WorldWideScience

Sample records for transport equation combined

  1. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  2. A method for solving neutron transport equation

    International Nuclear Information System (INIS)

    Dimitrijevic, Z.

    1993-01-01

    The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)

  3. Development of interfacial area transport equation

    International Nuclear Information System (INIS)

    Kim, Seung Jin; Ishii, Mamoru; Kelly, Joseph

    2005-01-01

    The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to churn-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical air-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired in vertical co-current downward air-water two-phase flow through round pipes of two different sizes

  4. The 'generalized Balescu-Lenard' transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1990-01-01

    The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs

  5. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

    International Nuclear Information System (INIS)

    Cardona, A.V.; Vilhena, M.T.M.B. de

    1994-01-01

    The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

  6. The Laplace transformation of adjoint transport equations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1985-01-01

    A clarification is given of the difference between the equation adjoint to the Laplace-transformed time-dependent transport equation and the Laplace-transformed time-dependent adjoint transport equation. Proper procedures are derived to obtain the Laplace transform of the instantaneous detector response. (author)

  7. Advances in the solution of three-dimensional nodal neutron transport equation

    International Nuclear Information System (INIS)

    Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de

    2003-01-01

    In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)

  8. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  9. The discontinuous finite element method for solving Eigenvalue problems of transport equations

    International Nuclear Information System (INIS)

    Yang, Shulin; Wang, Ruihong

    2011-01-01

    In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

  10. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  11. Swarm analysis by using transport equations

    International Nuclear Information System (INIS)

    Dote, Toshihiko.

    1985-01-01

    As the basis of weak ionization plasma phenomena, the motion, i.e. swarm, of charged particles in the gas is analyzed by use of the transport equations, from which basic nature of the swarm is discussed. The present report is an overview of the studies made in the past several years. Described are principally the most basic aspects concerning behaviors of the electrons and positive ions, that is, the basic equations and their significance, characteristics of the behaviors of the electron and positive ion swarms as revealed by solving the equations, and various characteristics of the swarm parameters. Contents are: Maxwell-Boltzmann's transport equations, behavior of the electron swarm, energy loss of the electrons, and behavior of the positive ion swarm. (Mori, K.)

  12. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  13. Range of validity of transport equations

    International Nuclear Information System (INIS)

    Berges, Juergen; Borsanyi, Szabolcs

    2006-01-01

    Transport equations can be derived from quantum field theory assuming a loss of information about the details of the initial state and a gradient expansion. While the latter can be systematically improved, the assumption about a memory loss is not known to be controlled by a small expansion parameter. We determine the range of validity of transport equations for the example of a scalar g 2 Φ 4 theory. We solve the nonequilibrium time evolution using the three-loop 2PI effective action. The approximation includes off-shell and memory effects and assumes no gradient expansion. This is compared to transport equations to lowest order (LO) and beyond (NLO). We find that the earliest time for the validity of transport equations is set by the characteristic relaxation time scale t damp =-2ω/Σ ρ (eq) , where -Σ ρ (eq) /2 denotes the on-shell imaginary-part of the self-energy. This time scale agrees with the characteristic time for partial memory loss, but is much shorter than thermal equilibration times. For times larger than about t damp the gradient expansion to NLO is found to describe the full results rather well for g 2 (less-or-similar sign)1

  14. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  15. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  16. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larson, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically thick regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems, the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  17. Simulation of transport equations with Monte Carlo

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-09-01

    The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game

  18. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  19. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  20. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  1. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  2. Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1981-01-01

    Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)

  3. Transport equation and shock waves

    International Nuclear Information System (INIS)

    Besnard, D.

    1981-04-01

    A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma

  4. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  5. RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Valle, Edmundo del; Mund, Ernest H.

    2004-01-01

    This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature

  6. Transport methods: general. 8. Formulation of Transport Equation in a Split Form

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)

  7. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  8. The plasma transport equations derived by multiple time-scale expansions and turbulent transport. I. General theory

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.

    1995-01-01

    A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics

  9. CACTUS, a characteristics solution to the neutron transport equations in complicated geometries

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-04-01

    CACTUS has been written to solve the multigroup neutron transport equation in a general two-dimensional geometry. The method is based upon a characteristics formulation for the problem in which the transport equation is integrated explicitly along straight line tracks that are suitably distributed throughout the problem. Source distributions and scattering are assumed to be isotropic, but the only restriction on geometry is that the outer boundary should be rectangular. Within this rectangular boundary the user is free to build his problem geometry using any combination of intersecting straight lines and circular arcs. The theory of the method is described, followed by some details of a coding, a sensitivity study on the number of tracks required to integrate fluxes in a particular problem, a user's guide, and a few test cases. (author)

  10. Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas

    International Nuclear Information System (INIS)

    Zawaideh, E.S.

    1985-01-01

    A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime

  11. Approximate solution of the transport equation by methods of Galerkin type

    International Nuclear Information System (INIS)

    Pitkaranta, J.

    1977-01-01

    Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form

  12. Analytical solution to the hybrid diffusion-transport equation

    International Nuclear Information System (INIS)

    Nanneh, M.M.; Williams, M.M.R.

    1986-01-01

    A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)

  13. Swarm analysis by using transport equations, 1

    International Nuclear Information System (INIS)

    Dote, Toshihiko; Shimada, Masatoshi

    1980-01-01

    By evolving Maxwell-Boltzmann transport equations, various quantities on swarm of charged particles have been analyzed. Although this treatment is properly general, and common transport equations for charged particles ought to be given, in particular, equations only for electrons were presented here. The relation between the random energy and the drift energy was first derived and the general expression of the electron velocity was deduced too. For a simple example, one dimensional steady-state electron swarm in a uniform medium was treated. Electron swarm characteristics numerically calculated in He, Ne or Ar exhibited some interesting properties, which were physically clearly elucidated. These results were also compared with several data already published. Agreements between them were qualitatively rather well in detailed structures. (author)

  14. Fundaments of transport equation splitting and the eigenvalue problem

    International Nuclear Information System (INIS)

    Stancic, V.

    2000-01-01

    In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)

  15. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  16. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  17. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  18. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  19. Homogenization of the critically spectral equation in neutron transport

    International Nuclear Information System (INIS)

    Allaire, G.; Paris-6 Univ., 75; Bal, G.

    1998-01-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  20. Homogenization of the critically spectral equation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches

    1998-07-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  1. From statistic mechanic outside equilibrium to transport equations

    International Nuclear Information System (INIS)

    Balian, R.

    1995-01-01

    This lecture notes give a synthetic view on the foundations of non-equilibrium statistical mechanics. The purpose is to establish the transport equations satisfied by the relevant variables, starting from the microscopic dynamics. The Liouville representation is introduced, and a projection associates with any density operator , for given choice of relevant observables, a reduced density operator. An exact integral-differential equation for the relevant variables is thereby derived. A short-memory approximation then yields the transport equations. A relevant entropy which characterizes the coarseness of the description is associated with each level of description. As an illustration, the classical gas, with its three levels of description and with the Chapman-Enskog method, is discussed. (author). 3 figs., 5 refs

  2. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  3. Basic equations of interfacial area transport in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, I.; Yoshida, K.; Naitoh, M.; Okada, H.; Morii, T.

    2011-01-01

    The rigorous and consistent formulations of basic equations of interfacial area transport were derived using correlation functions of characteristic function of each phase and velocities of each phase. Turbulent transport term of interfacial area concentration was consistently derived and related to the difference between interfacial velocity and averaged velocity of each phase. Constitutive equations of turbulent transport terms of interfacial area concentration were proposed for bubbly flow. New transport model and constitutive equations were developed for churn flow. These models and constitutive equations are validated by experimental data of radial distributions of interfacial area concentration in bubbly and churn flow. (author)

  4. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  5. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  6. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  7. Transport methods: general. 7. Formulation of a Fourier-Boltzmann Transformation to Solve the Three-Dimensional Transport Equation

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space

  8. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  9. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  10. Moment equation approach to neoclassical transport theory

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1978-01-01

    The neoclassical cross-field fluxes for a toroidally confined, axisymmetric plasma are calculated in terms of the thermodynamic forces from the fluid continuity and momentum balance equations. This macroscopic formulation of neoclassical transport theory unifies the numerous complex expressions for the transport coefficients, previously obtained by solving the Fokker--Planck equation, and elucidates their physical basis. In the large aspect ratio limit, the continuous transition in the scaling of the diffusion coefficient throughout various collisionality regimes is shown to depend on the ratio of parallel viscosity coefficients of the plasma species. Comparison of the present results with the kinetic theory expressions for the neoclassical fluxes determines the parallel viscosity coefficients for a multispecies plasma in the long-mean-free-path regime

  11. Variational formulation and projectional methods for the second order transport equation

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1979-01-01

    Herein the variational problem for a second-order boundary value problem for the neutron transport equation is formulated. The projectional methods solving the problem are examined. The approach is compared with that based on the original untransformed form of the neutron transport equation

  12. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  13. Modelling uncertainties in the diffusion-advection equation for radon transport in soil using interval arithmetic.

    Science.gov (United States)

    Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K

    2018-02-01

    Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An Implementation of Interfacial Transport Equation into the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region.

  15. An Implementation of Interfacial Transport Equation into the CUPID code

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region

  16. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  17. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  18. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    International Nuclear Information System (INIS)

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-01-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  19. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  20. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.; Yang, D.Y.

    1998-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination

  1. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  2. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  3. The transport equation in general geometry

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1990-01-01

    As stated in the introduction to the paper, the motivation for this work was to obtain an explicit form for the streaming operator in the transport equation, which could be used to compute curvature effects in an asymptotic analysis leading to diffusion theory. This sign error was discovered while performing this analysis

  4. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    Science.gov (United States)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  5. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  6. Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization

  7. Self-adjoint angular flux equation for coupled electron-photon transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization

  8. Coupling of neutron transport equations. First results; Couplage d`equations en transport neutronique. premiere approche 1D monocinetique

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G.

    1995-07-01

    To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.

  9. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.

    2012-01-01

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  10. Variance estimates for transport in stochastic media by means of the master equation

    International Nuclear Information System (INIS)

    Pautz, S. D.; Franke, B. C.; Prinja, A. K.

    2013-01-01

    The master equation has been used to examine properties of transport in stochastic media. It has been shown previously that not only may the Levermore-Pomraning (LP) model be derived from the master equation for a description of ensemble-averaged transport quantities, but also that equations describing higher-order statistical moments may be obtained. We examine in greater detail the equations governing the second moments of the distribution of the angular fluxes, from which variances may be computed. We introduce a simple closure for these equations, as well as several models for estimating the variances of derived transport quantities. We revisit previous benchmarks for transport in stochastic media in order to examine the error of these new variance models. We find, not surprisingly, that the errors in these variance estimates are at least as large as the corresponding estimates of the average, and sometimes much larger. We also identify patterns in these variance estimates that may help guide the construction of more accurate models. (authors)

  11. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  12. Tariff Model for Combined Transport

    Directory of Open Access Journals (Sweden)

    Velimir Kolar

    2002-11-01

    Full Text Available By analysing the cwTen.t situation on the Croatian transportationmarket, and considering all parameters needed forthe development of combined transport, measures are suggestedin order to improve and stimulate its development. Oneof the first measures is the standardisation and introduction ofunique tariffs for combined transport, and then government incentivefor the organisation and development of combinedtransport means and equipment. A significant role in thisshould be set on adequately defined transport policy.

  13. Solving the equation of neutron transport

    International Nuclear Information System (INIS)

    Nasfi, Rim

    2009-01-01

    This work is devoted to the study of some numerical methods of resolution of the problem of transport of the neutrons. We started by introducing the equation integro-differential transport of the neutrons. Then we applied the finite element method traditional for stationary and nonstationary linear problems in 2D. A great part is reserved for the presentation of the mixed numerical diagram and mixed hybrid with two types of uniform grids: triangular and rectangular. Thereafter we treated some numerical examples by implementations in Matlab in order to test the convergence of each method. To finish, we had results of simulation by the Monte Carlo method on a problem of two-dimensional transport with an aim of comparing them with the results resulting from the finite element method mixed hybrids. Some remarks and prospects conclude this work.

  14. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  15. An integral equation arising in two group neutron transport theory

    International Nuclear Information System (INIS)

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  16. Aspheric surface testing by irradiance transport equation

    Science.gov (United States)

    Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir

    2010-10-01

    In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.

  17. Radiative transport equation for the Mittag-Leffler path length distribution

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2017-05-01

    In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.

  18. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  19. Solution of the transport equation with account for inelastic collisions

    International Nuclear Information System (INIS)

    Kalashnikov, N.P.; Remizovich, V.S.; Ryazanov, M.I.

    1980-01-01

    The theory of charged particle scattering in a matter with account for inelastic collisions is considered. In ''directly-forward'' approximation the transport equation at the absence of elastic collisions is obtained. The solution of the transport equation is made without and with account for fluctuation of energy losses. Formulas for path-energy relation are given. Energy spectrum and distribution of fast charged particles with respect to paths are studied. The problem of quantum mechanical approach to the theory of multiple scattering of fast charged particles in a matter is discussed briefly

  20. Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-01-01

    A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)

  1. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  2. Least-squares finite element discretizations of neutron transport equations in 3 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)

    1996-12-31

    The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.

  3. Optimizing sales areas of combined transport chains

    Directory of Open Access Journals (Sweden)

    Philip Michalk

    2013-12-01

    Full Text Available Background: Combined transport chains (such as intermodal transport, have certain advantages. The main advantage from customer points of view is the possibility to bundle freight and thereby decrease transport costs. On the other hand, a combined transport chain can cause longer transport times, due to the necessary transshipment processes. Methods: The area around a terminal, in which a combined service has favourable properties to a customer in comparison to a direct transport, can be understood as a sales-area, in which a combined transport product is marketable. The aim of this paper was to find a method to determine the best shape and size of this area. Results and conclusions: The paper at hand lined out a method in order to calculate such a sales area and determine which geographical points around a terminal have an advantage in comparison to a direct transport service.

  4. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    International Nuclear Information System (INIS)

    FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations

  5. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    CERN Document Server

    Fan, W C; Powell, J L

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.

  6. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  7. Some results on the neutron transport and the coupling of equations

    International Nuclear Information System (INIS)

    Bal, G.

    1997-01-01

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author)

  8. Application of preconditioned GMRES to the numerical solution of the neutron transport equation

    International Nuclear Information System (INIS)

    Patton, B.W.; Holloway, J.P.

    2002-01-01

    The generalized minimal residual (GMRES) method with right preconditioning is examined as an alternative to both standard and accelerated transport sweeps for the iterative solution of the diamond differenced discrete ordinates neutron transport equation. Incomplete factorization (ILU) type preconditioners are used to determine their effectiveness in accelerating GMRES for this application. ILU(τ), which requires the specification of a dropping criteria τ, proves to be a good choice for the types of problems examined in this paper. The combination of ILU(τ) and GMRES is compared with both DSA and unaccelerated transport sweeps for several model problems. It is found that the computational workload of the ILU(τ)-GMRES combination scales nonlinearly with the number of energy groups and quadrature order, making this technique most effective for problems with a small number of groups and discrete ordinates. However, the cost of preconditioner construction can be amortized over several calculations with different source and/or boundary values. Preconditioners built upon standard transport sweep algorithms are also evaluated as to their effectiveness in accelerating the convergence of GMRES. These preconditioners show better scaling with such problem parameters as the scattering ratio, the number of discrete ordinates, and the number of spatial meshes. These sweeps based preconditioners can also be cast in a matrix free form that greatly reduces storage requirements

  9. Geometric Insight into Scalar Combination of Linear Equations

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 14; Issue 11. Geometric Insight into Scalar Combination of Linear Equations. Ranjit Konkar. Classroom Volume 14 Issue 11 November 2009 pp 1092-1097 ... Keywords. Linear algebra; linear dependence; linear combination; family of lines; family of planes.

  10. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  11. Application of the finite element method to the neutron transport equation

    International Nuclear Information System (INIS)

    Martin, W.R.

    1976-01-01

    This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions

  12. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  13. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  14. Two analytic transport equation solutions for particular cases of particle history

    International Nuclear Information System (INIS)

    Simovic, R.

    1997-01-01

    For anisotropic scattering and plane geometry, the linear transport equation of particles generated by a monodirectional unit source A(x,μ) = δ(x-0)δ(μ - μ 0 ) > 0, can be stated in the form of an integral equation

  15. A stochastic solution of the advective transport equation with uncertainty

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1991-01-01

    A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs

  16. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  17. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  18. Alternative formulation of the monokinetic transport equation

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1985-01-01

    After recalling a technique already exploited in stationary neutron transport, the dynamic linear monokinetic equation for general geometry is cast into an integro-differential form where a second order space Laplace operator and both a second and first time derivatives appear. The introduced unknowns are given a physical interpretation for plane geometry and their relations with the total flux and current are derived

  19. The accuracy of time dependent transport equation ergodic approximation

    International Nuclear Information System (INIS)

    Stancic, V.

    1995-01-01

    In order to predict the accuracy of the ergodic approximation for solving the time dependent transport equation, a comparison with respect to multiple collision and time finite difference methods, has been considered. (author)

  20. Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3

    Science.gov (United States)

    Sitchin, A.

    1972-01-01

    Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.

  1. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  2. Solving the transport equation with quadratic finite elements: Theory and applications

    International Nuclear Information System (INIS)

    Ferguson, J.M.

    1997-01-01

    At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids

  3. New diffusion-like solutions of one-speed transport equations in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1988-01-01

    Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)

  4. A modified two-fluid model for the application of two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun, X.; Ishii, M.; Kelly, J.

    2003-01-01

    This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  5. Elliptic random-walk equation for suspension and tracer transport in porous media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Bedrikovetsky, P. G.

    2008-01-01

    . The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions......We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time...... of the CTRW theory. (C) 2008 Elsevier B.V. All rights reserved....

