Paris (France)

    1998-07-01

    For more than 30 years, Transnucleaire has been performing safely a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied numerous packagings for all types of nuclear fuel cycle radioactive materials: for front-end and back-end products and for power and research reactors. Since the last meeting held in Bruges, Transnucleaire has been continuously involved in transportation activities for fresh and irradiated materials for research reactors. We are pleased to take the opportunity in this meeting to share with reactor operators, official bodies and other partners, the on-going developments in transportation and associated services. Special attention will be paid to the starting of transports of MTR spent fuel elements to the La Hague reprocessing plant where COGEMA offers reprocessing services on a long-term basis to reactors operators. Detailed information is provided on regulatory issues, which may affect transport activities: evolution of the regulations, real experiences of recent transportation and development of new packaging designs. Options and solutions will be proposed by Transnucleaire to improve the situation for continuation of national and international transports at an acceptable price whilst maintaining an ultimate level of safety (author)

  11. Plan for Developing a Materials Performance Database for the Texas Department of Transportation

    Science.gov (United States)

    1999-09-01

    The materials used within the Texas Department of Transportation (TxDOT) are undergoing a period of change. The purpose of this report is to develop the information necessary to develop (for TxDOT) a method or a database for monitoring the performanc...

  12. Estimating the Capacity of Urban Transportation Networks with an Improved Sensitivity Based Method

    Directory of Open Access Journals (Sweden)

    Muqing Du

    2015-01-01

    Full Text Available The throughput of a given transportation network is always of interest to the traffic administrative department, so as to evaluate the benefit of the transportation construction or expansion project before its implementation. The model of the transportation network capacity formulated as a mathematic programming with equilibrium constraint (MPEC well defines this problem. For practical applications, a modified sensitivity analysis based (SAB method is developed to estimate the solution of this bilevel model. The high-efficient origin-based (OB algorithm is extended for the precise solution of the combined model which is integrated in the network capacity model. The sensitivity analysis approach is also modified to simplify the inversion of the Jacobian matrix in large-scale problems. The solution produced in every iteration of SAB is restrained to be feasible to guarantee the success of the heuristic search. From the numerical experiments, the accuracy of the derivatives for the linear approximation could significantly affect the converging of the SAB method. The results also show that the proposed method could obtain good suboptimal solutions from different starting points in the test examples.

  13. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data; Modelisation des phenomenes physiques dans les reacteurs de recherche a l'aide de developpements realises dans les methodes de transport et qualification

    Energy Technology Data Exchange (ETDEWEB)

    Rauck, St

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  14. Monte Carlo method for neutron transport problems

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-01-01

    Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)

  15. Environmental Development Plan for Transportation Energy Conservation. FY 79 update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. K.; Bernard, III, M. J.

    1978-12-15

    This is the first annual update of the Environment Development Plan (EDP) for the DOE Division of Transportation Energy Conservation program. It identifies the ecosystem, resource, physical environment, health, safety, and socioeconomic concerns associated with the division's transportation programs. These programs include the research, development, demonstration and assessment (RDD and A) of seventeen transportation technologies and several strategy and policy development and implementation projects. The transportation technologies projects deal with highway transport including electric vehicles, marine transport and pipeline transport. This EDP presents a research and assessment plan for resolving any potentially adverse environmental concerns stemming from these programs.

  16. Improved method for calculating neoclassical transport coefficients in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M., E-mail: taguchi.masayoshi@nihon-u.ac.jp [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)

    2014-05-15

    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.

  17. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  18. Development of international transport in transboundary regions

    OpenAIRE

    Прокудін, Георгій; Чупайленко, Олексій

    2015-01-01

    Formation of an international cross-border transport and logistics infrastructure meets international standards, increased productivity, transport and innovation activity of enterprises in the cluster, and provide for accelerated socio - economic development of the regions.

  19. Green's function method for the monoenergetic transport equation in heterogeneous plane geometry

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1995-01-01

    For the past several years, a series of papers by the transport group at the University of Arizona dealing with benchmark solutions of the monoenergetic transport equation has appeared. The approach has been to take advantage of highly successful numerical Laplace Fourier transform inversions to provide benchmark quality solutions in infinite media, half-space in one and two dimensions and in homogeneous slabs. This paper extends the set of solutions to include heterogeneous slab geometry by using the recently established Green's Function Method (GFM). Analytical benchmark solutions are an essential part of the quality control of computational algorithms developed for particle transport. In addition, benchmarking methods have applications in the classroom by providing examples of how computational mathematics is used to solve physical problems to obtain meaningful answers. In a structural context, monoenergetic solutions are directly applicable to the investigation of the microlight environment within a leaf. The leaf is considered to be a composition of alternating layers of highly absorbing pigments and water superimposed on a refractively scattering background

  20. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E

    2004-12-15

    A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

  1. Mixed first- and second-order transport method using domain decomposition techniques for reactor core calculations

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2003-01-01

    The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)

  2. TRANSPORT INFRASTRUCTURE OF UKRAINE: THE MODERN REALITIES AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    Tetiana Stroiko

    2017-11-01

    Full Text Available The purpose of the article is to conduct a complex research of the state of transport structure of Ukraine and substantiate prospects of its development. The developed transport system and corresponding infrastructure are a guarantee of high level of the country’s development, increasing the level of its investing attractiveness. Moreover, transport infrastructure serves as a uniting factor in the process of integration. Thus, the main function of transport infrastructure is the formation of external conditions for the management of economic entities. It is determined that the development of a state directly depends on how efficiently it performs management in different spheres. First of all, it concerns transport infrastructure. Today, the global trends necessitate constant perfection of management of transport infrastructure, in particular, investment attraction. The state and development level of transport infrastructure is one of the most important factors of socio-economic development of both member states of the European Union and Ukraine. Transport infrastructure occupies a services market sector with a market share of 75%. And in the macroeconomic context, the share of transport infrastructure in the overall volume of gross domestic product of Ukraine is 7%. In the modern management conditions, a negative dynamics of transportation and its share in the gross domestic product of Ukraine are determined mostly by the influence of economic crisis processes and negative state of development of transport infrastructure of the country. For the evaluation of activities of transport of Ukraine, we used the main indicators of its performance as criteria. The main criteria of performance evaluation of transport are: the volume of cargo transportation, cargo turnover, the ratio of modes of transport in cargo transportation, the volume of passenger transportation, passenger turnover, the cost of transportation, the ratio of passenger and cargo

  3. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup

    International Nuclear Information System (INIS)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.

    2013-01-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation

  4. OPTIMIZATION METHOD AND SOFTWARE FOR FUEL COST REDUCTION IN CASE OF ROAD TRANSPORT ACTIVITY

    Directory of Open Access Journals (Sweden)

    György Kovács

    2017-06-01

    Full Text Available The transport activity is one of the most expensive processes in the supply chain and the fuel cost is the highest cost among the cost components of transportation. The goal of the research is to optimize the transport costs in case of a given transport task both by the selecting the optimal petrol station and by determining the optimal amount of the refilled fuel. Recently, in practice, these two decisions have not been made centrally at the forwarding company, but they depend on the individual decision of the driver. The aim of this study is to elaborate a precise and reliable mathematical method for selecting the optimal refuelling stations and determining the optimal amount of the refilled fuel to fulfil the transport demands. Based on the elaborated model, new decision-supporting software is developed for the economical fulfilment of transport trips.

  5. TOPICAL PROBLEMS AND DEVELOPMENT PERSPECTIVES OF INTERNATIONAL FREIGHT TRANSPORT

    OpenAIRE

    Sulce, Anastasija

    2014-01-01

    The title of thesis is Typical Problems and Development Perspectives of International Freight Transport. This work is dedicated to different modes of international transportation, freight and logistics their advantages and disadvantages. Another essential part of the work related to different way for transport development and its efficient usage The objective is to explore modes of freight transport and logistics in details and, thereof, reveal advantages and disadvantages. On the basis ...

  6. Neutron transport solver parallelization using a Domain Decomposition method

    International Nuclear Information System (INIS)

    Van Criekingen, S.; Nataf, F.; Have, P.

    2008-01-01

    A domain decomposition (DD) method is investigated for the parallel solution of the second-order even-parity form of the time-independent Boltzmann transport equation. The spatial discretization is performed using finite elements, and the angular discretization using spherical harmonic expansions (P N method). The main idea developed here is due to P.L. Lions. It consists in having sub-domains exchanging not only interface point flux values, but also interface flux 'derivative' values. (The word 'derivative' is here used with quotes, because in the case considered here, it in fact consists in the Ω.∇ operator, with Ω the angular variable vector and ∇ the spatial gradient operator.) A parameter α is introduced, as proportionality coefficient between point flux and 'derivative' values. This parameter can be tuned - so far heuristically - to optimize the method. (authors)

  7. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  8. Multigroup adjoint transport solution using the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2005-01-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2-dimensional geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 17*17 PWR and Watanabe-Maynard benchmark problems. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. It appears that the pseudo-adjoint flux by CP method is equivalent to the adjoint flux by MOCC method and that the MOCC method requires lower computing time than the CP method for a single adjoint flux calculation

  9. Multigroup adjoint transport solution using the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Institut de Genie Nucleaire, Montreal, Quebec (Canada)

    2005-07-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2-dimensional geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 17*17 PWR and Watanabe-Maynard benchmark problems. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. It appears that the pseudo-adjoint flux by CP method is equivalent to the adjoint flux by MOCC method and that the MOCC method requires lower computing time than the CP method for a single adjoint flux calculation.

  10. Status of shielding analysis methods for transport packages

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Brady, M.C.

    1991-01-01

    Shielding analysis methods for transport packages are becoming more important to the cask designer because optimized cask designs with higher payloads can yield doses near the limits set by regulatory authorities. Uncertainty arising from generation of radiation sources, selection of cross-section data, and the radiation transport methodology must be considered. Recent comparison studies using popular US codes illustrate calculational discrepancies arising from each of these areas

  11. Transport Accessibility In Light Of The DEA Method

    Directory of Open Access Journals (Sweden)

    Górniak Joanna

    2014-12-01

    Full Text Available The development of transport infrastructure and increasing the efficiency of transport services are major factors of economic growth. The concept of transport accessibility can be analysed in various aspects. This article focuses on the accessibility of freight transport by road and rail, measured with infrastructure equipment. The primary objective of this study is to determine the efficiency of selected European countries in 2000, 2005 and 2010 in terms of transport accessibility for given expenditures and results. The efficiency will be measured with the Data Envelopment Analysis, which assesses the efficiency with which a given economy transforms expenditures into results. The hypothesis assumes the existence of differences between the efficiency in terms of transport accessibility in European countries and a possibility to increase this efficiency by using the experience of countries with a high efficiency level.

  12. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  13. A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1999-01-01

    The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport

  14. The influence of sediment transport rate on the development of structure in gravel bed rivers

    Science.gov (United States)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure

  15. Efficient method for transport simulations in quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Maczka Mariusz

    2017-01-01

    Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  16. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  17. Shielding methods development in the United States

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1977-01-01

    A generalized shielding methodology has been developed in the U.S.A. that is adaptable to the shielding analyses of all reactor types. Thus far used primarily for liquid-metal fast breeder reactors, the methodology includes several component activities: (1) developing methods for calculating radiation transport through reactor-shield systems; (2) processing cross-section libraries; (3) performing design calculations for specific systems; (4) performing and analyzing pertinent integral experiments; (5) performing sensitivity studies on both the design calculations and the experimental analyses; and, finally, (6) calculating shield design parameters and their uncertainties. The criteria for the methodology are a 5 to 10 percent accuracy for responses at locations near the core and a factor of 2 accuracy for responses at distant locations. The methodology has been successfully adapted to most in-vessel and ex-vessel problems encountered in the shield analyses of the Fast Flux Test Facility and the Fast Flux Test Facility and the Clinch River Breeder Reactor; however, improved techniques are needed for calculating regions in which radiation streaming is dominant. Areas of the methodology in which significant progress has recently been made are those involving the development of cross-section libraries, sensitivity analysis methods, and transport codes

  18. Methods of improvement of forecasting of development of mineral deposits' power supply

    Directory of Open Access Journals (Sweden)

    Alexander V. Putilov

    2015-03-01

    Full Text Available Mineral deposits (among which non-ferrous metals take a leading place are situated on the territory of our planet rather unevenly, and often in out-of-the-way places. Nuclear power (particularly, transportable nuclear power plants provides the new possibilities of power supply, which is very important for deposits' development. This article shares the economic aspects of forecasting in the field of power development (in particular, nuclear power on the basis of transportable nuclear power plants. Economic barriers of development of innovative nuclear technologies are considered on the example of transportable nuclear power plants. At the same time, there are given the ways of elimination of such barrier to development of this technology as methodical absence of investigation of a question of distribution of added cost between producers of innovative equipment and final product. Addition of new analytical tool (“business diagonal” is offered for a method of definition of economically efficient distribution of added cost (received as a result of introduction of innovative technologies between participants of production and consumption of atomic energy within the “economic cross” model. There is offered the order of use of method of cash flows discounting at calculations between nuclear market participants. Economic methods, offered in this article, may be used in forecasting of development of other energy technologies and introduction of prospective energy equipment.

  19. Nystro¨m Method in transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Débora; Azevedo, Fabio Souto de; Sauter, Esequia, E-mail: mtmdalmolin@gmail.com, E-mail: fabio.azevedo@ufrgs.br, E-mail: esequia.sauter@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Matemática Pura e Aplicada

    2017-07-01

    We consider a system of equations modelling the steady-state transport equation in a participative medium with internal sources and semi-reflective boundaries. Based on this model, we discuss the implementation of the Nystro¨m method to solve the integral formulation of this transport equation. The analytical problems of existence and uniqueness of solution as well as numerical results for these equations have already been established in the literature. To obtain a numerical solution for the scalar flux for this problem, we will write the equation as a Fredholm equation of the second type and analyze quadrature schemes such as the Boole and Gauss-Legendre rules. Analytical and computational techniques were implemented to deal with singularities. We show the efficiency of the proposed method through some numerical tests and compare our results with those that can be found in the literature. (author)

  20. Texas-Mexico multimodal transportation: developments in Mexico

    Science.gov (United States)

    Boske, Leigh B.

    1994-03-01

    This presentation highlights the results of a recently completed study that examines the Texas- Mexico multimodal transport system already in place, current plans for improvements or expansion, and opportunities and constraints faced by each transport mode -- motor carriage, rail, maritime, and air. Particular emphasis is given to findings regarding transportation developments in Mexico. The study concludes that in Mexico, all modes are working at establishing new services and strategic alliances, intermodal arrangements are on the rise, and private-sector participation in infrastructure improvements is growing daily at Mexican seaports and airports as well as within that nation's highway and rail systems. This presentation looks at developments that concern privatization, deregulation, infrastructure improvements, financing arrangements, and new services in Mexico.

  1. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  2. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  3. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  4. Dynamic method to study turbulence and turbulence transport

    International Nuclear Information System (INIS)

    Inagaki, S.; Itoh, S.-I.; Kasuya, N.; Sasaki, M.; Fujisawa, A.; Ida, K.; Itoh, K.; Tokuzawa, T.; Tamura, N.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Tsuchiya, H.; Nagayama, Y.; Yamada, H.; Komori, A.; Kobayashi, T.; Kosuga, Y.; Kamiya, Kensaku

    2014-10-01

    Here we developed research methods of plasma turbulence transport associated with the non-local features. The ECH modulation experiment and the higher harmonic analysis of the heat wave indicated: (1) propagation of the change of T e at the time of switch-off/on of ECH power is about 5 times faster than that of perturbation itself, (2) propagation of the higher (7th) harmonic of the T e perturbation is 5 times faster than prediction by the diffusive model. New bi-spectral analysis of fluctuations demonstrated a non-linear coupling of micro-fluctuations at different radial locations. These results are beneficial for control of plasma dynamics in future fusion reactors. (author)

  5. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  6. Intensification of Development of Mixed Transportation of Freight in Ukraine through Formation of the Network of Transportation and Logistic Centres and Transportation and Logistic Clusters

    Directory of Open Access Journals (Sweden)

    Karpenko Oksana O.

    2013-11-01

    Full Text Available Development of mixed transportation is a prospective direction of development of the transportation system of Ukraine. The article analyses the modern state of development of mixed transportation of freight in Ukraine. The most popular types of combined transportation (refers to multi-modal are container and contrailer trains, which are formed both in Ukraine (Viking and Yaroslav and in other countries, first of all, Belarus (Zubr. One of the reasons of underdevelopment of mixed transportation of freight in Ukraine is absence of a developed network of transportation and logistic centres. The article offers to form a network of transportation and logistic centres in Ukraine as a way of intensification of development of mixed transportations of freight, since they facilitate co-ordination of use of various types of transport and support integrated management of material flows. Transportation and logistic centres should become a start-up complex, around which transportation and logistic clusters would be gradually formed. Transportation and logistic clusters is a new efficient form of network organisation and management of transportation and logistic services and they also ensure growth of efficiency of use of the regional transportation and logistic potential of Ukraine. The article shows prospective supporting transportation and logistic centres and centres of formation of transportation and logistic clusters in the territory of Ukraine. Formation of efficient transportation and logistic system of Ukraine on the basis of a network of transportation and logistic clusters would facilitate entering of Ukraine into the world transportation environment and would allow acceleration of introduction of efficient logistic schemes of freight delivery, in particular, mixed transportation of freight.

  7. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    Science.gov (United States)

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  8. A Monte Carlo Green's function method for three-dimensional neutron transport

    International Nuclear Information System (INIS)

    Gamino, R.G.; Brown, F.B.; Mendelson, M.R.

    1992-01-01

    This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution

  9. Efficient decomposition and linearization methods for the stochastic transportation problem

    International Nuclear Information System (INIS)

    Holmberg, K.

    1993-01-01

    The stochastic transportation problem can be formulated as a convex transportation problem with nonlinear objective function and linear constraints. We compare several different methods based on decomposition techniques and linearization techniques for this problem, trying to find the most efficient method or combination of methods. We discuss and test a separable programming approach, the Frank-Wolfe method with and without modifications, the new technique of mean value cross decomposition and the more well known Lagrangian relaxation with subgradient optimization, as well as combinations of these approaches. Computational tests are presented, indicating that some new combination methods are quite efficient for large scale problems. (authors) (27 refs.)

  10. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  11. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  12. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  13. Transport-level description of the 252Cf-source method using the Langevin technique

    International Nuclear Information System (INIS)

    Stolle, A.M.; Akcasu, A.Z.