  6. A Green function of neutron transport equation

    International Nuclear Information System (INIS)

    Simovic, R.

    1993-01-01

    In this paper the angularly dependent Green function of the neutron transport equation is derived analytically and approximately. By applying the analytical FDPN approximation up to eighth order, numerical values of the Green functions are obtained with the accuracy of six significant figures in the whole range of parameter c, angle cosine μ and distances x up to the ten optical lengths from the neutron source. (author)

  7. Analytical solution for the transport equation for neutral particles in cylindrical and Cartesian geometry

    International Nuclear Information System (INIS)

    Goncalves, Glenio Aguiar

    2003-01-01

    In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)

  8. Sn approach applied to the solution of transport equation

    International Nuclear Information System (INIS)

    Lopes, J.P.

    1973-09-01

    In this work the origin of the Transport Theory is considered and the Transport Equation for the movement of the neutron in a system is established in its more general form, using the laws of nuclear physics. This equation is used as the starting point for development, under adequate assumptions, of simpler models that render the problem suitable for numerical solution. Representation of this model in different geometries is presented. The different processes of nuclear physics are introduced briefly and discussed. In addition, the boundary conditions for the different cases and a general procedure for the application of the Conservation Law are stated. The last chapter deals specifically with the S n method, its development, definitions and generalities. Computational schemes for obtaining the S n solution in spherical and cylindrical geometry, and convergence acceleration methods are also developed. (author)

  9. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  10. On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons

    Directory of Open Access Journals (Sweden)

    Amelia Carolina Sparavigna

    2016-05-01

    Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.

  11. Quantum-mechanical transport equation for atomic systems.

    Science.gov (United States)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  12. Correction of the wavefront using the irradiance transport equation

    Science.gov (United States)

    García, M.; Granados, F.; Cornejo, A.

    2008-07-01

    The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)

  13. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  14. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Science.gov (United States)

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  15. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  16. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis

    OpenAIRE

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-01-01

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visibl...

  17. Numerical simulation for fractional order stationary neutron transport equation using Haar wavelet collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Saha Ray, S., E-mail: santanusaharay@yahoo.com; Patra, A.

    2014-10-15

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet collocation method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: In this paper the numerical solution for the fractional order stationary neutron transport equation is presented using Haar wavelet Collocation Method (HWCM). Haar wavelet collocation method is efficient and powerful in solving wide class of linear and nonlinear differential equations. This paper intends to provide an application of Haar wavelets to nuclear science problems. This paper describes the application of Haar wavelets for the numerical solution of fractional order stationary neutron transport equation in homogeneous medium with isotropic scattering. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency and applicability of the method, two test problems are discussed.

  18. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  19. Combined kinetic and transport modeling of radiofrequency current drive

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.; Barbato, E.

    2000-07-01

    A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)

  20. Finite element approximation to the even-parity transport equation

    International Nuclear Information System (INIS)

    Lewis, E.E.

    1981-01-01

    This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions

  1. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.; Gho, C.J.

    1990-01-01

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es

  2. TLC scheme for numerical solution of the transport equation on equilateral triangular meshes

    International Nuclear Information System (INIS)

    Walters, W.F.

    1983-01-01

    A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy

  3. Measurement of Membrane Characteristics Using the Phenomenological Equation and the Overall Mass Transport Equation in Ion-Exchange Membrane Electrodialysis of Saline Water

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tanaka

    2012-01-01

    Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.

  4. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    International Nuclear Information System (INIS)

    Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.

    2015-01-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light

  5. Relativistic transport equation for a discontinuity wave of multiplicity one

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)

    1980-04-14

    In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.

  6. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  7. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    Science.gov (United States)

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  8. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  9. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x–y geometry

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal

    2012-01-01

    Highlights: ► This paper describes the solution of time-dependent neutron transport equation. ► We use a novel method based on cellular neural networks (CNNs) coupled with the spherical harmonics method. ► We apply the CNN model to simulate step and ramp perturbation transients in a core. ► The accuracy and capabilities of the CNN model are examined for x–y geometry. - Abstract: In an earlier paper we utilized a novel method using cellular neural networks (CNNs) coupled with spherical harmonics method to solve the steady state neutron transport equation in x–y geometry. Here, the previous work is extended to the study of time-dependent neutron transport equation. To achieve this goal, an equivalent electrical circuit based on a second-order form of time-dependent neutron transport equation and one equivalent group of neutron precursor density is obtained by the CNN method. The CNN model is used to simulate step and ramp perturbation transients in a typical 2D core.

  10. Resolution of the neutron transport equation by a three-dimensional least square method

    International Nuclear Information System (INIS)

    Varin, Elisabeth

    2001-01-01

    The knowledge of space and time distribution of neutrons with a certain energy or speed allows the exploitation and control of a nuclear reactor and the assessment of the irradiation dose about an irradiated nuclear fuel storage site. The neutron density is described by a transport equation. The objective of this research thesis is to develop a software for the resolution of this stationary equation in a three-dimensional Cartesian domain by means of a deterministic method. After a presentation of the transport equation, the author gives an overview of the different deterministic resolution approaches, identifies their benefits and drawbacks, and discusses the choice of the Ressel method. The least square method is precisely described and then applied. Numerical benchmarks are reported for validation purposes

  11. A Door-to-Door Combined Transport Planner

    DEFF Research Database (Denmark)

    Aastrup, Jesper; Jespersen, Per Homann; Pedersen, Michael B.

    2004-01-01

    Establishing a web-based portal functioning as a one-stop-shop for transport buyers is a radical idea of a consumer oriented intermodal freight system. This utopian vision will be materialized in a system description and a prototype of a Door-to-Door Combined Trans-port Planner (COTRAP), developed......- and inter-organizational barriers to the establishment of a competitive and effective combined transport system with rail freight operators as the intermodal integrator. In this paper we describes the ideas and methodology behind the project, as well as some preliminary results....

  12. Adomian decomposition method for solving the telegraph equation in charged particle transport

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2005-01-01

    In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems

  13. Maximal stochastic transport in the Lorenz equations

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sahil, E-mail: sahil.agarwal@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Wettlaufer, J.S., E-mail: john.wettlaufer@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Departments of Geology & Geophysics, Mathematics and Physics, Yale University, New Haven (United States); Mathematical Institute, University of Oxford, Oxford (United Kingdom); Nordita, Royal Institute of Technology and Stockholm University, Stockholm (Sweden)

    2016-01-08

    We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh–Bénard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

  14. Application of Trotter approximation for solving time dependent neutron transport equation

    International Nuclear Information System (INIS)

    Stancic, V.

    1987-01-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  15. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2009-01-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation

  16. The H-N method for solving linear transport equation: theory and application

    International Nuclear Information System (INIS)

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  17. Predicting fractional bed load transport rates: Application of the Wilcock‐Crowe equations to a regulated gravel bed river

    Science.gov (United States)

    Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes

    2009-01-01

    Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.

  18. Second order time evolution of the multigroup diffusion and P1 equations for radiation transport

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2011-01-01

    Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.

  19. A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers

    Science.gov (United States)

    Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.

    2016-10-01

    Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.

  20. Combined Common Person and Common Item Equating of Medical Science Examinations.

    Science.gov (United States)

    Kelley, Paul R.

    This equating study of the National Board of Medical Examiners Examinations was a combined common persons and common items equating, using the Rasch model. The 1,000-item test was administered to about 3,000 second-year medical students in seven equal-length subtests: anatomy, physiology, biochemistry, pathology, microbiology, pharmacology, and…

  1. Transport methods: general. 3. An Additive Angular-Dependent Re-balance Acceleration Method for Neutron Transport Equations

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Park, Chang Je

    2001-01-01

    An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DP N and low-order S N re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results

  2. Exponentially-convergent Monte Carlo for the 1-D transport equation

    International Nuclear Information System (INIS)

    Peterson, J. R.; Morel, J. E.; Ragusa, J. C.

    2013-01-01

    We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)

  3. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  4. Numerical evaluation of the intensity transport equation for well-known wavefronts and intensity distributions

    Science.gov (United States)

    Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.

    2013-11-01

    In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).

  5. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    Ortega J, R.; Valle G, E. del

    2003-01-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  6. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  7. Nature of complex time eigenvalues of the one speed transport equation in a homogeneous sphere

    International Nuclear Information System (INIS)

    Dahl, E.B.; Sahni, D.C.

    1990-01-01

    The complex time eigenvalues of the transport equation have been studied for one speed neutrons, scattered isotropically in a homogeneous sphere with vacuum boundary conditions. It is shown that the complex decay constants vary continuously with the radius of the sphere. Our earlier conjecture (Dahl and Sahni (1983-84)) regarding disjoint arcs is thus shown to be true. We also indicate that complex decay constants exist even for large assemblies, though with rapid oscillations in the corresponding eigenvectors. These modes cannot be predicted by the diffusion equation as this behaviour of the eigenvectors contradicts the assumption of 'slowly varying flux' needed to derive the diffusion approximation from the transport equation. For an infinite system, the existence of complex modes is related to the solution of a homogeneous equation. (author)

  8. Solution of the Boltzmann equation for primary light ions and the transport of their fragments

    Directory of Open Access Journals (Sweden)

    J. Kempe

    2010-10-01

    Full Text Available The Boltzmann equation for the transport of pencil beams of light ions in semi-infinite uniform media has been calculated. The equation is solved for the practically important generalized 3D case of Gaussian incident primary light ion beams of arbitrary mean square radius, mean square angular spread, and covariance. The transport of the associated fragments in three dimensions is derived based on the known transport of the primary particles, taking the mean square angular spread of their production processes, as well as their energy loss and multiple scattering, into account. The analytical pencil and broad beam depth fluence and absorbed dose distributions are accurately expressed using recently derived analytical energy and range formulas. The contributions from low and high linear energy transfer (LET dose components were separately identified using analytical expressions. The analytical results are compared with SHIELD-HIT Monte Carlo (MC calculations and found to be in very good agreement. The pencil beam fluence and absorbed dose distributions of the primary particles are mainly influenced by an exponential loss of the primary ions combined with an increasing lateral spread due to multiple scattering and energy loss with increasing penetration depth. The associated fluence of heavy fragments is concentrated at small radii and so is the LET and absorbed dose distribution. Their transport is also characterized by the buildup of a slowing down spectrum which is quite similar to that of the primaries but with a wider energy and angular spread at increasing penetration depths. The range of the fragments is shorter or longer depending on their nuclear mass to charge ratio relative to that of the primary ions. The absorbed dose of the heavier fragments is fairly similar to that of the primary ions and also influenced by a rapidly increasing energy loss towards the end of their ranges. The present analytical solution of the Boltzmann equation

  9. Development of a polynomial nodal model to the multigroup transport equation in one dimension

    International Nuclear Information System (INIS)

    Feiz, M.

    1986-01-01

    A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model

  10. Analysis of an upstream weighted collocation approximation to the transport equation

    International Nuclear Information System (INIS)

    Shapiro, A.; Pinder, G.F.

    1981-01-01

    The numerical behavior of a modified orthogonal collocation method, as applied to the transport equations, can be examined through the use of a Fourier series analysis. The necessity of such a study becomes apparent in the analysis of several techniques which emulate classical upstream weighting schemes. These techniques are employed in orthogonal collocation and other numerical methods as a means of handling parabolic partial differential equations with significant first-order terms. Divergent behavior can be shown to exist in one upstream weighting method applied to orthogonal collocation

  11. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  12. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  13. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  14. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-12

    We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.

  15. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Science.gov (United States)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  16. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu

    2012-06-02

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  17. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

    2012-01-01

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  18. Approximate method for solving the velocity dependent transport equation in a slab lattice

    International Nuclear Information System (INIS)

    Ferrari, A.

    1966-01-01

    A method is described that is intended to provide an approximate solution of the transport equation in a medium simulating a water-moderated plate filled reactor core. This medium is constituted by a periodic array of water channels and absorbing plates. The velocity dependent transport equation in slab geometry is included. The computation is performed in a water channel: the absorbing plates are accounted for by the boundary conditions. The scattering of neutrons in water is assumed isotropic, which allows the use of a double Pn approximation to deal with the angular dependence. This method is able to represent the discontinuity of the angular distribution at the channel boundary. The set of equations thus obtained is dependent only on x and v and the coefficients are independent on x. This solution suggests to try solutions involving Legendre polynomials. This scheme leads to a set of equations v dependent only. To obtain an explicit solution, a thermalization model must now be chosen. Using the secondary model of Cadilhac a solution of this set is easy to get. The numerical computations were performed with a particular secondary model, the well-known model of Wigner and Wilkins. (author) [fr

  19. A numerical spectral approach to solve the dislocation density transport equation

    International Nuclear Information System (INIS)

    Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C

    2015-01-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)

  20. A general analytical approach to the one-group, one-dimensional transport equation

    International Nuclear Information System (INIS)

    Barichello, L.B.; Vilhena, M.T.

    1993-01-01

    The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de

  1. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    Science.gov (United States)

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  2. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  3. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    Science.gov (United States)

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  4. 1D equation for toroidal momentum transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  5. Numerical solution of the radionuclide transport equation

    International Nuclear Information System (INIS)

    Hadermann, J.; Roesel, F.

    1983-11-01

    A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)

  6. Steady-state transport equation resolution by particle methods, and numerical results

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-10-01

    A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

  7. Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges

    International Nuclear Information System (INIS)

    Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.

    1990-01-01

    Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs

  8. On the relativistic transport equation for a discontinuity wave of multiplicity one

    International Nuclear Information System (INIS)

    Giambo, Sebastiano; Palumbo, Annunziata

    1980-01-01

    In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity [fr

  9. Electron and ion transport equations in computational weakly-ionized plasmadynamics

    International Nuclear Information System (INIS)

    Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.

    2014-01-01

    A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized

  10. Deterministic methods to solve the integral transport equation in neutronic

    International Nuclear Information System (INIS)

    Warin, X.

    1993-11-01

    We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

  11. Method for the determination of the dominant eigenvalue of the neutron transport equation in a slab using fractional derivative

    International Nuclear Information System (INIS)

    Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge

    2002-01-01

    In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)

  12. Resolution of the neutron transport equation by massively parallel computer in the Cronos code

    International Nuclear Information System (INIS)

    Zardini, D.M.

    1996-01-01

    The feasibility of neutron transport problems parallel resolution by CRONOS code's SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author)

  13. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  14. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  15. Normal scheme for solving the transport equation independently of spatial discretization

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    1993-01-01

    To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

  16. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  17. Solution algorithms for a PN-1 - Equivalent SN angular discretization of the transport equation in one-dimensional spherical coordinates

    International Nuclear Information System (INIS)

    Warsa, J. S.; Morel, J. E.

    2007-01-01

    Angular discretizations of the S N transport equation in curvilinear coordinate systems may result in a streaming-plus-removal operator that is dense in the angular variable or that is not lower-triangular. We investigate numerical solution algorithms for such angular discretizations using relationships given by Chandrasekhar to compute the angular derivatives in the one-dimensional S N transport equation in spherical coordinates with Gauss quadrature. This discretization makes the S N transport equation P N-1 - equivalent, but it also makes the sweep operator dense at every spatial point because the N angular derivatives are expressed in terms of the N angular fluxes. To avoid having to invert the sweep operator directly, we must work with the angular fluxes to solve the equations iteratively. We show how we can use approximations to the sweep operator to precondition the full P N-1 equivalent S N equations. We show that these pre-conditioners affect the operator enough such that convergence of a Krylov iterative method improves. (authors)

  18. Application of finite element method in the solution of transport equation

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Vieira, W.J.

    1985-01-01

    It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt

  19. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan

    1999-01-01

    the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport...

  20. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

    International Nuclear Information System (INIS)

    Basu, B.; Jasperse, J.R.; Grossbard, N.J.

    1990-01-01

    A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

  1. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  2. Transport parameter estimation from lymph measurements and the Patlak equation.

    Science.gov (United States)

    Watson, P D; Wolf, M B

    1992-01-01

    Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.

  3. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    Science.gov (United States)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the

  4. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  5. Description of deeply inelastic collisions in terms of a transport equation

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1977-01-01

    A transport equation for deeply inelastic collisions is derived from a random-matrix model for the form factors for inelastic scattering and transfer reactions. The parametrization of these form factors is discussed. Results in one dimension indicate the importance of quantum fluctuations, and limitations of other approaches to the same problem. Results of three dimensions are compared with the data

  6. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    Science.gov (United States)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  7. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  8. The solution of the multigroup neutron transport equation using spherical harmonics

    International Nuclear Information System (INIS)

    Fletcher, K.

    1981-01-01

    A solution of the multi-group neutron transport equation in up to three space dimensions is presented. The flux is expanded in a series of unnormalised spherical harmonics. Using the various recurrence formulae a linked set of first order differential equations is obtained for the moments psisup(g)sub(lm)(r), γsup(g)sub(lm)(r). Terms with odd l are eliminated resulting in a second order system which is solved by two methods. The first is a finite difference formulation using an iterative procedure, secondly, in XYZ and XY geometry a finite element solution is given. Results for a test problem using both methods are exhibited and compared. (orig./RW) [de

  9. Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen‐Loève‐based moment equation approach

    Science.gov (United States)

    Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao

    2007-01-01

    A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen‐Loève‐based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen‐Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three‐Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two‐dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.

  10. The use of non-dimensional representation of the solute transport equations

    International Nuclear Information System (INIS)

    Laurens, J.-M.