    1991-01-01

    The fluctuations in the neutron number density and detector outputs in a nuclear reactor can be analyzed conveniently by using the Langevin equation approach. This approach can be implemented at any level of approximation to describe the time evolution of the neutron population, from the most complete transport-level description to the very basic point reactor analysis of neutron number density fluctuations. In this summary, the complete space- and velocity-dependent transport-level formulation of the Langevin equation approach is applied to the analysis of the 252 Cf-source-driven noise analysis (CSDNA) method, an experimental technique developed by J.T. Mihalczo at Oak Ridge National Laboratory, which makes use of noise analysis to determine the reactivity of subcritical media. From this analysis, a theoretical expression for the subcritical multiplication factor is obtained that can then be used to interpret the experimental data. Results at the transport level are in complete agreement with an independent derivation performed by Sutton and Doub, who used the probability density method to interpret the CSDNA experiment, but differed from other expressions that have appeared in the literature

  14. Development of instrumentation in the transport phenomena research in thermal equipment

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de; Ladeira, L.C.D.

    1983-11-01

    The results obtained from the effort on the acquisition of know-how in experimental reactor thermal during the last years, through the approach of relevant aspects of basic research on transport phenomena applicable to nuclear reactor analysis and conventional thermal equipment based in the simultaneous development of instrumentation and experimental methods are presented. (E.G.) [pt

  15. Development of three-dimensional neoclassical transport simulation code with high performance Fortran on a vector-parallel computer

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao; Nakajima, Noriyoshi; Takamaru, Hisanori

    2005-11-01

    A neoclassical transport simulation code (FORTEC-3D) applicable to three-dimensional configurations has been developed using High Performance Fortran (HPF). Adoption of computing techniques for parallelization and a hybrid simulation model to the δf Monte-Carlo method transport simulation, including non-local transport effects in three-dimensional configurations, makes it possible to simulate the dynamism of global, non-local transport phenomena with a self-consistent radial electric field within a reasonable computation time. In this paper, development of the transport code using HPF is reported. Optimization techniques in order to achieve both high vectorization and parallelization efficiency, adoption of a parallel random number generator, and also benchmark results, are shown. (author)

  16. Development of a neutron transport code many-group two-dimensional heterogeneous calculations by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2000-01-01

    The method of characteristics (MOC) is gaining increased popularity in the reactor physics community all over the world because it gives a new degree of freedom in nuclear reactor analysis. The MARIKO code solves the neutron transport equation by the MOC in two-dimensional real geometry. The domain of solution can be a rectangle or right hexagon with periodic boundary conditions on the outer boundary. Any reasonable symmetry inside the domain can be fully accounted for. The geometry is described in three levels-macro-cells, cells, and regions. The macro-cells and cells can be any polygon. The outer boundary of a region can be any combination of straight line and circular arc segments. Any level of embedded regions is allowed. Procedures for automatic geometry description of hexagonal fuel assemblies and reflector macro-cells have been developed. The initial ray tracing procedure is performed for the full rectangular or hexagonal domain, but only azimuthal angles in the smallest symmetry interval are tracked. (Authors)

  17. Development of a graphical method for choosing the optimal mode of traffic light

    Science.gov (United States)

    Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.

    2018-05-01

    Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.

  18. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  19. Development of assessment methods for transport and storage containers with higher content of metallic recycling material

    International Nuclear Information System (INIS)

    Zencker, U.; Qiao Linan; Droste, B.

    2004-01-01

    The mechanical behaviour of transport and storage containers made of ductile cast iron melted with higher content of metallic recycling material from decommissioning and dismantling of nuclear installations is investigated. With drop tests of cubic container-like models, the influence of different real targets on the stresses in the cask body and the fracture behaviour is examined. A test stand foundation is suggested, which can be manufactured simply and improves the reproducibility of the test results strongly. The test objects are partially equipped with artificial cracklike defects. Dynamic fracture mechanics analyses of these defects were performed by means of finite element calculations to uncover safety margins. Numerous test results show depending on the requirements that containers for final disposal can be built by means of a ductile cast iron with fracture toughness more than half under the lower bound value for the licensed material qualities yet. The application limits of the material are determined also by the opportunities of the safety assessment methods. This project supports the application of brittle fracture safe transport and storage packages for radioactive materials as recommended in App. VI of the Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA No. TS-G-1.1)

  20. Development of assessment methods for transport and storage containers with higher content of metallic recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Zencker, U.; Qiao Linan; Droste, B. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2004-07-01

    The mechanical behaviour of transport and storage containers made of ductile cast iron melted with higher content of metallic recycling material from decommissioning and dismantling of nuclear installations is investigated. With drop tests of cubic container-like models, the influence of different real targets on the stresses in the cask body and the fracture behaviour is examined. A test stand foundation is suggested, which can be manufactured simply and improves the reproducibility of the test results strongly. The test objects are partially equipped with artificial cracklike defects. Dynamic fracture mechanics analyses of these defects were performed by means of finite element calculations to uncover safety margins. Numerous test results show depending on the requirements that containers for final disposal can be built by means of a ductile cast iron with fracture toughness more than half under the lower bound value for the licensed material qualities yet. The application limits of the material are determined also by the opportunities of the safety assessment methods. This project supports the application of brittle fracture safe transport and storage packages for radioactive materials as recommended in App. VI of the Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA No. TS-G-1.1).

  1. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    International Nuclear Information System (INIS)

    Chen, Z.; Wang, D.; He, T.; Wang, G.; Zheng, H.

    2013-01-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, a new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)

  2. Ancient road transport devices: Developments from the Bronze Age to the Roman Empire

    Science.gov (United States)

    Rossi, Cesare; Chondros, Thomas G.; Milidonis, Kypros F.; Savino, Sergio; Russo, Flavio

    2016-03-01

    The development of transportation systems has significantly enhanced the welfare and modernization of society. Wooden vehicles pulled by animals have been used for land transportation since the early Bronze Age. Whole-body gharries with rigid wheels pulled by oxen appeared in Crete by 2000 BC or earlier. Horses originating from the East were depicted in early Cretan seal-rings of the same period. The two-wheeled horsedrawn chariot was one of the most important inventions in history. This vehicle provided humanity its first concept of personal transport and was the key technology of war for 2000 years. Chariots of Mycenaean and Archaic Greece with light and flexible four-spoked wheels acting as spring suspensions were depicted in vase paintings. The development of this vehicle incorporated the seeds of a primitive design activity and was important for engineering. The Trojan horse since 1194 BC and the helepolis since 700 BC were the first known machines on a wheeled base transported by horses or self-powered. Ancient engineers invented bearings lubricated with fat, and Romans introduced the ancestors of ball bearings for their wagons and carts. The historic evolution of wheeled transportation systems, along with early traction, suspension, and braking systems, is presented in this paper. Analytical and numerical methods are incorporated to analyze the most conceivable loading situations of typically reconstructed wheeled transportation systems in ancient times. Traction requirements both for horse-driven machines and the power for internal motors are also analyzed. This study can serve as a basis for further development of detailed reconstruction of transportation systems in antiquity.

  3. The Environment, Tourist Transport and the Sustainable Development of Tourism

    Directory of Open Access Journals (Sweden)

    Diana Ioncică

    2016-11-01

    Full Text Available The article explores the complex relationships between the natural environment , tourist transport and sustainable tourism development. In order to research the impact of natural resources on tourism activity, on the one hand, and the influences of tourism on the environment, on the other hand, statistical and mathematical methods of analysis and forecast were used, namely, the analysis of the dynamics of significant indicators of the natural environment and of tourist activity, the correlation method, the Markov chains method. The analyses made lead us to the conclusion of the existence of a positive evolution of significant indicators of the natural environment, with an impact on tourist activity, such as natural parks. It has been emphasized; also, that this positive evolution has a direct influence on the attraction of visitors, specifically, foreign ones, but the intensity of this influence is average. The intensification of the actions of promotion of natural parks and, generally, of protected areas in Romania, would be a direction for attracting an increased number of visitors, with all the favourable economic consequences. On the other hand, the research has outlined the fact that, as far as the means of transportation used by tourists to visit Romania are concerned, on the first places we can see road and air transport, means of transportation which, aside from the obvious advantages for tourists, have a strong negative impact on the environment. The forecast made with the help of the Markov chains method has shown a negative trend, from the point of view of the impact on the environment, namely an increase in the share of road and air transport in the preference of foreign visitors to Romania. The current research represents a contribution to the efforts of measuring, through statistical and mathematical models, of the complex influences, in both senses, between the environment and tourist activity. Thus, an objective radiography has

  4. The Adaptation of Ways and Methods of Risk Minimization in Local Payment Systems in Public Transport

    Directory of Open Access Journals (Sweden)

    Avdaev Mausar Yushaevich

    2014-12-01

    Full Text Available The problems of risk management gain special relevance in the conditions of payment systems development in public passenger transport in Russia. The risk carriers as well as the sources of their occurrence are revealed; the characteristics of private risks of individual participants in the system of public passenger transport are presented. The directions of risk management in relation to the payment system in public transport are reasoned and structured. It is proved that the choice of specific ways to minimize the risks in local payment systems in public transport is conditioned by the following factors – the nature of the payment system integration in public transport areas, the temporary nature of risk components effect due to the improvement of organizational, economic and technological factors, the change of the stages of payment systems development, the evaluation of risks effects. The article reasons the possibility of using and adjusting traditional ways (risk evasion, risk compensation, decrease in risk level, risk transfer, distribution of risk between participants and the methods of risk management in the payment systems in public transport according to the stages of their development and functioning for the processing center, passenger motor transport organizations, financial center and passengers (payers. The authors justify the directions of integrating the local payment systems of public transport in the national payment system, taking into account the risks involved in the activity of its members.

  5. A method to obtain new cross-sections transport equivalent

    International Nuclear Information System (INIS)

    Palmiotti, G.

    1988-01-01

    We present a method, that allows the calculation, by the mean of variational principle, of equivalent cross-sections in order to take into account the transport and mesh size effects on reactivity variation calculations. The method validation has been made in two and three dimensions geometries. The reactivity variations calculated in three dimensional hexagonal geometry with seven points by subassembly using two sets of equivalent cross-sections for control rods are in a very good agreement with the ones of a transport, extrapolated to zero mesh size, calculation. The difficulty encountered in obtaining a good flux distribution has lead to the utilisation of a single set of equivalent cross-sections calculated by starting from an appropriated R-Z model that allows to take into account also the axial transport effects for the control rod followers. The global results in reactivity variations are still satisfactory with a good performance for the flux distribution. The main interest of the proposed method is the possibility to simulate a full 3D transport calculation, with fine mesh size, using a 3D diffusion code, with a larger mesh size. The results obtained should be affected by uncertainties, which do not exceed ± 4% for a large LMFBR control rod worth and for very different rod configurations. This uncertainty is by far smaller than the experimental uncertainties. (author). 5 refs, 8 figs, 9 tabs

  6. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  7. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  8. Some robust numerical methods for flow and transport in porous media; Quelques methodes numeriques robustes pour l'ecoulement et le transport en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Sboui, A

    2007-01-15

    The aim of this thesis is to model and develop numerical tools adapted to study underground water flow and the propagation of pollutants in a porous medium. The main motivation of this work is a benchmark from GDR Momas and ANDRA to simulate the 3-D propagation of radionuclides around a deep disposal of nuclear waste. Firstly, we construct a new mixed finite elements method suitable for general hexahedral meshes. Convergence of the method is proved and shown in numerical experiments. Secondly, we present a method of time discretization for the advection equation which allows for the use of different time steps in different sub-domains in order to take into account of strong heterogeneities. Finally a numerical method for the calculation of the transport of contaminants is proposed. The techniques above were implemented in a 3-D code and simulation results are shown on the 3-D far field benchmark from GDR Momas and ANDRA. (author)

  9. MARKETING AND LOGISTICS INFRASTRUCTURE DEVELOPMENT OF THE TRANSPORT SERVICES MARKET

    Directory of Open Access Journals (Sweden)

    V. I. Kopytko

    2009-02-01

    Full Text Available Taking into account the modern trends of world economy development, the opportunities of increasing the competitiveness of the Ukrainian transport system on the base of marketing-logistical providing the development of infrastructure of transport services market are presented. The analysis of marketing-logistical approaches of estimation of the efficiency of operation of transport infrastructure objects is performed. The condition of theoretical and practical aspects of the transport services market is elucidated, the examples of logistical concepts are given, considering the work experience of transport enterprises, the ways of formation of regional transport-logistical associations are offered.

  10. ECONOMIC BENEFITS OF DEVELOPING INTERMODAL TRANSPORT IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Crisan Radu

    2012-12-01

    Full Text Available Transport plays a crucial role in economic and social development and its contribution goes beyond what is normally captured in traditional cost-benefit analyses. Transportation investments can have large long-term economic, social and environmental impacts. The European Commission when developing transport policy, focuses on the intermodal transport, which is seen as a sustainable mobility solution, environmentally friendly and efficient in terms of resources, especially in terms of freight. European transport policies promote co-modality - combining different modes for a single supply chain - as a solution to the adverse effects of transport: pollution, traffic congestion, energy consumption. Intermodal transport is found to be consistently cheaper than all-road solutions, and its external costs significantly lower, thereby confirming the high potential of intermodal transport in increasing the sustainability of the transport sector. So, freight intermodality is increasingly considered as major potential contributor to solving the sustainability problems of the European transport sector. This paper addresses the pricing issues specifically related to intermodal transport. The focus in on the main economical advantages of developing intermodal transport, but also on the usage limits brought by particularities of transport modes. Special attention is given to intermodal transfer terminals with solutions for activity efficiency increase, with major implications on the quality and cost of transportation. The theme discussed in this paper is of great importance, many authors and specialists developed it in their studies. Some names are needed to be mentioned: Todd Litman, Dr. Yuri V. Yevdokimov, John J. Coyle, Kenneth D. Boyer and few more. But, a special attention for this subject is paid by the European Commission and its subordinated institutions, that are interested in developing sustainable strategies and promoting concrete solutions for

  11. Computational methods of electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.

    1983-01-01

    A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated

  12. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2005-01-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  13. MARKETING AND LOGISTICS INFRASTRUCTURE DEVELOPMENT OF THE TRANSPORT SERVICES MARKET

    OpenAIRE

    Kopytko, V. I.

    2009-01-01

    Taking into account the modern trends of world economy development, the opportunities of increasing the competitiveness of the Ukrainian transport system on the base of marketing-logistical providing the development of infrastructure of transport services market are presented. The analysis of marketing-logistical approaches of estimation of the efficiency of operation of transport infrastructure objects is performed. The condition of theoretical and practical aspects of the transport services...

  14. Effect of space structures against development of transport infrastructure in Banda Aceh by using the concept of transit oriented development

    Science.gov (United States)

    Noer, Fadhly; Matondang, A. Rahim; Sirojuzilam, Saleh, Sofyan M.

    2017-11-01

    Due to the shifting of city urban development causing the shift of city services center, so there is a change in space pattern and space structure in Banda Aceh, then resulting urban sprawl which can lead to congestion problem occurs on the arterial road in Banda Aceh, it can be seen from the increasing number of vehicles per year by 6%. Another issue occurs by urban sprawl is not well organized of settlement due to the uncontrolled use of space so that caused grouping or the differences in socioeconomic strata that can impact to the complexity of population mobility problem. From this background problem considered to be solved by a concept that is Transit Oriented Development (TOD), that is a concept of transportation development in co-operation with spatial. This research will get the model of transportation infrastructure development with TOD concept that can handle transportation problem in Banda Aceh, due to change of spatial structure, and to find whether TOD concept can use for the area that has a population in medium density range. The result that is obtained equation so the space structure is: Space Structure = 0.520 + 0.206X3 + 0.264X6 + 0.100X7 and Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X5 + 0.235X6 + 0.222X7 + 0.327X8, So results obtained with path analysis method obtained variable influences, node ratio, network connectivity, travel frequency, travel destination, travel cost, and travel time, it has a lower value when direct effect with transportation infrastructure development, but if the indirect effect through the structure of space has a greater influence, can be seen from spatial structure path scheme - transportation infrastructure development.

  15. Developing an interdisciplinary certificate program in transportation planning.

    Science.gov (United States)

    2010-09-01

    This project develops and implements a graduate certificate in transportation planning. Texas A&M : University (A&M) currently offers instruction in transportation through its Master of Urban Planning (MUP) : and Civil Engineering (CE) programs; howe...

  16. Transport Methods Conquering the Seven-Dimensional Mountain

    International Nuclear Information System (INIS)

    Graziani, F; Olson, G

    2003-01-01

    several years will be driven by algorithms. Because transport is an implicit problem requiring iteration, the biggest gains are to be made in finding faster techniques for acceleration to convergence. Some of these acceleration methods are very application specific because they are physics based; others are very general because they address the mathematics of the transport equation. Funding more research in the latter area could have a large impact on many physics applications. Usually it is a collaboration of someone with a tough problem to solve and someone with a new idea that makes the big advances. More heads are needed to continue the progress of the last few years. Unfortunately, transport as a discipline is not taught in many graduate schools. Students and researchers too often pick up transport theory in pieces on an ad hoc basis. Therefore, they don't know the published literature and existing techniques. Knowledge of advances in one application area often takes years to propagate to other application areas

  17. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  18. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  19. Quantitative assessment of urban transport development – a spatial approach

    Directory of Open Access Journals (Sweden)

    Czech Artur

    2018-03-01

    Full Text Available Urban transport is considered the basis of properly functioning cities and their development. The main aim of the paper is to attempt the assessment of urban transport development in selected voivodeships (provinces as a crucial factor of macro logistics. The research also aimed to identify the underdeveloped areas of urban transport in Poland as the basis for the implementation of support policy. The source of information in the investigation process was data drawn from the Central Statistical Office in Poland for 2013–2016. In the scope of dealing with the research problem, chosen classical and order multivariate statistical measures were implemented into the research process. Next, the taxonomic measures for the years of interest served as the basis for the construction of the total (general synthetic measure applicable to the entire period. The main results and findings of the research indicate that the level of urban transport development is correlated with the whole transportation system which affects the socio-economic development of some regions of Poland. The research can lead to a better understanding of Polish urban transportation development in selected regions. Hence, the results can be helpful in the investment process and for shaping the right transportation policy to improve the use of financial resources.

  20. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  1. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    Energy Technology Data Exchange (ETDEWEB)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert ' Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  2. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    International Nuclear Information System (INIS)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold; Elliott, Robert 'Dan'; Durham, Lisa

    2013-01-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  3. Transportation, economical development and environmental considerations in the Arctic areas

    International Nuclear Information System (INIS)

    Berg, J.S.

    1993-01-01

    There is a need for increased development in Arctic regions for obtaining resources such as hydrocarbons and ores. Development of these resources in remote areas requires suitable transportation routes and proper attention to the environmental sensitivity of northern lands. Developing a transport route must take into account such matters as resource location, economic feasibility, type of material to be transported, length of time the route will be needed, the interest of the route to tourism, and the effect of transport on the environment. Design, construction, and maintenance of the transport route requires collection of reliable data and conformity to specifications relevant to the region concerned. Construction and maintenance in northern areas is affected by such complicated and costly factors as the short construction season, long distances for transportation of both equipment and workers, presence of permafrost, and low winter temperatures. 6 figs

  4. Sediment transport via needle ice: a new method for diffusive transport on laboratory-scale hillslopes

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    controlled by systematically varying the frequency and/or duration of temperature perturbations. The rate of sediment transport on soil mantled hillslopes depends on topographic slope and transport occurs in an "active layer", i.e., the soil mantle. We show that needle ice transports sediment diffusively and has great potential as a method for laboratory simulation of a soil-mantled hillslope since transport is confined to a layer only a few millimeters from the surface. Furthermore, while past experiments are limited to modeling landscape response to precipitation or uplift, our method to systematically control the vigor of hillslope processes will enable us to model potential climate-driven changes in hillslope transport efficiency.