    1988-07-01

    This report presents the results obtained in a pilot investigation into the use of non-dimensional representations of the solute transport equations, so as to improve the efficiency of the PRA codes used by the DoE and its contractors. A reduced set of parameters was obtained for a single layer transport model. As expected, the response was shown to be highly sensitive on the new parameters. A faster convergence of the system was observed when the sampling technique used was changed to take into account the properties of the new parameters, such that uniform coverage of the reduced parameter hyperspace was achieved. (author)

  11. Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1972-07-01

    A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the

  12. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  13. Spherical harmonics solutions of multi-dimensional neutron transport equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1977-01-01

    A method of solution of a monoenergetic neutron transport equation in P sub(L) approximation is presented for x-y and x-y-z geometries using the finite Fourier transformation. A reactor system is assumed to consist of multiregions in each of which the nuclear cross sections are spatially constant. Since the unknown functions of this method are the spherical harmonics components of the neutron angular flux at the material boundaries alone, the three- and two-dimensional equations are reduced to two- and one-dimensional equations, respectively. The present approach therefore gives fewer unknowns than in the usual series expansion method or in the finite difference method. Some numerical examples are shown for the criticality problem. (auth.)

  14. A combined modification of Newton`s method for systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  15. Colonel Blotto Games and Lancaster's Equations: A Novel Military Modeling Combination

    Science.gov (United States)

    Collins, Andrew J.; Hester, Patrick T.

    2012-01-01

    Military strategists face a difficult task when engaged in a battle against an adversarial force. They have to predict both what tactics their opponent will employ and the outcomes of any resultant conflicts in order to make the best decision about their actions. Game theory has been the dominant technique used by analysts to investigate the possible actions that an enemy will employ. Traditional game theory can be augmented by use of Lanchester equations, a set of differential equations used to determine the outcome of a conflict. This paper demonstrates a novel combination of game theory and Lanchester equations using Colonel Blotto games. Colonel Blotto games, which are one of the oldest applications of game theory to the military domain, look at the allocation of troops and resources when fighting across multiple areas of operation. This paper demonstrates that employing Lanchester equations within a game overcomes some of practical problems faced when applying game theory.

  16. On the history of a stochastic ansatz for solving the transport equation

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2010-01-01

    A very useful approximate tool for understanding the role of random material properties on solutions of the transport equation is described and its historical derivation given. The development of this stochastic tool, from its introduction by Randall, to its use in describing current problems involving dichotomic or pseudo-dichotomic Markov processes is discussed.

  17. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    International Nuclear Information System (INIS)

    Zabadal, J.; Vilhena, M.T.; Segatto, C.F.; Pazos, R.P.Ruben Panta.

    2002-01-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations

  18. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br

    2002-07-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.

  19. Approximate solution to neutron transport equation with linear anisotropic scattering

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1983-01-01

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  20. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  1. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  2. Exact solutions of Fisher and Burgers equations with finite transport memory

    International Nuclear Information System (INIS)

    Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar

    2003-01-01

    The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect

  3. Exact solutions of Fisher and Burgers equations with finite transport memory

    CERN Document Server

    Kar, S; Ray, D S

    2003-01-01

    The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect.

  4. Modeling strategy of the source and sink terms in the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun Xiaodong; Kim, Seungjin

    2003-01-01

    This paper presents the general strategy for modeling the source and sink terms in the two-group interfacial area transport equation. The two-group transport equation is applicable in bubbly, cap bubbly, slug, and churn-turbulent flow regimes to predict the change of the interfacial area concentration. This dynamic approach has an advantage of flow regime-independence over the conventional empirical correlation approach for the interfacial area concentration in the applications with the two-fluid model. In the two-group interfacial area transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Based upon a detailed literature review of the research on the bubble interactions, five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest. A systematic integral approach, in which the significant variations of bubble volume and shape are accounted for, is suggested for the modeling of two-group bubble interactions. To obtain analytical forms for the various bubble interactions, a simplification is made for the bubble number density distribution function

  5. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  6. Exact solutions of the population balance equation including particle transport, using group analysis

    Science.gov (United States)

    Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.

    2018-06-01

    The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.

  7. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    Science.gov (United States)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  8. Measuring the contour of a wavefront using the Irradiance Transport Equation (ITE)

    Science.gov (United States)

    Castillo-Rodríguez, Luis; Granados-Agustín, Fermín; Fernández-Guasti, Manuel; Cornejo-Rodríguez, Alejandro

    2006-01-01

    The Irradiance Transport Equation (ITE), found by Teague, had been used in optics with different applications. One of the field where had been used is in optical testing, for example, with the method developed by Takeda. In this paper following the idea of using different optical and mathematical analysis method, theorical and experimental results are presented.

  9. EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level

    Science.gov (United States)

    Meyer, Ulrich; Jean, Yoomin; Arnold, Daniel; Jäggi, Adrian

    2017-04-01

    The European Gravity Service for Improved Emergency Management (EGSIEM) project offers a scientific combination service, combining for the first time monthly GRACE gravity fields of different analysis centers (ACs) on normal equation (NEQ) level and thus taking all correlations between the gravity field coefficients and pre-eliminated orbit and instrument parameters correctly into account. Optimal weights for the individual NEQs are commonly derived by variance component estimation (VCE), as is the case for the products of the International VLBI Service (IVS) or the DTRF2008 reference frame realisation that are also derived by combination on NEQ-level. But variance factors are based on post-fit residuals and strongly depend on observation sampling and noise modeling, which both are very diverse in case of the individual EGSIEM ACs. These variance factors do not necessarily represent the true error levels of the estimated gravity field parameters that are still governed by analysis noise. We present a combination approach where weights are derived on solution level, thereby taking the analysis noise into account.

  10. An extended step characteristic method for solving the transport equation in general geometries

    International Nuclear Information System (INIS)

    DeHart, M.D.; Pevey, R.E.; Parish, T.A.

    1994-01-01

    A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs

  11. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  12. Transport equation theory of electron backscattering and x-ray production

    International Nuclear Information System (INIS)

    Fathers, D.J.; Rez, P.

    1978-02-01

    A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures

  13. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  14. On the Solution of the Neutron Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Depken, S

    1962-12-15

    The neutron transport equation has occupied the attention of many authors since Placzek, Wick and others made their first attempts to solve it, Even in the simple case of energy independent cross-sections, and disregarding the motion of the scattering nucleons, it is difficult to find a solution in an analytical form which is easily surveyable and fitted for numerical calculations. In Part I of this paper some new viewpoints will be introduced which enable the solution to be presented in its simplest possible form. Part II is devoted to an investigation of some functions introduced in Part I. In Part III the results are applied to the case of large energy lethargy, and the validity of derived formulas is discussed.

  15. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  16. FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation

    International Nuclear Information System (INIS)

    Taormina, A.

    1978-05-01

    FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)

  17. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport

    International Nuclear Information System (INIS)

    Prinja, A.K.

    1995-08-01

    We have developed and successfully implemented a two-dimensional bilinear discontinuous in space and time, used in conjunction with the S N angular approximation, to numerically solve the time dependent, one-dimensional, one-speed, slab geometry, (ion) transport equation. Numerical results and comparison with analytical solutions have shown that the bilinear-discontinuous (BLD) scheme is third-order accurate in the space ad time dimensions independently. Comparison of the BLD results with diamond-difference methods indicate that the BLD method is both quantitavely and qualitatively superior to the DD scheme. We note that the form of the transport operator is such that these conclusions carry over to energy dependent problems that include the constant-slowing-down-approximation term, and to multiple space dimensions or combinations thereof. An optimized marching or inversion scheme or a parallel algorithm should be investigated to determine if the increased accuracy can compensate for the extra overhead required for a BLD solution, and then could be compared to other discretization methods such as nodal or characteristic schemes

  18. A multigroup flux-limited asymptotic diffusion Fokker-Planck equation

    International Nuclear Information System (INIS)

    Liu Chengan

    1987-01-01

    A more perfrect flux-limited method is applied to combine with asymptotic diffusion theory of the radiation transpore, and the high peaked component in the scattering angle is treated with Fokker-Planck methods, thus the flux-limited asymptotic diffusion Fokker-Planck equation has been founded. Since the equation is of diffusion form, it retains the simplity and the convenience of the classical diffusion theory, and improves precision in describing radiation transport problems

  19. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    International Nuclear Information System (INIS)

    Dantzig, A.H.; Slayman, C.W.; Adelberg, E.A.

    1982-01-01

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of [ 3 H]proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increase in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment

  20. Coupling of discrete ordinates methods by transmission of boundary conditions in solving the neutron transport equation in slab geometry; Couplage de discretisations aux ordonnees discretes d`equations de transport 1D par passage de conditions frontieres

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Departement MMN, Service IMA, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1995-10-01

    Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author) 15 refs.

  1. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    Science.gov (United States)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  2. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Directory of Open Access Journals (Sweden)

    Marta Galanti

    2016-08-01

    Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  3. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    International Nuclear Information System (INIS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  4. Finite element analysis of the neutron transport equation in spherical geometry

    International Nuclear Information System (INIS)

    Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong

    1992-01-01

    The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)

  5. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  6. Rotina computacional e equação simplificada para modelar o transporte de sedimentos num Latossolo Vermelho Distrófico Computational routine and simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox

    Directory of Open Access Journals (Sweden)

    Gilmar E. Cerquetani

    2006-08-01

    Full Text Available Os objetivos do presente trabalho foram desenvolver rotina computacional para a solução da equação de Yalin e do diagrama de Shields e avaliar uma equação simplificada para modelar a capacidade de transporte de sedimento num Latossolo Vermelho Distrófico que possa ser utilizada no Water Erosion Prediction Project - WEPP, assim como em outros modelos de predição da erosão do solo. A capacidade de transporte de sedimento para o fluxo superficial foi representada como função-potência da tensão cisalhante, a qual revelou ser aproximação da equação de Yalin. Essa equação simplificada pôde ser aplicada em resultados experimentais oriundos de topografia complexa. A equação simplificada demonstrou acuracidade em relação à equação de Yalin, quando calibrada utilizando-se da tensão média cisalhante. Testes de validação com dados independentes demonstraram que a equação simplificada foi eficiente para estimar a capacidade de transporte de sedimento.The objectives of the present work were to develop a computational routine to solve Yalin equation and Shield diagram and to evaluate a simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox that could be used in the Water Erosion Prediction Project - WEPP, as well as other soil erosion models. Sediment transport capacity for shallow overland flow was represented as a power function of the hydraulic shear stress and which showed to be an approximation to the Yalin equation for sediment transport capacity. The simplified equation for sediment transport could be applied to experimental data from a complex topography. The simplified equation accurately approximated the Yalin equation when calibrated using the mean hydraulic shear stress. Validation tests using independent data showed that the simplified equation had a good performance in predicting sediment transport capacity.

  7. Resolution of the steady state transport equation for Lagrangian geometry with cylindrical symmetry

    International Nuclear Information System (INIS)

    Samba, G.

    1983-05-01

    The purpose of this work is to solve the steady state transport equation for (r, z) geometries given by hydrodynamics calculations. The discontinuous finite element method for the space variables (r, z) provides a stable scheme which satisfies the particle balance equation. We are able to sweep cells for each direction over the mesh to have an explicit scheme. The graph theory provides a very efficient algorithm to compute this ordering array. Previously, we must divide all the quadrilaterals into two triangles to get only convex cells. Thus, we get a fast, vectorized calculation which gives a good accuracy on very distorted meshes [fr

  8. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    International Nuclear Information System (INIS)

    Dong, B; Ding, G H; Lei, X L

    2015-01-01

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)

  9. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  10. A parallel version of a multigrid algorithm for isotropic transport equations

    International Nuclear Information System (INIS)

    Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.

    1994-01-01

    The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown

  11. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  12. Coupled energy-drift and force-balance equations for high-field hot-carrier transport

    International Nuclear Information System (INIS)

    Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.

    2005-01-01

    Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons

  13. Integrated Transport Planning Framework Involving Combined Utility Regret Approach

    DEFF Research Database (Denmark)

    Wang, Yang; Monzon, Andres; Di Ciommo, Floridea

    2014-01-01

    Sustainable transport planning requires an integrated approach involving strategic planning, impact analysis, and multicriteria evaluation. This study aimed at relaxing the utility-based decision-making assumption by newly embedding anticipated-regret and combined utility regret decision mechanisms...... in a framework for integrated transport planning. The framework consisted of a two-round Delphi survey, integrated land use and transport model for Madrid, and multicriteria analysis. Results show that (a) the regret-based ranking has a similar mean but larger variance than the utility-based ranking does, (b......) the least-regret scenario forms a compromise between the desired and the expected scenarios, (c) the least-regret scenario can lead to higher user benefits in the short term and lower user benefits in the long term, (d) the utility-based, the regret-based, and the combined utility- and regret...

  14. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  15. Discontinuous nodal schemes applied to the bidimensional neutron transport equation

    International Nuclear Information System (INIS)

    Delfin L, A.; Valle G, E. Del; Hennart B, J.P.

    1996-01-01

    In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)

  16. Applicability of angular flux discontinuity factor preserving region-wise leakage for integro-differential transport equation

    International Nuclear Information System (INIS)

    Sakamoto, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    In the current core analysis, spatial homogenization is utilized to reduce the computational time. The discontinuity factor (DF) is one of the effective correction factors to reduce spatial homogenization error. The DF in diffusion equation is widely used; on the other hand the DF in transport equation has not been put to practical use although several efforts have been carried out. In this paper, the angular flux discontinuity factor (AFDF) as the DF for the integro-differential transport equation (e.g., the discrete-ordinate method, the method of characteristics) is theoretically described and its applicability is discussed. The AFDF is used to preserve the region-wise neutron leakage at each spatial mesh and defined as a ratio of heterogeneous and homogeneous angular fluxes at the homogenized region surface. In a homogeneous calculation with the AFDF, the angular flux is discontinuous at the region surface. In this paper the applicability of the AFDF to fuel pin cell homogenization is verified for one-dimensional slab geometry. As a result of this verification, it is confirmed that the AFDF has the capability to reduce the spatial homogenization error of fuel pin cell homogenization. (author)

  17. Electron-phonon scattering from Green’s function transport combined with molecular dynamics

    DEFF Research Database (Denmark)

    Markussen, Troels; Palsgaard, Mattias Lau Nøhr; Stradi, Daniele

    2017-01-01

    approach by comparing to mobilities and conductivities obtained by the Boltzmann transport equation for different bulk and one-dimensional systems. For bulk silicon and gold we compare against experimental values. We discuss limitations and advantages of each of the computational approaches....

  18. Development of two-group interfacial area transport equation for confined flow-2. Model evaluation

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    The bubble interaction mechanisms have been analytically modeled in the first paper of this series to provide mechanistic constitutive relations for the two-group interfacial area transport equation (IATE), which was proposed to dynamically solve the interfacial area concentration in the two-fluid model. This paper presents the evaluation approach and results of the two-group IATE based on available experimental data obtained in confined flow, namely, 11 data sets in or near bubbly flow and 13 sets in cap-turbulent and churn-turbulent flow. The two-group IATE is evaluated in steady state, one-dimensional form. Also, since the experiments were performed under adiabatic, air-water two-phase flow conditions, the phase change effect is omitted in the evaluation. To account for the inter-group bubble transport, the void fraction transport equation for Group-2 bubbles is also used to predict the void fraction for Group-2 bubbles. Agreement between the data and the model predictions is reasonably good and the average relative difference for the total interfacial area concentration between the 24 data sets and predictions is within 7%. The model evaluation demonstrates the capability of the two-group IATE focused on the current confined flow to predict the interfacial area concentration over a wide range of flow regimes. (author)

  19. Solving the two-dimensional stationary transport equation with the aid of the nodal method

    International Nuclear Information System (INIS)

    Mesina, M.

    1976-07-01

    In this document the two-dimensional stationary transport equation for the geometry of a fuel assembly or for a system of square boxes has been formulated as an algebraic eigenvalue problem, and the solution was achieved with the computer code NODE 2 which was developed for this purpose. (orig.) [de

  20. Transport Equations for CAD Modeling of Al(x)Ga(1-x)N/GaN HEMTs

    Science.gov (United States)

    Freeman, Jon C.

    2003-01-01

    BEMTs formed from Al(x)Ga(1-x)N/GaN heterostructures are being investigated for high RF power and efficiency around the world by many groups, both academic and industrial. In these devices, the 2DEG formation is dominated by both spontaneous and piezoelectric polarization fields, with each component having nearly the same order of magnitude. The piezoelectric portion is induced by the mechanical strain in the structure, and to analyze these devices, one must incorporate the stress/strain relationships, along with the standard semiconductor transport equations. These equations for Wurtzite GaN are not easily found in the open literature, hence this paper summarizes them, along with the constitutive equations for piezoelectric materials. The equations are cast into the format for the Wurtzite crystal class, which is the most common way GaN is grown epitaxially.

  1. A scalar flux - oriented method for the transport equation in slab geometry

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A new method for solving the neutron transport equation is described. An unusual feature of this method is that it deals principally with scalar fluxes rather than angular fluxes. An alternative approach in slab geometry promises to be cheaper to run and does not suffer from many of the problems of the discrete ordinates method. It also appears possible to extend the method to several dimensions and this is discussed. (U.K.)

  2. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    Science.gov (United States)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  3. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  4. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2013-01-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps

  5. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  6. Flux-probability distributions from the master equation for radiation transport in stochastic media

    International Nuclear Information System (INIS)

    Franke, Brian C.; Prinja, Anil K.

    2011-01-01

    We present numerical investigations into the accuracy of approximations in the master equation for radiation transport in discrete binary random media. Our solutions of the master equation yield probability distributions of particle flux at each element of phase space. We employ the Levermore-Pomraning interface closure and evaluate the effectiveness of closures for the joint conditional flux distribution for estimating scattering integrals. We propose a parameterized model for this joint-pdf closure, varying between correlation neglect and a full-correlation model. The closure is evaluated for a variety of parameter settings. Comparisons are made with benchmark results obtained through suites of fixed-geometry realizations of random media in rod problems. All calculations are performed using Monte Carlo techniques. Accuracy of the approximations in the master equation is assessed by examining the probability distributions for reflection and transmission and by evaluating the moments of the pdfs. The results suggest the correlation-neglect setting in our model performs best and shows improved agreement in the atomic-mix limit. (author)

  7. Study of a method to solve the one speed, three dimensional transport equation using the finite element method and the associated Legendre function

    International Nuclear Information System (INIS)

    Fernandes, A.