  5. The energetic alpha particle transport method EATM

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets

  6. Application of the Arbitrarily High Order Method to Coupled Electron Photon Transport

    International Nuclear Information System (INIS)

    Duo, Jose Ignacio

    2004-01-01

    This work is about the application of the Arbitrary High Order Nodal Method to coupled electron photon transport.A Discrete Ordinates code was enhanced and validated which permited to evaluate the advantages of using variable spatial development order per particle.The results obtained using variable spatial development and adaptive mesh refinement following an a posteriori error estimator are encouraging.Photon spectra for clinical accelerator target and, dose and charge depositio profiles are simulated in one-dimensional problems using cross section generated with CEPXS code.Our results are in good agreement with ONELD and MCNP codes

  7. Popular NREL-Developed Transportation Mobile App Launches on Android

    Science.gov (United States)

    Platform | News | NREL Popular NREL-Developed Transportation Mobile App Launches on Android Platform Popular NREL-Developed Transportation Mobile App Launches on Android Platform May 23, 2017 More since the new Android version of the Alternative Fueling Station Locator App launched last week. The U.S

  8. Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods

    International Nuclear Information System (INIS)

    Lefvert, T.

    1975-11-01

    Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)

  9. Development of Transportation Package for Medical and Industrial Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. S.; Lee, J. C.; Bang, K. S. (and others)

    2007-06-15

    The objective of this project is development of RI transport package and establishment of transportation system. This report describes the objective of project, necessaries, state of related technology, scope and results, proposal for application etc. The scope of the project consist of establishment of performance test system for type-A package for medical use, development of type-B package for industrial use and development of casting technology for DU shield and evaluation of shielding efficiency. The research results obtained from this project are expected to be utilized as a basic data for design, analysis, test and license of transport package.

  10. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  11. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  12. DEVELOPMENT OF PUBLIC TRANSPORT: FUTURE CHALLENGES OF LIEPAJA` S TRAM (LATVIA

    Directory of Open Access Journals (Sweden)

    Diāna Līduma

    2016-06-01

    Full Text Available Transport has always had an important role in the lifestyle of population and development of economy, but the public transport performs mainly the social function – it works for the benefit of the society. Development and quality of services must be provided also for the public transport companies, however, we meet different problems related to infrastructure and traffic for this to happen. To successfully manage and develop a public transport company, it is essential to change the thinking of people in favour of the public transport, not for the personal transport. It is necessary to ensure the sustainability as the main value, which means selection of the right public transport system. The authors relied on the experience of formation of a unified transport system in the world and Latvia’s largest cities’ strategic vision for public transport development. Taking into account the fact that Liepaja is one the three cities in Latvia where the public transport service is provided by a tram, an empiric research was made. Its aim was to clarify the opinion of the inhabitants of Liepaja, regarding the services provided by Liepaja trams, regarding the possible improvements and necessity for development. 200 inhabitants of Liepaja were questioned within the framework of the research. The results of the research revealed that although the tram provides daily the inhabitants of Liepaja with the movement possibilities, unfortunately inhabitants are not ready yet to replace their personal transport with the public transport – tram to settle their daily problems. The results of the research allowed to conclude that future development possibilities and perspectives of the tram in Liepaja City can be related mainly with the creation of a new route, purchase of new carriages and unified public transport system in Liepaja City.

  13. Assessment of transport performance index for urban transport development strategies — Incorporating residents' preferences

    Energy Technology Data Exchange (ETDEWEB)

    Ambarwati, Lasmini, E-mail: L.Ambarwati@tudelft.nl [Department of Transport and Planning, TU Delft (Netherlands); Department of Civil Engineering, Brawijaya University (Indonesia); Verhaeghe, Robert, E-mail: R.Verhaeghe@tudelft.nl [Department of Transport and Planning, TU Delft (Netherlands); Arem, Bart van, E-mail: B.vanArem@tudelft.nl [Department of Transport and Planning, TU Delft (Netherlands); Pel, Adam J., E-mail: A.J.Pel@tudelft.nl [Department of Transport and Planning, TU Delft (Netherlands)

    2017-03-15

    The performance of urban transport depends on a variety of factors related to metropolitan structure; in particular, the patterns of commuting, roads and public transport (PT) systems. To evaluate urban transport planning efforts, there is a need for a metric expressing the aggregate performance of the city's transport systems which should relate to residents' preferences. The existing metrics have typically focused on a measure to express the proximity of job locations to residences. A Transport Performance Index (TPI) is proposed in which the total cost of transportation system (operational and environmental costs) is divided by willingness to pay (WTP) for transport plus the willingness to accept (WTA) the environmental effects on residents. Transport operational as well as the environmental costs are derived from a simulation of all transport systems, to particular designs of spatial development. Willingness to pay for transport and willingness to accept the environmental effects are derived from surveys among residents. Simulations were modelled of Surabaya's spatial structure and public transport expansion. The results indicate that the current TPI is high, which will double by 2030. With a hypothetical polycentric city structure and adjusted job housing balance, a lower index occurs because of the improvements in urban transport performance. A low index means that the residents obtain much benefit from the alternative proposed. This illustrates the importance of residents' preferences in urban spatial planning in order to achieve efficient urban transport. Applying the index suggests that city authorities should provide fair and equitable public transport systems for suburban residents in the effort to control the phenomenon of urban sprawl. This index is certainly a good tool and prospective benchmark for measuring sustainability in relation to urban development.

  14. Assessment of transport performance index for urban transport development strategies — Incorporating residents' preferences

    International Nuclear Information System (INIS)

    Ambarwati, Lasmini; Verhaeghe, Robert; Arem, Bart van; Pel, Adam J.

    2017-01-01

    The performance of urban transport depends on a variety of factors related to metropolitan structure; in particular, the patterns of commuting, roads and public transport (PT) systems. To evaluate urban transport planning efforts, there is a need for a metric expressing the aggregate performance of the city's transport systems which should relate to residents' preferences. The existing metrics have typically focused on a measure to express the proximity of job locations to residences. A Transport Performance Index (TPI) is proposed in which the total cost of transportation system (operational and environmental costs) is divided by willingness to pay (WTP) for transport plus the willingness to accept (WTA) the environmental effects on residents. Transport operational as well as the environmental costs are derived from a simulation of all transport systems, to particular designs of spatial development. Willingness to pay for transport and willingness to accept the environmental effects are derived from surveys among residents. Simulations were modelled of Surabaya's spatial structure and public transport expansion. The results indicate that the current TPI is high, which will double by 2030. With a hypothetical polycentric city structure and adjusted job housing balance, a lower index occurs because of the improvements in urban transport performance. A low index means that the residents obtain much benefit from the alternative proposed. This illustrates the importance of residents' preferences in urban spatial planning in order to achieve efficient urban transport. Applying the index suggests that city authorities should provide fair and equitable public transport systems for suburban residents in the effort to control the phenomenon of urban sprawl. This index is certainly a good tool and prospective benchmark for measuring sustainability in relation to urban development.

  15. Development of the Model of Decision Support for Alternative Choice in the Transportation Transit System

    Directory of Open Access Journals (Sweden)

    Kabashkin Igor

    2015-02-01

    Full Text Available The decision support system is one of the instruments for choosing the most effective decision for cargo owner in constant fluctuated business environment. The objective of this Paper is to suggest the multiple-criteria approach for evaluation and choice the alternatives of cargo transportation in the large scale transportation transit system for the decision makers - cargo owners. The large scale transportation transit system is presented by directed finite graph. Each of 57 alternatives is represented by the set of key performance indicators Kvi and set of parameters Paj. There has been developed a two-level hierarchy system of criteria with ranging expert evaluations based on Analytic Hierarchy Process Method. The best alternatives were suggested according to this method.

  16. Present status of transport code development based on Monte Carlo method

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki

    1985-01-01

    The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)

  17. Selecting The Best Initial Method For A Transportation Problem ...

    African Journals Online (AJOL)

    This paper is concerned with determining the best initial method for a transportation problem. Seven initial methods are considered and compared. One is a new method that has not been reported in the literature. Comparison is done on the basis of the number of iterations required to reach the final solution if the concerned ...

  18. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  19. Analysis of Monte Carlo methods for the simulation of photon transport

    International Nuclear Information System (INIS)

    Carlsson, G.A.; Kusoffsky, L.

    1975-01-01

    In connection with the transport of low-energy photons (30 - 140 keV) through layers of water of different thicknesses, various aspects of Monte Carlo methods are examined in order to improve their effectivity (to produce statistically more reliable results with shorter computer times) and to bridge the gap between more physical methods and more mathematical ones. The calculations are compared with results of experiments involving the simulation of photon transport, using direct methods and collision density ones (J.S.)

  20. Some robust numerical methods for flow and transport in porous media; Quelques methodes numeriques robustes pour l'ecoulement et le transport en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Sboui, A

    2007-01-15

    The aim of this thesis is to model and develop numerical tools adapted to study underground water flow and the propagation of pollutants in a porous medium. The main motivation of this work is a benchmark from GDR Momas and ANDRA to simulate the 3-D propagation of radionuclides around a deep disposal of nuclear waste. Firstly, we construct a new mixed finite elements method suitable for general hexahedral meshes. Convergence of the method is proved and shown in numerical experiments. Secondly, we present a method of time discretization for the advection equation which allows for the use of different time steps in different sub-domains in order to take into account of strong heterogeneities. Finally a numerical method for the calculation of the transport of contaminants is proposed. The techniques above were implemented in a 3-D code and simulation results are shown on the 3-D far field benchmark from GDR Momas and ANDRA. (author)

  1. Comparison between s - and d -electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods

    KAUST Repository

    Odell, Anders; Delin, Anna; Johansson, Bö rje; Ulman, Kanchan; Narasimhan, Shobhana; Rungger, Ivan; Sanvito, Stefano

    2011-01-01

    The influence of the electrode's Fermi surface on the transport properties of a photoswitching molecule is investigated with state-of-the-art ab initio transport methods. We report results for the conducting properties of the two forms

  2. Development and preliminary verification of 2-D transport module of radiation shielding code ARES

    International Nuclear Information System (INIS)

    Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng

    2013-01-01

    The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)

  3. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  4. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  5. Forming of the regional core transport network taking into account the allocation of alternative energy sources based on artificial intelligence methods

    Directory of Open Access Journals (Sweden)

    Marina ZHURAVSKAYA

    2014-12-01

    Full Text Available In the modern world the alternative energy sources, which considerably depend on a region, play more and more significant role. However, the transition of regions to new energy sources lead to the change of transport and logistic network configuration. The formation of optimal core transport network today is a guarantee of the successful economic development of a region tomorrow. The present article studies the issue of advanced core transport network development in a region based on the experience of European and Asian countries and the opportunity to adapt the best foreign experience to Russian conditions. On the basis of artificial intelligence methods for forest industry complex of Sverdlovskaya Oblast the algorithm of problem solution of an optimal logistic infrastructure allocation is offered and some results of a regional transport network are presented. These methods allowed to solve the set task in the conditions of information uncertainty. There are suggestions on the improvement of transport and logistic network in the territory of Sverdlovskaya Oblast. Traditionally the logistics of mineral fuel plays main role in regions development. Actually it is required to develop logistic strategic plans to be able to provide different possibilities of power-supply, flexible enough to change with the population density, transport infrastructure and demographics of different regions. The problem of logistic centers allocation was studied by many authors. The approach, offered by the authors of this paper is to solve the set of tasks by applying artificial intelligence methods, such as fuzzy set theory and genetic algorithms.

  6. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Inst. de genie nucleaire, Montreal, Quebec (Canada)]. E-mail: monchai.assawar@polymtl.ca

    2005-07-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  7. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  8. A method for selection of spent nuclear fuel (SNF) transportation route considering socioeconomic cost based on contingent valuation method (CVM)

    International Nuclear Information System (INIS)

    Kim, Young Sik

    2008-02-01

    A transportation of SNF may cause an additional radiation exposure to human beings. It means that the radiological risk should be estimated and managed quantitatively for the public who live near the shipments route. Before the SNF transportation is performed, the route selection is concluded based on the radiological risk estimated with RADTRAN code in existing method generally. It means the existing method for route selection is based only on the radiological health risk but there are not only the impacts related to the radiological health risk but also the socioeconomic impacts related to the cost. In this study, a new method and its numerical formula for route selection on transporting SNF is proposed based on cost estimation because there are several costs in transporting SNF. The total cost consists of radiological health cost, transportation cost, and socioeconomic cost. Each cost is defined properly to the characteristics of SNF transportation and many coefficients and variables describing the meaning of each cost are obtained or estimated through many surveys. Especially to get the socioeconomic cost, contingent valuation method (CVM) is used with a questionnaire. The socioeconomic cost estimation is the most important part of the total cost originated from transporting SNF because it is a very dominant cost in the total cost. The route selection regarding SNF transportation can be supported with the proposed method reasonably and unnecessary or exhausting controversies about the shipments could be avoided

  9. Impact of Road Transport on Agricultural Development: A Nigerian ...

    African Journals Online (AJOL)

    Impact of Road Transport on Agricultural Development: A Nigerian Example. ... The findings showed that road transport has both positive and negative impact on ... However, the bad conditions of the road affect cost of transportation of agricultural ... AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News.

  10. Investigation of the impurity transport in the ASDEX tokamak by spectroscopical methods

    International Nuclear Information System (INIS)

    Krieger, K.W.

    1990-12-01

    Plasma impurities: a central problem of controlled thermonuclear fusion; magnetic plasma confinement in a Tokamak; methods to the determination of plasma impurity transport coefficients - by temporally modulated gas admission; the transport equation for impurities; neoclassical and anomalous transport; harmonic analysis of time-dependent signals; solutions of the transport equation; experimental equipment and measurements; measuring results - consistency of simple transport models with radial phase measurements; linearity of the transport processes; plasma disturbance by impurity injection; determination of the diffusion coefficient by simplified transport models; comparison of transport models for impurities and background plasma; measurements of the impurity transport at the plasma edge by high modulation frequencies. (AH)

  11. Key factors of low carbon development strategy for sustainable transport

    Science.gov (United States)

    Thaveewatanaseth, K.; Limjirakan, S.

    2018-02-01

    Cities become more vulnerable to climate change impacts causing by urbanization, economic growth, increasing of energy consumption and carbon dioxide (CO2) emissions. People who live in the cities have already been affected from the impacts in terms of socioeconomic and environmental aspects. Sustainable transport plays the key role in CO2 mitigation and contributes positive impacts on sustainable development for the cities. Several studies in megacities both in developed and developing countries support that mass transit system is an important transportation mode in CO2 mitigation and sustainable transport development. This paper aims to study key factors of low carbon development strategy for sustainable transport. The Bangkok Mass Rapid Transit System (MRT) located in Bangkok was the study area. Data collection was using semi-structured in-depth interview protocol with thirty respondents consisting of six groups i.e. governmental agencies, the MRT operators, consulting companies, international organizations, non-profit organizations, and experts. The research findings highlighted the major factors and supplemental elements composing of institution and technical capacity, institutional framework, policy setting and process, and plan of implementation that would support more effective strategic process for low carbon development strategy (LCDS) for sustainable transport. The study would highly recommend on readiness of institution and technical capacities, stakeholder mapping, high-level decision- makers participation, and a clear direction of the governmental policies that are strongly needed in achieving the sustainable transport.

  12. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.; Yang, D.Y.

    1998-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination

  13. Comparative analysis of methods and sources of financing of the transport organizations activity

    Science.gov (United States)

    Gorshkov, Roman

    2017-10-01

    The article considers the analysis of methods of financing of transport organizations in conditions of limited investment resources. A comparative analysis of these methods is carried out, the classification of investment, methods and sources of financial support for projects being implemented to date are presented. In order to select the optimal sources of financing for the projects, various methods of financial management and financial support for the activities of the transport organization were analyzed, which were considered from the perspective of analysis of advantages and limitations. The result of the study is recommendations on the selection of optimal sources and methods of financing of transport organizations.

  14. Energy and sustainable urban transport development in China: Challenges and solutions

    International Nuclear Information System (INIS)

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  15. Energy and sustainable urban transport development in China: Challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilang; Hu, Xiaojun

    2002-07-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  16. Development and optimization of radiographic and tomographic methods for characterization of water transport processes in PEM fuel cell materials

    International Nuclear Information System (INIS)

    Markoetter, Henning

    2013-01-01

    perforated MPL/GDL-materials were investigated. It had been shown in complementary measurements that depending on process parameters perforated MPL/GDL materials can have either a positive or in other cases a negative impact on the cell performance (gains of up to 20 % vs. losses of same magnitude). The water transport was found to be responsible for the different behavior. At its best, the perforations have a drainage effect which facilitates effective water removal. In other cases a flooding of the whole local pore area around the perforation was observed. This area was obviously heat affected by laser perforation procedure and showed a hydrophilic behavior. The transport through the perforations was also found to be bidirectional. In this work, specially adapted measuring techniques were applied to analyze various aspects of water management. For example the combination of dynamic radiographic and three-dimensional tomographic measurements has been proven as valuable method to interpret transport phenomena in terms of the underlying cell structure. On top of that a method is applied, which allows for an increased spatial resolution in tomography and the easy switch between radiographic and tomographic measure mode. By comparing the tomographic data of the cell measured subsequent to operation with the dry reference state it was possible to extract the three-dimensional quasi in situ water distribution. This allows for more detailed analyses, for example, statistical water cluster size distributions. The extracted water distribution was also used by a group at the ZSW Ulm for the model validation of a grand canonical Monte Carlo simulation.

  17. Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport

    International Nuclear Information System (INIS)

    McKinley, M S; Brooks III, E D; Daffin, F

    2004-01-01

    Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations

  18. Modeling study on nuclide transport in ocean - an ocean compartment method

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Suh, Kyung Suk; Han, Kyoung Won

    1991-01-01

    An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and interaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean method. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves. (Author)

  19. The development and validation of control rod calculation methods

    International Nuclear Information System (INIS)

    Rowlands, J.L.; Sweet, D.W.; Franklin, B.M.

    1979-01-01

    Fission rate distributions have been measured in the zero power critical facility, ZEBRA, for a series of eight different arrays of boron carbide control rods. Diffusion theory calculations have been compared with these measurements. The normalised fission rates differ by up to about 30% in some regions, between the different arrays, and these differences are well predicted by the calculations. A development has been made to a method used to produce homogenised cross sections for lattice regions containing control rods. Calculations show that the method also reproduces the reaction rate within the rod and the fission rate dip at the surface of the rod in satisfactory agreement with the more accurate calculations which represent the fine structure of the rod. A comparison between diffusion theory and transport theory calculations of control rod reactivity worths in the CDFR shows that for the standard design method the finite mesh approximation and the difference between diffusion theory and transport theory (the transport correction) tend to cancel and result in corrections to be applied to the standard mesh diffusion theory calculations of about +- 2% or less. This result applies for mesh centred finite difference diffusion theory codes and for the arrays of natural boron carbide control rods for which the calculations were made. Improvements have also been made to the effective diffusion coefficients used in diffusion theory calculations for control rod followers and these give satisfactory agreement with transport theory calculations. (U.K.)

  20. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    Science.gov (United States)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  1. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  2. Presentation of some methods for the solution of the monoenergetic neutrons transport equation

    International Nuclear Information System (INIS)

    Valle G, E. del.

    1978-01-01

    The neutrons transport theory problems whose solution has been reached were collected in order to show that the transport equation is so complicated that different techniques were developed so as to give approximative numerical solutions to problems concerning the practical application. Such a technique, which had not been investigated in the literature dealing with these problems, is described here. The results which were obtained through this technique in undimensional problems of criticity are satisfactory and speaking in a conceptual way this method is extremely simple because it times. There is no limitation to deal with problems related neutrons sources with an arbitrary distribution and in principle the application of this technique can be extended to unhomogeneous environments. (author)

  3. The OpenMOC method of characteristics neutral particle transport code

    International Nuclear Information System (INIS)

    Boyd, William; Shaner, Samuel; Li, Lulu; Forget, Benoit; Smith, Kord

    2014-01-01

    Highlights: • An open source method of characteristics neutron transport code has been developed. • OpenMOC shows nearly perfect scaling on CPUs and 30× speedup on GPUs. • Nonlinear acceleration techniques demonstrate a 40× reduction in source iterations. • OpenMOC uses modern software design principles within a C++ and Python framework. • Validation with respect to the C5G7 and LRA benchmarks is presented. - Abstract: The method of characteristics (MOC) is a numerical integration technique for partial differential equations, and has seen widespread use for reactor physics lattice calculations. The exponential growth in computing power has finally brought the possibility for high-fidelity full core MOC calculations within reach. The OpenMOC code is being developed at the Massachusetts Institute of Technology to investigate algorithmic acceleration techniques and parallel algorithms for MOC. OpenMOC is a free, open source code written using modern software languages such as C/C++ and CUDA with an emphasis on extensible design principles for code developers and an easy to use Python interface for code users. The present work describes the OpenMOC code and illustrates its ability to model large problems accurately and efficiently

  4. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  5. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Kang-Seog

    2011-01-01

    This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.

  6. Some improvements in the discrete ordinate method of B.G. Carlson for solving the neutron transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Askew, J R; Brissenden, R J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    This report gives an account of the DSN method for simulating neutron transport, together with methods of solution developed to deal with problems in the physics of thermal reactors, for which previously available computer programmes were unsatisfactory. The methods described are those incorporated in the programmes WINFRITH DSN written in FORTRAN language for the IBM 7090 and STRETCH computers. (author)

  7. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  8. On possibility of transuranium element by the method of transport reactions

    International Nuclear Information System (INIS)

    Sinitsyna, G.S.; Krashenitsyn, G.N.; Shestakov, B.I.

    1983-01-01

    A possibility to use chemical transport reaction for separation of uranium, plutonium and some transplutonium elements is shown. The method is based on the use of the known plutonium property to form tetrachloride existing only in the gaseous phase in chlorine atmosphere, which is transported ever the temperature gradiept. Two ways of transport reaction realization - the method of flow and the method of diffusion in closed volume are tested. The experiments are made using specially synthesized plutonium dioxide, containing uranium, americium, curium, lanthanum, terbium, barium. Chlorination is realized by the mixture of chlorine and carbon tetrachloride at temperatures 723-953 K. Plutonium trichloride is deposited in the range 613-653 K, uranium - in the range 473-523 K, curium, americium, lanthanum, terbium, barium remain in the start zone if its temperature does not exceed 873 K

  9. Calculations of Neutron Flux Distributions by Means of Integral Transport Methods

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1967-05-15

    Flux distributions have been calculated mainly in one energy group, for a number of systems representing geometries interesting for reactor calculations. Integral transport methods of two kinds were utilised, collision probabilities (CP) and the discrete method (DIT). The geometries considered comprise the three one-dimensional geometries, planes, sphericals and annular, and further a square cell with a circular fuel rod and a rod cluster cell with a circular outer boundary. For the annular cells both methods (CP and DIT) were used and the results were compared. The purpose of the work is twofold, firstly to demonstrate the versatility and efficacy of integral transport methods and secondly to serve as a guide for anybody who wants to use the methods.

  10. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  11. Factors of Transport (and Logistic Development

    Directory of Open Access Journals (Sweden)

    Igor Trupac

    2003-03-01

    Full Text Available The characteristic of the present time is the crucia~ significant,and rapid transformation of the common conditions oftrade, transport, and information interchange. However, thestrategic role in this process belongs to the communication andinformation systems. The development of communication andinformation technology systems is incredibly fast, so that referenceis made to the world of advanced communications.The trend found in business life is very complicated. We arestriving both towards collectivisation as well as individualisationat the same time, since thus the world of competitivenessand co-operation is created.In this world the transport and communication and informationnetwork is expected to become fully integrated in the industrialproduction and service-providing system, so as to providethe foundation for a dynamic adjustment to the market requirements.It is clear that the transport infrastructure and cross-borderdevelopment stand for the predominant developmental impulseto the general and physical development of particular areasand of the Slovenian country as a whole. In the pre-accessionperiod of Slovenia to the EU (the accession of Slovenia tothe EU could only occur in 2003-2004, at the earliest, it is necessary,in both fields, to accelerate the activities that will provideco-operation on equal footing. Taking into consideration allthe increasingly open borders (associated members, full members,the economic development will have a favourable impacton the improved competitiveness and co-operation among regionsand states, which will result in an increase in the flow ofgoods, capital and services, and in particular in an improvedmobility of the population.

  12. As if Kyoto mattered: The clean development mechanism and transportation

    International Nuclear Information System (INIS)

    Christopher Zegras, P.

    2007-01-01

    Transportation is a major source of greenhouse gas (GHG) emissions and the most rapidly growing anthropogenic source. In the future, the developing world will account for the largest share of transport GHG increases. Four basic components drive transportation energy consumption and GHG emissions: activities (A), mode share (S), fuel intensity (I) and fuel choice (F) (ASIF). Currently, the Kyoto Protocol's clean development mechanism (CDM) serves as the main international market-based tool designed to reduce GHG emissions from the developing world. Theoretically, the CDM has the dual purpose of helping developing countries achieve 'sustainable development' goals and industrialized countries meet their Kyoto emissions reduction commitments. This paper reviews overall CDM activities and transportation CDM activities to date and then presents findings from three case studies of transportation CDM possibilities examined with the ASIF framework in Santiago de Chile. The analysis suggests that bus technology switch (I) provides a fairly good project fit for the CDM, while options aimed at inducing mode share (S) to bicycle, or modifying travel demand via land use changes (ASI) face considerable challenges. The implications of the findings for the CDM and the 'post-Kyoto' world are discussed

  13. Development of hotcell transportation system technology for high radioactive material

    International Nuclear Information System (INIS)

    Seo, K. S.; Seo, C. S.; Lee, J. C.

    2012-04-01

    In the first stage of the research, the transportation and storage characteristics analysis of the pyroprocess materials, the development of horizontal type hot cell transportation system, and the design of interim storage system for the pyroprocess material are conducted. The optimized capacity, transportation frequency and operation period of pyroprocess facility are found using the logistics analysis program developed in this project. A new hot cell transportation system was designed. Through the safety analysis and test for the hot cell transportation system, the design license has been approved. A new type hot cell docking system with superior performance has been developed with a patented rotating lid system. We have reached to a unique concept of interim storage of pyroprocess materials and selected a system through a comparative evaluation of existing ones. In the second stage of the research, transportation/storage/sealing devices for PRIDE recovered material/wastes were developed. And test model for the devices in engineering scale facility were also developed. The design requirements for a vertical docking system were evaluated and the performance assessment using a scaled mock-up was conducted. Integrated storage management technology was evaluated for an efficient management of process materials. A heat transfer simulation and characteristics analysis for the storage system were conducted. The derivation of design requirements, design and fabrication of a canister test model, and preliminary safety assessment were conducted

  14. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  15. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  16. Development of a transient criticality evaluation method

    International Nuclear Information System (INIS)

    Pain, C.C.; Eaton, M.D.; Miles, B.; Ziver, A.K.; Gomes, J.L.M.A.; Umpleby, A.P.; Piggott, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    In developing a transient criticality evaluation method we model, in full spatial/temporal detail, the neutron fluxes and consequent power and the evolving material properties - their flows, energies, phase changes etc. These methods are embodied in the generic method FETCH code which is based as far as possible on basic principles and is capable of use in exploring safety-related situations somewhat beyond the range of experiment. FETCH is a general geometry code capable of addressing a range of criticality issues in fissile materials. The code embodies both transient radiation transport and transient fluid dynamics. Work on powders, granular materials, porous media and solutions is reviewed. The capability for modelling transient criticality for chemical plant, waste matrices and advanced reactors is also outlined. (author)

  17. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  18. Pressure Injury Development in Patients Treated by Critical Care Air Transport Teams: A Case-Control Study.

    Science.gov (United States)

    Dukes, Susan F; Maupin, Genny M; Thomas, Marilyn E; Mortimer, Darcy L

    2018-04-01

    The US Air Force transports critically ill patients from all over the world, with transport times commonly ranging from 6 to 11 hours. Few outcome measures have been tracked for these patients. Traditional methods to prevent pressure injuries in civilian hospitals are often not feasible in the military transport environment. The incidence rate and risk factors are described of en route-related pressure injuries for patients overseen by the Critical Care Air Transport Team. This retrospective, case-control, medical records review investigated risk factors for pressure injury in patients who developed a pressure injury after their transport flight compared with those with no documented pressure injuries. The pressure injury rate was 4.9%. Between 2008 and 2012, 141 patients in whom pressure injuries developed and who had received care by the team were matched with 141 patients cared for by the team but did not have pressure injury. According to regression analysis, body mass index and 2 or more Critical Care Air Transport Team transports per patient were associated with pressure injury development. Although the pressure injury rate of 4.9% in this cohort of patients is consistent with that reported by civilian critical care units, the rate must be interpreted with caution, because civilian study data frequently represent the entire intensive care unit length of stay. Targeted interventions for patients with increased body mass index and 2 or more critical care air transports per patient may help decrease the development of pressure injury in these patients. ©2018 American Association of Critical-Care Nurses.

  19. Variational formulation and projectional methods for the second order transport equation

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1979-01-01

    Herein the variational problem for a second-order boundary value problem for the neutron transport equation is formulated. The projectional methods solving the problem are examined. The approach is compared with that based on the original untransformed form of the neutron transport equation

  20. Approximate solution of the transport equation by methods of Galerkin type

    International Nuclear Information System (INIS)

    Pitkaranta, J.

    1977-01-01

    Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form

  1. Development of Method for Service Support Management in Vehicular Communication Networks

    Directory of Open Access Journals (Sweden)

    Mindaugas Kurmis

    2017-01-01

    Full Text Available In this work, the method and prototype for managing the quality of wireless communication channel is presented. The proposed methodology, based on multi-criteria information utility assessment process, is designed. The heterogeneous context awareness data collection subsystems integration is enabled by transforming the acquired data to the highly dynamic intelligent transport systems. Each element of this intellectual transport system runs as a separate component having a specific environmental monitoring and control elements. Evaluation of context information utility allowed realizing the methods and algorithms that adaptively reduce the load on the wireless channel, and the transmitted and stored data volume without losing the enriched contextual information quality, which allows developing more complex heterogeneous services. It is believed that the obtained scientific results will have positive effect for the future research and development of context awareness and service adaptation systems.

  2. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.

    2007-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  3. Deterministic methods to solve the integral transport equation in neutronic

    International Nuclear Information System (INIS)

    Warin, X.

    1993-11-01

    We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

  4. Integrated policy analysis of sustainable urban and transportation development

    NARCIS (Netherlands)

    Zhang, J.; Feng, T.; Fujiwara, A.; Fujiwara, A.; Zhang, Junyi

    2013-01-01

    Sustainable urban and transportation development needs to balance economic sustainability, environmental sustainability, and social equity. This study conducts integrated policy analyses by explicitly incorporating these sustainability goals and optimizing the performance of transportation networks.

  5. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    Science.gov (United States)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  6. Methods for stable recording of short-circuit current in a Na+-transporting epithelium.

    Science.gov (United States)

    Gondzik, Veronika; Awayda, Mouhamed S

    2011-07-01

    Epithelial Na(+) transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a "rundown" phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na(+) transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na(+) channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown.

  7. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  8. Transportation Network Role for Central Italy Macroregion Development in a Territorial Frames Model Based

    Science.gov (United States)

    Di Ludovico, Donato; D'Ovidio, Gino

    2017-10-01

    This paper refers to an interdisciplinary planning research approach that aims to combine urban aspects related to a territorial spatial development with transport requirements connected to an efficiency and sustainable mobility. The proposed research method is based on “Territorial Frames” (TFs) model that derived from an original interpretation of the local context divided into a summation of territorial settlement fabrics characterized in terms of spatial tile, morphology and mobility axes. The TFs, with their own autonomous, different size and structure, are used as the main plot, able to assemble the settlement systems and their posturbane forms. With a view to polycentric and spatial development, the research method allows us to analyse the completeness of the TFs and their connective potential, in order to locate the missing/inefficient elements of the transportation network and planning other TFs essential to support economic and social development processes of the most isolated and disadvantaged inland areas. Finally, a case study of the Italian Median Macroregion configuration based on TFs model approach is proposed, analysed and discussed.

  9. Neoclassical transport in NCSX

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Zarnstorff, M.C.; Beidler, C.D.; Maassberg, H.; Houlberg, W.A.; Spong, D.A.; Tribaldos, V.

    2003-01-01

    Methods for calculating neoclassical transport in the National Compact Stellarator Experiment (NCSX) are discussed, with particular attention to developing computationally inexpensive predictions of neoclassical transport. (orig.)

  10. Discrete elements method of neutral particle transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  11. DEVELOPMENT OF IN-PLACE DENSITY METHOD FOR COLD IN-PLACE RECYCLING

    Science.gov (United States)

    2018-01-01

    This report presents the results of a research study funded by the Nevada DOT and the SOLARIS University Transportation Center. The research developed a method for measuring the in-place density of the cold in-place recycled (CIR) layer immediately a...

  12. Assessing the impact of road transport infrastructure investment on economic development in South Africa

    Directory of Open Access Journals (Sweden)

    Anathi Hlotywa

    2017-09-01

    Full Text Available Background: There has been considerable decline in the investment on road transport infrastructure in recent times, as a result of the dwindling economic investment owing to lowering gross domestic product (GDP since 2009. Objective: The objective of this study was to examine the relationship between road transport investment (ROTI and economic development (ED in South Africa. This article adopts the Harrod–Domar (HD model of economic growth and development theory, endogenous growth theory and Solow–Swan neoclassical growth model. Method: Data were derived from the South African Reserve Bank, Quantec database and Statistics South Africa (StatsSA between 1990 and 2014. It used time series, econometric models cointegration and vector error correction model (VECM to analyse. Result: The results of the estimation demonstrate that the explanatory variables account for approximately 86.7% variation in ED in South Africa. Therefore, there exists a positive relationship between ROTI and ED. Conclusion: This study established a long-run relationship between phenomena and demonstrates the role of road transport investment on economic development in South Africa.

  13. Sub-cell balanced nodal expansion methods using S4 eigenfunctions for multi-group SN transport problems in slab geometry

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Deokjung

    2015-01-01

    A highly accurate S 4 eigenfunction-based nodal method has been developed to solve multi-group discrete ordinate neutral particle transport problems with a linearly anisotropic scattering in slab geometry. The new method solves the even-parity form of discrete ordinates transport equation with an arbitrary S N order angular quadrature using two sub-cell balance equations and the S 4 eigenfunctions of within-group transport equation. The four eigenfunctions from S 4 approximation have been chosen as basis functions for the spatial expansion of the angular flux in each mesh. The constant and cubic polynomial approximations are adopted for the scattering source terms from other energy groups and fission source. A nodal method using the conventional polynomial expansion and the sub-cell balances was also developed to be used for demonstrating the high accuracy of the new methods. Using the new methods, a multi-group eigenvalue problem has been solved as well as fixed source problems. The numerical test results of one-group problem show that the new method has third-order accuracy as mesh size is finely refined and it has much higher accuracies for large meshes than the diamond differencing method and the nodal method using sub-cell balances and polynomial expansion of angular flux. For multi-group problems including eigenvalue problem, it was demonstrated that the new method using the cubic polynomial approximation of the sources could produce very accurate solutions even with large mesh sizes. (author)

  14. Application of a simple parameter estimation method to predict effluent transport in the Savannah River

    International Nuclear Information System (INIS)

    Hensel, S.J.; Hayes, D.W.

    1993-01-01

    A simple parameter estimation method has been developed to determine the dispersion and velocity parameters associated with stream/river transport. The unsteady one dimensional Burgers' equation was chosen as the model equation, and the method has been applied to recent Savannah River dye tracer studies. The computed Savannah River transport coefficients compare favorably with documented values, and the time/concentration curves calculated from these coefficients compare well with the actual tracer data. The coefficients were used as a predictive capability and applied to Savannah River tritium concentration data obtained during the December 1991 accidental tritium discharge from the Savannah River Site. The peak tritium concentration at the intersection of Highway 301 and the Savannah River was underpredicted by only 5% using the coefficients computed from the dye data

  15. Nonequilibrium Green's function method for quantum thermal transport

    Science.gov (United States)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  16. Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.

    2011-01-01

    The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)

  17. SOLVING TRANSPORT LOGISTICS PROBLEMS IN A VIRTUAL ENTERPRISE THROUGH ARTIFICIAL INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    Vitaliy PAVLENKO

    2017-06-01

    Full Text Available The paper offers a solution to the problem of material flow allocation within a virtual enterprise by using artificial intelligence methods. The research is based on the use of fuzzy relations when planning for optimal transportation modes to deliver components for manufactured products. The Fuzzy Logic Toolbox is used to determine the optimal route for transportation of components for manufactured products. The methods offered have been exemplified in the present research. The authors have built a simulation model for component transportation and delivery for manufactured products using the Simulink graphical environment for building models.