    1991-01-01

    A method to solve three dimensional neutron transport equation and it is based on the original work suggested by J.K. Fletcher (42, 43). The angular dependence of the flux is approximated by associated Legendre functions and the finite element method is applied to the space components is presented. When the angular flux, the scattering cross section and the neutrons source are expanded in associated Legendre functions, the first order neutron transport equation is reduced to a coupled set of second order diffusion like equations. These equations are solved in an iterative way by the finite element method to the moments. (author)

  8. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  9. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  10. Investigating transport capacity equations in sediment yield modelling for the Cariri semi-arid region of Paraiba-PB/Brazil

    Directory of Open Access Journals (Sweden)

    E. E. De Figueiredo

    2015-03-01

    Full Text Available In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold’s equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.

  11. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  12. Fourier analysis of a new P1 synthetic acceleration for Sn transport equations

    International Nuclear Information System (INIS)

    Turcksin, B.; Ragusa, J. C.

    2010-10-01

    In this work, is derived a new P1 synthetic acceleration scheme (P1SA) for the S N transport equation and analyze its convergence properties through the means of a Fourier analysis. The Fourier analysis is carried out for both continuous (i.e., not spatially discretized) S N equations and linear discontinuous Fem discretization. We show, thanks to the continuous analysis, that the scheme is unstable when the anisotropy is important (μ - >0.5). However, the discrete analysis shows that when cells are large in comparison to the mean free path, the spectral radius decreases and the acceleration scheme becomes effective, even for highly anisotropic scattering. In charged particles transport, scattering is highly anisotropic and mean free paths are very small and, thus, this scheme could be of interest. To use the P1SA when cells are small and anisotropy is important, the scheme is modified by altering the update of the accelerated flux or by using either K transport sweeps before the application of P1SA. The update scheme performs well as long as μ - - ≥0.9, the modified update scheme is unstable. The multiple transport sweeps scheme is convergent with an arbitrary μ - but the spectral radius increases when scattering is isotropic. When anisotropic increases, the frequency of use of the acceleration scheme needs to be decreased. Even if the P1SA is used less often, the spectral radius is significantly smaller when compared with a method that does not use it for high anisotropy (μ - ≥0.5). It is interesting to notice that using P1SA every two iterations gives the same spectral radius than the update method when μ - ≥0.5 but it is much less efficient when μ - <0.5. (Author)

  13. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    Science.gov (United States)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  14. Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations

    DEFF Research Database (Denmark)

    Lykke, Lars; Iversen, Bo Brummerstedt; Madsen, Georg

    2006-01-01

    The band structure of the low-temperature thermoelectric material, CsBi4Te6, is calculated and analyzed using the semiclassic transport equations. It is shown that to obtain a quantitative agreement with measured transport properties, a band gap of 0.08 eV must be enforced. A gap in reasonable...... agreement with experiment was obtained using the generalized gradient functional of Engel and Vosko [E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993)]. We found that the experimental p-type sample has a carrier concentration close to optimal. Furthermore, the conduction bands have a form equally well...

  15. Solution of neutron transport equation using Daubechies' wavelet expansion in the angular discretization

    International Nuclear Information System (INIS)

    Cao Liangzhi; Wu Hongchun; Zheng Youqi

    2008-01-01

    Daubechies' wavelet expansion is introduced to discretize the angular variables of the neutron transport equation when the neutron angular flux varies very acutely with the angular directions. An improvement is made by coupling one-dimensional wavelet expansion and discrete ordinate method to make two-dimensional angular discretization efficient and stable. The angular domain is divided into several subdomains for treating the vacuum boundary condition exactly in the unstructured geometry. A set of wavelet equations coupled with each other is obtained in each subdomain. An iterative method is utilized to decouple the wavelet moments. The numerical results of several benchmark problems demonstrate that the wavelet expansion method can provide more accurate results by lower-order expansion than other angular discretization methods

  16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  17. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  18. Presentation of some methods for the solution of the monoenergetic neutrons transport equation

    International Nuclear Information System (INIS)

    Valle G, E. del.

    1978-01-01

    The neutrons transport theory problems whose solution has been reached were collected in order to show that the transport equation is so complicated that different techniques were developed so as to give approximative numerical solutions to problems concerning the practical application. Such a technique, which had not been investigated in the literature dealing with these problems, is described here. The results which were obtained through this technique in undimensional problems of criticity are satisfactory and speaking in a conceptual way this method is extremely simple because it times. There is no limitation to deal with problems related neutrons sources with an arbitrary distribution and in principle the application of this technique can be extended to unhomogeneous environments. (author)

  19. On standard forms for transport equations and fluxes: Part 2

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-03-01

    Quasilinear expressions for anomalous particle and energy fluxes arising from electrostatic plasma turbulence in a tokamak are reviewed yet again. Further clarifications are made, and the position taken in a previous report is modified. There, the total energy flux, Q j , and the conductive heat flux, q j , were correctly defined, and the anomalous Q j was correctly calculated. It was shown that the anomalous energy transport can be correctly described by ∇·Q* j , where Q* j = 3/5 Q j , with all remaining source terms such as left-angle p j ∇·Vj} cancelling. Here, a revised discussion is given of the identification of the anomalous conductive flux, q j , in which the distinction between Q j and Q* j is reconsidered. It is shown that there is more than one consistent way to define q j . Transport calculations involving only theoretical electrostatic turbulent fluxes are unaffected by these distinctions since Q j or Q* j , rather than q j , is the quantity naturally calculated in the theory. However, an ambiguity remains in experimental transport analysis if the measured particle flux Γ j = n j V j is to be used in the energy equation. This is because we cannot be sure how properly to treat the source terms p j ∇·V j or { p j ∇·V j }. 17 refs

  20. The Influence of Fractures on Radionuclide Transport in Granite Formations

    International Nuclear Information System (INIS)

    Guarracino, Luis; Quintana, Fernando; Bevilacqua, Arturo

    2003-01-01

    Simulation of radionuclide transport in fractured hard rocks is of interest to many research areas like geological disposal of high-level nuclear wastes.The objective of this study is to present a numerical simulation of water flow and radionuclide transport near a hypothetical repository in deep geological formations.The water flow is assumed to obey the highly nonlinear Richards' equation, which is approximated using a finite element method for the spatial discretization combined with a third order accurate Crank-Nicholson scheme in time.A Picard iteration scheme is used to treat the non-linear terms of the equation.Contaminant transport is described by the advection-diffusion-reaction equation, assuming linear adsorption and first order decay.This equation is solved using a Sub Grid Scale algorithm.Illustrative examples showing the influence of fractures in the contaminant process for different radioisotopes are presented

  1. From the Dyson-Schwinger to the Transport Equation in the Background Field Gauge of QCD

    CERN Document Server

    Wang, Q; Stöcker, H; Greiner, W

    2003-01-01

    The non-equilibrium quantum field dynamics is usually described in the closed-time-path formalism. The initial state correlations are introduced into the generating functional by non-local source terms. We propose a functional approach to the Dyson-Schwinger equation, which treats the non-local and local source terms in the same way. In this approach, the generating functional is formulated for the connected Green functions and one-particle-irreducible vertices. The great advantages of our approach over the widely used two-particle-irreducible method are that it is much simpler and that it is easy to implement the procedure in a computer program to automatically generate the Feynman diagrams for a given process. The method is then applied to a pure gluon plasma to derive the gauge-covariant transport equation from the Dyson-Schwinger equation in the background covariant gauge. We discuss the structure of the kinetic equation and show its relationship with the classical one. We derive the gauge-covariant colli...

  2. Comparison of the performance of the updated Schwartz, combined Schwartz and the Grubb glomerular filtration rate equations in a general pediatric population

    Directory of Open Access Journals (Sweden)

    Alaleh Gheissari

    2014-01-01

    Full Text Available To determine the performance of the updated Schwartz, combined Schwartz and Grubb glomerular filtration rate (GFR equations in a relatively large number of healthy children with no known renal disease, we studied 712 students aged between seven and 18 years from the Isfahan province of Iran by random cluster sampling between 2009 and 2010. Blood investigations included blood urea nitrogen, creatinine and cystatin C. For each participant, GFR was calculated based on the three equations. We used Bland-Altman plots and weighted kappa statistics to compare the performance of the study equations. The mean age of the children was 12.2 ± 2.4 years. A high concordance in estimating GFR (mean difference: 0 ± 12.7 mL/min/1.73 m 2 and a very good agreement in defining chronic kidney disease (CKD and non-CKD individuals (weighted kappa: 0.85; 95% confidence intervals: 0.69-1 were observed between the updated Schwartz and the combined Schwartz equations. Poor agreement was observed between the Grubb equation and two Schwartz equations in estimating GFR and defining CKD. There was no systematic deviation between the updated Schwartz and the combined Schwartz equations in children with normal renal function. The Grubb equation was highly inconsistent with both Schwartz equations in this population. We conclude that the updated Schwartz equation is simpler and more accessible than the combined Schwartz equation in daily clinical practice and CKD screening programs.

  3. Green's function method for the monoenergetic transport equation in heterogeneous plane geometry

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1995-01-01

    For the past several years, a series of papers by the transport group at the University of Arizona dealing with benchmark solutions of the monoenergetic transport equation has appeared. The approach has been to take advantage of highly successful numerical Laplace Fourier transform inversions to provide benchmark quality solutions in infinite media, half-space in one and two dimensions and in homogeneous slabs. This paper extends the set of solutions to include heterogeneous slab geometry by using the recently established Green's Function Method (GFM). Analytical benchmark solutions are an essential part of the quality control of computational algorithms developed for particle transport. In addition, benchmarking methods have applications in the classroom by providing examples of how computational mathematics is used to solve physical problems to obtain meaningful answers. In a structural context, monoenergetic solutions are directly applicable to the investigation of the microlight environment within a leaf. The leaf is considered to be a composition of alternating layers of highly absorbing pigments and water superimposed on a refractively scattering background

  4. Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    KAUST Repository

    Davit, Y.

    2012-07-26

    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.

  5. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  6. Exact analytical solution of time-independent neutron transport equation, and its applications to systems with a point source

    International Nuclear Information System (INIS)

    Mikata, Y.

    2014-01-01

    Highlights: • An exact solution for the one-speed neutron transport equation is obtained. • This solution as well as its derivation are believed to be new. • Neutron flux for a purely absorbing material with a point neutron source off the origin is obtained. • Spherically as well as cylindrically piecewise constant cross sections are studied. • Neutron flux expressions for a point neutron source off the origin are believed to be new. - Abstract: An exact analytical solution of the time-independent monoenergetic neutron transport equation is obtained in this paper. The solution is applied to systems with a point source. Systematic analysis of the solution of the time-independent neutron transport equation, and its applications represent the primary goal of this paper. To the best of the author’s knowledge, certain key results on the scalar neutron flux as well as their derivations are new. As an application of these results, a scalar neutron flux for a purely absorbing medium with a spherically piecewise constant cross section and an isotropic point neutron source off the origin as well as that for a cylindrically piecewise constant cross section with a point neutron source off the origin are obtained. Both of these results are believed to be new

  7. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  8. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  9. Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry

    International Nuclear Information System (INIS)

    Hadad, Kamal; Pirouzmand, Ahmad; Ayoobian, Navid

    2008-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (T N ) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the T N moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state T N moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space-time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision). The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations

  10. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  11. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  12. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  13. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  14. Global existence of weak solutions to dissipative transport equations with nonlocal velocity

    Science.gov (United States)

    Bae, Hantaek; Granero-Belinchón, Rafael; Lazar, Omar

    2018-04-01

    We consider 1D dissipative transport equations with nonlocal velocity field: where is a nonlocal operator given by a Fourier multiplier. We especially consider two types of nonlocal operators: (1) , the Hilbert transform, (2) . In this paper, we show several global existence of weak solutions depending on the range of γ, δ and α. When , we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when .

  15. Comparison of two Ssub(infinity) methods for solving the neutron transport equation

    International Nuclear Information System (INIS)

    Mennig, J.; Brandt, D.; Haelg, W.

    1978-01-01

    A semianalytic method (S 0 sub(infinity)) is presented for solving the monoenergetic multi-region transport equation. This method is compared with results from S 1 sub(infinity)-theory given in the literature. Application of S 1 sub(infinity)-theory to reactor shields may lead to negative neutron fluxes and to flux oscillations. These unphysical effects are completely avoided by the new method. Numerical results demonstrate the limitations of S 1 sub(infinity) and confirm the numerical stability of (S 0 sub(infinity)). (Auth.)

  16. Asymptotic formulae for solutions of the two-group integral neutron-transport equation

    International Nuclear Information System (INIS)

    Duracz, T.

    1976-01-01

    The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de

  17. Methodology for solving the equation of transport ordered discrete TORT code in the reactor IPEN/MB-01; Metodologia para resolver la ecuacion del transporte con el codigo de Ordenadas Discretas TORT en el reactor IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, A.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2013-07-01

    The resolution of the neutron transport equation in steady state in pool-type nuclear reactors, is normally achieved through 2 different numerical methods: Monte Carlo (stochastic) and discrete ordinates (deterministic). The discrete ordinates method solves the neutron transport equation for a set of specific addresses, obtaining a set of equations and solutions for each direction, where the solution for each direction is the angular flux. With the aim of treating energy dependence, used energy multigroup approximation, thus obtaining a set of equations that depends on the number of energy groups considered.

  18. A non-conforming generalization of Raviart-Thomas elements to the spherical harmonic form of the even-parity neutron transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Commissariat a l' energie atomique (CEA-Saclay), DEN/DM2S/SERMA/LENR (Bat 470), 91191 Gif-sur-Yvette Cedex (France)]. E-mail: serge.van-criekingen@cea.fr

    2006-05-15

    The Raviart-Thomas finite elements provide an appropriate spatial discretization of the mixed-dual form of the diffusion equation. This discretization can then be coupled to an efficient solution method. The high performances achieved by such an approach triggered research on its possible generalization to the transport equation using a spherical harmonic (or P {sub N}) angular approximation. In view of the difficulty of developing a straightforward generalization within the mixed-dual framework, we here consider 2D non-conforming (i.e., allowing interface discontinuities) finite elements coupled to the second-order form of the transport equation. This non-conforming approach keeps the mixed-dual property of the relaxation of the flux interface continuity constraint. We investigate different non-conforming elements and compare them to the well-known Lagrangian conforming elements.

  19. A non-conforming generalization of Raviart-Thomas elements to the spherical harmonic form of the even-parity neutron transport equation

    International Nuclear Information System (INIS)

    Van Criekingen, S.

    2006-01-01

    The Raviart-Thomas finite elements provide an appropriate spatial discretization of the mixed-dual form of the diffusion equation. This discretization can then be coupled to an efficient solution method. The high performances achieved by such an approach triggered research on its possible generalization to the transport equation using a spherical harmonic (or P N ) angular approximation. In view of the difficulty of developing a straightforward generalization within the mixed-dual framework, we here consider 2D non-conforming (i.e., allowing interface discontinuities) finite elements coupled to the second-order form of the transport equation. This non-conforming approach keeps the mixed-dual property of the relaxation of the flux interface continuity constraint. We investigate different non-conforming elements and compare them to the well-known Lagrangian conforming elements

  20. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes.

    Science.gov (United States)

    Dorda, Antonius; Schürrer, Ferdinand

    2015-03-01

    We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.

  1. Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    KAUST Repository

    Davit, Y.; Wood, B. D.; Debenest, G.; Quintard, M.

    2012-01-01

    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time

  2. Finite-element discretization of 3D energy-transport equations for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gadau, Stephan

    2007-07-01

    In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and

  3. LOCFES-B: A program for solving the one-dimensional particle transport equation with user-selected CLOF methods

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1995-01-01

    LOCFES-B solves the steady-state, monoenergetic and azimuthally symmetric neutral-particle transport equation in one-dimensional plane-parallel geometry. LOCFES-B is designed to facilitate testing and comparison of different spatial approximations in neutron transport. Accordingly, it permits performance of user-provided CLOF spatial approximations to be compared directly on successively refined mesh sizes and user-input physical problems with automatic comparison of results. if desired, to user-supplied benchmark results

  4. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    Science.gov (United States)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  5. Uniformly constructing combinatorial solutions, combining a rational function with hyperbolic or trigonometric functions, for the (2+1) dimensional Broer-Kaup-Kupershmidt equation

    International Nuclear Information System (INIS)

    Liu Qing; Wang Zihua

    2010-01-01

    According to two dependent rational solutions to a generalized Riccati equation together with the equation itself, a rational-exponent solution to a nonlinear partial differential equation can be constructed. By selecting different parameter values in the rational-exponent solution, many families of combinatorial solutions combined with a rational function such as hyperbolic functions or trigonometric functions, are rapidly derived. This method is applied to the Whitham-Broer-Kaup equation and a series of combinatorial solutions are obtained, showing that this method is a more concise and efficient approach and can uniformly construct many types of combined solutions to nonlinear partial differential equations.

  6. Discontinuous Galerkin discretization and hp-refinement for the resolution of the neutron transport equation

    International Nuclear Information System (INIS)

    Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele

    2013-01-01

    This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)

  7. LUCKY-TD code for solving the time-dependent transport equation with the use of parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    An algorithm for solving the time-dependent transport equation in the P{sub m}S{sub n} group approximation with the use of parallel computations is presented. The algorithm is implemented in the LUCKY-TD code for supercomputers employing the MPI standard for the data exchange between parallel processes.