  18. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  19. Sustainable Urban Transport in the Developing World: Beyond Megacities

    Directory of Open Access Journals (Sweden)

    Dorina Pojani

    2015-06-01

    Full Text Available Megacities have frequently received a disproportionate amount of attention over other sizes of cities in recent discourse on urban sustainability. In this article, the authors argue that a focus on smaller and medium-sized cities is crucial to achieving substantial progress towards more sustainable urban development, not only because they are home to at least a quarter of the world’s population but because they also offer great potential for sustainable transformations. In principle, their size allows for flexibility in terms of urban expansion, adoption of “green” travel modes, and environmental protection. At the same time, smaller and medium-sized cities often have fewer resources to implement new transport measures and can be more vulnerable to fluctuations in the world economy. This article critically reviews the potential role and impact of nine commonly considered options for sustainable urban transport in cities in developing countries: (1 road infrastructure; (2 rail-based public transport; (3 road-based public transport; (4 support for non-motorized travel modes; (5 technological solutions; (6 awareness-raising campaigns; (7 pricing mechanisms; (8 vehicle access restrictions; and (9 control of land-uses. Drawing on international research and examples of policies to reduce the environmental impacts of transport in urban areas, this article identifies some key lessons for sustainable urban transport in smaller and medium-sized cities in developing countries. These lessons are certainly not always identical to those for megacities in the global south.

  20. Using geospatial techniques to develop an emergency referral transport system for suspected sepsis patients in Bangladesh

    Science.gov (United States)

    Haider, Rafiqul; Abdullah, Abu Yousuf Md; Christou, Aliki; Ali, Nabeel Ashraf; Rahman, Ahmed Ehsnaur; Iqbal, Afrin; Bari, Sanwarul; Hoque, D. M. Emdadul; Arifeen, Shams El; Kissoon, Niranjan; Larson, Charles P.

    2018-01-01

    Background A geographic information system (GIS)-based transport network within an emergency referral system can be the key to reducing health system delays and increasing the chances of survival, especially during an emergency. We employed a GIS to design an emergency transport system for the rapid transfer of pregnant or early post-partum women, newborns, and children under 5 years of age with suspected sepsis under the Interrupting Pathways to Sepsis Initiative (IPSI) project. Methods A GIS database was developed by mapping the villages, roads, and relevant physical features of the study area. A travel-time algorithm was developed to incorporate the time taken by different modes of local transport to reach the health complexes. These were used in a network analysis to identify the shortest routes to the hospitals from the villages, which were categorized into green, yellow, and red zones based on their proximity to the nearest hospitals to provide transport facilities. An emergency call-in centre established for the project managed the transport system, and its data was used to assess the uptake of this transport system amongst distant communities. Results Fifteen pre-existing and two new routes were identified as the shortest routes to the health complexes. The call-in centre personnel used this route information to direct both patients and transport drivers to the nearest transport hubs or pick-up points. Adherence with referral advice was high in areas where the IPSI transport operated. Over the study period, the utilisation of the project’s transport doubled and referral compliance from distant zones similarly increased. Conclusions The GIS system created for this study facilitated rapid referral of patients in emergency from distant zones, using locally available transport and resources. The methodology described in this study to develop and implement an emergency transport system can be applied in similar, rural, low-income country settings. PMID

  1. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs

  2. USE OF THE SERVPERF METHOD TO EVALUATE SERVICE QUALITY IN THE TRANSPORT COMPANY

    Directory of Open Access Journals (Sweden)

    Manuela Krystyna Ingaldi

    2016-03-01

    Full Text Available Transport services are one of the most common services in Poland and abroad. Especially passenger transport is very popular. For those without a car or travelling in large groups, such transport is a big convenience. On the market there are many companies that offer this kind of services. Decisions about the particular service provider shall be based on own experiences of customer, opinions of others people and quality analysis results which are often available on many different websites. In such quality analysis special types of methods are used, among which the Servqual method and its variation the Servperf method should be mentioned. In the article the Servperf method was used to evaluate the quality of transport services in the chosen company. In this method the customer does not evaluate his expectations for the service, but only the final service. According to the customers of the research company, its services in about 65% met their expectations. Their also indicated which determinants had the highest positive and negative impact on the quality of these services.

  3. Routine methods for post-transportation accident recovery of spent fuel casks

    International Nuclear Information System (INIS)

    Shappert, L.B.; Pope, R.B.; Best, R.E.; Jones, R.H.

    1991-01-01

    Spent fuel casks and other large radioactive material packages have been examined to determine whether the designs are adequate to allow the casks to be recovered using conventional recovery methods following a transportation accident. Casks and similar packages are typically designed with, and handled by, trunnions that support the package during transport. These trunnions are considered the best cask feature with which to grapple the cask once it is no longer in its usual shipping mode. Following a transport accident, the trunnions may be buried or entangled so that they are not readily accessible to initiate the recovery process. To evaluate the effectiveness of applying traditional recovery methods to spent fuel casks, a workshop was held in which a series of accidents involving casks were postulated; the modes of transportation considered included truck, rail, and barge. These participants knowledgeable in transport, handling, and, in some cases, recovery of large, heavy containers attended. Participants concluded that the physical recovery of a cask involved in an accident, irrespective of where the accident occurs, would be a straightforward rigging operation and that the addition of specific recovery features (e.g., additional trunnions) to the cask appears unnecessary

  4. HEURISTIC METHOD OF SHIPS SELECTION FOR THE COORDINATED WORK OF WATER TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. V. Shcherbina

    2018-02-01

    Full Text Available Purpose. The study aims to develop a formulation methodology for ship selection in the coordinated work of sea and river transport using a heuristic approach. Methodology. To realize the purpose set in the study, the authors carried out an analysis of domestic and foreign literature sources on the current topic, studied specifics and conditions for the effective operation of marine mono-hulled ships and composite tug/barge towing ones. Findings. The analysis results allowed formulating the heuristics methods that ensure the selection of the type sizes of tug/barge towing ships for the mixed «river-sea» navigation from the priority range of ships of the existing fleet. The proposed method makes it possible to select ships in a more appropriate manner according to the established scheme of work. Rational combinations of technical and operational characteristics of such pairs as «barges and tows», «tug/barge towing ship and sea-going ship», «tug/barge towing ship and restrictive characteristics of the area of navigation» are a prerequisite for the shipping company profit growth by increasing the capacity of ships. Originality. For the first time, the authors applied a heuristic approach to the selection of tug/barge towing ships and sea-going ones for coordinated work with the performance of cargo operations on the raid of the estuary port when transporting bulk goods. The basis of the approach is the selection of a rational mix of technical and operational characteristics of barges and tugs. The proposed approach allows determining the best combination of ship type sizes in the organization of coordinated work of sea and river transport. At the same time, the continuity of the goods transportation process from the sea ports to the river ones located in the depth of the country (and in the opposite direction is ensured. Practical value. The presented methodology is a logical continuation of the cycle of studies performed by the authors. The

  5. Evaluation of transporters in drug development: Current status and contemporary issues.

    Science.gov (United States)

    Lee, Sue-Chih; Arya, Vikram; Yang, Xinning; Volpe, Donna A; Zhang, Lei

    2017-07-01

    Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The drug interaction guidance documents from regulatory agencies include various decision criteria that may be used to predict the need for in vivo assessment of transporter-mediated drug-drug interactions. Regulatory science research continues to assess the prediction performances of various criteria as well as to examine the strength and limitations of each prediction criterion to foster discussions related to harmonized decision criteria that may be used to facilitate global drug development. This review discusses the role of transporters in drug development with a focus on methodologies in assessing transporter-mediated drug-drug interactions, challenges in both in vitro and in vivo assessments of transporters, and emerging transporter research areas including biomarkers, assessment of tissue concentrations, and effect of diseases on transporters. Published by Elsevier B.V.

  6. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    International Nuclear Information System (INIS)

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-01-01

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m -2 ). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction of

  7. Methods of making transportation fuel

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2012-04-10

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.

  8. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport

    International Nuclear Information System (INIS)

    Loo, Becky P.Y.; Li, Linna

    2012-01-01

    This paper traces the historical evolution and spatial disparity of CO 2 emissions from passenger transport in China. The general trends of CO 2 emissions from four passenger transport modes are estimated by both the distance-based and fuel-based methods. The results suggest that CO 2 emissions from road transport represented the leading source of passenger transport CO 2 emissions in China. Moreover, they have continued to grow rapidly. Air transport was the second largest contributor since 1998. Emissions from rail and water transport have remained relatively stable with lower emission intensity. At the provincial level, great regional disparity was noticeable, especially in road transport. Moreover, the decomposition analysis shows that income growth was the principal factor leading to the growth of passenger transport CO 2 emissions in China for both the 1949–1979 and 1980–2009 periods. The second most important factor was increased transport intensity and modal shifts for the former and the latter period, respectively. The main factor contributed to emission reduction was the lower emission intensity supported by policies, although the effect was weak. In the future, more policies to encourage modal shifts toward sustainable transport modes and travel reduction should be encouraged. - Highlights: ► CO 2 emissions from passenger transport in China were estimated. ► Road transport was the largest contributor to CO 2 emission. Air transport followed. ► Factors influencing CO 2 emissions growth are analyzed by decomposition analysis. ► Income growth, higher travel intensity and modal shift were driving CO 2 emissions up. ► Policies to promote modal shifts and travel demand reduction should be encouraged.

  9. Gender and Mobility - Sustainable Development in the Transport Sector

    OpenAIRE

    Oberc, Barbara

    2014-01-01

    Several statistical studies show that women in developed countries, taken to be facing equal opportunities, are more environmentally benevolent in transport choice than men, as well as shape more environmentally benign (i.e. smaller) mobilities. Some researchers contend that a greater inclusion of women is needed in matters furthering sustainable development within the transport sector, because they believe women to be intrinsically more environmentally conscious. However, few qualitative stu...

  10. A method for solving the spherical harmonics equations applied for space-energy transport of fast and resonance neutrons

    International Nuclear Information System (INIS)

    Matausek, M.

    1972-01-01

    A new proposed method for solving the space-energy dependent spherical harmonics equations represents a methodological contribution to neutron transport theory. The proposed method was applied for solving the problem of spec-energy transport of fast and resonance neutrons in multi-zone, cylindrical y symmetric infinite reactor cell and is related to previously developed procedure for treating the thermal energy region. The advantages of this method are as follows: a unique algorithm was obtained for detailed determination of spatial and energy distribution of neutrons (from thermal to fast) in the reactor cell; these detailed distributions enable more precise calculations of criticality conditions, obtaining adequate multigroup data and better interpretation of experimental data; computing time is rather short

  11. The future of public transport in light of solutions for sustainable transport development

    Directory of Open Access Journals (Sweden)

    Kazimierz LEJDA

    2017-06-01

    Full Text Available The paper highlights possible directions in the development of sustainable public transport solutions. When appropriately identified and implemented, such solutions can contribute to improved quality of urban life by reducing the adverse effects of transport on human health and the natural environment. The paper also raises questions about implementing pedestrian traffic zones, expanding the level of cycling, and introducing a workable parking policy, congestion charges, electromobility and intelligent systems for road traffic management in conurbations.

  12. URBAN TRANSPORT AND LOCAL GOVERNANCE IN ASIAN DEVELOPING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Akira MORITA

    2004-01-01

    This paper comprises a GIS-based land use analysis on the relationship between urbanization and transport infrastructure development, b GPS-based travel behavior survey, and c interview survey on residents' satisfaction with transport infrastructures and services. It was shown that the current land use patterns largely differ depending on the existence of agricultural infrastructure development in the pre-urbanized stage. It was also confirmed by a GPS-based travel survey that travel behavior patterns in scattered development areas are significantly different from those in orderly development areas. The former areas lack not only road space but also a structured hierarchy of networks, resulting in inefficient travel behaviors with low speed and detours. The GPS survey gave clearer pictures to grasp the relationship between travel patterns of residents and their demand for the improvement of local transport services. It was indicated that local governments who are responsible for these demands often fail to meet them due to financial and institutional limitations of the current system.

  13. DEVELOPMENT OF CARGO TRANSPORTATION SYSTEM BY ROAD ON THE BASIS OF LOGISTICS PRINCIPLES

    Directory of Open Access Journals (Sweden)

    I. M. Tsarenkova

    2017-10-01

    Full Text Available Рurpose. The article is aimed to develop and adapt the theoretical and methodological foundations for improving logistics system of cargo delivery by road transport in the framework of the scientific support of formation processes of transport-logistical system of the country. Methodology. The theory of system functioning control requires formalization of connections within the system. The qualitative and quantitative characteristics of entity were performed and the regularities of elements interaction in the system of road goods transportation were found out. The role of the road in transport industry and the influence of transportation and logistics space on the road itself in the process of its functioning were clarified. In the study of this topic the system approach, methods of synthesis and rational problem solving, theory of mass service were used. Findings. The work presents the highway as an element of the cargo transportation system that will make it possible to increase its economic efficiency in a constantly changing environment of transportation and logistics space according to the chosen criterion, the lower total costs to promote material flow. Theoretical-methodological bases of perfection of logistics system of cargo delivery by road transport include substantiation for the use of logistics as an effective control element to reduce the costs associated with goods transportation. They are distinguished by the presence of evidence-based methods for calculating the timing and sequence of execution of road works, logistic integration involved in the carriage of goods of the enterprises, structure and volume of material and accompanying flows and the formation of the logistics chain of its promotion. Originality. The road is represented by the link of single integral process of creation and management of the material flows. We propose formation of sub-system of the elements of road and transportation components with their further

  14. Application of space-and-angle finite element method to the three-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Fujimura, T.; Nakahara, Y.; Matsumura, M.

    1983-01-01

    A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)

  15. LOO: a low-order nonlinear transport scheme for acceleration of method of characteristics

    International Nuclear Information System (INIS)

    Li, Lulu; Smith, Kord; Forget, Benoit; Ferrer, Rodolfo

    2015-01-01

    This paper presents a new physics-based multi-grid nonlinear acceleration method: the low-order operator method, or LOO. LOO uses a coarse space-angle multi-group method of characteristics (MOC) neutron transport calculation to accelerate the fine space-angle MOC calculation. LOO is designed to capture more angular effects than diffusion-based acceleration methods through a transport-based low-order solver. LOO differs from existing transport-based acceleration schemes in that it emphasizes simplified coarse space-angle characteristics and preserves physics in quadrant phase-space. The details of the method, including the restriction step, the low-order iterative solver and the prolongation step are discussed in this work. LOO shows comparable convergence behavior to coarse mesh finite difference on several two-dimensional benchmark problems while not requiring any under-relaxation, making it a robust acceleration scheme. (author)

  16. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Christopher J. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-11-12

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  17. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  18. SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages

    Energy Technology Data Exchange (ETDEWEB)

    Russel, E. [Lawrence Livermore National Lab., CA (United States)

    1997-11-01

    This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.

  19. Analytical methods for predicting contaminant transport

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1989-09-01

    This paper summarizes some of the previous and recent work at the University of California on analytical solutions for predicting contaminate transport in porous and fractured geologic media. Emphasis is given here to the theories for predicting near-field transport, needed to derive the time-dependent source term for predicting far-field transport and overall repository performance. New theories summarized include solubility-limited release rate with flow backfill in rock, near-field transport of radioactive decay chains, interactive transport of colloid and solute, transport of carbon-14 as carbon dioxide in unsaturated rock, and flow of gases out of and a waste container through cracks and penetrations. 28 refs., 4 figs

  20. Novel diagrammatic method for computing transport coefficients - beyond the Boltzmann approximation

    International Nuclear Information System (INIS)

    Hidaka, Y.; Kunihiro, T.

    2010-01-01

    We propose a novel diagrammatic method for computing transport coefficients in relativistic quantum field theory. Our method is based on a reformulation and extension of the diagrammatic method by Eliashberg given in the imaginary-time formalism to the relativistic quantum field theory in the real-time formalism, in which the cumbersome analytical continuation problem can be avoided. The transport coefficients are obtained from a two-point function via Kubo formula. It is know that naive perturbation theory breaks down owing to a so called pinch singularity, and hence a resummation is required for getting a finite and sensible result. As a novel resummation method, we first decompose the two point function into the singular part and the regular part, and then reconstruct the diagrams. We find that a self-consistent equation for the two-point function has the same structure as the linearized Boltzmann equation. It is known that the two-point function at the leading order is equivalent to the linearized Boltzmann equation. We find the higher order corrections are nicely summarized as a renormalization of the vertex function, spectral function, and collision term. We also discuss the critical behavior of the transport coefficients near a phase transition, applying our method. (author)

  1. TRU waste transportation package development

    International Nuclear Information System (INIS)

    Eakes, R.G.; Lamoreaux, G.H.; Romesberg, L.E.; Sutherland, S.H.; Duffey, T.A.

    1980-01-01

    Inventories of the transuranic wastes buried or stored at various US DOE sites are tabulated. The leading conceptual design of Type-B packaging for contact-handled transuranic waste is the Transuranic Package Transporter (TRUPACT), a large metal container comprising inner and outer tubular steel frameworks which are separated by rigid polyurethane foam and sheathed with steel plate. Testing of TRUPACT is reported. The schedule for its development is given. 6 figures

  2. Development of a neoclassical transport database by neural network fitting in LHD

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi; Yamada, Hiroshi; Yokoyama, Masayuki; Watanabe, Kiyomasa; Maassberg, Hening; Beidler, Craig D.

    2004-01-01

    A database of neoclassical transport coefficients for the Large Helical Device is developed using normalized mono-energetic diffusion coefficients evaluated by Monte Carlo simulation code; DCOM. A neural network fitting method is applied to take energy convolutions with the given distribution function, e.g. Maxwellian. The database gives the diffusion coefficients as a function of the collision frequency, the radial electric field and the minor radius position. (author)

  3. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  5. A fast and robust method for automated analysis of axonal transport.

    Science.gov (United States)

    Welzel, Oliver; Knörr, Jutta; Stroebel, Armin M; Kornhuber, Johannes; Groemer, Teja W

    2011-09-01

    Cargo movement along axons and dendrites is indispensable for the survival and maintenance of neuronal networks. Key parameters of this transport such as particle velocities and pausing times are often studied using kymograph construction, which converts the transport along a line of interest from a time-lapse movie into a position versus time image. Here we present a method for the automatic analysis of such kymographs based on the Hough transform, which is a robust and fast technique to extract lines from images. The applicability of the method was tested on simulated kymograph images and real data from axonal transport of synaptophysin and tetanus toxin as well as the velocity analysis of synaptic vesicle sharing between adjacent synapses in hippocampal neurons. Efficiency analysis revealed that the algorithm is able to detect a wide range of velocities and can be used at low signal-to-noise ratios. The present work enables the quantification of axonal transport parameters with high throughput with no a priori assumptions and minimal human intervention.

  6. Improved treatment of two-dimensional neutral particle transport through voids within the discrete ordinates method by use of generalized view factors

    International Nuclear Information System (INIS)

    Brockmann, H.

    1992-01-01

    Using the discrete ordinates method for the treatment of neutral particle transport through voids serious flux distortions may occur due to the restricted streaming of particles along discrete directions. For mitigating this type of ray effect the method of view factors is proposed which has been developed in the theory of thermal radiation for describing the radiant exchange among surfaces. In order to apply this method to transport theory generalized view factors are defined which regard the angular dependence of the radiation leaving the surfaces. The generalized view factors are calculated analytically for r-z cylinder geometries and by applying the view factor algebra. The method was realized in the discrete ordinates transport code DOT 4.2 and applied to an r-z analogue of the S I S (Square-In-Square) sample problem. The results of the proposed method are compared with those calculated by the common discrete ordinates method and the Monte Carlo method

  7. Advances in complexity of beam halo-chaos and its control methods for beam transport networks

    International Nuclear Information System (INIS)

    Fang Jinqing

    2004-11-01

    The complexity theory of beam halo-chaos in beam transport networks and its control methods for a new subject of high-tech field is discussed. It is pointed that in recent years, there has been growing interest in proton beams of high power linear accelerator due to its attractive features in possible breakthrough applications in national defense and industry. In particular, high-current accelerator driven clean activity nuclear power systems for various applications as energy resources has been one of the most focusing issues in the current research, because it provides a safer, cleaner and cheaper nuclear energy resource. However, halo-chaos in high-current beam transport networks become a key concerned issue because it can generate excessive radioactivity therefore significantly limits its applications. It is very important to study the complexity properties of beam halo-chaos and to understand the basic physical mechanisms for halo chaos formation as well as to develop effective control methods for its suppression. These are very challenging subjects for the current research. The main research advances in the subjects, including experimental investigation and the oretical research, especially some very efficient control methods developed through many years of efforts of authors are reviewed and summarized. Finally, some research outlooks are given. (author)

  8. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  9. Low rank approximation method for efficient Green's function calculation of dissipative quantum transport

    Science.gov (United States)

    Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann

    2013-06-01

    In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.

  10. THE ROLE OF DEVELOPMENT OF TRANSPORT TURISM IN ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Flora Alasgarova

    2017-09-01

    Full Text Available Tourism is one of the necessary and very important sectors of country economy. Tourism has its appropriate inimitable characteristics that difference this sector from the other sectors. As to be in the other service industrial fields, in tourism sector the tourists come to the tourism destination place where the tourism services are supplied. To my observation and international experiences, it is hard to think of tourism industry without transportation. Transportation is  mean where to carry the tourists to the relevant place where tourism services are accomplished. The article contains detailed information about the introduction to the concepts of tourism, theoretical approach to the tourism as service industry, the role of transport in tourism development, international experiences in transport tourism, development of transport tourismin Azerbaijan economy. The article can be considered as a useful resource  for experts and researchers conducting research in this field.

  11. SOLVING TRANSPORT LOGISTICS PROBLEMS IN A VIRTUAL ENTERPRISE THROUGH ARTIFICIAL INTELLIGENCE METHODS

    OpenAIRE

    PAVLENKO, Vitaliy; PAVLENKO, Tetiana; MOROZOVA, Olga; KUZNETSOVA, Anna; VOROPAI, Olena

    2017-01-01

    The paper offers a solution to the problem of material flow allocation within a virtual enterprise by using artificial intelligence methods. The research is based on the use of fuzzy relations when planning for optimal transportation modes to deliver components for manufactured products. The Fuzzy Logic Toolbox is used to determine the optimal route for transportation of components for manufactured products. The methods offered have been exemplified in the present research. The authors have b...

  12. A simplified spherical harmonic method for coupled electron-photon transport calculations

    International Nuclear Information System (INIS)

    Josef, J.A.

    1996-12-01

    In this thesis we have developed a simplified spherical harmonic method (SP N method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP N method has never before been applied to charged-particle transport. We have performed a first time Fourier analysis of the source iteration scheme and the P 1 diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP N equations. Our theoretical analyses indicate that the source iteration and P 1 DSA schemes are as effective for the 2-D SP N equations as for the 1-D S N equations. Previous analyses have indicated that the P 1 DSA scheme is unstable (with sufficiently forward-peaked scattering and sufficiently small absorption) for the 2-D S N equations, yet is very effective for the 1-D S N equations. In addition, we have applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well for the 2-D SP N equations as for the 1-D S N equations. It has previously been shown for 1-D S N calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. We have investigated the applicability of the SP N approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems. In the space shielding study, the SP N method produced solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and often orders of magnitude faster than Monte Carlo. We have successfully modeled quasi-void problems and have obtained excellent agreement with Monte Carlo. We have observed that the SP N method appears to be too diffusive an approximation for beam problems. This result, however, is in agreement with theoretical expectations

  13. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  14. Mutual Influence of Institutional and Transport Factors of Economic Development: Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Dmitry A. Macheret

    2017-12-01

    Full Text Available Numerous studies indicate that the transport factor significantly affects economic development and the development of market institutions. The history of mankind demonstrates that transport has always stimulated the socio-economic development of countries and regions, while changing the changing economic relations and people's needs, scientific and technological progress, in turn, contributed to the development of transport. In this regard, a special scientific interest is the study of the mutual influence of institutions and transport. Historical analysis has revealed a strong interdependence between transport and the establishment of institutions, primarily market ones. Water transport had been the catalyst for the market institutions development up to the time of industrial revolution. At the same time, the development of oceanic navigation in the XVI–XVII centuries had a different impact on the socio-economic development of the major maritime powers of that period (Portugal, Spain, Dutch republic, England. The industrial revolution strengthened the interdependence between transport and the factors of institutional development of advanced countries. The formation of the transport network and particularly the railway network as an innovative and the most «institutional» kind of transport in the most developed countries of that period (England, USA, France, has led these countries despite significant differences to very high positive economic results. This is explained by the essential coherence of the different variants of the capitalism existed in these countries, based on inclusive institutions. At the same time, private financing of the railway business required the consolidation of the efforts of many entrepreneurs. It stimulated the development of corporate institutions and the growth of joint-stock capital. Institutional features of the Russian Empire predetermined a special model of the railway network creation in the XIX century

  15. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  16. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  17. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    International Nuclear Information System (INIS)

    Hoffman, Adam J.; Lee, John C.

    2016-01-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  18. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...

  1. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  2. Directions of development of transport infrastructure of Ukraine

    Directory of Open Access Journals (Sweden)

    V.I. Kopytko

    2012-08-01

    Full Text Available The trends of the transport infrastructure development as a basic factor of national security, the stable and dynamic economic growth, its integration into the European and world economic space are considered. The most important element of the transport infrastructure in the modern economy is a network of logistic providers, which reduce transaction costs and improve the quality of transport service. And the main direction of government policy according to infrastructure should be a gradual transition of activities for establishing and operating the infrastructure objects, that is a burden for the State, from a cost sphere to an efficient business based on the state-private partnership.

  3. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  4. Solutions of transport equation in (X-Y-Z) three-dimensional geometry by finite element method and spherical harmonic expansion

    International Nuclear Information System (INIS)

    Fernandes, A.; Maiorino, J.R.

    1989-01-01

    This work presents a method to solve the neutron transport equation in thre space dimensions. The angular flux is aproximated by spherical harmonics and the finite element method is applied to the space component. The program originated by the analytical development is being tested and some results are presented. (author) [pt

  5. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  6. Analysis of radionuclide transport through fissured porous media with a perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Banat, M [JGC Corp., Tokyo (Japan)

    1995-04-01

    This paper presents a specific procedure for obtaining solutions for the transport of radionuclides in a fissured porous media. The concentration profiles are deduced for a wide range of Peclet numbers using a perturbation method with a multiscale of time. Results show clearly that because of an increase of longitudinal dispersion, the radionuclide moves faster with respect to the case of zero dispersion (i.e. an infinite Peclet number). The main purpose of this paper is to demonstrate the practical advantage of the present calculation method with respect to the classical numerical and analytical methods used for radionuclide transport. (author).

  7. Development of gas-jet transport systems for fission products and coupling these with methods for continuous separation of short-lived product nuclides

    International Nuclear Information System (INIS)

    Stender, E.

    1979-01-01

    The development of gas-jet transport systems for fission products as well as the coupling of these with continuous separation methods from aqueous solutions (SISAK) and with a mass separator for on-line separation of neutron-rich nuclides are described in this work. Nuclides from the fission of 235 U or other fission materials can be transported using gas-jet systems with thermal neutrons over larger distances (100 m and over). Aerosols (clusters) of either organic (e.g. ethylene) or inorganic nature (e.g. potassium chloride) serve as carrier for the nuclides. The clusters are passed through 1 mm capillaries with a transport gas (nitrogen, helium etc.) under laminar flow conditions. The diameter of the cluster fluctuates between 10 -7 and 10 -6 m. The time required from the production of a nuclide to its detection at the end of a 8 m long capillary tube is 0.8 s for the ethylene/nitrogen and potassium chloride/helium gas-jet systems. By coupling various gas-jet systems with the continuous extraction technique SISAK working with H centrifuges, the elements lanthanum, cerium, praseodymium, zirconium, niobium and technetium can be separated out of the complex fission product mixtures. The on-line technetium chemistry was used with neutron-rich 106 Tc (36 s), 107 Tc (21 s) and 108 Tc (5 s) for γγ(t) measurements. The coupling of a potassium chloride/helium gas jet with a mass separator equiped with a plasma ion source is described. The dependence of the transmission rate of various test parameters is investigated to optimize the system. (orig.) [de

  8. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Kang, Hee Dong; Lee, Heung Young; Seo, Ki Suk; Koo, Jung Hoe; Jung, Sung Hwan; Yoon, Jung Hyun; Lee, Ju Chan; Bang, Kyung Sik; Baek, Chang Yeol

    1992-03-01

    The major goal of this project is to establish the safe transport system and obtain the necessary data for cask development by during research work for the design and safety test of shipping cask. The analysis technique using computer code for design has been studied in the field of structure, thermal and shielding analysis in this study. And also the test and measurement technology was developed for the measuring system of drop and fire test. It is expected that research activity ensured in this job will enable us to ultilize the basic data for the cask development. (Author)

  9. The spectral element method for static neutron transport in AN approximation. Part I

    International Nuclear Information System (INIS)

    Barbarino, A.; Dulla, S.; Mund, E.H.; Ravetto, P.

    2013-01-01

    Highlights: ► Spectral elements methods (SEMs) are extended for the neutronics of nuclear reactor cores. ► The second-order, A N formulation of neutron trasport is adopted. ► Results for classical benchmark cases in 2D are presented and compared to finite elements. ► The advantages of SEM in terms of precision and convergence rate are illustrated. ► SEM consitutes a promising approach for the solution of neutron transport problems. - Abstract: Spectral elements methods provide very accurate solutions of elliptic problems. In this paper we apply the method to the A N (i.e. SP 2N−1 ) approximation of neutron transport. Numerical results for classical benchmark cases highlight its performance in comparison with finite element computations, in terms of accuracy per degree of freedom and convergence rate. All calculations presented in this paper refer to two-dimensional problems. The method can easily be extended to three-dimensional cases. The results illustrate promising features of the method for more complex transport problems

  10. Improvements of the integral transport theory method

    International Nuclear Information System (INIS)

    Kavenoky, A.; Lam-Hime, M.; Stankovski, Z.

    1979-01-01

    The integral transport theory is widely used in practical reactor design calculations however it is computer time consuming for two dimensional calculations of large media. In the first part of this report a new treatment is presented; it is based on the Galerkin method: inside each region the total flux is expanded over a three component basis. Numerical comparison shows that this method can considerably reduce the computing time. The second part of the this report is devoted to homogeneization theory: a straightforward calculation of the fundamental mode for an heterogeneous cell is presented. At first general presentation of the problem is given, then it is simplified to plane geometry and numerical results are presented

  11. Analysis of charge transport in gels containing polyoxometallates using methods of different sensitivity to migration.

    Science.gov (United States)

    Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R

    2006-08-04

    Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.

  12. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  13. Steady-state transport equation resolution by particle methods, and numerical results

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-10-01

    A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

  14. Recent advances in neutral particle transport methods and codes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    An overview of ORNL's three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned

  15. Developing low-carbon transport policies in Peru with capacity-building for their implementation: Draft Transport NAMA

    OpenAIRE

    Tyler, N. A.; Ramirez, C.

    2012-01-01

    Transport has been identified as one of the biggest sectors that contribute to climate change (23%) due to its energy demand and polluting emissions and therefore one of the sectors that needs to take action to mitigate its impact. A few countries in Latin America (Brazil, Chile, Mexico and Colombia) have started their transport NAMA development and are at different stages in the process. Peru has started this process more recently and this report aims at facilitating the NAMA development and...

  16. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  17. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  18. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  19. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  20. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  1. 41 CFR 301-10.5 - What are the presumptions as to the most advantageous method of transportation?

    Science.gov (United States)

    2010-07-01

    ... presumptions as to the most advantageous method of transportation? 301-10.5 Section 301-10.5 Public Contracts... most advantageous method of transportation? (a) Common carrier. Travel by common carrier is presumed to be the most advantageous method of transportation and must be used when reasonably available. (b...

  2. A symmetrized quasi-diffusion method for solving multidimensional transport problems

    International Nuclear Information System (INIS)

    Miften, M.M.; Larsen, E.W.

    1992-01-01

    In this paper, the authors propose a 'symmetrized' QD (SQD) method in which the non-self-adjoint QD diffusion problem is replaced by two self-adjoint diffusion problems. These problems are more easily discretized and more efficiently solved than in the standard QD method. They also give SQD calculational results for transport problems in x-y geometry

  3. 41 CFR 301-72.1 - Why is common carrier presumed to be the most advantageous method of transportation?

    Science.gov (United States)

    2010-07-01

    ... presumed to be the most advantageous method of transportation? 301-72.1 Section 301-72.1 Public Contracts... Transportation § 301-72.1 Why is common carrier presumed to be the most advantageous method of transportation? Travel by common carrier is presumed to be the most advantageous method of transportation because it...

  4. Methods for conversion of lignocellulosic-derived products to transportation fuel precursors

    Science.gov (United States)

    Lilga, Michael A.; Padmaperuma, Asanga B.

    2017-10-03

    Methods are disclosed for converting a biomass-derived product containing levulinic acid and/or gamma-valerolactone to a transportation fuel precursor product containing diesel like hydrocarbons. These methods are expected to produce fuel products at a reduced cost relative to conventional approaches.

  5. Alabama Department of Transportation : research and development 2011 peer exchange.

    Science.gov (United States)

    2011-05-01

    Research and development are key to safe and efficient transportation systems in our country. They have played a vital role in the advancements that have led to our current transportation system. Federal regulation (23 CRF 420 Subpart B) establishes ...

  6. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13% of the energy saving and 12% of the CO 2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies show the potential of drawing the transport demand to the more energy efficient vehicles; however, more initiatives are needed if the sustainable transport is the long term objective, such as the solutions to stabilise the private vehicle demands, to continuously improve the vehicle efficiency and to boost the alternative fuels produced from the renewable energy sources. - Highlights: • A Chinese transport model was created and three transport strategies were evaluated • Transport is the biggest driver of the oil demand in China not the industry • The energy demand of transport in 2020 will be twice as much as today • Strategies contribute 13% energy saving and 12% CO 2 emission reduction • More initiatives are needed if a sustainable transport is the long-term objective

  7. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  8. Development and Performance of the Alaska Transportable Array Posthole Broadband Seismic Station

    Science.gov (United States)

    Aderhold, K.; Enders, M.; Miner, J.; Bierma, R. M.; Bloomquist, D.; Theis, J.; Busby, R. W.

    2017-12-01

    The final stations of the Alaska Transportable Array (ATA) will be constructed in 2017, completing the full footprint of 280 new and existing broadband seismic stations stretching across 19 degrees of latitude from western Alaska to western Canada. Through significant effort in planning, site reconnaissance, permitting and the considerable and concerted effort of field crews, the IRIS Alaska TA team is on schedule to successfully complete the construction of 194 new stations and upgrades at 28 existing stations over four field seasons. The station design and installation method was developed over the course of several years, leveraging the experience of the L48 TA deployments and existing network operators in Alaska as well as incorporating newly engineered components and procedures. A purpose-built lightweight drill was designed and fabricated to facilitate the construction of shallow boreholes to incorporate newly available posthole seismometers. This allowed for the development of a streamlined system of procedures to manufacture uniform seismic stations with minimal crew and minimal time required at each station location. A new station can typically be constructed in a single day with a four-person field crew. The ATA utilizes a hammer-drilled, cased posthole emplacement method adapted to the remote and harsh working environment of Alaska. The same emplacement design is implemented in all ground conditions to preserve uniformity across the array and eliminate the need for specialized mechanical equipment. All components for station construction are ideally suited for transport via helicopter, and can be adapted to utilize more traditional methods of transportation when available. This emplacement design delivers high quality data when embedded in bedrock or permafrost, reaching the low noise levels of benchmark permanent global broadband stations especially at long periods over 70 seconds. The TA will operate the network of real-time stations through at least

  9. Transportation in megacities. Growing demand and emissions - a comparative analysis of sustainability in developed and developing economies

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R K [Tata Energy Research Inst. (India)

    1996-12-01

    The urban transport problem is fundamentally similar in all large cities. The basic causes are the same and so are many of the consequences, although there are some differences in degree between cities in developed and developing economies. Transport systems in large cities of the developing economies as compared to the developed economies are characterized by: (a) much lower level of motorization of transport and travel requirement, (b) more rapid rates of economic growth, population growth, and the growth in number of motor vehicles, (c) higher population densities, (d) much lower per capita energy consumption and emissions of carbon dioxide, (e) reduced access to capital and to advanced environmental technologies. Despite greater level of vehicle ownership, higher rate of trip generation and increased use of energy on a per capita basis in cities of developed countries, it is the large cities in the developing countries that, in general suffer most from growing traffic congestion, road accidents, energy use and emissions, overcrowding of public transport, and poor conditions for pedestrians and cyclists. (au) 20 refs.

  10. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  11. A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. Theory and development

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and

  12. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.; Gho, C.J.

    1990-01-01

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es

  13. Stencil method: a Markov model for transport in porous media

    Science.gov (United States)

    Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.

    2016-12-01

    In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.

  14. Methods, measures and indicators for evaluating benefits of transportation research

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2016-04-01

    Full Text Available The purpose of this article is to provide updated information by identifying and discussing methods, measures and indicators for evaluating benefits appropriate for transportation-related research facilities/programmes. The information has been...