  8. LOCFES-B: Solving the one-dimensional transport equation with user-selected spatial approximations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1993-01-01

    Closed linear one-cell functional (CLOF) methods constitute an abstractly defined class of spatial approximations to the one-dimensional discrete ordinates equations of linear particle transport that encompass, as specific instances, the vast majority of the spatial approximations that have been either used or suggested in the computational solution of these equations. A specific instance of the class of CLOF methods is defined by a (typically small) number of functions of the cell width, total cross section, and direction cosine of particle motion. The LOCFES code takes advantage of the latter observation by permitting the use, within a more-or-less standard source iteration solution process, of an arbitrary CLOF method as defined by a user-supplied subroutine. The design objective of LOCFES was to provide automated determination of the order of accuracy (i.e., order of the discretization error) in the fine-mesh limit for an arbitrary user-selected CLOF method. This asymptotic order of accuracy is one widely used measure of the merit of a spatial approximation. This paper discusses LOCFES-B, which is a code that uses methods developed in LOCFES to solve one-dimensional linear particle transport problems with any user-selected CLOF method. LOCFES-B provides automatic solution of a given problem to within an accuracy specified by user input and provides comparison of the computational results against results from externally provided benchmark results

  9. Iterative solution of the semiconductor device equations

    Energy Technology Data Exchange (ETDEWEB)

    Bova, S.W.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  10. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  11. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    Science.gov (United States)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  12. The Factors Influencing Satisfaction with Public City Transport: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Pawlasova Pavlina

    2015-12-01

    Full Text Available Satisfaction is one of the key factors which influences customer loyalty. We assume that the satisfied customer will be willing to use the ssame service provider again. The overall passengers´ satisfaction with public city transport may be affected by the overall service quality. Frequency, punctuality, cleanliness in the vehicle, proximity, speed, fare, accessibility and safety of transport, information and other factors can influence passengers´ satisfaction. The aim of this paper is to quantify factors and identify the most important factors influencing customer satisfaction with public city transport within conditions of the Czech Republic. Two methods of analysis are applied in order to fulfil the aim. The method of factor analysis and the method Varimax were used in order to categorize variables according to their mutual relations. The method of structural equation modelling was used to evaluate the factors and validate the model. Then, the optimal model was found. The logistic parameters, including service continuity and frequency, and service, including information rate, station proximity and vehicle cleanliness, are the factors influencing passengers´ satisfaction on a large scale.

  13. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    Science.gov (United States)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  14. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    International Nuclear Information System (INIS)

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-01-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  15. Numerical method for solving integral equations of neutron transport. II

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Tsai, R.W.

    1975-01-01

    In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

  16. Quadrature with arbitrary weight for the numerical solution of the critical slab Neutron Transport Equation

    International Nuclear Information System (INIS)

    Sanchez G, J.

    2007-01-01

    A standard procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Several approximate expressions of the neutron density are used to render closed-form formulas for the densities which can then be analytically operated on to obtain expressions for extrapolation distances or angular densities or serve other purposes that require an analytical expression of the neutron density. (Author)

  17. Novel Parallel Numerical Methods for Radiation and Neutron Transport

    International Nuclear Information System (INIS)

    Brown, P N

    2001-01-01

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both

  18. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-01-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  19. Solution of the neutron transport equation by means of Hermite-Ssub(infinity)-theory

    International Nuclear Information System (INIS)

    Brandt, D.; Haelg, W.; Mennig, J.

    1979-01-01

    A stable numerical approximation Hsub(α)-Ssub(infinity) is obtained through the use of Hermite's method of order α(Hsub(α)) in the spatial integration of the ID neutron transport equation. The theory for α = 1 is applied to a one-group shielding problem. Numerical calculations show the new method to converge much faster than earlier versions of Ssub(infinity)-theory. Comparison of H 1 - Ssub(infinity) with the well-known Ssub(N)-code ANISN indicates a large gain in computing time for the former. (Auth.)

  20. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  1. Tourism sector, Travel agencies, and Transport Suppliers: Comparison of Different Estimators in the Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Kovačić Nataša

    2015-11-01

    Full Text Available The paper addresses the effect of external integration (EI with transport suppliers on the efficiency of travel agencies in the tourism sector supply chains. The main aim is the comparison of different estimation methods used in the structural equation modeling (SEM, applied to discover possible relationships between EIs and efficiencies. The latter are calculated by the means of data envelopment analysis (DEA. While designing the structural equation model, the exploratory and confirmatory factor analyses are also used as preliminary statistical procedures. For the estimation of parameters of SEM model, three different methods are explained, analyzed and compared: maximum likelihood (ML method, Bayesian Markov Chain Monte Carlo (BMCMC method, and unweighted least squares (ULS method. The study reveals that all estimation methods calculate comparable estimated parameters. The results also give an evidence of good model fit performance. Besides, the research confirms that the amplified external integration with transport providers leads to increased efficiency of travel agencies, which might be a very interesting finding for the operational management.

  2. Combining Inverse and Transport Modeling to Estimate Bacterial Loading and Transport in a Tidal Embayment

    Directory of Open Access Journals (Sweden)

    Mac Sisson

    2016-11-01

    Full Text Available Poquoson River is a tidal coastal embayment located along the Western Shore of the Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County, Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural, salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources, and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is not solely driven by precipitation. An inverse approach is introduced to estimate loading from unknown sources based on observations in the embayment. The estimated loadings were combined with loadings estimated from different sources (human, wildlife, agriculture, pets, etc. and input to the watershed model. The watershed model simulated long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate of the bacterial concentration in the embayment and is capable of determining the loading reduction needed to improve the water quality condition of the embayment. Combining inverse, watershed, and transport models is a sound approach for simulating bacterial transport correctly in the coastal embayment with complex unknown bacterial sources, which are not solely driven by precipitation.

  3. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  4. Flow and transport simulation of Madeira River using three depth-averaged two-equation turbulence closure models

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2012-03-01

    Full Text Available This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k˜−ε˜,k˜−w˜, and k˜−ω˜ , were used to close the non-simplified quasi-three dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k˜−ω˜ model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.

  5. Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence

    International Nuclear Information System (INIS)

    Suluksna, Keerati; Juntasaro, Ekachai

    2008-01-01

    The γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements] is a highly generalized transport equation model in which it has been developed based on the concept of local variables compatible with modern CFD methods where the unstructured grid and the parallel computing technique are usually integrated in. To perform the prediction with this model, two essential parameters, F length which is used to control the length of the transition region and Re θc which is used to control the onset of the transition location, must be specified to close the model. At present, both parameters are proprietary and their formulations are unpublished. For the first time here, the relations for both parameters are formulated by means of numerical experiments and analysis under the assumption of Re θc = Re θt corresponding with the bypass transition behavior. Based on this analysis, the optimized values of the parameters are found and their relations can be constructed as follows: Re θc = 803.73(Tu ∞ , le + 0.6067) -1.027 and F length = 163 ln(Tu ∞ , le ) + 3.625. The performance of this transition model is assessed by testing with the experimental cases of T3AM, T3A, and T3B. Detailed comparisons with the predicted results by the transition models of Suzen and Huang [Suzen, Y.B., Huang, P.G., 2000. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273-284] and Lodefier et al. [Lodefier, K., Merci, B., De Langhe, C., Dick, E., 2003. Transition modelling with the SST turbulence model and intermittency transport equation. ASME Turbo Expo, Atlanta, GA, USA, June 16-19], and also with the predicted results by the k-ε model of Launder and Sharma [Launder, B.E., Sharma, B., 1974. Application of the energy dissipation model of turbulence to the calculation of

  6. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.

    1993-01-01

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  7. An upscaled two-equation model of transport in porous media through unsteady-state closure of volume averaged formulations

    Science.gov (United States)

    Chaynikov, S.; Porta, G.; Riva, M.; Guadagnini, A.

    2012-04-01

    We focus on a theoretical analysis of nonreactive solute transport in porous media through the volume averaging technique. Darcy-scale transport models based on continuum formulations typically include large scale dispersive processes which are embedded in a pore-scale advection diffusion equation through a Fickian analogy. This formulation has been extensively questioned in the literature due to its inability to depict observed solute breakthrough curves in diverse settings, ranging from the laboratory to the field scales. The heterogeneity of the pore-scale velocity field is one of the key sources of uncertainties giving rise to anomalous (non-Fickian) dispersion in macro-scale porous systems. Some of the models which are employed to interpret observed non-Fickian solute behavior make use of a continuum formulation of the porous system which assumes a two-region description and includes a bimodal velocity distribution. A first class of these models comprises the so-called ''mobile-immobile'' conceptualization, where convective and dispersive transport mechanisms are considered to dominate within a high velocity region (mobile zone), while convective effects are neglected in a low velocity region (immobile zone). The mass exchange between these two regions is assumed to be controlled by a diffusive process and is macroscopically described by a first-order kinetic. An extension of these ideas is the two equation ''mobile-mobile'' model, where both transport mechanisms are taken into account in each region and a first-order mass exchange between regions is employed. Here, we provide an analytical derivation of two region "mobile-mobile" meso-scale models through a rigorous upscaling of the pore-scale advection diffusion equation. Among the available upscaling methodologies, we employ the Volume Averaging technique. In this approach, the heterogeneous porous medium is supposed to be pseudo-periodic, and can be represented through a (spatially) periodic unit cell

  8. A piecewise bi-linear discontinuous finite element spatial discretization of the Sn transport equation

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.

    2011-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)

  9. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    International Nuclear Information System (INIS)

    Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.

    2010-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  10. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  11. Kinetic and transport theory near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Catto, P.J.

    1995-12-01

    Conventional transport orderings employed in the core of a tokamak plasma allow large divergence-free flows in flux surfaces, but only weak radial flows. However, alternate orderings are required in the edge region where radial diffusion must balance the rapid loss due to free-streaming to divertor plates or limiters. Kinetic equations commonly used to study the plasma core do not allow such a balance and are, therefore, inapplicable in the plasma edge. Similarly, core transport formulae cannot be extended to the edge region without major, qualitative alteration. Here the authors address the necessary changes. By deriving and solving a novel kinetic equation, they construct distinctive collisional transport laws for the plasma edge. They find that their edge ordering naturally retains the radial diffusion and parallel flow of particles, momentum and heat to lowest order in the conservation equations. To higher order they find a surprising form for parallel transport in the scrape-off layer, in which the parallel flow of particles and heat are driven by a combination of the conventional gradients, viscosity, and new terms involving radial derivatives. The new terms are not relatively small, and could affect understanding of limiter and divertor operation

  12. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    Science.gov (United States)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  13. Improvement of the symbolic Monte-Carlo method for the transport equation: P1 extension and coupling with diffusion

    International Nuclear Information System (INIS)

    Clouet, J.F.; Samba, G.

    2005-01-01

    We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)

  14. Integro-differential transport approaches

    International Nuclear Information System (INIS)

    Stepanek, J.; Arkuszewski, J.; Boffi, V.; Matausek, M.V.

    1981-01-01

    This chapter summarizes the work done in Italy, Poland, Switzerland and Yugoslavia in the field of integro-differential neutron transport theory. It reflects different viewpoints in the handling of the subject. Some of the methods are based only on the solution of the integro-differential equation, others use only the integral form of the transport equation. Use of the characteristic solution closely related to the integral equation (ARKUSZEWSKI et al.,(1979)) seems to be a rather effective way to accelerate the 2 dimensional discrete ordinates (Ssub(n)) transport methods and supress one of the main disadvantages, the ray effect. The advanced ''Surface Currents'' (MAEDER (1975)) and ''Surface Flux'' (STEPANEK (1979)) methods are based on the solution of both the integro-differential and integral form of the transport equation. As long as the spatial fluxes were considered to be flat in each region only the integral form of the transport equation was considered. The solution seems to be the best method of simple handling the higher order Legendre polynomials used to approximate spatial and angular flux distribution. The coupling of the Bsub(n) integral transport equations with the related Psub(n) equations removes the greatest disadvantage of the Psub(n) theory and closes the system of the Psub(n) equations (LIGOU, STEPANEK (1974))

  15. Numerical solutions of the monoenergetic neutron transport equation with anisotropic scattering

    International Nuclear Information System (INIS)

    Dahl, B.

    1985-01-01

    The Boltzmann equation for monoenergetic neutrons has been solved numerically with high accuracy for homogeneous slabs and spheres with various degree of linear anisotropy. Vacuum boundary conditions are used. The numerical method is based on previous work by Carlvik. Benchmark values of the criticality factor and higher order eigenvalues are given for multiplying systems of thickness or diameter from 10 -5 to 20 mean free paths and with anisotropy coefficients from 0.0 to 0.3. For slab geometry, both even and odd mode eigenvalues are treated. With increasing anisotropy, an increasing number of complex eigenvalues is observer. The total flux is calculated from the eigenvector and tables of the fundamental mode flux are given. Accurate extrapolation distances are derived for various dimensions and anisotropy coefficients from our eigenvalue results on slabs and spheres and from the work by Sanchez on infinite cylinders.The time eigenvalue spectrum in subcritical systems has also been studied. First, the connection between the eigenvalues arising from the time dependent and stationary transport equation is established. Based on this, the spectrum of real time eigenvalues in slabs and spheres is calculated. For spheres, the existence of complex time eigenvalues in the region beyond the value corresponding to the Corngold limit is numerically established. The presence of such eigenvalues has earlier not been proved. It is further shown that the Boltzmann equation for a sphere is significantly simplified when the decay constant is at the Corngold limit. The spectrum of sphere diameters corresponding to this decay constant is calculated for various linear anisotropies, and detailed numerical results are given. (Author)

  16. Solution of the linearly anisotropic neutron transport problem in a infinite cylinder combining the decomposition and HTSN methods

    International Nuclear Information System (INIS)

    Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.

    2008-01-01

    Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)

  17. S2SA preconditioning for the Sn equations with strictly non negative spatial discretization

    International Nuclear Information System (INIS)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-01-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S n transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use a linear diffusion equation has important implications for preconditioning the S n equations with a strictly non negative spatial discretization in multiple dimensions. (authors)

  18. A Photon Free Method to Solve Radiation Transport Equations

    International Nuclear Information System (INIS)

    Chang, B

    2006-01-01

    The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes

  19. Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared

  20. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    Science.gov (United States)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  1. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  2. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  3. Solution of some types of differential equations: operational calculus and inverse differential operators.

    Science.gov (United States)

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  4. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  5. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Science.gov (United States)

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  6. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.; Suteau, C.; Herbin, R.

    2011-01-01

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  7. Matrix-oriented implementation for the numerical solution of the partial differential equations governing flows and transport in porous media

    KAUST Repository

    Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

    2012-01-01

    In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like

  8. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    International Nuclear Information System (INIS)

    Shafii, Mohammad Ali; Meidianti, Rahma; Wildian,; Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-01-01

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation

  9. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    Energy Technology Data Exchange (ETDEWEB)

    Shafii, Mohammad Ali, E-mail: mashafii@fmipa.unand.ac.id; Meidianti, Rahma, E-mail: mashafii@fmipa.unand.ac.id; Wildian,, E-mail: mashafii@fmipa.unand.ac.id; Fitriyani, Dian, E-mail: mashafii@fmipa.unand.ac.id [Department of Physics, Andalas University Padang West Sumatera Indonesia (Indonesia); Tongkukut, Seni H. J. [Department of Physics, Sam Ratulangi University Manado North Sulawesi Indonesia (Indonesia); Arkundato, Artoto [Department of Physics, Jember University Jember East Java Indonesia (Indonesia)

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  10. Theory of contributon transport

    International Nuclear Information System (INIS)

    Painter, J.W.; Gerstl, S.A.W.; Pomraning, G.C.

    1980-10-01

    A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi + , where phi and phi + are the solutions to the forward and adjoint Boltzmann transport equations

  11. Storage and transport casks combine to bring benefits

    International Nuclear Information System (INIS)

    Thorup, C.

    1988-01-01

    The Nuclear Assurance Corporation is currently preparing a safety report on its new spent fuel storage/transport casks. The report is due to be submitted to the NRC in 1989, together with an application for a licence. The aim of the combined casks is to simplify the process of dealing with spent fuel, whilst keeping costs down. The design of the casks is described, together with questions relating to the licensing of the casks. (author)

  12. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    Science.gov (United States)

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  13. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2005-01-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  14. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  15. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    Energy Technology Data Exchange (ETDEWEB)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  16. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  17. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  18. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  19. Improved Durand-equation for multiple application

    International Nuclear Information System (INIS)

    Weber, M.

    1986-01-01

    The applicability of Durand's equation could be improved for general use by applying suitable parameters representing the grain-size distribution. Thus, the Durand equation cannot only describe polydisperse (pseudo)-homogeneous or heterogeneous transportation, but also solid-fluid mixtures containing a certain amount of fine particles. Even non-Newtonian influences can be taken into account. The applicability of the extended Durand equation for polydisperse mixtures will be demonstrated by measurement data. With respect to this, the transition between pseudohomogeneous and heterogeneous transport has been considered on the basis of measured concentration profiles

  20. A solution of the monoenergetic neutral particle transport equation for adjacent half-spaces with anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D., E-mail: ganapol@cowboy.ame.arizona.edu [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ (United States); Mostacci, D.; Previti, A. [Montecuccolino Laboratory, University of Bologna, Via dei Colli, 16, I-40136 Bologna (Italy)

    2016-07-01

    We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination of highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.

  1. Combined evaluation. Plutonium transports in France. Problems of safety and reliability of transport container FS47

    International Nuclear Information System (INIS)

    Marignac, Y.; Coeytaux, X.; Large, J.H.

    2004-09-01

    This report concerns the safety and the protection of plutonium dioxide transported from Cogema La Hague to the mixed oxide fuel plant of Marcoule and Cadarache. The French approach of the transport safety is based on the combining of two essential principles: the first one affirms that the performances of the FS47 container in regard of containment (norms TS-R-1 from IAEA for the accidental conditions) is conceived to resist in any situation even terrorism or sabotage. In fact, the IAEA norm follows a probabilistic study without a voluntary attack such a terrorist one. The second principle rests on the ability to prevent the treat of terrorism acts, because of a secrecy policy on the plutonium transport. It appeared that the Green peace association has succeeded several times to know exactly the hours, the trips of the plutonium transport and this simple thing raises more questions than it solves. (N.C.)