  15. Energy efficiency development possibilities in public transport; Joukkoliikenteen energiatehokkuuden kehittaemismahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Korteniemi, J.; Pasanen, P.; Latvala, M.; Pohjola, T. (Bionova Consulting, Helsinki (Finland))

    2010-10-15

    Environmental values, energy efficiency and climate impact have taken an essential role in the public affairs in the past years, and their weight in decision making is constantly increasing. One of HSL strategic goals is to promote low emissions transport. Public transport energy efficiency is good when compared to passenger cars today. However, the car energy and climate efficiency is improving substantially and the development is set to continue at least until 2020, supported by the EU directive on new car sales emission limits. The rapid development of passenger car emissions poses an increasing challenge for the energy and climate efficiency of public transport services. There are national and international binding goals for energy and climate efficiency development until the year 2020, and non-binding goals until the year 2050. The goals which impact public transport sector are 9 % improvement in energy efficiency by 2016 when compared to 2005 level, and national binding goals of reducing greenhouse gas emissions by 20 % and using 20 % of renewables in transport sector by 2020. By 2050, the targeted greenhouse gas reduction goals are up to 80 % of all emissions when compared to the 1990 emission levels. The public transport services provided by HSL use 628 GWh energy annually, which produces about 314 million public transport trips. The diesel and natural gas used by the buses represents two thirds of the energy consumption, whereas their share of the produced trips is about one half. The rail rolling stock energy consumption is one seventh of the whole. Circa one fifth of the energy is used by the transport infrastructure, such as stations, rail switch heating and the depots. In energy efficiency terms metro and train are clear leaders. One kilowatt hour of energy takes a passenger 10 km in metro and 29,9 km in a train. Correspondingly the passenger could travel in a tramway 4,4 km, in a diesel bus 2,7 km and in a natural gas bus 2,1 km and in a passenger car

  16. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  17. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  18. Conservative Eulerian-Lagrangian Methods and Mixed Finite Element Methods for Modeling of Groundwater Flow and Transport

    National Research Council Canada - National Science Library

    Russell, Thomas

    2000-01-01

    New, improved computational methods for modeling of groundwater flow and transport have been formulated and implemented, with the intention of incorporating them as user options into the DoD Ground...

  19. Conservative Eulerian-Lagrangian Methods and Mixed Finite Element Methods for Modeling of Groundwater Flow and Transport

    National Research Council Canada - National Science Library

    Russell, Thomas

    2000-01-01

    ... more detailed three-dimensional (3D) simulations than would otherwise be practical. For 3D solute transport, the methods have been implemented and perform as expected on representative test problems...

  20. Development of statistical linear regression model for metals from transportation land uses.

    Science.gov (United States)

    Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kim, Lee-Hyung

    2009-01-01

    The transportation landuses possessing impervious surfaces such as highways, parking lots, roads, and bridges were recognized as the highly polluted non-point sources (NPSs) in the urban areas. Lots of pollutants from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off during a storm. In Korea, the identification and monitoring of NPSs still represent a great challenge. Since 2004, the Ministry of Environment (MOE) has been engaged in several researches and monitoring to develop stormwater management policies and treatment systems for future implementation. The data over 131 storm events during May 2004 to September 2008 at eleven sites were analyzed to identify correlation relationships between particulates and metals, and to develop simple linear regression (SLR) model to estimate event mean concentration (EMC). Results indicate that there was no significant relationship between metals and TSS EMC. However, the SLR estimation models although not providing useful results are valuable indicators of high uncertainties that NPS pollution possess. Therefore, long term monitoring employing proper methods and precise statistical analysis of the data should be undertaken to eliminate these uncertainties.

  1. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    2009-01-01

    Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm 3 /min against a 1 m head. (author)

  2. Numerical simulation for fractional order stationary neutron transport equation using Haar wavelet collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Saha Ray, S., E-mail: santanusaharay@yahoo.com; Patra, A.

    2014-10-15

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet collocation method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: In this paper the numerical solution for the fractional order stationary neutron transport equation is presented using Haar wavelet Collocation Method (HWCM). Haar wavelet collocation method is efficient and powerful in solving wide class of linear and nonlinear differential equations. This paper intends to provide an application of Haar wavelets to nuclear science problems. This paper describes the application of Haar wavelets for the numerical solution of fractional order stationary neutron transport equation in homogeneous medium with isotropic scattering. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency and applicability of the method, two test problems are discussed.

  3. Applications of advanced transport aircraft in developing countries

    Science.gov (United States)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  4. A summary of recent developments in transportation hazard classification activities for ammonium perchlorate

    Science.gov (United States)

    Koller, A. M., Jr.; Hannum, J. A. E.

    1983-01-01

    The transportation hazard classification of Ammonium Perchlorate is discussed. A test program was completed and data were forwarded to retain a Class 5.1 designation (oxidizer) for AP which is shipped internationally. As a follow-on to the initial team effort to conduct AP tests existing data were examined and a matrix which catalogs test parameters and findings was compiled. A collection of test protocols is developed to standardize test methods for energetic materials of all types. The actions to date are summarized; the participating organizations and their roles as presently understood; specific findings on AP (matrix); and issues, lessons learned, and potential actions of particular interest to the propulsion community which may evolve as a result of future U.N. propellant transportation classification activities.

  5. Development of a transportation planning tool

    International Nuclear Information System (INIS)

    Funkhouser, B.R.; Moyer, J.W.; Ballweg, E.L.

    1994-01-01

    This paper describes the application of simulation modeling and logistics techniques to the development of a planning tool for the Department of Energy (DOE). The focus of the Transportation Planning Model (TPM) tool is to aid DOE and Sandia analysts in the planning of future fleet sizes, driver and support personnel sizes, base site locations, and resource balancing among the base sites. The design approach is to develop a rapid modeling environment which will allow analysts to easily set up a shipment scenario and perform multiple ''what if'' evaluations. The TPM is being developed on personal computers using commercial off-the shelf (COTS) software tools under the WINDOWS reg-sign operating environment. Prototype development of the TPM has been completed

  6. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods.......We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...

  7. Environmental development plan for transportation programs: FY80 update

    Energy Technology Data Exchange (ETDEWEB)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  8. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  9. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  10. Influence of road transport infrastructure on agricultural sector development in Nigeria

    Directory of Open Access Journals (Sweden)

    Ogunleye Olusogo

    2018-02-01

    Full Text Available The study investigated the effects of road transport infrastructure on agricultural sector development in Nigeria from 1985 to 2014, using secondary annual time series data on agricultural development (proxy by gross domestic product in the Agric sector road transport infrastructure (proxy by length of paved road per square kilometer of area export and capital, all obtained from the Central Bank of Nigeria (CBN [3], and National Bureau of Statistics (NBS [16], statistical bulletins. The data were analyzed using Granger Causality test and Ordinary Least Square estimation techniques. The study concluded that a positive and statistically significant relationship exists between road transport infrastructures (LRT also evidence was found of a unidirectional causality from agricultural sector development to transport infrastructure. The study, therefore, recommends that adequate and timely maintenance of existing roads should be carried out as well as enacting appropriate regulations that ensure proper implementation and completion of new road construction contracts in the country in order to boost agricultural sector development, reduce wastage of farm produce and increase the possibility of economic diversification.

  11. BASIC PRINCIPLES OF TRANSPORT TOURISM DEVELOPMENT IN UKRAINE

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2013-08-01

    Full Text Available Purpose. Undeveloped infrastructure and the system of public and tourist transport services prevent boom and spread of tourism glory of the country. Therefore, the development of tourist infrastructure and transport communication routes is a priority task. Methodology. Article methodology is based on the use of consequent methodological technique. Findings. Author analyzed the situation of tourism industry in Ukraine, set the basic principles for the tourism development and its priorities. The article contains the author's point of view on the fact that the tourism industry is of paramount importance to the state economics, and the development of this sector of public life should be a priority task for the near future. Originality. According to the author, the development of the inbound tourism is more reasonable, because it provides additional workplaces and exchange earnings. The author insists that the raise of quality level of domestic tourist services to the European standards would accelerate the development of Ukrainian tourism and would attract more holidaymakers from Ukraine and neighbouring countries. Practical value. The rational measures, which were taken regarding the proposed directions for the tourism development, can improve competitiveness of the Ukrainian tourist industry on the European tourist market.

  12. A vector/parallel method for a three-dimensional transport model coupled with bio-chemical terms

    NARCIS (Netherlands)

    B.P. Sommeijer (Ben); J. Kok (Jan)

    1995-01-01

    textabstractA so-called fractional step method is considered for the time integration of a three-dimensional transport-chemical model in shallow seas. In this method, the transport part and the chemical part are treated separately by appropriate integration techniques. This separation is motivated

  13. A Modified Method for Evaluating Sustainable Transport Solutions Based on AHP and Dempster–Shafer Evidence Theory

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available With the challenge of transportation environment, a large amount of attention is paid to sustainable mobility worldwide, thus bringing the problem of the evaluation of sustainable transport solutions. In this paper, a modified method based on analytical hierarchy process (AHP and Dempster–Shafer evidence theory (D-S theory is proposed for evaluating the impact of transport measures on city sustainability. AHP is adapted to determine the weight of sustainability criteria while D-S theory is used for data fusion of the sustainability assessment. A Transport Sustainability Index (TSI is presented as a primary measure to determine whether transport solutions have a positive impact on city sustainability. A case study of car-sharing is illustrated to show the efficiency of our proposed method. Our modified method has two desirable properties. One is that the BPA is generated with a new modification framework of evaluation levels, which can flexibly manage uncertain information. The other is that the modified method has excellent performance in sensitivity analysis.

  14. Evaluating the economic benefits of nonmotorized transportation : case studies and methods for the nonmotorized transportation pilot program communities.

    Science.gov (United States)

    2015-03-01

    This report examines potential methods for evaluating the economic benefits from nonmotorized transportation investments. The variety of potential economic benefits of bicycle and pedestrian infrastructure and programming investments discussed includ...

  15. A non overlapping parallel domain decomposition method applied to the simplified transport equations

    International Nuclear Information System (INIS)

    Lathuiliere, B.; Barrault, M.; Ramet, P.; Roman, J.

    2009-01-01

    A reactivity computation requires to compute the highest eigenvalue of a generalized eigenvalue problem. An inverse power algorithm is used commonly. Very fine modelizations are difficult to tackle for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. So, we propose a non-overlapping domain decomposition method for the approximate resolution of the linear system to solve at each inverse power iteration. Our method brings to a low development effort as the inner multigroup solver can be re-use without modification, and allows us to adapt locally the numerical resolution (mesh, finite element order). Numerical results are obtained by a parallel implementation of the method on two different cases with a pin by pin discretization. This results are analyzed in terms of memory consumption and parallel efficiency. (authors)

  16. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Energy Technology Data Exchange (ETDEWEB)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    2017-01-15

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  17. Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2005-01-01

    This paper proposes a new acceleration method for neutron transport calculations: the generalized coarse-mesh rebalance (GCMR) method. The GCMR method is a unified scheme of the traditional coarse-mesh rebalance (CMR) and the coarse-mesh finite difference (CMFD) acceleration methods. Namely, by using an appropriate acceleration factor, formulation of the GCMR method becomes identical to that of the CMR or CMFD method. This also indicates that the convergence property of the GCMR method can be controlled by the acceleration factor since the convergence properties of the CMR and CMFD methods are generally different. In order to evaluate the convergence property of the GCMR method, a linearized Fourier analysis was carried out for a one-group homogeneous medium, and the results clarified the relationship between the acceleration factor and the spectral radius. It was also shown that the spectral radius of the GCMR method is smaller than those of the CMR and CMFD methods. Furthermore, the Fourier analysis showed that when an appropriate acceleration factor was used, the spectral radius of the GCMR method did not exceed unity in this study, which was in contrast to the results of the CMR or the CMFD method. Application of the GCMR method to practical calculations will be easy when the CMFD acceleration is already adopted in a transport code. By multiplying a suitable acceleration factor to a coefficient (D FD ) of a finite difference formulation, one can improve the numerical instability of the CMFD acceleration method

  18. The effect of sediment transport on eelgrass development – and vice versa

    NARCIS (Netherlands)

    Dijkstra, J.T.

    2007-01-01

    By changing flow patterns and sediment transport, aquatic vegetation can affect the development of estuarine bed topography. Besides, since the sediment transport also determines the amount of light available for photosynthetic growth, the presence of vegetation can also affect its own development.

  19. Developing low carbon policies for road transport in Poland

    NARCIS (Netherlands)

    Kok, R.; Rahman, S.A.

    2010-01-01

    This paper presents the results of work done for the World Bank to develop low carbon policies for road transport in Poland. Here, we outline the development of Green House Gas (GHG) emissions, develop a Business As Usual (BAU) scenario based on social-economic-, infrastructure-, car market, vehicle

  20. Trajectory structures and transport

    International Nuclear Information System (INIS)

    Vlad, Madalina; Spineanu, Florin

    2004-01-01

    The special problem of transport in two-dimensional divergence-free stochastic velocity fields is studied by developing a statistical approach, the nested subensemble method. The nonlinear process of trapping determined by such fields generates trajectory structures whose statistical characteristics are determined. These structures strongly influence the transport

  1. Optimal Placement Method of RFID Readers in Industrial Rail Transport for Uneven Rail Traflc Volume Management

    Science.gov (United States)

    Rakhmangulov, Aleksandr; Muravev, Dmitri; Mishkurov, Pavel

    2016-11-01

    The issue of operative data reception on location and movement of railcars is significant the constantly growing requirements of the provision of timely and safe transportation. The technical solution for efficiency improvement of data collection on rail rolling stock is the implementation of an identification system. Nowadays, there are several such systems, distinguished in working principle. In the authors' opinion, the most promising for rail transportation is the RFID technology, proposing the equipping of the railway tracks by the stationary points of data reading (RFID readers) from the onboard sensors on the railcars. However, regardless of a specific type and manufacturer of these systems, their implementation is affiliated with the significant financing costs for large, industrial, rail transport systems, owning the extensive network of special railway tracks with a large number of stations and loading areas. To reduce the investment costs for creation, the identification system of rolling stock on the special railway tracks of industrial enterprises has developed the method based on the idea of priority installation of the RFID readers on railway hauls, where rail traffic volumes are uneven in structure and power, parameters of which is difficult or impossible to predict on the basis of existing data in an information system. To select the optimal locations of RFID readers, the mathematical model of the staged installation of such readers has developed depending on the non-uniformity value of rail traffic volumes, passing through the specific railway hauls. As a result of that approach, installation of the numerous RFID readers at all station tracks and loading areas of industrial railway stations might be not necessary,which reduces the total cost of the rolling stock identification and the implementation of the method for optimal management of transportation process.

  2. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  3. SYSTEM ANALYSIS OF MAJOR TRENDS IN DEVELOPMENT OF ADAPTIVE TRAFFIC FLOW MANAGEMENT METHODS

    Directory of Open Access Journals (Sweden)

    A. N. Klimovich

    2017-01-01

    Full Text Available Adaptive algorithms, which current traffic systems are based on, exist for many decades. Information technologies have developed significantly over this period and it makes more relevant their application in the field of transport. This paper analyses modern trends in the development of adaptive traffic flow control methods. Reviewed the most perspective directions in the field of intelligent transport systems, such as high-speed wireless communication between vehicles and road infrastructure based on such technologies as DSRC and WAVE, traffic jams prediction having such features as traffic flow information, congestion, velocity of vehicles using machine learning, fuzzy logic rules and genetic algorithms, application of driver assistance systems to increase vehicle’s autonomy. Advantages of such technologies in safety, efficiency and usability of transport are shown. Described multi-agent approach, which uses V2I-communication between vehicles and intersection controller to improve efficiency of control due to more complete traffic flow information and possibility to give orders to separate vehicles. Presented number of algorithms which use such approach to create new generation of adaptive transport systems.

  4. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  5. A model for development of freight transport; En model for godstransportens udvikling

    Energy Technology Data Exchange (ETDEWEB)

    Kveiborg, O. [National Environmental Res., Systems Analysis Dept. Roskilde (Denmark)

    2001-01-01

    This report describes the results of a large project conducted in a corporation between Statistics Denmark and the Danish National Environmental Research Institute. The main objective of the project has been to analyse the possibilities of prescribing the development in the Danish freight transport in a more appropriate and precise way than it is done by existing models. A secondary objective of the project was to develop a model based on the findings of the analysis. The intention was to be able to describe all areas of freight transport. The analysis has proven it impossible to improve the existing calculations in some areas of transport. Hence, the project has been narrowed down to focus exclusively on road freight transport. The developed model distinguishes itself from existing models by a much higher level of detail in the calculations. This enables the model to describe the structural relations between transport and economic activity, which has previously been subsumed in the aggregate calculations of existing models. The work carried out in the process of developing a model for the freight transport has encountered many difficulties. The findings described in this report are merely one step towards a better understanding of the relation between economic development and transport. The descriptions on the following pages will describe some of the difficulties we have had in achieving an appropriate statistical description of the different linkages. Furthermore, the calculations carried out with the model point at other unsolved problems. There is an indication that the model tends to overestimate the developments in freight transport. In this respect, the very disaggregate calculations of the model can be seen as both an advantage and as a disadvantage because each extra calculation gives rise to further uncertainties in the overall result. Even though we have had great difficulties finding adequate descriptions of the development in the factors in the model

  6. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  7. Guidance for Developing a Freight Transportation Data Architecture

    Science.gov (United States)

    2011-01-01

    Public and private decision makers must understand the freight transportation system, its use, its role in economic development, its environmental impact, as well as other consequences in order to respond effectively to growing logistical requirement...

  8. Error Estimation and Accuracy Improvements in Nodal Transport Methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    2000-01-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid

  9. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    International Nuclear Information System (INIS)

    Lehua Pan; G.S. Bodvarsson

    2001-01-01

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions

  10. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  11. 23 CFR 450.214 - Development and content of the long-range statewide transportation plan.

    Science.gov (United States)

    2010-04-01

    ...., transportation, safety, economic development, social and environmental effects, or energy) that were relevant to... time of adoption, that provides for the development and implementation of the multimodal transportation... consultation with affected non-metropolitan officials with responsibility for transportation using the State's...

  12. Computing observables in curved multifield models of inflation—A guide (with code) to the transport method

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Mafalda; Seery, David [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Frazer, Jonathan, E-mail: m.dias@sussex.ac.uk, E-mail: j.frazer@sussex.ac.uk, E-mail: a.liddle@sussex.ac.uk [Department of Theoretical Physics, University of the Basque Country, UPV/EHU, 48040 Bilbao (Spain)

    2015-12-01

    We describe how to apply the transport method to compute inflationary observables in a broad range of multiple-field models. The method is efficient and encompasses scenarios with curved field-space metrics, violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes and models with quasi-single-field dynamics. In this note we focus on practical issues. It is accompanied by a Mathematica code which can be used to explore suitable models, or as a basis for further development.