  2. Method of solution of the neutron transport equation in multidimensional cartesian geometries using spherical harmonics and spatially orthogonal polynomials

    International Nuclear Information System (INIS)

    Fenstermacher, T.E.

    1981-01-01

    The solution of the neutron transport equation has long been a subject of intense interest to nuclear engineers. Present computer codes for the solution of this equation, however, are expensive to run for large, multidimensional problems, and also suffer from computational problems such as the ray effect. A method has been developed which eliminates many of these problems. It consists of transforming the transport equation into a set of linear partial differential equations by the use of spherical harmonics. The problem volume is divided into mesh boxes, and the flux components are approximated within each mesh box by spatially orthogonal quadratic polynomials, which need not be continuous at mesh box interfaces. A variational principle is developed, and used to solve for the unknown coefficients of these polynomials. Both one dimensional and two dimensional computer codes using this method have been written. The codes have each been tested on several test cases, and the solutions checked against solutions obtained by other methods. While the codes have some difficulty in modeling sharp transients, they produce excellent results on problems where the characteristic lengths are many mean free paths. On one test case, the two dimensional code, SHOP/2D, required only one-fourth the computer time required by the finite difference, discrete ordinates code TWOTRAN to produce a solution. In addition, SHOP/2D converged much better than TWOTRAN and produced more physical-appearing results

  3. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x-y geometry. Part I: Modeling and verification for time-independent solution

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal

    2011-01-01

    Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with P N method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (P N ) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.

  4. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

    International Nuclear Information System (INIS)

    Delfin L, A.

    1996-01-01

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

  6. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  7. Discrete energy formulation of neutron transport theory applied to solving the discrete ordinates equations

    International Nuclear Information System (INIS)

    Ching, J.; Oblow, E.M.; Goldstein, H.

    1976-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab

  8. Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements

    International Nuclear Information System (INIS)

    Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.

    2011-01-01

    Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.

  9. New nonlinear methods for linear transport calculations

    International Nuclear Information System (INIS)

    Adams, M.L.

    1993-01-01

    We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

  10. Central moments of ion implantation distributions derived by the backward Boltzmann transport equation compared with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.

    1992-01-01

    In this paper we study solutions to the backward Boltzmann transport equation (BBTE) specialized to equations governing moments of the distribution of ions implanted into amorphous targets. A central moment integral equation set has been derived starting from the classical plane source BBTE for non-central moments. A full generator equation is provided to allow construction of equation sets of an arbitrary size, thus allowing computation of moments of arbitrary order. A BBTE solver program has been written that uses the residual correction technique proposed by Winterbon. A simple means is presented to allow direct incorporation of Biersack's two-parameter ''magic formula'' into a BBTE solver program. Results for non-central and central moment integral equation sets are compared with Monte Carlo simulations, using three different formulae for the mean free flight path between collisions. Comparisons are performed for the ions B and As, implanted into the target a-Si, over the energy range 1 keV-1 MeV. The central moment integral equation set is found to have superior convergence properties to the non-central moment equation set. For As ions implanted into a-Si, at energies below ∼ 30 keV, significant differences are observed, for third- and fourth-order moments, when using alternative versions for the mean free flight path. Third- and fourth-order moments derived using one- and two-parameter scattering mechanisms also show significant differences over the same energy range. (Author)

  11. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  12. Solution of multigroup transport equation in x-y-z geometry by the spherical harmonics method using finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke; Kikuchi, Hirohiko; Tsutsuguchi, Ken

    1993-01-01

    A neutron multigroup transport equation in x-y-z geometry is solved by the spherical harmonics method using finite Fourier transformation. Using the first term of the Fourier series for the space variables of spherical harmonics moments, three-point finite difference like equations are derived for x-, y- and z-axis directions, which are more consistent and accurate than those derived using the usual finite difference approximation, and these equations are solved by the iteration method in each axis direction alternatively. A method to find an optimum acceleration factor for this inner iteration is described. It is shown in the numerical examples that the present method gives higher accuracy with less mesh points that the usual finite difference method. (author)

  13. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Inst. de genie nucleaire, Montreal, Quebec (Canada)]. E-mail: monchai.assawar@polymtl.ca

    2005-07-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  14. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    Science.gov (United States)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  15. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  16. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  17. Application of Trotter approximation for solving time dependent neutron transport equation; Primena Trotterove aproksimacije za resavanje vremenski zavisne transportne jednacine neutrona

    Energy Technology Data Exchange (ETDEWEB)

    Stancic, V [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1987-07-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  18. A non-linear optimal Discontinuous Petrov-Galerkin method for stabilising the solution of the transport equation

    International Nuclear Information System (INIS)

    Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.

    2009-01-01

    This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)

  19. Sediment transport modeling in deposited bed sewers: unified form of May's equations using the particle swarm optimization algorithm.

    Science.gov (United States)

    Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali

    2017-08-01

    May proposed two dimensionless parameters of transport (η) and mobility (F s ) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of F s , which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and F s . The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.

  20. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  1. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  2. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  3. The Modified Enskog Equation for Mixtures

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1973-01-01

    In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport

  4. Solutions of transport equation in (X-Y-Z) three-dimensional geometry by finite element method and spherical harmonic expansion

    International Nuclear Information System (INIS)

    Fernandes, A.; Maiorino, J.R.

    1989-01-01

    This work presents a method to solve the neutron transport equation in thre space dimensions. The angular flux is aproximated by spherical harmonics and the finite element method is applied to the space component. The program originated by the analytical development is being tested and some results are presented. (author) [pt

  5. External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models

    Science.gov (United States)

    Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.

    2011-12-01

    External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.

  6. A closed-form solution for the two-dimensional transport equation by the LTS{sub N} nodal method in the energy range of Compton effect

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.D.A., E-mail: barbararodriguez@furg.b [Universidade Federal do Rio Grande, Instituto de Matematica, Estatistica e Fisica, Rio Grande, RS (Brazil); Vilhena, M.T., E-mail: vilhena@mat.ufrgs.b [Universidade Federal do Rio Grande do Sul, Departamento de Matematica Pura e Aplicada, Porto Alegre, RS (Brazil); Hoff, G., E-mail: hoff@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul, Faculdade de Fisica, Porto Alegre, RS (Brazil); Bodmann, B.E.J., E-mail: bardo.bodmann@ufrgs.b [Universidade Federal do Rio Grande do Sul, Departamento de Matematica Pura e Aplicada, Porto Alegre, RS (Brazil)

    2011-01-15

    In the present work we report on a closed-form solution for the two-dimensional Compton transport equation by the LTS{sub N} nodal method in the energy range of Compton effect. The solution is determined using the LTS{sub N} nodal approach for homogeneous and heterogeneous rectangular domains, assuming the Klein-Nishina scattering kernel and a multi-group model. The solution is obtained by two one-dimensional S{sub N} equation systems resulting from integrating out one of the orthogonal variables of the S{sub N} equations in the rectangular domain. The leakage angular fluxes are approximated by exponential forms, which allows to determine a closed-form solution for the photons transport equation. The angular flux and the parameters of the medium are used for the calculation of the absorbed energy in rectangular domains with different dimensions and compositions. In this study, only the absorbed energy by Compton effect is considered. We present numerical simulations and comparisons with results obtained by using the simulation platform GEANT4 (version 9.1) with its low energy libraries.

  7. Nystro¨m method applied to integral formulation of the neutron transport equation in X-Y geometry

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Fabio S.; Sauter, Esequia; Konzen, Pedro H.A.; Barichello, Liliane B., E-mail: fabio.azevedo@ufrgs.br, E-mail: esequia.sauter@ufrgs.br, E-mail: pedro.konzen@ufrgs.br, E-mail: lbaric@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Matem´atica Pura e Aplicada

    2017-07-01

    Neutron transport problems in X-Y geometry have been solved with several techniques in last decades but it is still a challenge to produce a good balance between computational efficiency and accuracy. In this work, we address this problem by efficiently applying the Nystr¨om method to the integral formulation of the transport equation. Analytical techniques, modern numerical packages and optimized implementation were applied to reduce the computational time. This method presented results free of ray effects leading to high accurate numerical results for two-dimensional scalar flux. Our implementation simulates homogeneous problems with vacuum and reflective boundary conditions. Results were validated with up to seven significant digits and compared with those available in the literature. (author)

  8. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    Science.gov (United States)

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  9. Mathematical rationalization for the renal tubular transport: revised concepts.

    Science.gov (United States)

    Mioni, Roberto; Marega, Alessandra; Romano, Giulio; Montanaro, Domenico

    2017-09-01

    The current emphasis on kinetics and in situ control of molecular exchanges, across the tubular membrane, has not been paralleled by corresponding improvements in our understanding of tubular behaviour at the macroscopic level of classical physiology. In this paper, we propose a mathematical rationalization of macroscopic tubular transport by means of a principal transport equation, originating from the law of mass action between substrate and carrier. The other equations, derived from the main one, demonstrate the possibility of distinguishing between transporters with low affinity and high capacity and transporters with high affinity and low capacity. Moreover, our model formalizes both tubular reabsorption and tubular secretion. Regarding the renal calcium handling, our model confirms the two-compartment system proposed by Mioni in 1971, with some important variants, which are in agreement with the fractional reabsorptions of this cation along the tubule, as verified by micro-puncture technique. To obtain the frequency distribution of saturated tubules, we have utilized the infinitesimal analysis method, starting from the equations proposed by Smith in 1943, concluding that all titration curves result from the combined effect of enzymatic approach and anatomical heterogeneity of the nephrons. The theoretical equations included in our manuscript reflect substantial and palpable physiological mechanisms able to suggest diagnosis and therapy of some electrolyte and hormonal disorders. At the end of this paper, we highlight advantages and disadvantages detectable by comparing our mathematical approach with Marshall's and Bijvoet's methods, proposed, respectively, in 1976 and 1984.

  10. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  11. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  12. Solution of two-dimensional equations of neutron transport in 4P0-approximation of spherical harmonics method

    International Nuclear Information System (INIS)

    Polivanskij, V.P.

    1989-01-01

    The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs

  13. Derivation of new 3D discrete ordinate equations

    International Nuclear Information System (INIS)

    Ahrens, C. D.

    2012-01-01

    The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)

  14. CTCN: Colloid transport code -- nuclear

    International Nuclear Information System (INIS)

    Jain, R.

    1993-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential-algebraic equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential-algebraic systems

  15. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  16. Proxy-equation paradigm: A strategy for massively parallel asynchronous computations

    Science.gov (United States)

    Mittal, Ankita; Girimaji, Sharath

    2017-09-01

    Massively parallel simulations of transport equation systems call for a paradigm change in algorithm development to achieve efficient scalability. Traditional approaches require time synchronization of processing elements (PEs), which severely restricts scalability. Relaxing synchronization requirement introduces error and slows down convergence. In this paper, we propose and develop a novel "proxy equation" concept for a general transport equation that (i) tolerates asynchrony with minimal added error, (ii) preserves convergence order and thus, (iii) expected to scale efficiently on massively parallel machines. The central idea is to modify a priori the transport equation at the PE boundaries to offset asynchrony errors. Proof-of-concept computations are performed using a one-dimensional advection (convection) diffusion equation. The results demonstrate the promise and advantages of the present strategy.

  17. [Transport and sources of runoff pollution from urban area with combined sewer system].

    Science.gov (United States)

    Li, Li-Qing; Yin, Cheng-Qing

    2009-02-15

    Sampling and monitoring of runoff and sewage water in Wuhan urban area with combined sewer system were carried out during the period from 2003 to 2006, to study the transport and sources of runoff pollution at the catchment scale coupled with environmental geochemistry method. The results showed a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewer's outlet. A significant increase was observed in the concentrations of total suspended solids (TSS), volatile suspended solids (VSS), COD, TN, and TP, and in the proportion of COD linked to particles. During the runoff production and transport, the concentrations of TSS and COD increased from 18.7 mg/L and 37.0 mg/L in roof runoff, to 225.3 mg/L and 176.5 mg/L in street runoff, and to 449.7 mg/L and 359.9 mg/L in combined storm water flow, respectively. The proportion of COD linked to particles was increased by 18%. In addition, the total phosphorus (P) and iron (Fe) contents in urban ground dust, storm drain sediment, sewage sewer sediment and combined sewer sediment were measured to identify the potential sources of suspended solids in the combined flow. The urban ground dust andstorm drain sediment wererich in Fe, whereas the sewage sewer sediment was rich in P. The P/Fe ratios in these groups were significantly distinct and able to differentiate them. A calculation of the two storm events based on the P/Fe rations showed that 56% +/- 26% of suspended solids in combined flow came from urban ground and storm drain. The rest wer e originated from the sewage sewer sediments which deposited in combined sewer on the dry weather days and were eroded on the wet weather days. The combined sewer network not only acts as a transport system, but also constitutes a physicochemical reactor that degrades the quality of urban water. Reducing the in-sewer pollution stocks would effectively control urban runoff pollution.

  18. Derivation of the neutron diffusion equation

    International Nuclear Information System (INIS)

    Mika, J.R.; Banasiak, J.

    1994-01-01

    We discuss the diffusion equation as an asymptotic limit of the neutron transport equation for large scattering cross sections. We show that the classical asymptotic expansion procedure does not lead to the diffusion equation and present two modified approaches to overcome this difficulty. The effect of the initial layer is also discussed. (authors). 9 refs

  19. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  20. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  1. Solution of the linear transport equation, monoenergetic in multiregions with anisotopic scattering by the method F sub(N)

    International Nuclear Information System (INIS)

    Pontedeiro, E.M.B.D.; Maiorino, J.R.

    1982-01-01

    The linear equation transport, monoenergetic, with anysotropic scattering, in multiregions, by F sub(N) method, is resolved. The mathematical analysis used for this method consists in to use parcially the expansion method in singular autofunctions, or Case's method, aiming to derive a set of integral equations coupled to the angular distribution in the boundaries and interfaces, and then to approximate these distributions by polynomics of N order, aiming to derive, with the use of these boundary and continuity conditions in the interfaces, a set of algebric equations for the coef. of polynomical approximation. With the goal to obtain numerical results, a computer code (FNAM-1) with options for the number of regions, boundary conditions, F sub(N) approx order, were developed. Numerical results were then obtained for various sample problems and compared with the results published in the literature with the objective to demonstrate the precision and applicability of the F sub(N) method. (E.G.) [pt

  2. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    Science.gov (United States)

    Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.

  3. Calculation of the critical buckling of a lattice based on the integral form of the transport equation

    International Nuclear Information System (INIS)

    Benoist, P.

    1990-06-01

    The migration area, which relates the buckling to the multiplication factor, can be calculated by means of the Deniz formula. This formula involves the direct and adjoint angular fluxes. It is shown in this note that it is possible, using the integral form of the transport equation, to establish an equivalent formula in which only angle-integrated quantities appear. This formulation is more suitable for the calculation by the collision probably method [fr

  4. Construction of the Cauchy problem for solution of the integral equation of transport in a sphere with a central absorbing region

    International Nuclear Information System (INIS)

    Ezhov, A.A.

    1978-01-01

    On the basis of the integral equation for neutron transport in a homogeneous isotropically-scattering sphere with an absolutely black central part an initial value problem has been formulated which permits the construction of a numerical scheme to find the neutron flux density

  5. Analysis of a block Gauss-Seidel iterative method for a finite element discretization of the neutron transport equation

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Martin, W.R.; Luskin, M.

    1985-01-01

    We prove the convergence of a finite element discretization of the neutron transport equation. The iterative solution of the resulting linear system by a block Gauss-Seidel method is also analyzed. This procedure is shown to require less storage than the direct solution by Gaussian elimination, and an estimate for the rate of convergence is used to show that fewer arithmetic operations are required

  6. Collection of problems in transport theory

    International Nuclear Information System (INIS)

    Kaper, H.G.

    1975-01-01

    Problems presented are: (1) definition of transport operators; (2) relation between the integro-differential and integral form of the transport equation; (3) asymptotic behavior of the scalar density near curved boundaries and interfaces; (4) singularities at a corner; (5) regularity of the solution of the transport equation; (7) transport equations on a manifold; (8) numerical analysis; (9) cubature; (10) point spectrum of the transport operator; (11) convergence of the multigroup approximation; (12) convergence of discrete ordinates approximations; (13) the finite double-norm property; (14) convergence of discrete ordinates approximation. The presentation of the problems is intended to direct attention to gaps in the existing knowledge of transport theory and to stimulate research into new areas of transport theory

  7. Development and validation of bubble breakup and coalescence constitutive models for the one-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Pellacani, Filippo

    2012-01-01

    A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.

  8. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  9. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E

    2004-12-15

    A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

  10. Completeness theorems in transport theory

    International Nuclear Information System (INIS)

    Zweifel, P.F.

    1984-01-01

    Ever since K. M.; Case's famous 1960 paper, transport theorists have been studying the questions of full- and half-range completeness for various transport type equations. The purpose of this note is to try to define exactly what is meant by completeness as it is needed, and used, in solving transport equations and to discuss some of the various techniques which have been, or might be, used to verify completeness. Attention is restricted to the question of full-range completeness. As a paradigm the generalized form of the transport equation first introduced by Beals is adopted

  11. Monoenergetic time-dependent neutron transport in an infinite medium with time-varying cross sections

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1987-01-01

    For almost 20 yr, the main thrust of the author's research has been the generation of as many benchmark solutions to the time-dependent monoenergetic neutron transport equation as possible. The major motivation behind this effort has been to provide code developers with highly accurate numerical solutions to serve as standards in the assessment of numerical transport algorithms. In addition, these solutions provide excellent educational tools since the important physical features of neutron transport are still present even though the problems solved are idealized. A secondary motivation, though of equal importance, is the intellectual stimulation and understanding provided by the combination of the analytical, numerical, and computational techniques required to obtain these solutions. Therefore, to further the benchmark development, the added complication of time-dependent cross sections in the one-group transport equation is considered here

  12. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system

    International Nuclear Information System (INIS)

    Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.

    1992-01-01

    Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs

  14. A method for solving the spherical harmonics equations applied for space-energy transport of fast and resonance neutrons

    International Nuclear Information System (INIS)

    Matausek, M.

    1972-01-01

    A new proposed method for solving the space-energy dependent spherical harmonics equations represents a methodological contribution to neutron transport theory. The proposed method was applied for solving the problem of spec-energy transport of fast and resonance neutrons in multi-zone, cylindrical y symmetric infinite reactor cell and is related to previously developed procedure for treating the thermal energy region. The advantages of this method are as follows: a unique algorithm was obtained for detailed determination of spatial and energy distribution of neutrons (from thermal to fast) in the reactor cell; these detailed distributions enable more precise calculations of criticality conditions, obtaining adequate multigroup data and better interpretation of experimental data; computing time is rather short

  15. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  16. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

    2011-07-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  17. Parallel computing for homogeneous diffusion and transport equations in neutronics

    International Nuclear Information System (INIS)

    Pinchedez, K.

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  18. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

    Science.gov (United States)

    Braun, J.

    2012-04-01

    Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on

  19. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  20. Colloid transport code-nuclear user's manual

    International Nuclear Information System (INIS)

    Jain, R.

    1992-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems

  1. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  2. Smoke aerosol transport patterns over the Maritime Continent

    Science.gov (United States)

    Xian, Peng; Reid, Jeffrey S.; Atwood, Samuel A.; Johnson, Randall S.; Hyer, Edward J.; Westphal, Douglas L.; Sessions, Walter

    2013-03-01

    Smoke transport patterns over the Maritime Continent (MC) are studied through a combination of approaches, including a) analyzing AODs obtained from satellite products; b) aerosol transport modeling with AOD assimilation along with the atmospheric flow patterns; c) analyzing smoke wet deposition distributions; and d) examining forward trajectories for smoke events defined in this study. It is shown that smoke transport pathways are closely related to the low-level atmospheric flow, i.e., during June-Sept, smoke originating from the MC islands with a dominant source over central and southern Sumatra, and southern and western Borneo, is generally transported northwestward south of the equator and northeastward north of the equator with the cross-equatorial flow, to the South China Sea (SCS), the Philippines and even further to the western Pacific. During the October-November transitional period, smoke transport paths are more zonally oriented compared to June-September. Smoke originating from Java, Bali, Timor etc, and southern New Guinea, which are in the domain of easterlies and southeasterlies during the boreal summer (June-November), is generally transported westward. It is also found that smoke transport over the MC exhibits multi-scale variability. Smoke typically lives longer and can be transported farther in El Niño years and later MJO phases compared with non El Niño years and earlier MJO phases. During El Niño periods there is much stronger westward transport to the east tropical Indian Ocean. Finally, orographic effect on smoke transport over the MC is also clearly discernable.

  3. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  4. Transmission probability method for solving neutron transport equation in three-dimensional triangular-z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guoming [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: gmliusy@gmail.com; Wu Hongchun; Cao Liangzhi [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2008-09-15

    This paper presents a transmission probability method (TPM) to solve the neutron transport equation in three-dimensional triangular-z geometry. The source within the mesh is assumed to be spatially uniform and isotropic. At the mesh surface, the constant and the simplified P{sub 1} approximation are invoked for the anisotropic angular flux distribution. Based on this model, a code TPMTDT is encoded. It was verified by three 3D Takeda benchmark problems, in which the first two problems are in XYZ geometry and the last one is in hexagonal-z geometry, and an unstructured geometry problem. The results of the present method agree well with those of Monte-Carlo calculation method and Spherical Harmonics (P{sub N}) method.

  5. Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry

    International Nuclear Information System (INIS)

    Lathrop, K.D.

    1976-04-01

    Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references

  6. Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1977-01-01

    Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)

  7. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  8. Parallel computing solution of Boltzmann neutron transport equation

    International Nuclear Information System (INIS)

    Ansah-Narh, T.

    2010-01-01

    The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)

  9. A quasi moment description of the evolution of an electron gas towards a state dominated by a reduced transport equation

    International Nuclear Information System (INIS)

    Oeien, A.H.

    1980-09-01

    For electrons in electric and magnetic fields which collide elastically with neutral atoms or molecules a minute evolution study is made using the multiple time scale method. In this study a set of quasi moment equations is used which is derived from the Boltzmann equation by taking appropriate quasi moments, i.e. velocity moments where the integration is performed only over velocity angles. In a systematic way the evolution in a transient regime is revealed where processes take place on time scales related to the electron-atom collision frequency and electron cyclotron frequency and how the evolution enters a regime where it is governed by a reduced transport equation is shown. This work has relevance to the theory of evolution of gases of charged particles in general and to non-neutral plasmas and partially ionized gases in particular. (Auth.)

  10. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  11. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  12. Numerical solution of the equation of neutrons transport on plane geometry by analytical schemes using acceleration by synthetic diffusion

    International Nuclear Information System (INIS)

    Alonso-Vargas, G.

    1991-01-01

    A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)

  13. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  14. The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments

    International Nuclear Information System (INIS)

    Shin, U.; Miller, W.F. Jr.

    1998-01-01

    Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents

  15. Discontinuous Galerkin for the Radiative Transport Equation

    KAUST Repository

    Guermond, Jean-Luc

    2013-10-11

    This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

  16. Discontinuous Galerkin for the Radiative Transport Equation

    KAUST Repository

    Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.

    2013-01-01

    This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

  17. 3D edge energy transport in stellarator configurations

    International Nuclear Information System (INIS)

    McTaggart, N.; Zagorski, R.; Bonnin, X.; Runov, A.; Schneider, R.; Kaiser, T.; Rognlien, T.; Umansky, M.

    2005-01-01

    The finite difference discretization method is used to solve the electron energy transport equation in complex 3D edge geometries using an unstructured grid. This grid is generated by field-line tracing to separate the radial and parallel fluxes and minimize the numerical diffusion connected with the strong anisotropy of the system. The influence of ergodicity on the edge plasma transport in the W7-X stellarator is investigated in this paper. Results show that the combined effect of ergodicity and the radial plasma diffusion leads to the efficient smoothing of the temperature profiles in the finite-β case

  18. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  19. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  20. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  1. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  3. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  4. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  5. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  7. Transport by negative eddy viscosity in soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The forced Schrodinger equation is used to describe the microhydrodynamical state of strong soliton turbulence. The Schrodinger equation is transformed into a master equation and is decomposed into a macrogroup, a microgroup, and a submicrogroup, representative of the three transport processes of spectral evolution, transport property, and relaxation. The kinetic equation for the macrodistribution is derived and reverted to the continuum by the method of moments in order to find the equation of spectral evolution. The spectral flow is found to be governed by three types of transport, which are discussed.

  8. Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.; Suteau, C.

    2011-01-01

    We present an error estimator for the S N neutron transport equation discretized with an arbitrary high-order discontinuous Galerkin method. As a starting point, the estimator is obtained for conforming Cartesian meshes with a uniform polynomial order for the trial space then adapted to deal with non-conforming meshes and a variable polynomial order. Some numerical tests illustrate the properties of the estimator and its limitations. Finally, a simple shielding benchmark is analyzed in order to show the relevance of the estimator in an adaptive process.

  9. A non overlapping parallel domain decomposition method applied to the simplified transport equations

    International Nuclear Information System (INIS)

    Lathuiliere, B.; Barrault, M.; Ramet, P.; Roman, J.

    2009-01-01

    A reactivity computation requires to compute the highest eigenvalue of a generalized eigenvalue problem. An inverse power algorithm is used commonly. Very fine modelizations are difficult to tackle for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. So, we propose a non-overlapping domain decomposition method for the approximate resolution of the linear system to solve at each inverse power iteration. Our method brings to a low development effort as the inner multigroup solver can be re-use without modification, and allows us to adapt locally the numerical resolution (mesh, finite element order). Numerical results are obtained by a parallel implementation of the method on two different cases with a pin by pin discretization. This results are analyzed in terms of memory consumption and parallel efficiency. (authors)

  10. Mathematical foundations of transport theory

    International Nuclear Information System (INIS)

    Ershov, Yu.I.; Shikhov, S.B.

    1985-01-01

    Foundations of mathematical transport theory are presented. Definitions and theorems of functional analysis are given. Linear kinetic equation of neutron transport in multiplication media is derived. A model of neutron interaction with nuclei of medium determining completely the coefficient properties in transport equation is described. Non-stationary problems regarding and without regard of d=e layed neutrons are analyzed. Results of solving Cauchy problem are discussed

  11. Colloid transport code-nuclear user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R. [New Mexico Univ., Albuquerque, NM (United States)

    1992-04-03

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems.

  12. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  13. Transport phenomena in Newtonian fluids a concise primer

    CERN Document Server

    Olsson, Per

    2013-01-01

    This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum.  The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid.  Also provided at

  14. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  15. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  16. Temperature gradient driven electron transport in NSTX and Tore Supra

    International Nuclear Information System (INIS)

    Horton, W.; Wong, H.V.; Morrison, P.J.; Wurm, A.; Kim, J.H.; Perez, J.C.; Pratt, J.; Hoang, G.T.; LeBlanc, B.P.; Ball, R.

    2005-01-01

    Electron thermal fluxes are derived from the power balance for Tore Supra (TS) and NSTX discharges with centrally deposited fast wave electron heating. Measurements of the electron temperature and density profiles, combined with ray tracing computations of the power absorption profiles, allow detailed interpretation of the thermal flux versus temperature gradient. Evidence supporting the occurrence of electron temperature gradient turbulent transport in the two confinement devices is found. With control of the magnetic rotational transform profile and the heating power, internal transport barriers are created in TS and NSTX discharges. These partial transport barriers are argued to be a universal feature of transport equations in the presence of invariant tori that are intrinsic to non-monotonic rotational transforms in dynamical systems

  17. A closed-form solution for the two-dimensional Fokker-Planck equation for electron transport in the range of Compton Effect

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.D.A. [Universidade Federal Rio Grande do Sul, Programa de Pos-Graduacao em Engenharia Mecanica, Rua Portuguesa 218/304, 90650-12 Porto Alegre, RS (Brazil)], E-mail: barbara.arodriguez@gmail.com; Vilhena, M.T. [Universidade Federal Rio Grande do Sul, Departamento de Matematica Pura e Aplicada, Porto Alegre, RS (Brazil)], E-mail: vilhena@mat.ufrgs.br; Borges, V. [Universidade Federal Rio Grande do Sul, Programa de Pos-Graduacao em Engenharia Mecanica, Rua Portuguesa 218/304, 90650-12 Porto Alegre, RS (Brazil)], E-mail: borges@ufrgs.br; Hoff, G. [Pontificia Universidade Catolica do Rio Grande do Sul, Faculdade de Fisica, Porto Alegre, RS (Brazil)], E-mail: hoff@pucrs.br

    2008-05-15

    In this paper we solve the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation for charged particles in a rectangular domain. To construct the solution we begin applying the P{sub N} approximation in the angular variable and the Laplace Transform in the x-variable, thus obtaining a first order linear differential equation in y-variable, which the solution is straightforward. The angular flux of electrons and the parameters of the medium are used for the calculation of the energy deposited by the secondary electrons generated by Compton Effect. The remaining effects will not be taken into account. The results will be presented under absorbed energy form in several points of interested. We present numerical simulations and comparisons with results obtained by using Geant4 (version 8) program which applies the Monte Carlo's technique to low energy libraries for a two-dimensional problem assuming the screened Rutherford differential scattering cross-section.

  18. A closed-form solution for the two-dimensional Fokker-Planck equation for electron transport in the range of Compton Effect

    International Nuclear Information System (INIS)

    Rodriguez, B.D.A.; Vilhena, M.T.; Borges, V.; Hoff, G.

    2008-01-01

    In this paper we solve the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation for charged particles in a rectangular domain. To construct the solution we begin applying the P N approximation in the angular variable and the Laplace Transform in the x-variable, thus obtaining a first order linear differential equation in y-variable, which the solution is straightforward. The angular flux of electrons and the parameters of the medium are used for the calculation of the energy deposited by the secondary electrons generated by Compton Effect. The remaining effects will not be taken into account. The results will be presented under absorbed energy form in several points of interested. We present numerical simulations and comparisons with results obtained by using Geant4 (version 8) program which applies the Monte Carlo's technique to low energy libraries for a two-dimensional problem assuming the screened Rutherford differential scattering cross-section

  19. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    Science.gov (United States)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone

  20. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation

    Directory of Open Access Journals (Sweden)

    C. Cholet

    2017-07-01

    Full Text Available The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection–diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection–diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space – between the two reaches located in the unsaturated zone (R1, and in the zone that is both unsaturated and saturated (R2 – as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions and localized infiltration in the secondary conduit network (tributaries in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit–matrix exchanges, inducing a complex water mixing effect

  1. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  2. A new treatment of the heat transport equation with a transport barrier and applications to ECRH experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, A.G.; Bouquey, F.; Clary, J.; Darbos, C.; Lennholm, M.; Magne, R.; Segui, J.L. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Clemencon, A. [MIT, Electrochemical Energy Laboratory, Cambridge, MA (United States); Guivarch, C. [Ecole Nationale des Ponts et Chaussees, 77 - Marne-la-Vallee (France)

    2004-07-01

    An exact analytical solution of the electron heat diffusion equation in a cylinder has been found with a step-like diffusion coefficient, plus a monomial increase in the radial direction and a constant damping term. This model is sufficiently general to describe heat diffusion in the presence of a critical gradient threshold or a transport barrier, superimposed to the usual trend of increasing heat diffusivity from the plasma core to the edge. This type of representation allows us to see some well-known properties of heat transport phenomena in a different light. For instance, it has been shown that the contributions of the Eigenmodes to the time dependent solution grow at speeds that depend on the Eigenmode order i.e. at the beginning of the heating phase all the Eigenmodes are equally involved, whereas at the end only the lower order ones are left. This implies, e.g., that high frequency modulation experiments provide a characterization of transport phenomena that is intrinsically different with respect to power balance analysis of a stationary phase. It is particularly useful to analyse power switch on/off events and whenever high frequency modulations are not technically feasible. Low-frequency (1-2 Hz) ECRH modulation experiments have been performed on Tore Supra. A large jump (a factor of 8) in the heat diffusivity has been clearly identified at the ECRH power deposition layer. The amplitude and phase of several harmonics of the Fourier transform of the modulated temperature, as well as the time evolution of the modulated temperature have been reproduced by the analytical solution. The jump is found to be much weaker at lower ECRH power (one gyrotron)

  3. Matrix-oriented implementation for the numerical solution of the partial differential equations governing flows and transport in porous media

    KAUST Repository

    Sun, Shuyu

    2012-09-01

    In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like MATLAB, Python, etc., which show to be more efficient for certain mathematical operations than for others. The proposed technique utilizes those operations in which these programming languages are efficient the most and keeps away as much as possible from those inefficient, time-consuming operations. In particular, this technique is based on the minimization of using multiple indices looping operations by reshaping the unknown variables into one-dimensional column vectors and performing the numerical operations using shifting matrices. The cell-centered information as well as the face-centered information are shifted to the adjacent face-center and cell-center, respectively. This enables the difference equations to be done for all the cells at once using matrix operations rather than within loops. Furthermore, for results post-processing, the face-center information can further be mapped to the physical grid nodes for contour plotting and stream lines constructions. In this work we apply this technique to flow and transport phenomena in porous media. © 2012 Elsevier Ltd.

  4. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Zika, M R; Adams, M L

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.

  5. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    International Nuclear Information System (INIS)

    Zika, M.R.; Adams, M.L.

    2000-01-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  6. Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems

    International Nuclear Information System (INIS)

    Zika, Michael R.; Adams, Marvin L.

    2000-01-01

    We apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, we take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. Our main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme.The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. We devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, we define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. We implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; we prove that the long-characteristics discretization yields an SPD matrix. We present results of our acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  7. Developments in tokamak transport modeling

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger; Lao, L.L.

    1981-01-01

    A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements

  8. A generalized model for transport of contaminants in soil by electric fields.

    Science.gov (United States)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D; Alshawabkeh, Akram N

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation that describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions, may be significant for realistic prediction of enhanced electrokinetic extraction of metals in real-world applications.

  9. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  10. libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

    Science.gov (United States)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2015-04-01

    This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  11. libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations

    Science.gov (United States)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2014-11-01

    This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include: homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  12. How combined trip purposes are associated with transport choice for short distance trips. Results from a cross-sectional study in the Netherlands.

    Directory of Open Access Journals (Sweden)

    Eline Scheepers

    Full Text Available One way to increase physical activity is to stimulate a shift from car use to walking or cycling. In single-purpose trips, purpose was found to be an important predictor of transport choice. However, as far as known, no studies have been conducted to see how trips with combined purposes affect this decision. This study was designed to provide insight into associations between combined purposes and transport choice.An online questionnaire (N = 3,663 was used to collect data concerning transport choice for four primary purposes: shopping, going to public natural spaces, sports, and commuting. Per combination of primary trip purpose and transport choice, participants were asked to give examples of secondary purposes that they combine with the primary purpose. Logistic regression analyses were used to model the odds of both cycling and walking versus car use.Primary trip purposes combined with commuting, shopping, visiting private contacts or medical care were more likely to be made by car than by cycling or walking. Combinations with visiting catering facilities, trips to social infrastructure facilities, recreational outings, trips to facilities for the provision of daily requirements or private contacts during the trip were more likely to be made by walking and/or cycling than by car.Combined trip purposes were found to be associated with transport choice. When stimulating active transport focus should be on the combined-trip purposes which were more likely to be made by car, namely trips combined with commuting, other shopping, visiting private contacts or medical care.

  13. An efficient numerical method for solving the Boltzmann equation in multidimensions

    Science.gov (United States)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  14. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    Energy Technology Data Exchange (ETDEWEB)

    Alali, Abdullah

    2014-02-21

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  15. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    International Nuclear Information System (INIS)

    Alali, Abdullah

    2014-01-01

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  16. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  17. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  18. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  19. Jetto a free boundary plasma transport code

    International Nuclear Information System (INIS)

    Cenacchi, G.; Taroni, A.

    1988-01-01

    JETTO is a one-and-a-half-dimensional transport code calculating the evolution of plasma parameters in a time dependent axisymmetric MHD equilibrium configuration. A splitting technique gives a consistent solution of coupled equilibrium and transport equations. The plasma boundary is free and defined either by its contact with a limiter (wall) or by a separatrix or by the toroidal magnetic flux. The Grad's approach to the equilibrium problem with adiabatic (or similar) constraints is adopted. This method consists of iterating by alternately solving the Grad-Schluter-Shafranov equation (PDE) and the ODE obtained by averaging the PDE over the magnetic surfaces. The bidimensional equation of the poloidal flux is solved by a finite difference scheme, whereas a Runge-Kutta method is chosen for the averaged equilibrium equation. The 1D transport equations (averaged over the magnetic surfaces) for the electron and ion densities and energies and for the rotational transform are written in terms of a coordinate (ρ) related to the toroidal flux. Impurity transport is also considered, under the hypothesis of coronal equilibrium. The transport equations are solved by an implicit scheme in time and by a finite difference scheme in space. The centering of the source terms and transport coefficients is performed using a Predictor-Corrector scheme. The basic version of the code is described here in detail; input and output parameters are also listed

  20. Directional Transport of a Liquid Drop between Parallel-Nonparallel Combinative Plates.

    Science.gov (United States)

    Huang, Yao; Hu, Liang; Chen, Wenyu; Fu, Xin; Ruan, Xiaodong; Xie, Haibo

    2018-04-17

    Liquids confined between two parallel plates can perform the function of transmission, support, or lubrication in many practical applications, due to which to maintain liquids stable within their working area is very important. However, instabilities may lead to the formation of leaking drops outside the bulk liquid, thus it is necessary to transport the detached drops back without overstepping the working area and causing destructive leakage to the system. In this study, we report a novel and facile method to solve this problem by introducing the wedgelike geometry into the parallel gap to form a parallel-nonparallel combinative construction. Transport performances of this structure were investigated. The criterion for self-propelled motion was established, which seemed more difficult to meet than that in the nonparallel gap. Then, we performed a more detailed investigation into the drop dynamics under squeezing and relaxing modes because the drops can surely return in hydrophilic combinative gaps, whereas uncertainties arose in gaps with a weak hydrophobic character. Therefore, through exploration of the transition mechanism of the drop motion state, a crucial factor named turning point was discovered and supposed to be directly related to the final state of the drops. On the basis of the theoretical model of turning point, the criterion to identify whether a liquid drop returns to the parallel part under squeezing and relaxing modes was achieved. These criteria can provide guidance on parameter selection and structural optimization for the combinative gap, so that the destructive leakage in practical productions can be avoided.

  1. Steady state solution of the Fokker-Planck equation combined with unidirectional quasilinear diffusion under detailed balance conditions

    International Nuclear Information System (INIS)

    Hizanidis, K.

    1984-04-01

    The relativistic collisional Fokker-Planck equation combined with an externally imposed unidirectional quasilinear (rf) diffusion is solved for arbitrary values of rf diffusion coefficient under conditions of detailed balance of the staionary joint distribution involved. The detailed balance condition imposes a restriction on the functional form of the quasilinear diffusion coefficient which might be associated with the existence of a saturated spectrum of fluctuation in a quasilinearly rf-driven plasma

  2. DTF4-J, 1-D Neutron Transport with Anisotropic Scattering by Sn Method

    International Nuclear Information System (INIS)

    Nishimura, Hideo

    1971-01-01

    Nature of physical problem solved: DTF-4-J solves the one-dimensional multi-group transport equation with anisotropic scattering by Sn method. It is a FORTRAN adaptation of the Los Alamos DTF-IV program written by K.D. Lathrop, and it is combined with the JAERI SIMPLED-4 program written by H. Nishimura

  3. New methods in transport theory. Part of a coordinated programme on methods in neutron transport theory

    International Nuclear Information System (INIS)

    Stefanovic, D.

    1975-09-01

    The research work of this contract was oriented towards the study of different methods in neutron transport theory. Authors studied analytical solution of the neutron slowing down transport equation and extension of this solution to include the energy dependence of the anisotropy of neutron scattering. Numerical solution of the fast and resonance transport equation for the case of mixture of scatterers including inelastic effects were also reviewed. They improved the existing formalism for treating the scattering of neutrons on water molecules; Identifying modal analysis as the Galerkin method, general conditions for modal technique applications have been investigated. Inverse problems in transport theory were considered. They obtained the evaluation of an advanced level distribution function, made improvement of the standard formalism for treating the inelastic scattering and development of a cluster nuclear model for this evaluation. Authors studied the neutron transport treatment in space energy groups for criticality calculation of a reactor core, and development of the Monte Carlo sampling scheme from the neutron transport equation

  4. Two-group modeling of interfacial area transport in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65409 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2015-11-15

    Highlights: • Implemented updated constitutive models and benchmarking method for IATE in large pipes. • New model and method with new data improved the overall IATE prediction for large pipes. • Not all conditions well predicted shows that further development is still required. - Abstract: A comparison of the existing two-group interfacial area transport equation source and sink terms for large diameter channels with recently collected interfacial area concentration measurements (Schlegel et al., 2012, 2014. Int. J. Heat Fluid Flow 47, 42) has indicated that the model does not perform well in predicting interfacial area transport outside of the range of flow conditions used in the original benchmarking effort. In order to reduce the error in the prediction of interfacial area concentration by the interfacial area transport equation, several constitutive relations have been updated including the turbulence model and relative velocity correlation. The transport equation utilizing these updated models has been modified by updating the inter-group transfer and Group 2 coalescence and disintegration kernels using an expanded range of experimental conditions extending to pipe sizes of 0.304 m [12 in.], gas velocities of up to nearly 11 m/s [36.1 ft/s] and liquid velocities of up to 2 m/s [6.56 ft/s], as well as conditions with both bubbly flow and cap-bubbly flow injection (Schlegel et al., 2012, 2014). The modifications to the transport equation have resulted in a decrease in the RMS error for void fraction and interfacial area concentration from 17.32% to 12.3% and 21.26% to 19.6%. The combined RMS error, for both void fraction and interfacial area concentration, is below 15% for most of the experiments used in the comparison, a distinct improvement over the previous version of the model.

  5. An outline review of numerical transport methods

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)

  6. A transport-based condensed history algorithm

    International Nuclear Information System (INIS)

    Tolar, D. R. Jr.

    1999-01-01

    Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s 0 . This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s 0 . For example, the PEnELOPE method splits each step into two substeps; one with length ξs 0 and one with length (1 minusξ)s 0 , where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power

  7. Nonlinear transport properties of non-ideal systems

    International Nuclear Information System (INIS)

    Pavlov, G A

    2009-01-01

    The theory of nonlinear transport is elaborated to determine the Burnett transport properties of non-ideal multi-element plasma and neutral systems. The procedure for the comparison of the phenomenological conservation equations of a continuous dense medium and the microscopic equations for dynamical variable operators is used for the definition of these properties. The Mori algorithm is developed to derive the equations of motion of dynamical value operators of a non-ideal system in the form of the generalized nonlinear Langevin equations. In consequence, the microscopic expressions of transport coefficients corresponding to second-order thermal disturbances (temperature, mass velocity, etc) have been found in the long wavelength and low frequency limits

  8. Mathematical problems in the one-velocity theory of particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V S

    1963-01-15

    This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.

  9. Mathematical problems in the one-velocity theory of particle transport

    International Nuclear Information System (INIS)

    Vladimirov, V.S.

    1963-01-01

    This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.

  10. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  11. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  12. Monte Carlo simulation of neutron transport phenomena

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2009-01-01

    Neutron transport is one of the central problems in nuclear reactor related studies and other applied sciences. Some of the major applications of neutron transport include nuclear reactor design and safety, criticality safety of fissile material handling, neutron detector design and development, nuclear medicine, assessment of radiation damage to materials, nuclear well logging, forensic analysis etc. Most reactor and dosimetry studies assume that neutrons diffuse from regions of high to low density just like gaseous molecules diffuse to regions of low concentration or heat flow from high to low temperature regions. However while treatment of gaseous or heat diffusion is quite accurately modeled, treatment of neutron transport as simple diffusion is quite limited. In simple diffusion, the neutron trajectories are irregular, random and zigzag - where as in neutron transport low reaction cross sections (1 barn- 10 -24 cm 2 ) lead to long mean free paths which again depend on the nature and irregularities of the medium. Hence a more accurate representation of the neutron transport evolved based on the Boltzmann equation of kinetic gas theory. In fact the neutron transport equation is a linearized version of the Boltzmann gas equation based on neutron conservation with seven independent variables. The transport equation is difficult to solve except in simple cases amenable to numerical methods. The diffusion (equation) approximation follows from removing the angular dependence of the neutron flux

  13. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  14. Simulation of an ITER-like dissipative divertor plasma with a combined edge plasma Navier-Stokes neutral model

    International Nuclear Information System (INIS)

    Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.

    1996-01-01

    A combined edge plasma/Navier-Stokes neutral transport model is used to simulate dissipative divertor plasmas in the collisional limit for neutrals on a simplified two-dimensional slab geometry with ITER-like plasma conditions and scale lengths. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion-neutral elastic collisions. The neutral transport coefficients are evaluated including both ion-neutral and neutral-neutral collisions. (orig.)

  15. SHADOK-3-6, Transport Equation with Anisotropic Diffusion in P1 Approximation for Spherical and Cylindrical Geometry

    International Nuclear Information System (INIS)

    Ligou, J.; Thomi, P.A.

    1973-01-01

    1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13

  16. Journal: A Review of Some Tracer-Test Design Equations for ...

    Science.gov (United States)

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-

  17. Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior

    International Nuclear Information System (INIS)

    Mokhtar-Kharroubi, M.

    1987-12-01

    Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr

  18. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)

    2014-11-15

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.

  19. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry

    2014-01-01

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study

  20. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    Science.gov (United States)

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  1. On the relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    It is demonstrated through the flux-force relationship in the neoclassical theory that when neoclassical transport fluxes are improved, the damping rate of the radial electric field of the zonal flow is reduced. This, in turn, leads to improved turbulent transport fluxes. Thus, two seemingly unrelated transport fluxes are intimately connected through the momentum equation, and the neoclassical flux-force relation. This also implies a method to improve turbulent transport by improving neoclassical fluxes

  2. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  3. Modeling the current distribution in HTS tapes with transport current and applied magnetic field

    NARCIS (Netherlands)

    Yazawa, T.; Yazawa, Takashi; Rabbers, J.J.; Chevtchenko, O.A.; ten Haken, Bernard; ten Kate, Herman H.J.; Maeda, Hideaki

    1999-01-01

    A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in

  4. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  5. Splitting Method for Solving the Coarse-Mesh Discretized Low-Order Quasi-Diffusion Equations

    International Nuclear Information System (INIS)

    Hiruta, Hikaru; Anistratov, Dmitriy Y.; Adams, Marvin L.

    2005-01-01

    In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects

  6. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    International Nuclear Information System (INIS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-01-01

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach

  7. Optimal partial mass transportation and obstacle Monge-Kantorovich equation

    Science.gov (United States)

    Igbida, Noureddine; Nguyen, Van Thanh

    2018-05-01

    Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).

  8. GANTRAS - a system of codes for the solution of the multigroup transport equation with a rigorous treatment of anisotropic neutron scattering

    International Nuclear Information System (INIS)

    Schwenk-Ferrero, A.

    1986-11-01

    GANTRAS is a system of codes for neutron transport calculations in which the anisotropy of elastic and inelastic (including (n,n'x)-reactions) scattering is fully taken into account. This is achieved by employing a rigorous method, so-called I * -method, to represent the scattering term of the transport equation and with the use of double-differential cross-sections for the description of the emission of secondary neutrons. The I * -method was incorporated into the conventional transport code ONETRAN. The ONETRAN subroutines were modified for the new purpose. An implementation of the updated version ANTRA1 was accomplished for plane and spherical geometry. ANTRA1 was included in GANTRAS and linked to another modules which prepare angle-dependent transfer matrices. The GANTRAS code consists of three modules: 1. The CROMIX code which calculates the macroscopic transfer matrices for mixtures on the base of microscopic nuclide-dependent data. 2. The ATP code which generates discretized angular transfer probabilities (i.e. discretizes the I * -function). 3. The ANTRA1 code to perform S N transport calculations in one-dimensional plane and spherical geometries. This structure of GANTRAS allows to accommodate the system to various transport problems. (orig.) [de

  9. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  10. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1979-03-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavyion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental informations (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (orig.) [de

  11. Necessary calorific energy during the in-service welding of pipelines for petroleum transport; Energia calorifica necesaria durante la soldadura en servicio de tuberias para el transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Morales, Felix; Scott, Alejandro Duffus; Rodriguez Perez, Manuel; Diza Cedre, Eduardo; Pozo Morejon, Juan A. [Universidad Central Marta Abreu de las Villas, Santa Clara, Villa Clara (Cuba). Centro de Investigaciones de Soldadura

    2009-01-15

    The thermal behavior during in service repair welding of oil transportation pipes was studied by finite element analysis in the present paper. Regression equations that relate peak temperature at the inner surface of the pipe and cooling time between 800 and 500 deg C in the heat affected zone to the welding heat input, preheat temperature, and convection heat transfer coefficient were obtained. The former parameters govern, respectively, the possibility of burn through and cold cracking, and the latter parameters define the thermal behavior during welding. The existence of conditions that simultaneously satisfy the obtained equations, for different combinations of related variables, was proved. Graphical representations of relevant practical importance that were developed from the solution of obtained equations are presented. (author)

  12. Modelling the Molecular Transportation of Subcutaneously Injected Salubrinal

    Directory of Open Access Journals (Sweden)

    Andy Chen

    2011-01-01

    Full Text Available For the subcutaneous administration of a chemical agent (salubrinal, we constructed a mathematical model of molecule transportation and subsequently evaluated the kinetics of diffusion, convection, and molecular turnover. Salubrinal is a potential therapeutic agent that can reduce cellular damage and death. The understanding of its temporal profiles in local tissue as well as in a whole body is important to develop a proper strategy for its administration. Here, the diffusion and convection kinetics was formulated using partial and ordinary differential equations in one- and three-dimensional (semi-spherical coordinates. Several key parameters including an injection velocity, a diffusion coefficient, thickness of subcutaneous tissue, and a permeability factor at the tissue-blood boundary were estimated from experimental data in rats. With reference to analytical solutions in a simplified model without convection, numerical solutions revealed that the diffusion coefficient and thickness of subcutaneous tissue determined the timing of the peak concentration in the plasma, and its magnitude was dictated by the permeability factor. Furthermore, the initial velocity, induced by needle injection, elevated an immediate transport of salubrinal at t < 1h. The described analysis with a combination of partial and ordinary differential equations contributes to the prediction of local and systemic effects and the understanding of the transportation mechanism of salubrinal and other agents.

  13. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    International Nuclear Information System (INIS)

    George J. Moridis

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity

  14. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  15. Asymptotic limits of a statistical transport description

    International Nuclear Information System (INIS)

    Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)

    1989-01-01

    We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations

  16. Mathematical models for volume rendering and neutron transport

    International Nuclear Information System (INIS)

    Max, N.

    1994-09-01

    This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect

  17. A Novel Algorithm for Solving the Multidimensional Neutron Transport Equation on Massively Parallel Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry

    2014-06-10

    We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.

  18. On the Use of Importance Sampling in Particle Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, B

    1965-06-15

    The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice.

  19. On the Use of Importance Sampling in Particle Transport Problems

    International Nuclear Information System (INIS)

    Eriksson, B.

    1965-06-01

    The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice

  20. Spectral and evolutionary analysis of advection-diffusion equations and the shear flow paradigm

    International Nuclear Information System (INIS)

    Thyagaraja, A.; Loureiro, N.; Knight, P.J.

    2002-01-01

    Advection-diffusion equations occur in a wide variety of fields in many contexts of active and passive transport in fluids and plasmas. The effects of sheared advective flows in the presence of irreversible processes such as diffusion and viscosity are of considerable current interest in tokamak and astrophysical contexts, where they are thought to play a key role in both transport and the dynamical structures characteristic of electromagnetic plasma turbulence. In this paper we investigate the spectral and evolutionary properties of relatively simple, linear, advection-diffusion equations. We apply analytical approaches based on standard Green's function methods to obtain insight into the nature of the spectra when the advective and diffusive effects occur separately and in combination. In particular, the physically interesting limit of small (but finite) diffusion is studied in detail. The analytical work is extended and supplemented by numerical techniques involving a direct solution of the eigenvalue problem as well as evolutionary studies of the initial value problem using a parallel code, CADENCE. The three approaches are complementary and entirely consistent with each other when appropriate comparison is made. They reveal different aspects of the properties of the advection-diffusion equation, such as the ability of sheared flows to generate a direct cascade to high wave numbers transverse to the advection and the consequent enhancement of even small amounts of diffusivity. The invariance properties of the spectra in the low diffusivity limit and the ability of highly sheared, jet-like flows to 'confine' transport to low shear regions are demonstrated. The implications of these properties in a wider context are discussed and set in perspective. (author)