  13. Computing observables in curved multifield models of inflation—A guide (with code) to the transport method

    International Nuclear Information System (INIS)

    Dias, Mafalda; Seery, David; Frazer, Jonathan

    2015-01-01

    We describe how to apply the transport method to compute inflationary observables in a broad range of multiple-field models. The method is efficient and encompasses scenarios with curved field-space metrics, violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes and models with quasi-single-field dynamics. In this note we focus on practical issues. It is accompanied by a Mathematica code which can be used to explore suitable models, or as a basis for further development

  14. Finance-economical indexes of efficiency of development of railway transport

    Directory of Open Access Journals (Sweden)

    M. Chekhovska

    2012-12-01

    Full Text Available Because of formation of public joint-stock company of railway transport of the common use, by an author it is suggested to carry out the analysis of efficiency of subsequent development of railway transport, leaning against indexes which represent the finance-economical constituent of results of activity of corporate enterprises.

  15. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    Science.gov (United States)

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  16. Stability Analysis of Algebraic Reconstruction for Immersed Boundary Methods with Application in Flow and Transport in Porous Media

    Science.gov (United States)

    Yousefzadeh, M.; Battiato, I.

    2017-12-01

    Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.

  17. Development of the public transport research compendium portal

    CSIR Research Space (South Africa)

    Dimitrov, L

    2009-07-01

    Full Text Available research and development programme. The research compendium portal is a database providing access to information pertaining to public transport projects in the Republic of South Africa from 2003. The specific projects include regulatory, policy...

  18. New nonlinear methods for linear transport calculations

    International Nuclear Information System (INIS)

    Adams, M.L.

    1993-01-01

    We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

  19. Development of transportation operations requirements

    International Nuclear Information System (INIS)

    Grady, S.T.; Best, R.E.; Danese, F.L.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    Transport conditions at various utility sties vary dramatically in terms of characteristics at and near the site, requirements, administrative procedures, and other factors. Continuation of design efforts for the OCRWM transportation operations system requires that the operating requirements for the transportation system -- quantity of fuel per unit time per site -- be identified so that the effect the variations have on the system can be accommodated. The approach outlined in this paper provides for an identification of specific sites, evaluation of shipment capabilities at each site, and integration of the sites into multi-site shipping campaigns to scope the logistics management problem for the transportation operations system. 1 fig., 1 tab

  20. Cooperative method development

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Rönkkö, Kari; Eriksson, Jeanette

    2008-01-01

    The development of methods tools and process improvements is best to be based on the understanding of the development practice to be supported. Qualitative research has been proposed as a method for understanding the social and cooperative aspects of software development. However, qualitative...... research is not easily combined with the improvement orientation of an engineering discipline. During the last 6 years, we have applied an approach we call `cooperative method development', which combines qualitative social science fieldwork, with problem-oriented method, technique and process improvement....... The action research based approach focusing on shop floor software development practices allows an understanding of how contextual contingencies influence the deployment and applicability of methods, processes and techniques. This article summarizes the experiences and discusses the further development...

  1. A method to assess multi-modal hazmat transport security vulnerabilities: Hazmat transport SVA

    NARCIS (Netherlands)

    Reniers, G.L.L.; Dullaert, W.E.H.

    2013-01-01

    The suggested Hazmat transport Security Vulnerability Assessment (SVA) methodology presents a user-friendly approach to determine relative security risk levels of the different modes of hazardous freight transport (i.e., road, railway, inland waterways and pipeline transportation). First, transport

  2. Development of parallel 3D discrete ordinates transport program on JASMIN framework

    International Nuclear Information System (INIS)

    Cheng, T.; Wei, J.; Shen, H.; Zhong, B.; Deng, L.

    2015-01-01

    A parallel 3D discrete ordinates radiation transport code JSNT-S is developed, aiming at simulating real-world radiation shielding and reactor physics applications in a reasonable time. Through the patch-based domain partition algorithm, the memory requirement is shared among processors and a space-angle parallel sweeping algorithm is developed based on data-driven algorithm. Acceleration methods such as partial current rebalance are implemented. The correctness is proved through the VENUS-3 and other benchmark models. In the radiation shielding calculation of the Qinshan-II reactor pressure vessel model with 24.3 billion DoF, only 88 seconds is required and the overall parallel efficiency of 44% is achieved on 1536 CPU cores. (author)

  3. State legislative developments in radioactive materials transportation, July 1, 1994--June 30, 1995

    International Nuclear Information System (INIS)

    Goehring, J.B.; Reed, J.B.

    1995-08-01

    Each year, the National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation. The 1995 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1994 and June 30, 1995. Forty-six bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste storage and emergency responsiveness. Also included are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  4. State legislative developments in radioactive materials transportation, July 1, 1996--June 6, 1997

    International Nuclear Information System (INIS)

    Kim, M.H.; Reed, J.B.

    1997-06-01

    The National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation each year. The 1997 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1996 and June 6, 1997. Fifty bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste, storage and emergency response. Also summarized are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  5. The concept of the development of cargo container transport system within airport

    Directory of Open Access Journals (Sweden)

    Bernd Hentschel

    2012-09-01

    Full Text Available Background: The transport of luggage units between the check-in terminal and airplanes is realized by the use of very simple transport solutions and manual reloading of the luggage. The luggage trolleys are used for the transport purposes, which are hitched to the mover and moved directly to the surroundings of the airplane. The loading and unloading of luggage is performed manually. Regarding actual safety requirements there was a need to create a new transport system, working in a closed cycle and based on the device for automatic loading and unloading of luggage units. Methods: Various potential variants of the device were generated based on results of analytical researches by the use of the morphological schema. The detail evaluation and the optimization of individual variants allow to prepare the concept of the complex method to solve problems of the reliable transport of luggage units within an airport. Results: The closed transport system was created as a result of the innovative project. The main element of this system is a container trolley, which is equipped in five storage layers. By the use of the special mover and gravitational forces, luggage units can be transported and placed inside this trolley as well as being loaded and unloaded. This solution enables to move 200 pieces of luggage in one transport cycle from the check-in terminal to the hatchway of the airplane.

  6. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    Science.gov (United States)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  7. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  8. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  9. Building sustainable policy framework for transport development: A review of national transport policy initiatives in Nigeria

    Directory of Open Access Journals (Sweden)

    Sumaila A.F.

    2013-06-01

    Full Text Available This paper is concerned with building a sustainable policy framework for transport development in Nigeria. Its objective is to review the country’s transport policy initiatives in order to understand the extent to which it addresses Nigeria’s mobility and transportation problems. From published materials and official government documents and files, the study identifies four national policy initiatives which are reviewed and analysed with regard to their context, contents, and consequences. The study reveals that while the policy initiatives could be said to be adequate and comprehensive in terms of their context and contents, the major challenge is implementation of recommended solutions. The study therefore provides a general checklist to guide policy direction, while advocating for policy-based researches and empirical studies in order to provide the data base for formulation of a sustainable national transport policy for Nigeria.

  10. Timetable-based simulation method for choice set generation in large-scale public transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Anderson, Marie Karen; Nielsen, Otto Anker

    2016-01-01

    The composition and size of the choice sets are a key for the correct estimation of and prediction by route choice models. While existing literature has posed a great deal of attention towards the generation of path choice sets for private transport problems, the same does not apply to public...... transport problems. This study proposes a timetable-based simulation method for generating path choice sets in a multimodal public transport network. Moreover, this study illustrates the feasibility of its implementation by applying the method to reproduce 5131 real-life trips in the Greater Copenhagen Area...... and to assess the choice set quality in a complex multimodal transport network. Results illustrate the applicability of the algorithm and the relevance of the utility specification chosen for the reproduction of real-life path choices. Moreover, results show that the level of stochasticity used in choice set...

  11. A Monte Carlo method using octree structure in photon and electron transport

    International Nuclear Information System (INIS)

    Ogawa, K.; Maeda, S.

    1995-01-01

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that with electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting

  12. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    Science.gov (United States)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  13. MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) code description and User's Manual

    International Nuclear Information System (INIS)

    Avci, H.I.; Raghuram, S.; Baybutt, P.

    1985-04-01

    A new computer code called MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) has been developed to replace the CORRAL-2 computer code which was written for the Reactor Safety Study (WASH-1400). This report is a User's Manual for MATADOR. MATADOR is intended for use in system risk studies to analyze radionuclide transport and deposition in reactor containments. The principal output of the code is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containment and their removal by natural deposition and by engineered safety systems such as sprays. It is capable of analyzing the behavior of radionuclides existing either as vapors or aerosols in the containment. The code requires input data on the source terms into the containment, the geometry of the containment, and thermal-hydraulic conditions in the containment

  14. Developing a Collaborative Planning Framework for Sustainable Transportation

    Directory of Open Access Journals (Sweden)

    Okan Örsan Özener

    2014-01-01

    Full Text Available Currently, as being the highest petroleum consuming sector in the world, transportation significantly contributes to the total greenhouse gas emissions in the world. Road transportation not only is responsible for approximately 20% of the total emissions of carbon dioxide in the EU and in the US but also has a steadily increasing trend in contributing to global warming. Initiatives undertaken by authorities, such as Emission cap and trade in the EU, limit the emissions resulted from the actions of the companies and also give economic incentives to companies to reduce their emissions. However, in logistics systems with multiple entities, it is difficult to assess the responsibilities of the companies both in terms of costs and emissions. In this study, we consider a delivery network with multiple customers served by a single carrier, which executes a delivery plan with the minimum transportation cost, and allocate the resulting costs and the emissions among the customers in a fair manner. We develop allocation mechanisms for both costs and emissions. In order to develop a mechanism that provides further reduction of the emissions, we study a setting where the carrier takes the responsibility of the emissions and reflects the resulting inefficiencies while charging the customers.

  15. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  16. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    Science.gov (United States)

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  17. Controlling Urban Sprawl with Integrated Approach of Space-Transport Development Strategies

    NARCIS (Netherlands)

    Ambarwati, L.; Verhaeghe, R.; Pel, A.J.; Van Arem, B.

    2014-01-01

    Urban sprawl phenomenon has been a huge issue since 20th century characterized by a rapid and unbalanced settlement development with transportation network particularly in a suburban area. The improvement of public transport system is a major requirement to minimize urban sprawl. Academic

  18. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2017-12-01

    We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

  19. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation; Analyse et developpement de methodes de raffinement hp en espace pour l'equation de transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D.

    2011-10-10

    The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

  20. Alternative methods for developing external travel survey data.

    Science.gov (United States)

    2010-10-01

    The Texas Department of Transportation (TxDOT) has a comprehensive on-going travel survey : program that supports the travel demand models being developed for transportation planning efforts in urban : areas throughout Texas. One component of the sur...

  1. Development and governance of renewable methane use in transport

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Renewable methane is promoted in many countries as a sustainable alternative to fossil fuels in all types of transport applications. This article examines development, governance and motives for the use of biogas, synthetic biogas, wind methane and other types of renewable methane in transport. Fossil methane fuels, such as natural gas, shale gas and synthetic natural gas, are included as a comparison. Compressed town gas played an important role in the adoption of methane for traffic use, so its history is also examined. Three waves of development in the use of traffic biogas are identified: the Second World War, the 1970s oil crises, and the present day quest for sustainability. While biogas has been used in transport since the 1930s, the other renewable methane fuels are now emerging in the commercial market with only a few years of history. The article looks at the use of renewable methane in a global perspective, although most of the examples are from Europe, as the majority of the technological and political advances have been European.

  2. Transport and agricultural productivity: A cross-national analysis

    Directory of Open Access Journals (Sweden)

    Sike Liu

    2017-03-01

    Full Text Available The transportation infrastructure plays a significant role in the development of agriculture. In this study we examine the relationship between transport and agricultural performance by employing the World Bank’s roads infrastructure indicators. Based on a cross-country sample, a classic method is employed to test the hypothesis that better transport fosters agricultural productivity. The empirical results of the method support the hypothesis. As for this method, the estimation results of the widely-used inter-country aggregate agricultural production function describe that a country with better transport can produce more agricultural outputs given the same amounts of agricultural inputs and the same education level. Our empirical work lends support to the claim of Gollin and Rogerson (2010 [19] that transport is a basic factor explaining the poor economic performance of many developing countries, apart from physical and education investments, more emphasis should be placed on improving the transport infrastructure of these countries.

  3. A Study on Efficiency Improvement of the Hybrid Monte Carlo/Deterministic Method for Global Transport Problems

    International Nuclear Information System (INIS)

    Kim, Jong Woo; Woo, Myeong Hyeon; Kim, Jae Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung

    2017-01-01

    In this study hybrid Monte Carlo/Deterministic method is explained for radiation transport analysis in global system. FW-CADIS methodology construct the weight window parameter and it useful at most global MC calculation. However, Due to the assumption that a particle is scored at a tally, less particles are transported to the periphery of mesh tallies. For compensation this space-dependency, we modified the module in the ADVANTG code to add the proposed method. We solved the simple test problem for comparing with result from FW-CADIS methodology, it was confirmed that a uniform statistical error was secured as intended. In the future, it will be added more practical problems. It might be useful to perform radiation transport analysis using the Hybrid Monte Carlo/Deterministic method in global transport problems.

  4. Making Choices about Hydrogen : Transport Issues for Developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 sept. 2008 ... Couverture du livre Making Choices about Hydrogen : Transport Issues for Developing Countries ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: Innovative solutions from the Global South”.

  5. Coordinated Development between Urban Tourism Economy and Transport in the Pearl River Delta, China

    Directory of Open Access Journals (Sweden)

    Qiuxia Zheng

    2016-12-01

    Full Text Available By selecting the panel data from 2005 to 2014 of 9 cities in the Pearl River Delta (PRD in China, this paper respectively establishes the evaluation index system of tourism economy and transport. It also applies a synthetic evaluation model and coupling coordination model to estimate comprehensive indices of tourism economy and transport system and their coordinated relationships. The results show that: (1 during 2005–2014, the synthetic indices of tourism economy generally presented constantly upward tendency and the synthetic indices of transport represented wave-like raising trend in the PRD region; (2 during 2005–2014, the 9 cities in the PRD region gradually tended to have coordinated development between tourism economy and transport, and the central area of the PRD region developed faster than the flanks; (3 the correlations between the tourism economy and transport of the cities with abundant tourism resources, developed economy, and advanced transport facilities were more remarkable, and the coordination degrees were higher. Besides, macro-policies, mega-events, and locations also impacted on coordinated development between the tourism economy and transport in the PRD region.

  6. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  7. ANALYSIS OF THE CITY TRANSPORT SYSTEM’S DEVELOPMENT STRATEGY DESIGN PRINCIPLES WITH ACCOUNT OF RISKS AND SPECIFIC FEATURES OF SPATIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Irina MAKAROVA

    2017-04-01

    Full Text Available Transport system is the key indicator of sustainable spatial development, because if it is ineffective it can render the economy, the environment, and society vulnerable. Despite the large number of already existing research, the city transportation sys-tem’s development strategy design is still a relevant objective, because the existing ways and strategies of the transport development may not always be applicable in certain circumstances. This article presents the possible ways of improvement of sustainability of the city transportation systems adapted in accordance with the peculiarities of Russian cities. It is stated that when working out a city transportation system’s development strategy it is necessary to take into account all possible risks. According to the case study of Naberezhnye Chelny city, all vulnerabilities of the system that today are typical almost for all Russian cities were analyzed, classification of risks was made, and means of their control were suggested. Solutions proposed as a result of the SWOT-analysis can be used when developing transport strategies for other cities with similar specificity.

  8. Development of a container for the transportation and storage of plutonium bearing materials

    International Nuclear Information System (INIS)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations

  9. Energy for road passenger transport and sustainable development: assessing policies and goals interactions

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Ribeiro, Suzana Kahn

    2013-01-01

    and sustainable development goals. Essential, uncertain and limited interactions are mapped out as a result, their overview indicates that a full reconciliation between these policies and sustainability goals is not always attainable. The careful alignment and contextual examination of interactions between...... measures and goals as exemplified in this approach can help inform practical transport energy policy that better match an agenda for sustainable development.......Development that is sustainable requires an operational, efficient and safe transportation system fueled by clean, low-carbon, secure and affordable energy. The energy used in road passenger transport enables social and economic development and is the target of interventions to fight pressing urban...

  10. Trans-European transport networks influence on the regional development and urban systems: Serbian experience

    Directory of Open Access Journals (Sweden)

    Maksin-Mićić Marija

    2004-01-01

    Full Text Available The trans-European transport network has different effects at macro-regional, mezzo-regional and micro-regional level, and on urban systems development, and its effectiveness rises at the lower regional levels. Possible approaches to the trans-European transport network impact and effect survey and policy options have been pointed out. The importance of increased accessibility and mobility for regional expansion and for more balanced and polycentric system of city networks has been underlined. The question is how the new major transport infrastructure affects the development of functional complementarity between cities and regions. Changes of the spatial organization, utilization and structure of cities, as well as of social benefits and losses subsequent to impacts of trans-European transport corridor "X" on urban system Ćuprija-Jagodina-Paraćin at section Belgrade-Nis have been analysed. The new trans-European or major transport infrastructure does not per se create regional and urban system network development, although it can affect the conditions for the processes that create growth and development. The effects can be increased by co-ordination of measures of regional and urban policy, land use, transport and other policies. The guidances and options of urban systems and urban centres development policies in trans-European transport corridor, as well as possibilities to improve our planning system have been given. The necessary measure is the introduction of spatial impact assessment as sectorial policy instrument for the large transport infrastructure projects.

  11. Logistic innovations in transport

    Directory of Open Access Journals (Sweden)

    Mirosław Antonowicz

    2014-03-01

    Full Text Available Introduction: The article discusses the issue of logistic innovations in transport. The essentials of logistic innovations in transport together with some examples of specific innovations are presented. The role of the client's needs in transport innovations is indicated. The most vital postulates affecting the innovativeness of shipping companies and derived from the author's experience as well as scholarly publications, are time, safety, reliability as well as comprehensiveness of service offer. Following the analysis of the issue, and on the grounds of Kaizen's and Lean's method, the concept of continuous innovations is suggested as very useful for the development of transport. The potential of clusters as the source of logistic innovations in transport is emphasised. Methods: The discussion of the issue was preceded by the author's analysis of written sources on innovativeness, the evaluation of ratings of innovativeness as well as the analysis of rewarded innovative solutions in transport subsequent to the businesses participation in the programme of innovative solutions in transport. The role of innovation practical business operations is argued following the analysis of some strategic documents such as: 2011 White Paper and the Strategy for the Development of Transport by 2020 adopted by the Polish government in 2013. Aim: The aim of the article is to present the role and significance of the issue of logistic innovations in transport and to cite instances of practical solutions implemented by shipping companies, the solutions which resulted in measurable effects. Following the author's observation of the instances of innovative solutions as well as his analysis of the ratings of innovativeness, the article aims to present the conclusions as for the specific kinds of activities which are indispensable to foster innovativeness in transport. Conclusions: The conclusions derived from the author's analyses and observations show that logistic

  12. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10 2-4 ), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.

  13. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wagner, John C.; Peplow, Douglas E.; Mosher, Scott W.; Evans, Thomas M.

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or more localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial