WorldWideScience

Sample records for transport cask containment

  1. Shipment and Storage Containers for Tritium Production Transportation Casks

    International Nuclear Information System (INIS)

    Massey, W.M.

    1998-04-01

    The need for a shipping and storage container for the Tritium production transportation casks is addressed in this report. It is concluded that a shipping and storage container is not required. A recommendation is made to eliminate the requirement for this container because structural support and inerting requirements can be satisfied completely by the cask with a removable basket

  2. STACE: source term analyses for containment evaluations of transport casks

    International Nuclear Information System (INIS)

    Seager, K.D.; Gianoulakis, S.E.; Barrett, P.R.; Rashid, Y.R.; Reardon, P.C.

    1993-01-01

    STACE evaluates the calculated fuel rod response against failure criteria based on the cladding residual ductility and fracture properties as functions of irradiation and thermal environments. The fuel rod gap inventory contains three forms of releasable RAM: (1) gaseous, e.g., 85 Kr, (2) volatiles, e.g., 134 Cs and 137 Cs, and (3) actinides associated with fuel fines. The quantities of these products are limited to that contained within the fuel-cladding gap region and associated interconnected voids. Cladding pinhole failure will also result in the ejection of about 0.003 percent of the fuel, in the form of fines, into the cask cavity. Significant attenuation of the aerosol concentration in the transport cask can occur, depending upon the residence time of the aerosol in the cask compared with its rate of escape from the cask into the environment. (J.P.N.)

  3. ANSI N14.5 source term licensing of spent-fuel transport cask containment

    International Nuclear Information System (INIS)

    Seager, K.D.; Reardon, P.C.; James, R.J.; Foadian, H.; Rashid, Y.R.

    1993-01-01

    American National Standards Institute (ANSI) standard N14.5 states that ''compliance with package containment requirements shall be demonstrated either by determination of the radioactive contents release rate or by measurement of a tracer material leakage rate.'' The maximum permissible leakage rate from the transport cask is equal to the maximum permissible release rate divided by the time-averaged volumetric concentration of suspended radioactivity within the cask. The development of source term methodologies at Sandia National Laboratories (SNL) provides a means to determine the releasable radionuclide concentrations within spent-fuel transport casks by estimating the probability of cladding breach, quantifying the amount of radioactive material released into the cask interior from the breached fuel rods, and quantifying the amount of radioactive material within the cask due to other sources. These methodologies are implemented in the Source Term Analyses for Containment Evaluations (STACE) software. In this paper, the maximum permissible leakage rates for the normal and hypothetical accident transport conditions defined by 10 CFR 71 are estimated using STACE for a given cask design, fuel assembly, and initial conditions. These calculations are based on defensible analysis techniques that credit multiple release barriers, including the cladding and the internal cask walls

  4. A method for determining the spent-fuel contribution to transport cask containment requirements

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.L.; Seager, K.D. [Sandia National Labs., Albuquerque, NM (United States); Rashid, Y.R.; Barrett, P.R. [ANATECH Research Corp., La Jolla, CA (United States); Malinauskas, A.P. [Oak Ridge National Lab., TN (United States); Einziger, R.E. [Pacific Northwest Lab., Richland, WA (United States); Jordan, H. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Duffey, T.A.; Sutherland, S.H. [APTEK, Inc., Colorado Springs, CO (United States); Reardon, P.C. [GRAM, Inc., Albuquerque, NM (United States)

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

  5. A method for determining the spent-fuel contribution to transport cask containment requirements

    International Nuclear Information System (INIS)

    Sanders, T.L.; Seager, K.D.; Rashid, Y.R.; Barrett, P.R.; Malinauskas, A.P.; Einziger, R.E.; Jordan, H.; Reardon, P.C.

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs

  6. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  7. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  8. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  9. Transportation cask contamination weeping

    International Nuclear Information System (INIS)

    Bennett, P.C.; Doughty, D.H.; Chambers, W.B.

    1993-01-01

    This paper describes the problem of cask contamination weeping, and efforts to understand the phenomenon and to eliminate its occurrence during spent nuclear fuel transport. The paper summarizes analyses of field experience and scoping experiments, and concentrates on current modelling and experimental validation efforts. (J.P.N.)

  10. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  11. A program to qualify ductile cast iron for use as a containment material for type B transport cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Sorenson, K.B.; Witt, C.R.

    1990-01-01

    This paper reports on the Department of Energy (DOE) investigations for the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. Interaction by contract with the private industry, the American Society for Testing and Materials (ASTM) Committee A4.04, and the Electric Power Research Institute (EPRI) will be actively pursued to establish material specification acceptance criteria for ductile iron use as a cask material in the United States of America (USA). All test results will be documented in the safety analysis report for packaging for submission to the U.S. Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings

  12. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Wankerl, M.W.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs

  13. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Wankerl, M.W.; Joy, D.S.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 465 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the DOE consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated

  14. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  15. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Do, Jae Bum; Lee, Heung Young

    1990-03-01

    Transportation of spent fuels to the AFR interim storage facility and disposal repository are necessary in Korea. Therefore, an emphasis has been concentrated to develop the design and fabrication technology of commercial casks. A conceptual design of the temperature and deformation measuring systems in the cask, which will be used for mock-up tests has been performed. Preliminary design data of the cask for 7 spent PWR fuels have been obtained in the course of study. (author)

  16. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  17. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Kang, Hee Dong; Lee, Heung Young; Seo, Ki Suk; Koo, Jung Hoe; Jung, Sung Hwan; Yoon, Jung Hyun; Lee, Ju Chan; Bang, Kyung Sik; Baek, Chang Yeol

    1992-03-01

    The major goal of this project is to establish the safe transport system and obtain the necessary data for cask development by during research work for the design and safety test of shipping cask. The analysis technique using computer code for design has been studied in the field of structure, thermal and shielding analysis in this study. And also the test and measurement technology was developed for the measuring system of drop and fire test. It is expected that research activity ensured in this job will enable us to ultilize the basic data for the cask development. (Author)

  18. Geometric feasibility of flexible cask transportation system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P.; Ribeiro, M.I.; Aparicio, P. [Instituto Superior Tecnico-Instituto de Sistemas e Robotica, Lisboa (Portugal)

    1998-07-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  19. An evaluation of the use of depleted uranium as a structural component for transport casks

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Depleted uranium (DU) alloys are currently used for gamma-ray shielding in casks and as shielding blocks. For the transport cask application, a significant weight and dimensional penalty exists when using the DU solely for shielding. If credit could be taken for the structural use of the DU for containment in a transport cask, greater payloads may be realized. Mechanical property measurements of several uranium alloys and finite element analyses of prototype transport casks assumed to be constructed, in part, from selected uranium materials were performed to evaluate the potential for the use of DU alloys for cask containment. These data and analyses support the concept of the use of DU alloys for the containment function even under hypothetical accident conditions. A conclusion is that the properties of certain DU alloys are therefore sufficient to warrant further consideration of the material for this purpose

  20. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  1. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  2. European experience in transport/storage cask for vitrified residues

    International Nuclear Information System (INIS)

    Otton, Camille; Sicard, Damien

    2007-01-01

    Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN TM 81 casks currently in use in Switzerland and the TN TM 85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN TM 81 and TN TM 85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN TM 81 and the TN TM 85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

  3. Size and transportation capabilities of the existing US cask fleet

    International Nuclear Information System (INIS)

    Danese, F.L.; Johnson, P.E.; Joy, D.S.

    1990-01-01

    This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade

  4. Safety analysis report for radwaste foam transport cask

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Bang, K. S.; Seo, K. S.; Lee, D. W.; Kim, J. H.; Park, S. W.; Lee, J. W.; Kim, K. H.

    1999-08-01

    For the tests and examinations of radwaste foam which generated in domestic nuclear power plants a radioactive material transport cask is needed to transport the radwaste foam from the power plants to KAERI. This cask should be easy to handle in the facilities and safe to maintain the shielding safety of operators. According to the regulations, it should be verified that this cask maintains the thermal and structural integrities under prescribed load conditions by the regulations. The basic structural functions and the integrities of the cask under required load conditions were evaluated. Therefore, it was verified that the cask is suitable to transport radwaste foam from nuclear power plants to KAERI. (author). 11 refs., 10 tabs., 25 figs

  5. The development of a transportable storage cask

    International Nuclear Information System (INIS)

    Stuart, I.F.

    1991-01-01

    There are a number of different technologies for implementing interim storage of spent fuel at reactor sites. It is generally accepted that, if possible, expanding the capacity of existing fuel pools through the installation of compact racks and the use of fuel rod consolidation are the most economical first steps. Once these have been carried out, other alternatives must be employed if further capacity expansion is required. It is not the purpose of this paper to discuss the relative economics of these alternatives, since under specific constraints and conditions each one can be shown to have an economic benefit. However, it is the reduction in plant operations, the minimising of radiation exposure, the inherent flexibility and corresponding overall favourable economics that have led to the development of the dual purpose storage and transport cask in the past few years. (author)

  6. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  7. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  8. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  9. Small gas leakage rate measuring and monitoring system for spent fuel transport/storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Ryoji [Hitachi Zosen Corp., Tokyo (Japan); Aritomi, Masanori; Matsuzaki, Mitsuo; Kawa, Tsunemichi

    1997-12-01

    A containment function of transport and/or storage casks of radioactive materials is essential to prevent the materials from being released excessively into the environment. It is not practical for containment tests to measure directly the radioactivity release so that gas volumetric leakage rates are usually assessed and gas pressure decrease or increase method is usually applied. As gas flow model for evaluation, the ISO standards has deleted the concept of choked flow which is adopted by ANSI N14.5. Provided that the choked flow is not adopted to the leakage rate evaluation, the criteria of the test should be severe, and a new leakage rate measuring system with high accuracy and reasonable measuring time is required. Transport casks are often inspected in a temporary cask-storage facility where simultaneous measurement of many casks is required. In a storage cask system, multiple casks are monitored on their containment function during a storage period, and the method for simultaneous monitoring at many points for long term is required. In this study, two kinds of small gas leakage rate measuring systems are developed. One is to measure gas leakage rates directly and is called `flow measuring system`, which can measure gas leakage rate of 10{sup -4} to 10{sup -2} cm{sup 3}/s with high accuracy and short measuring time. The other is to measure the pressure decreasing rate and is called `pressure decreasing rate measuring system`, which can monitor the pressure change at many points simultaneously. (author)

  10. TRANSPORTATION CASK RECEIPT AND RETURN FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    Arakali, V.

    2005-01-01

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the Transportation Cask Receipt and Return Facility (TCRRF) of the repository including the personnel at the security gate and cask staging areas. This calculation is required to support the preclosure safety analysis (PCSA) to ensure that the predicted doses are within the regulatory limits prescribed by the U.S. Nuclear Regulatory Commission (NRC). The Cask Receipt and Return Facility receives NRC licensed transportation casks loaded with spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TCRRF operation starts with the receipt, inspection, and survey of the casks at the security gate and the staging areas, and proceeds to the process facilities. The transportation casks arrive at the site via rail cars or trucks under the guidance of the national transportation system. This calculation was developed by the Environmental and Nuclear Engineering organization and is intended solely for the use of Design and Engineering in work regarding facility design. Environmental and Nuclear Engineering personnel should be consulted before using this calculation for purposes other than those stated herein or for use by individuals other than authorized personnel in the Environmental and Nuclear Engineering organization

  11. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  12. Issues related to the transport of a transportable storage cask after storage

    International Nuclear Information System (INIS)

    McConnell, P.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Sanders, T.L.; Jones, R.H.

    1991-01-01

    An evaluation was performed to assess whether the reliability of a transportable storage cask system and the risks associated with its use are comparable to those associated with existing transport cask systems and, if they are not, determine how the transportable storage cask system can be made as reliable as existing systems. Reliability and failure mode analyses of both transport-only casks and transportable storage casks and implementation options are compared. Current knowledge regarding the potential effects of a long-term dry storage environment on spent fuel and cask materials is reviewed. A summary assessment of the consideration for deploying a transportable storage cask (TSC) system with emphasis on preliminary design, validation and operational recommendations for TSC implementations is presented. The analyses conclude that a transportable storage cask can likely be shipped upopened by applying a combination of design considerations and operational constraints, including environmental monitoring and pretransport assessments of functional reliability of the cask. A proper mix of these constraints should yield risk parity with any existing transport cask

  13. Contract Report for Usage Inspection of KN-12 Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K

    2007-03-15

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse.

  14. CASTOR(r) and CONSTOR(r) type transport and storage casks for spent fuel and high active waste

    International Nuclear Information System (INIS)

    Kuehne, B.; Sowa, W.

    2002-01-01

    The German company GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and high-level waste. CASTOR(r) casks are used at 18 sites on three continents. Spent fuel assemblies of the types PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high active waste (HAW) containers are stored in these kinds of casks. More than 600 CASTOR(r) casks have been loaded for long-term storage. The two decades of storage have shown that the basic requirements, which are safe confinement, criticality safety, sufficient shielding and appropriate heat transfer have been fulfilled in each case. There is no indication that problems will arise in the future. Of course, the experience of 20 years has resulted in improvements of the cask design. One basic improvement is GNB's development since the mid 1990s of a sandwich cask design using heavy concrete and steel as basic materials, for economical and technical reasons. This CONSTOR(r) cask concept also fulfils all design criteria for transport and storage given by the IAEA recommendations and national authorities. By May 2002 40 CONSTOR(r) casks had been delivered and 15 had been successfully loaded and stored. In this paper the different types of casks are presented. Experiences gained during the large number of cask loadings and more than 4000 cask-years of storage will be summarised. The presentation of recent and future development shows the optimisation potential of the CASTOR(r) and CONSTOR(r) cask families for safe and economical management of spent fuel. (author)

  15. Underground transportation and handling system for Pollux-casks

    International Nuclear Information System (INIS)

    Schrimpf, C.

    1988-01-01

    The concept for the underground transportation and handling system for Pollux-casks was optimized in a first phase by dividing the process in the repository up into the several transportation and manipulation steps. For each step, the possibilities were described and evaluated by means of a list of criteria (technical, safety and economical criteria). The following concept for the transportation and handling was developed: The casks are transported to the unloading area of the surface facilities by railway or truck. After removal of the transport protection, the entry control is performed. The cask is lifted from the vehicle and placed on a railbound transportation vehicle. This transport unit is transferred to the shaft and placed there ready for shaft hoisting. With the hoisting cage protruding, the transport unit is placed on the hoisting cage by means of a pushing-on device, locked, and then conveyed underground. After arrival on the emplacement level, the transport unit is pulled-off from the hoisting cage and taken over by a mine locomotive and transferred through the transportation and access drifts as far as to the emplacement site. There the locomotive pushed the rail transport vehicle into the emplacement drift, as far as to the designated emplacement position. At the emplacement position, the cask is again lifted by means of hoisting equipment. The rail transport vehicle is pulled out of the emplacement drift and returned to the surface for reloading. After deposition of the cask on the drift floor, the emplacement equipment is pulled back in order to give the operation space free for the slinger backfill truck. Within preceding tests two different backfilling techniques were investigated under realistic conditions: pneumatic backfilling and slinger backfilling. The slinger truck was found to be the most suitable for the designated purpose

  16. Experience with the loading and transport of fuel assembly transport casks, including CASTOR casks, and the radiation exposure of personnel

    International Nuclear Information System (INIS)

    Bentele, W.; Kinzelmann, T.

    1999-01-01

    In 1997 and 1998, six spent fuel assembly transports started from the nuclear power plant Gemeinschaftskernkraftwerk Neckar (GKN), using CASTOR-V19 casks. Professor Kuni of Marburg University challenged the statement made by the German Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz (BfS)) based on accepted scientific knowledge, according to which so-called CASTOR transports present no risk, either to the population or to the escorting police units. This paper shows that the collective dose during the loading of the CASTOR casks amounted to 4.5 mSv (gamma and neutrons) per cask at the most, and that the maximum individual dose amounted to 0.26 mSv. In addition to these doses, the collective dose during handling and transport must be considered: this amounted to 0.35 mSv (gamma and neutrons). The dose to the police escort was -2 (limit for surface contamination), presented degrees of contamination >4 Bq cm -2 upon reaching the Valognes/Cogema terminal. However, transport casks coming from French plants also revealed degrees of contamination >4 Bq cm -2 , as well as 'hot spots'. No such contamination was found on NTL 11 casks transported from the GKN to Sellafield. Neither was any increased contamination found upon the arrival of CASTOR-V19 casks transported from GKN to Gorleben or Ahaus. The partially sensationalist media reports were inversely proportional to the actual radiological relevance of the matter. The German Commission on Radiation Protection (SSK) confirmed that the radiological effect of such contaminated spent fuel transports is negligible. (author)

  17. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions

  18. TN-68 Spent Fuel Transport Cask Analytical Evaluation for Drop Events

    International Nuclear Information System (INIS)

    Shah, M.J.; Klymyshyn, Nicholas A.; Adkins, Harold E.; Koeppel, Brian J.

    2007-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing commercial spent nuclear fuel transported in casks certified by NRC under the Code of Federal Regulations (10 CFR), Title 10, Part 71 (1). Both the International Atomic Energy Agency regulations for transporting radioactive materials (2, paragraph 727), and 10 CFR 71.73 require casks to be evaluated for hypothetical accident conditions, which includes a 9-meter (m) (30-ft) drop-impact event onto a flat, essentially unyielding, horizontal surface, in the most damaging orientation. This paper examines the behavior of one of the NRC certified transportation casks, the TN-68 (3), for drop-impact events. The specific area examined is the behavior of the bolted connections in the cask body and the closure lid, which are significantly loaded during the hypothetical drop-impact event. Analytical work to evaluate the NRC-certified TN-68 spent fuel transport cask (3) for a 9-m (30-ft) drop-impact event on a flat, unyielding, horizontal surface, was performed using the ANSYS (4) and LS DYNA (5) finite-element analysis codes. The models were sufficiently detailed, in the areas of bolt closure interfaces and containment boundaries, to evaluate the structural integrity of the bolted connections under 9-m (30-ft) free-drop hypothetical accident conditions, as specified in 10 CFR 71.73. Evaluation of the cask for puncture, caused by a free drop through a distance of 1-m (40-in.) onto a mild steel bar mounted on a flat, essentially unyielding, horizontal surface, required by 10 CFR 71.73, was not included in the current work, and will have to be addressed in the future. Based on the analyses performed to date, it is concluded that, even though brief separation of the flange and the lid surfaces may occur under some conditions, the seals would close at the end of the drop events, because the materials remain elastic during the duration of the event

  19. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  20. Development of transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Kuri, S.; Tamaki, H.; Hode, S.

    2004-01-01

    Mitsubishi Heavy Industries, LTD. (MHI) has been developing various transport and storage casks (MSF cask fleet) for high burn-up spent nuclear fuel (SNF). This paper outlines the specifications and describes the features of the newly developed casks and the advanced technology that enables the maximize number of the accommodated fuel assemblies of high burn-up and short cooling period

  1. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky; Miroslav Picek; Alexey Smirnov; Sergey Komarov; Edward Bradley; Alexander Dudchenko; Konstantin Golubkin

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing, testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.

  2. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  3. Spent fuel transportation cask response to a tunnel fire scenario

    International Nuclear Information System (INIS)

    Bajwa, C.S.; Adkins, H.E.; Cuta, J.M.

    2004-01-01

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB), the U.S. agency responsible for determining the cause of transportation accidents, to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation cask designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the ANSYS registered and COBRA-SFS computer codes to evaluate the thermal performance of different cask designs. The staff concluded that the transportation casks analyzed would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event. No release of radioactive materials would result from exposure of the casks analyzed to such an event. This paper describes the methods and approach used for this assessment

  4. Certifying the TN-BRP and TN-REG transportable storage demonstration casks

    International Nuclear Information System (INIS)

    Abbott, D.G.; Nolan, D.J.; Yoshimura, H.R.

    1991-01-01

    The US DOE has obtained US NRC certification to transport two transportable storage casks for a demonstration project. Because the casks had been built before the decision was made to obtain NRC certification, only limited modifications could be made to the casks. NRC's review resulted in several technical concerns that were subsequently resolved by design modifications, testing, and further analysis. Certification activities included qualifying the ferritic steel body material, modifying the borated stainless steel basket design, and extensive impact limiter testing. Recommendations for certifying future casks are presented based on experience with these casks

  5. Impact of more conservative cask designs of the CRWMS transportation system

    International Nuclear Information System (INIS)

    Joy, D.S.; Pope, R.B.; Johnson, P.E.

    1993-01-01

    The Office of Civilian Radioactive Waste Management has been working since the mid-1980s to develop a cask fleet, which will include legal weight truck and rail/barge casks for the transport of spent nuclear fuel (SNF) from reactors to Civilian Radioactive Waste Management System SNF receiving sites. The cask designs resulting from this effort have been identified as Initiative I casks. In order to maximize payloads, advanced technologies have been incorporated in the Initiative I cask designs, and some design margins have been reduced. Due to the wide range of the characteristics (age/burnup) of the spent fuel assemblies to be transported in the Initiative I casks, it has become apparent that a significant portion of the shipments of the Initiative I casks could not be loaded to their design capacity. Application of a more conventional cask design philosophy might result in new generation casks that would be easier to license, have more operational flexibility as to the range of age/burnup fuel that could be transported at full load, and be easier to fabricate. In general, these casks would have a lower capacity than the currently proposed Initiative I casks, thereby increasing the transportation impacts and the transportation costs

  6. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    Directory of Open Access Journals (Sweden)

    Rezaeian Mahdi

    2015-01-01

    Full Text Available Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion products are treated separately. These calculations are necessary to identify an appropriate leak test that must be performed on the cask and the results can be utilized as the source term for dose evaluation in the safety assessment of the cask.

  7. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  8. Description of from-reactor transportation cask designs

    International Nuclear Information System (INIS)

    Lake, W.H.

    1990-01-01

    This paper describes two from-reactor cask development program contracts. They are a contract for legal weight truck cask designs, and a contract for a rail/barge cask design. The paper also presents several general considerations affecting the cask development program. Two of these which are covered in some detail are the technical topics of burnup credit and source term evaluation

  9. Key technology studies of GY-20 and GY-40 High-capacity cobalt-60 transport casks

    International Nuclear Information System (INIS)

    Liu Huifang; Zhang Xin

    2012-01-01

    GY-20 and GY-40 high-capacity cobalt-60 transport casks are used to transport cobalt-60 industrial irradiators and cobalt-60 bundles. The radioactive contents have special features of high-activity and high residual heat, so only a few countries such as Canada, England and Russia have design capacity. The key technologies and corresponding solutions were studied for the design and manufacture of the cask taking into account the structural, thermal, mechanics and shield requests. A series of tests prove that the cask structure design, design criteria for lead coating structure and quality control measurements are reasonable and effective, and the cask shield integrity can be ensured for all conditions. The casks have ability to transport high-activity sealed sources safely, and the design of cask satisfies the requirement of design code and standard. It can provide reference for other B type package. (authors)

  10. Size and transportation capabilities of the existing U.S. cask fleet

    International Nuclear Information System (INIS)

    Danese, F.L.; Johnson, P.E.; Joy, D.S.

    1990-01-01

    This paper investigates the current spent nuclear fuel cask fleet capability in the United States. It assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade

  11. Design analysis report for the TN-WHC cask and transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, S.A., Fluor Daniel Hanford

    1997-02-13

    This document presents the evaluation of the Spent Nuclear Fuel Cask and Transportation System. The system design was developed by Transnuclear, Inc. and its team members NAC International, Nelson Manufacturing, Precision Components Corporation, and Numatec, Inc. The cask is designated the TN-WHC cask. This report describes the design features and presents preliminary analyses performed to size critical dimensions of the system while meeting the requirements of the performance specification.

  12. Thick nickel plating of spent fuel transport and storage casks CASTOR and POLLUX

    International Nuclear Information System (INIS)

    Wilbuer, K.

    1991-01-01

    Spent fuel elements have to be safely handled in containers for transport and storage. These large casks (100-120 t) are made by various firms according to the specifications given by the nuclear plant operator. For shielding and protection of the hazardous material, the casks' inner surface is coated with a nickel plating about 3000 μm thick. The product and the production process are subject to very stringent requirements, due to the hazardous potential of the material to be shipped or stored. Therefore, both the extremely high quality standards to be met by the nickel plating and the dimensions and capability of the plating plant required for the process are problems that cannot be solved by a usual commercial plating plant. The new concept and process that had to be established are explained in the paper. (orig./MM) [de

  13. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  14. Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask.

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ross, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grey, Carissa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arviso, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garmendia, Rafael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Fernandez Perez, Ismael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Palacio, Alejandro [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Calleja, Guillermo [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Garrido, David [COORDINADORA, Madrid (Spain); Rodriguez Casas, Ana [COORDINADORA, Madrid (Spain); Gonzalez Garcia, Luis [COORDINADORA, Madrid (Spain); Chilton, Lyman Wes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walz, Jacob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gershon, Sabina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klymyshyn, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pena, Ruben [Transportation Technology Center, Inc., Pueblo, CO (United States); Walker, Russell [Transportation Technology Center, Inc., Pueblo, CO (United States)

    2018-01-01

    This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacific Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.

  15. High capacity cask (TN28V) and International Transport System for the return shipment of vitrified high activity wastes

    International Nuclear Information System (INIS)

    Sert, G.; Savornin, B.; Rouquette, Y.

    1989-01-01

    The reprocessing of spent fuel generates different kinds of wastes. Among them fission products and non fissile actinides represent 98% of the radioactivity; these wastes are separated, concentrated, mixed with molten glass and poured into stainless steel containers. For political reasons, it is necessary to return these vitrified high activity wastes to the foreign countries which have decided to have their spent fuel reprocessed in France. So the transport of vitrified waste is vital for both the reprocessor and the utilities that have trusted the reprocessor and this operation has to be securely performed to give satisfaction to all concerned particles. For that reason Cogema will control the whole transport activity from La Hague plants to the receiving facilities of the customers. Therefore cogema will be responsible of the transport whatever the cask type (transport or storage) and will subcontract the transport operation to experienced companies such as Transnucleaire, PNTL or NTL, who will act on behalf of Cogema. Cogema will be the owner of the transport casks while the storage casks will normally be owned by the customers. Both cask types will of course have to comply with the requirements of La Hague, as published by Cogema

  16. Contamination transfers during fuel transport cask loading. A concrete situation

    International Nuclear Information System (INIS)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G.; Briquet, L.; Baubet, D.

    2002-01-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  17. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  18. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    International Nuclear Information System (INIS)

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  19. IAEA'S International Working Group on Integrated Transport and Storage Safety case for Dual Purpose Casks

    International Nuclear Information System (INIS)

    Kumano, Yumiko; Varley, Kasturi; ); Droste, Bernhard; Wolff, Dietmar; Hirose, Makoto; Harvey, John; Reiche, Ingo; McConnell, Paul

    2014-01-01

    Spent nuclear fuel is generated from the operation of nuclear reactors and it is imperative that it is safely managed following its removal from reactor cores. Reactor pools are usually designed based on the assumption that the fuel will be removed after a short period of time either for reprocessing, disposal, or further storage. As a result of storing higher burn-up fuel, significantly increased time-frame till disposal solutions are prepared, and delays in decisions on strategies for spent fuel management, the volume of spent fuel discharged from reactors which needs to be managed and stored is on the increase. Consequently, additional storage capacity is needed following the initial storage in reactor pools. Options for additional storage include wet storage or dry storage in a dedicated facility or in storage casks. One of these options is the use of a Dual Purpose Cask (DPC), which is a specially designed cask for both storage and transport. The management of spent fuel using a DPC generally involves on-site and off-site transportation before and after storage. Most countries require package design approval for the DPC to be transported. In addition, it is required in many countries to have a licence for storage of the spent fuel in the DPC or a licence for a storage facility that contains DPCs. Therefore, demonstration of compliance of the DPC with national and international transport regulations as well as with the storage requirements is necessary. In order to address this increasing need among Member States, the IAEA established an international working group in 2010 to develop a guidance for integrating safety cases for both storage and transport in a holistic manner. The working group consists of experts from regulatory bodies, Technical Support Organizations, operators for both transportation and storage, and research institutes. This activity is planned to be completed by 2013. Currently, a technical report has been drafted and is expected to be

  20. Regional dual-purpose cask for the storage and transport of research reactor spent fuel

    International Nuclear Information System (INIS)

    Neto, Miguel Mattar; Mourao, Rogerio Pimenta

    2002-01-01

    Taking into account that the deadline set for the American program of taking back foreign research reactor spent fuel containing U.S.-supplied enriched uranium - the year 2006, the five Latin American countries operating this type of reactor - Argentina, Brazil, Chile, Peru and Mexico - decided to launch an IAEA-sponsored project aiming at establishing local expertise in managing this material. Among the alternatives for an extended storage of the disused elements, the use of a dual purpose cask for both storage and transport is being seriously considered, due to its appealing advantages: expansion of the plant storage capacity without the burden of costly modifications of the reactor building, flexibility, in that the used fuel can be stored in situ or in other facilities outside the reactor site and the preparation of the elements for the future transportation to the final repository. At the present stage, the cask conceptual design is being developed at the Brazilian participating institutes - CDTN and IPEN. The basic idea is to work on a concept which meets the needs and particularities of each country, in terms of fuel type and dimensions, reactor building handling and transport capabilities, expected spent fuel production, etc, and also be approved by the licensing authorities of all countries involved. The preliminary concept is of a cylindrical cask with an internal cavity, a basket to hold the fuel elements and external shock absorbers. The main body is a sturdy structure with external surfaces of stainless steel and lead filling, which provides the necessary shielding. A double lid system with gaskets and inspection ports guarantees containment and control over any possible gas leakage. Due to the different fuel types used in Latin American research reactors - both MTR and TRIGA fuels are used - and to allow for the storage and transportation of processed fuel, different internal basket designs will be developed. The external shock absorbers are filled

  1. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  2. CASTORR 1000/19: Development and Design of a New Transport and Storage Cask

    International Nuclear Information System (INIS)

    Funke, Th.; Henig, Ch.

    2008-01-01

    The design of the new transport and storage cask type CASTOR R 1000/19 is presented in this paper. This cask was developed for the dry interim storage of spent VVER1000 fuel assemblies concerning the requirements of the Temelin NPP, Czech Republic. While the cask body is based on well-known ductile cast iron cask types with in-wall moderator, the basket follows a new concept. The basket is able to carry 19 fuel assemblies with a total decay heat power up to approximately 17 kW. The cask fulfils all requirements for a type B(U)F package. The main nuclear, mechanical and thermal properties of the cask are illustrated for normal conditions and for hypothetical accident scenarios during transport and storage. The main steps of the handling procedure such as loading the cask, drying the cavity and mounting the double lid system for tightness during interim storage are shown in principle. For this handling, boundary conditions at the NPP site such as dimensions, weight and the loading machine interface are considered. (authors)

  3. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  4. TMI-2 transportation program - Design considerations for the NUPAC 125-B cask handling and loading/unloading equipment

    International Nuclear Information System (INIS)

    Schmoker, D.S.; Schmitt, R.C.; Barkanic, R.J.

    1987-01-01

    Removal, transport and receipt of core debris from the damaged reactor at Three Mile Island Unit 2 (TMI-2) required the design of transport cask handling and ''dry'' loading and unloading equipment. The system for ''dry'' (not underwater) loading of the transport cask includes; 1) equipment for handling the cask, 2) equipment for loading core debris canisters into the cask at TMI, and 3) equipment for removing the canisters in a hot cell facility. This paper reviews the technical design considerations operational parameters and summarizes lessons learned in the design, testing, startup and use of the equipment provided for the TMI-2 Transportation Program

  5. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2004-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  6. Transport and Storage Cask Safety Assessment - Drop Tests and Numerical Calculations -

    International Nuclear Information System (INIS)

    Voelzke, H.; Wille, F.; Wieser, G.; Quercetti, Th.

    2006-01-01

    BAM (the German Federal Institute for Materials Research and Testing) has been performing cask design testing for more than 30 years with a large number of prototype casks of original dimensions and of 1:2 or 1:3 scales. In 2004 a brand new drop test facility was built at the new BAM test facility at Horstwalde about 80 km to the south of Berlin. In September 2004 first demonstration tests with 2 different cask designs were performed in connection with the PATRAM 2004 conference held in Berlin. The dropped prototype casks had gross masses of 141 and 181 metric tons. Since that time BAM has been performing a lot of more drop tests with new cask designs developed by different international cask manufacturers for getting German Type B(U) transport licenses. Current safety assessments especially for mechanical accident scenarios require a combination of experimental and analytical/numerical proofs commonly, because both methods offer specific options and advantages with respect to more and more detailed structural analyses. That again is a consequence of the permanent cask design optimisation for commercial reasons leading to higher stress levels in general. For that reason BAM also improves its numerical analyses capacities including the operation of different software codes. A general BAM guideline describing basic requirements for numerical safety assessment reports gives a good orientation for both applicants and inspectors. But different details of any cask design and safety assessment have to be taken into account and lead to specific questions, investigations and experiences. This paper gives an overview about the new BAM drop test facility and the ongoing drop testing there and it presents current experiences and results of numerical cask analyses and the specific methods developed and used by BAM. In this context special attention is turned to the correlation between experimental and numerical results and an outlook to future developments is given. (authors)

  7. Analysis technology on the temperature and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Shin, L.Y.; Jin, C.Y.; Soo, K.H.; Hwan, C.S.

    2005-01-01

    The cask is used to transport the radioactive materials. It is required to withstand for the thirty minute under the hypothetical fire accident condition of the 800□. According to development of the computer simulation, finite element analysis is applied to the calculation widely. But finite element method for the hypothetical accident conditions is not established in domestic regulations. In this study, the temperature and thermal stress analysis of KSC-4 cask under 800□ fire condition is conducted using by ANSYS 7.0 code. In order to analyze finite elements, two-dimensional model of KSC-4 cask is used. Symmetric boundary, convection, and radiation condition are applied in the analysis. As the results, maximum temperature and thermal stress of the KSC-4 cask is evaluated. (orig.)

  8. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  9. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    2018-03-23

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated with hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.

  10. Performance of CASTORR HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    International Nuclear Information System (INIS)

    Wilmsmeier, Marco; Vossnacke, Andre

    2008-01-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR R HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR R HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR R HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR R HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out as well. GNS long-term CASTOR R

  11. CASKET: a computer code system for thermal and structural analyses of radioactive material transport and/or storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-05-01

    A computer code system CASKET (CASK thermal and structural analyses and Evaluation code system) for the thermal and structural analyses which are indispensable for radioactive material transport and/or storage cask designs has been developed. The CASKET is a simplified computer code system to perform parametric analyses on sensitivity evaluations in designing a cask and conducting its safety analysis. Main features of the CASKET are as follow: (1) it is capable to perform impact analysis of casks with shock absorbers, (2) it is capable to perform impact analysis of casks with fins. (3) puncture analysis of casks is capable, (4) rocking analysis of casks during seismic load is capable, (5) material property data library are provided for impact analysis of casks, (6) material property data library are provided for thermal analysis of casks, (7) fin energy absorption data library are provided for impact analysis of casks with fins are and (8) not only main frame computers (OS MSP) but also work stations (OS UNIX) and personal computers (OS Windows 3.1) are available. In the paper, brief illustrations of calculation methods are presented. Some calculation results are compared with experimental ones to confirm the computer programs are useful for thermal and structural analyses. (author)

  12. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

    2004-10-03

    The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

  13. Validation of a fracture mechanics approach to nuclear transportation cask design through a drop test program

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1986-01-01

    Sandia National Laboratories (SNL), under contract to the Department of Energy, is conducting a research program to develop and validate a fracture mechanics approach to cask design. A series of drop tests of a transportation cask is planned for the summer of 1986 as the method for benchmarking and, thereby, validating the fracture mechanics approach. This paper presents the drop test plan and background leading to the development of the test plan including structural analyses, material characterization, and non-destructive evaluation (NDE) techniques necessary for defining the test plan properly

  14. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  15. Dynamic impact characteristics of KN-18 SNF transport cask - Part 1: An advanced numerical simulation and validation technique

    International Nuclear Information System (INIS)

    Kim, Kap-Sun; Kim, Jong-Soo; Choi, Kyu-Sup; Shin, Tae-Myung; Yun, Hyun-Do

    2010-01-01

    Domestic and international regulations for the transportation of radioactive materials strictly prescribe the design requirements for spent nuclear fuel (SNF) transport casks. According to the applicable codes, a transport cask must withstand a free-drop impact of 9 m onto an unyielding surface and a free-drop impact of 1 m onto a mild steel bar. However, the structural performance of a transport cask is not easy to evaluate precisely because the dynamic impact characteristics of the cask, which includes impact limiters to absorb the impact energy, are so complex. In this study, a more advanced and applicable numerical simulation method using the finite element (FE) method via the commercial FE code LS-DYNA is proposed and verified against the experimental results for a 1/3-scale model of the KN-18 SNF transport cask, recently developed in Korea. In addition, the detailed dynamic impact characteristics of the transport cask under free-drop conditions are investigated via the proposed numerical simulation method and actual drop tests to improve the accuracy and optimization of the SNF transport cask design.

  16. A cask fleet operations study

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs.

  17. A cask fleet operations study

    International Nuclear Information System (INIS)

    1988-03-01

    This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs

  18. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  19. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    Energy Technology Data Exchange (ETDEWEB)

    Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

    2008-10-01

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

  20. Development of a transport cask for spent fuel elements of research reactors

    International Nuclear Information System (INIS)

    Quintana, F.; Saliba, R.O.; Furnari, J.C.; Mourao, R.P; Leite da Silva, L.; Novara, O.; Alexandre Miranda, C.; Mattar Neto, M.

    2012-01-01

    This article presents an overview of the development of a research reactor spent fuel transport cask. Through a project funded by the IAEA, Argentina, Brazil and Chile have collaborated to enhance regional capacity in the management of spent fuel elements from research reactors operated in the region. A packaging for the transport of research reactors spent fuel was developed. It was designed by a team of researchers from the countries mentioned and a 1:2 scale model for MTR type fuel was constructed in Argentina and subsequently tested in CDTN facilities in Belo Horizonte, Brazil. There were three test sequences to test the cask for normal transport and hypothetical accident conditions. It has successfully passed the tests and the overall performance was considered satisfactory. As part of the licensing process, a test sequence with the presence of regulatory authorities is scheduled for December, 2012 (author)

  1. Criticality effects of longitudinal gaps in poison for storage/transport casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1985-01-01

    A series of criticality calculations was performed with the AMPX/KENO system to determine the sensitivity of the NAC S/T cask 31 assembly basket, which is optimized for a design-basis fuel enrichment of 3.7 wt % 235 U, to axial gaps in the boron neutron poison. The results of these calculations show that axial gaps in the boron cause no statistically detectable change in k/sub eff/ until a minimum gap size is reached. The minimum gap size to change k/sub eff/ is dependent on the basket segment length, because a longer segment length results in fewer gaps for a given active fuel length. Longer segment lengths are less sensitive to gaps in the neutron poison. A typical segment length of 12 to 18 in. is projected for a casting of aluminum/boron alloy, indicating that axial gaps in the neutron poison of 1 in. would be acceptable. This gap thickness is much greater than the intersegment gap produced by modern casting techniques. The investigation described here demonstrated that an axial gap in neutron poison is acceptable for basket castings of large storage/transport casks. A precedent for such gaps is the NLI-6502 cask, so a cask basket with intersegment gaps should be licensable

  2. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  3. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.

    1993-01-01

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  4. Direct disposal of transport an storage casks - status of the actual considerations

    International Nuclear Information System (INIS)

    Graf, Reinhold; Brammer, Klaus-Juergen; Filbert, Wolfgang

    2011-01-01

    For the final disposal of spent fuel elements and radioactive wastes from the spent fuel reprocessing two different concepts exist. The self-shielding POLLUX casks were developed for final disposal of spent fuels in underground repositories (gallery storage). For the high-level waste from reprocessing plants the concept of borehole storage of vitrified coquilles BSK3 was developed. for both concepts fuel elements and structural parts are supposed to be separated in conditioning facilities. An alternative concept (projects DIREGT) aimed to avoid conditioning is based on the direct final storage of transport and storage casks of the type CASTOR registered V in boreholes. The concepts have to consider the transport in the underground facility; the safety against criticality has to be demonstrated. An appropriate manipulation technique is to be developed.

  5. Metal cask RT-5000 for the dry storage and transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A.I.; Kazeev, V.G.; Krayev, V.S.; Shcherbina, A.N.; Churikov, Y.I. [All-Russian Research Inst. of Technical Physics, Snezhinsk (Russian Federation)

    2003-05-01

    Presentation of new-type cask, developed at RFNC-VNIITF, is in the article. The prototype model of the shipping cask was subjected to tests imitating normal shipment conditions (free fall, pressing, and impact) and to tests imitating emergency situation during shipment (a drop from the 9-m height onto a pin is replaced by acceleration of the shipping cask at a guide rail of the rocket-catapult installation (RCI), a 1-m drop onto a pin, heat tests a 30-minutes fire at the temperature of for 8500 C, submergence to the depth of 15 and 200 meters). After each test the hermeticity preservation is examined. Parallel with the real testing, a mathematical simulation of physical processes induced by the corresponding tests was conducted at the RFNC-VNIITF. The required parameters obtained from the tests are used to calibrate the calculation methods. As a result it has been possible to obtain a good agreement between the results of calculations and experiments; this will allow the mathematic simulation to be used wider. The advantage of the RT-5000 metal cask in comparison with metal-concrete analogs are as follows: SFA are placed into the RT-5000 entirely without cutting into two bunches of fuel elements; the expensive hot doom is not required for automatic cutting the SFA and for loading the bunches of fuel elements into intermediate cases; the possibility remains to transport the RT-5000 without reloading SFA after 50-year storage, although this is a problem for the metal-concrete casks.

  6. Computer simulations of a generic truck cask in a regulatory fire using the Container Analysis Fire Environment (CAFE) code

    International Nuclear Information System (INIS)

    Ju, H.; Greiner, M.; Suo-Anttila, A.

    2002-01-01

    The Container Analysis Fire Environment (CAFE) computer code is designed to predict accurately convection and radiation heat transfer to a thermally massive object engulfed in a large pool fire. It is well suited for design and risk analyses of spent nuclear fuel transport systems. CAFE employs computational fluid dynamics and several fire and radiation models. These models must be benchmarked using experimental results. In this paper, a set of wind velocity conditions are determined which allow CAFE accurately to reproduce recent heat transfer measurements for a thick walled calorimeter in a ST-1 regulatory pool fire. CAFE is then used to predict the response of an intack (thin walled) generic legal weight truck cask. The maximum temperatures reached by internal components are within safe limits. A simple 800 deg. C, grey-radiation fire model gives maximum component temperatures that are somewhat below those predicted by CAFE. (author)

  7. Design review report FFTF interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1995-01-01

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location

  8. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository; Yucca Mountain Site characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, D.J.; Miller, D.D. [Bechtel National, Inc., San Francisco, CA (United States); Hill, R.R. [Sandia National Labs., Albuquerque, NM (United States)

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described.

  9. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  10. Interactions between cask components and content of packaging for the transport of radioactive material during drop tests

    International Nuclear Information System (INIS)

    Quercetti, T.; Ballheimer, V.; Zeisler, P.; Mueller, K.

    2003-01-01

    This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction

  11. Development of a Computer Program (CASK) for the Analysis of Logistics and Transportation Cost of the Spent Fuels

    International Nuclear Information System (INIS)

    Cha, Jeong-Hun; Choi, Heui-Joo; Cho, Dong-Keun; Kim, Seong-Ki; Lee, Jong-Youl; Choi, Jong-Won

    2008-07-01

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The CASK(Cost and logistics Analysis program for Spent fuel transportation in Korea) program is developed to analyze logistics and transportation cost of the spent fuels. And the total amount of PWR spent fuels stored in four nuclear plant sites, a centralized interim storage facility near coast and a permanent disposal facility near the interim storage facility are considered in this program. The CASK program is developed by using Visual Basic language and coupled with an excel sheet. The excel sheet shows a change of logistics and transportation cost. Also transportation unit cost is easily changed in the excel sheet. The scopes of the report are explanation of parameters in the CASK program and a preliminary calculation. We have developed the CASK version 1.0 so far, and will update its parameters in transportation cost and transportation scenario. Also, we will incorporate it into the program which is used for the projection of spent fuels from the nuclear power plants. Finally, it is expected that the CASK program could be a part of the cost estimation tools which are under development at KAERI. And this program will be a very useful tool for the establishment of transportation scenario and transportation cost in Korean situations

  12. Development of a Computer Program (CASK) for the Analysis of Logistics and Transportation Cost of the Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jeong-Hun; Choi, Heui-Joo; Cho, Dong-Keun; Kim, Seong-Ki; Lee, Jong-Youl; Choi, Jong-Won

    2008-07-15

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The CASK(Cost and logistics Analysis program for Spent fuel transportation in Korea) program is developed to analyze logistics and transportation cost of the spent fuels. And the total amount of PWR spent fuels stored in four nuclear plant sites, a centralized interim storage facility near coast and a permanent disposal facility near the interim storage facility are considered in this program. The CASK program is developed by using Visual Basic language and coupled with an excel sheet. The excel sheet shows a change of logistics and transportation cost. Also transportation unit cost is easily changed in the excel sheet. The scopes of the report are explanation of parameters in the CASK program and a preliminary calculation. We have developed the CASK version 1.0 so far, and will update its parameters in transportation cost and transportation scenario. Also, we will incorporate it into the program which is used for the projection of spent fuels from the nuclear power plants. Finally, it is expected that the CASK program could be a part of the cost estimation tools which are under development at KAERI. And this program will be a very useful tool for the establishment of transportation scenario and transportation cost in Korean situations.

  13. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  14. FUEL CASK IMPACT LIMITER VULNERABILITIES

    International Nuclear Information System (INIS)

    Leduc, D.; England, J.; Rothermel, R.

    2009-01-01

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs

  15. Transport package response to severe thermal events, part 2: legal weight truck cask

    International Nuclear Information System (INIS)

    Greiner, M.; Faulkner, R.J.; Jin, Y.Y.

    1998-01-01

    The response of intact and damaged versions of the GA-4 Legal Weight Truck Cask to a range of severe thermal events is simulated using finite element computer analysis. The minimum fire durations that cause the containment seals and fuel cladding to reach their respective temperature limits are evaluated for a range of hydrocarbon fire temperatures. Containment seals reach their temperature limit in shorter duration fires as compared to the cladding, for both an undamaged package and a cask whose impact limiter is destroyed moments before the fire begins. However, if the neutron shield is destroyed, the cladding reaches its limit first in high temperature fires. A margin of safety exists between the conditions of the IAEA regulatory fire test and all of the performance envelopes calculated in this work. (author)

  16. Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias

    International Nuclear Information System (INIS)

    Mat sumura, T.; Sasahara, A.; Takei, M.; Takekawa, T.; Kagehira, K.; Nicolaou, G.; Betti, M.

    1998-01-01

    Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)

  17. Safety assessment technology on the free drop impact and puncture analysis of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Lee, Ho Chul; Hong, Song Jin; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-03-15

    In this study, the regulatory condition and analysis condition is analyzed for the free drop and puncture impact analysis to develop the safety assessment technology. Impact analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. LS-DYNA3D and ABAQUS is suitable for the free drop and the puncture impact analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS is completely corresponded. And The integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  18. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  19. Safety assessment technology on the free drop impact and puncture analysis of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Lee, Ho Chul; Hong, Song Jin; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun

    2001-03-01

    In this study, the regulatory condition and analysis condition is analyzed for the free drop and puncture impact analysis to develop the safety assessment technology. Impact analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. LS-DYNA3D and ABAQUS is suitable for the free drop and the puncture impact analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS is completely corresponded. And The integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  20. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  1. Spent fuel transport and storage system for NOK: The TN52L, TN97L, TN24 BHL and TN24 GB casks

    International Nuclear Information System (INIS)

    Wattez, L.; Verdier, A.; Monsigny, P.-A.

    2007-01-01

    NOK nuclear power plants in Switzerland, LEIBSTADT (KKL) BWR nuclear power plant and BEZNAU (KKB) PWR nuclear power plant have opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN52L and TN97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TN24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN52L and TN97L casks by the KKL and ZWILAG operators. In 2004, NOK also ordered three TN24 GB transport and storage casks for PWR fuel types. These casks are presently being manufactured. (author)

  2. Below Grade Assessment of Spent Nuclear Fuel Cask Transport Route

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    The report provides an assessment of the route for the SNF Fuel transport system from the K Basins to the CVDF and to the CSB. Results include the identification of any underground structures or utilities traveled over by the transport, the overburden depths for all locations identified, evaluation of the loading conditions, and determination of the effects of the loads on the structures and utilities

  3. Criticality safety and shielding design issues in the development of a high-capacity cask for truck transport

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks In 1992. The GA-4 and GA-9 Casks are high-capacity legal weight truck casks designed to transport light water reactor spent fuel assemblies. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for initial enrichments over 3.0 wt% U-235. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA has performed burnup credit analysis which is included in the Safety Analysis Report for Packaging (SARP). The GA-9 Cask can meet the criticality safety requirements using the ''fresh fuel'' assumption. Our approach to shielding design is to optimize the GA-4 and GA-9 Cask shielding configurations for minimum weights and maximum payloads. This optimization involves the use of the most effective shielding material, square cross-section geometry with rounded corners and tapered neutron shielding sections in the non-fuel regions

  4. Impacts of transportation regulations on spent fuel and high level waste cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1992-01-01

    The regulation of radioactive material transport has a long and successful history. Prior to 1966, these activities were regulated by the Interstate Commerce Commission (ICC) Bureau of Explosives (the ICC was predecessor to the Department of Transportation (DOT)). In 1966, the Atomic Energy Commission (AEC) developed what is now 10 CFR 71, concurrently with the development of similar international standards. In 1975, the AEC was reorganized and the Nuclear Regulatory Commission (NRC) was established as an independent regulatory commission. The NRC was given responsibility for the regulation of commercial use of radioactive materials, including transportation. This paper discusses various aspects of the NRC's role in the transport of radioactive material as well as its role in the design and certification of casks necessary to the transport of this material

  5. Soviet-German cooperation in safety improvements of spent fuel transport casks

    International Nuclear Information System (INIS)

    Schulz-Forberg, B.; Zeisler, P.; Droste, B.; Kondratiev, A.; Kozlov, Ju.; Tichinov, N.

    1993-01-01

    The paper gives a survey of the Soviet (Russian)-German activities which started in 1988 with the objective of creating a long-term scientific-technical cooperation in the field of transport and storage casks for spent nuclear fuel. The first step, i.e., the step of informing each other about the state of development is done. The more complicated second phase with concerted common activities of both the Russian and German competent Authorities and industrial enterprises is intended to start the in near future. (author)

  6. Operation and maintenance of the T-3 cask system

    International Nuclear Information System (INIS)

    Hussey, M.W.; Berger, J.D.; Peterson, J.M.

    1983-01-01

    The T-3 cask system consists of three lead-shielded casks and the associated payload containers, internal fixturing, tiedowns, transportation trailers and handling devices. The three casks were designed to meet the requirements of Title 10 of the Code of Federal Regulations, Part 71. The Nuclear Regulatory Commission cask licensing activities for original design and for licensing revisions have required significant analytical support. Commercial transportation contractors can provide needed services including provisions of suitable equipment, compliances with security requirements, and safe movement of the shipment at a potential savings over DOE-owned transportation systems. Proper periodic inspection/maintenance activities supported by adequate decontamination facilities are a must in keeping the T-3 casks available for service

  7. Testing of a transport cask for research reactor spent fuel

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Silva, Luiz Leite da; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2011-01-01

    Since the beginning of the last decade three Latin American countries which operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half-scale model for MTR fuel constructed in Argentina and tested in Brazil. Two test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. Although the specimen has not successfully performed the tests, its overall performance was considered very satisfactory, and improvements are being introduced to the design. A third test sequence is planned for 2011. (author)

  8. Performance of CASTOR{sup R} HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Vossnacke, Andre [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany)

    2008-07-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR{sup R} HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR{sup R} HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR{sup R} HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR{sup R} HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out

  9. Accident resistant transport container

    Science.gov (United States)

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  10. Studies on the mechanical performance of the steel containers intended as storage casks for thorium oxalate disposal

    International Nuclear Information System (INIS)

    Herzig, J.; Liewers, P.

    1995-08-01

    The tests have shown that the steel containers give considerable protection against mechanical impacts from the top if emplaced as a stack (3 containers in a vertical stack, on a stacking pallet). Even in the worst case, only relatively low amounts of thorium oxalate will escape from the casks. Care has to be taken that the material used for fixing the casks on the pallet is fire resistant (non-shrinking subject to heat for example), so that in the case of mechanical plus fire impacts, the containers in the stack will not turn over or tip out of the stack. There is no danger of containers bursting under fire impacts due to volume increase of contents as a result of transformation processes. The early, design-based failure of the container lid sealing observed in all tests will prevent the buildup of pressure. No thorium will be released, but the thorium emanation can be blown out. (orig./HP) [de

  11. Dynamic impact characteristics of KN-18 SNF transport cask - Part 2: Sensitivity analysis of modeling and design parameters

    International Nuclear Information System (INIS)

    Kim, Kap-Sun; Kim, Jong-Soo; Choi, Kyu-Sup; Shin, Tae-Myung; Yun, Hyun-Do

    2010-01-01

    In Part 1 of this study, an advanced numerical simulation method was proposed to investigate the impact characteristics of the KN-18 spent nuclear fuel (SNF) transport cask recently developed in Korea and verified against the experimental results. In this study, sensitivity analyses are carried out using the proposed numerical simulation method to investigate the effects of the various modeling and design parameters, such as material model assumption, modeling methodology, analytical assumptions, and design variables that can affect the impact characteristics of a cask and the accuracy of the numerical results. These parametric analyses were also performed to provide a basis for correlations with test results that is closer to reality than merely conservative as a means of benchmarking the numerical models. In addition, the parametric analysis results are compared against the experimental results, and the sensitivities of each parameter are summarized to provide references for the future design and analysis of SNF transport casks.

  12. Estimation of Shielding Thickness for a Prototype Department of Energy National Spent Nuclear Fuel Program Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    SANCHEZ,LAWRENCE C.; MCCONNELL,PAUL E.

    2000-07-01

    Preliminary shielding calculations were performed for a prototype National Spent Nuclear Fuel Program (NSNFP) transport cask. This analysis is intended for use in the selection of cask shield material type and preliminary estimate of shielding thickness. The radiation source term was modeled as cobalt-60 with radiation exposure strength of 100,000 R/hr. Cobalt-60 was chosen as a surrogate source because it simultaneous emits two high-energy gammas, 1.17 MeV and 1.33 MeV. This gamma spectrum is considered to be large enough that it will upper bound the spectra of all the various spent nuclear fuels types currently expected to be shipped within the prototype cask. Point-kernel shielding calculations were performed for a wide range of shielding thickness of lead and depleted uranium material. The computational results were compared to three shielding limits: 200 mrem/hr dose rate limit at the cask surface, 50 mR/hr exposure rate limit at one meter from the cask surface, and 10 mrem/hr limit dose rate at two meters from the cask surface. The results obtained in this study indicated that a shielding thickness of 13 cm is required for depleted uranium and 21 cm for lead in order to satisfy all three shielding requirements without taking credit for stainless steel liners. The system analysis also indicated that required shielding thicknesses are strongly dependent upon the gamma energy spectrum from the radiation source term. This later finding means that shielding material thickness, and hence cask weight, can be significantly reduced if the radiation source term can be shown to have a softer, lower energy, gamma energy spectrum than that due to cobalt-60.

  13. Summary of the technical review of the safety analysis reports for packaging (SARP) for the transnuclear transport/storage casks: TN-BRP and TN-REG

    International Nuclear Information System (INIS)

    1986-07-01

    The Safety Analysis Reports for Packaging for two spent fuel shipping casks were technically reviewed by the Oak Ridge National Laboratory. The casks were designed by Transnuclear, Inc., for shipment of 85 Big Rock Point boiling water reactor fuel elements and 40 R.E. Ginna pressurized water reactor fuel elements from West Valley, New York, to Idaho Falls, Idaho. The intent of the review was to ensure compliance of the casks with the requirements the applicable Federal Regulations contained in 10 CFR Pt. 71 and allow issuance of Department of Energy Certificates of Compliance for transport by the Department of Energy Idaho Operations Office. The review was performed by a team of Oak Ridge National Laboratory staff assembled for their expertise in criticality analysis, shielding, metallurgy, nondestructive testing, thermal analysis, structural analysis, and containment. This report describes the review processes, the findings in each technical area, and the overall conclusion that a Certificate of Compliance could be issued for the proposed single shipment under the specified conditions and constraints

  14. A risk-informed basis for establishing non-fixed surface contamination limits for spent fuel transportation casks

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Bogard, J.S.; Cook, J.R.

    2004-01-01

    The current limits for non-fixed contamination on packages used to transport radioactive materials were introduced in the 1961 edition of the International Atomic Energy Agency (IAEA) transport regulations and were based on radiation protection guidance and practices in use at that time. The limits were based on exposure scenarios leading to intakes of radionuclides by inhalation and external irradiation of the hands. These considerations are collectively referred to as the Fairbairn model. Although formulated over 40 years ago, the model remains unchanged and is still the basis of current regulatory-derived limits on package non-fixed surface contamination. There can also be doses that while not resulting directly from the contamination, are strongly influenced by and attributable to transport regulatory requirements for contamination control. For example, actions necessary to comply with the current derived limits for light-water-reactor (LWR) spent nuclear fuel (SNF) casks can result in significant external doses to workers. This is due to the relatively high radiation levels around the loaded casks, where workers must function during the measurement of contamination levels and while decontaminating the cask. In order to optimize the total dose received due to compliance with cask contamination levels, it is necessary to take into account all the doses that vary as a result of the regulatory limit. Limits for non-fixed surface contamination on spent fuel casks should be established by using a model that considers and optimizes the appropriate exposure scenarios both in the workplace and in the public environment. A risk-informed approach is needed to ensure optimal use of personnel and material resources for SNF-based packaging operations. This paper is a summary of a study sponsored by the US Nuclear Regulatory Commission and performed by Oak Ridge National Laboratory that examined the dose implications for removable surface contamination limits on spent fuel

  15. Considerations applicable to the transportability of a transportable storage cask at the end of the storage period

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Jones, R.H.; McConnell, P.E.

    1991-11-01

    Additional spent fuel storage capacity is needed at many nuclear power plant sites where spent fuel storage pools have either reached or are expected to reach maximum capacities before spent fuel can be removed. This analysis examines certain aspects of Transportable Storage Casks (TSC) to assist in the determination of their feasibility as an option for at-reactor dry storage. Factors that can affect in-transport reliability include: the quality of design, development, and fabrication activities; the possibilities of damage or error during loading and closure; in-storage deterioration or unanticipated storage conditions; and the potential for loss of storage period monitoring/measurement data necessary for verifying the TSC fitness-for-transport. The reported effort utilizes a relative reliability comparison of TSCs to Transport-Only Casks (TOC) to identify and prioritize those issues and activities that are unique to TSCs. TSC system recommendations combine certain design and operational features, such as in-service monitoring, pretransport assessments, and conservation design assumptions, which when implemented and verified, should sufficiently ensure that the system will perform as intended in a later transport environment

  16. The application of fracture mechanics to the safety assessment of transport casks for radioactive materials

    International Nuclear Information System (INIS)

    Zencker, U.; Mueller, K.; Droste, B.; Roedel, R.; Voelzke, H.

    2004-01-01

    BAM is the German responsible authority for the mechanical and thermal design safety assessment of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety proof of package components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new ''Guidelines for the Application of Ductile Cast Iron for Transport and Storage Casks for Radioactive Materials''. Based on these guidelines higher stresses than before can become permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof with the help of the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA Advisory Material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will be concluded

  17. PUNCTURE: a computer program for puncture analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-09-01

    In the drop puncture analyses for radioactive transport casks, it has become possible to perform them in detail by using interaction evaluation computer programs such as DYNA3D. However, the considerable cost and the computer time are necessitated to perform analyses by these programs. To decrease the computer cost and time, a simplified computer program PUNCTURE has been developed. The PUNCTURE is a static calculation computer program based on the Onat`s theory and Asada`s research. The PUNCTURE is capable of evaluating the acceleration of cask bodies, the deformation of punctured plates and, the stress and the deformation of puncture bars. Main features of the computer program are as follows; (1) three analysis models for punctured plate are used that are the fixed supported bending plate model, the simply supported bending plate model and the fixed supported membrane plate model, (2) it is capable of graphical representations for calculation results and (3) not only main frame computers (OS MSP) but also work stations (OS: UNIX) and personal computers (OS: Windows) are available for use of PUNCTURE. In the paper, brief illustration of calculation method using the Onat`s theory and Asada`s research is presented. The second section presents comparisons between calculation and experimental results. The third section provides a user`s guide for PUNCTURE. (author)

  18. Radiological source terms resulting from sabotage to transportation casks: Final report

    International Nuclear Information System (INIS)

    Miller, N.E.; Fentiman, A.W.; Kuhlman, M.R.; Ebersole, H.N.; Trott, B.D.; Orban, J.E.

    1986-11-01

    The Nuclear Regulatory Commission (NRC) promulgated a rule, 10 CFR 73.37, which established requirements for safeguarding shipments of spent fuel to reduce the risk from acts of sabotage of highly radioactive materials. After the rule became effective, experimental programs conducted by Battelle for the NRC and by Sandia for the DOE showed the consequences of an attack using explosives on a shipment of PWR spent fuel were significantly less than had been indicated by earlier analytical studies. As a result, NRC is considering modifying the safeguards requirements. In support of NRC's efforts to modify the rule, Battelle has conducted additional experimental studies to evaluate the consequences of attacks on shipments of high-temperature gas-cooled reactor (HTGR) spent fuel, nonpower reactor (NPR) spent fuel, and vitrified high-level waste (HLW). Model casks containing surrogates of the spent fuels or high-level waste were penetrated by the jet from a precision shaped charge. Air samples collected after each test were used to estimate the quantities of respirable material released after the cask was penetrated. Results of the tests were scaled by specially developed scaling factors to estimate the releases that may occur from attacks on full-sized shipments of the materials. It was concluded that the sabotage of shipments of HTGR spent fuel, NPR spent fuel, or vitrified HLW should have no greater consequences than those predicted for shipments of PWR spent fuel

  19. Transportation of 33 irradiated MTR fuel assemblies from FRM/Garching to Savannah River Site, USA, using a GNS transport cask and using a new loading device

    International Nuclear Information System (INIS)

    Dreesen, K.; Goetze, H.G.; Holst, L.; Gerstenberg, H.; Schreckenbach, K.

    2000-01-01

    According to the Department of Energy program of the return spent fuel from the foreign research reactors operators, 33 irradiated MTR box shaped fuel assemblies from the Technical University Munich were shipped to SRS/USA. The fuel assemblies were irradiated for typically 800 full days and, after a sufficient cooling time, loaded into a GNS 16 cask. The GNS 16 cask is a new transport cask for box shaped MTR fuel assemblies and TRIGA fuel assemblies and was used for the first time at the FRM Garching. The capacity of the cask is 33 box shaped MTR fuel assemblies. During the loading of the fuel assemblies, a newly developed loading device was used. The main components of the loading device are the transfer flask, the shielded loading lock, adapter plate and a mobile water tank. The loading device works mechanically with manpower. For the handling of the transfer flask, a crane with a capacity of 5 metric tons is necessary. During installation of the lid the mobile water pool is filled with demineralized water and the shielded loading passage is taken away. After that the lid is put on the cask. After drainage, the mobile water pool is disassembled, and the cask is dewatered. Finally leak tests of all seals are made. The achieved leakage rate was -5 Pa x I/s. The work in FRM was done between 03.02.99 and 12.02.99 including a dry run and leak test. (author)

  20. Structural analysis of deformations in the seal region of a radioactive material transport cask under thermal loadings

    International Nuclear Information System (INIS)

    Turula, P.; Wang, Z.

    1991-01-01

    In the design of casks for the transport of highly radioactive materials, a major concern is preventing leakage under both the normal conditions of transport and the hypothetical accident conditions specified in the federal regulations. The designs must accommodate various loadings, including thermal loadings. The latter are particularly difficult to withstand because thermal considerations require exceptional structural flexibility, while other design considerations require structural stiffness. To guarantee a design that will be leaktight, the designer needs to quantify and limit the range of possible movement between the cask body and the lid under all conditions. This paper first shows the deformations obtained from a simplified model of the basic configuration of a sample design under selected normal and hypothetical thermal loading conditions. The design is then modified and re-analyzed to evaluate the effectiveness of two configuration modifications intended to reduce relative movement at the closure interface between cask body and the lid. Comparisons of required bolting forces demonstrate that accommodating the thermal loadings must be a primary consideration in designing the cask. 5 refs., 6 figs., 1 tab

  1. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Soo [ACT Co. Ltd., Daejeon (Korea, Republic of); Park, Younwon; Song, Sub Lee [BEES Inc., Daejeon (Korea, Republic of); Kim, Hyeun Min [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates.

  2. The buckling of fuel rods in transportation casks under hypothetical accident conditions

    International Nuclear Information System (INIS)

    Bjorkman, G.S.

    2004-01-01

    The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading

  3. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs

  4. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs.

  5. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1991-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The understanding established by a mechanics to a particular prototype, behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  6. Study of casks shielded with heavy metal to transport highly radioactive substances; Estudo de embalados com blindagem em metal pesado para transporte de substancias altamente radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L., E-mail: rflguimaraes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  7. Multi-wall cask advantages with quarter-scale model drop test results for the NAC-STC Storable Transport Cask

    International Nuclear Information System (INIS)

    Danner, T.A.; Thompson, T.C.; Yaksh, M.C.

    1993-01-01

    Physical drop test results for a quarter-scale model multi-wall cask are presented for the 9 meter end, side and oblique drops with impact limiters, and for the 1 meter side and closure lid pin puncture drops. Lessons learned and final cask test qualification are presented. (J.P.N.)

  8. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1992-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range of measured properties allows the critical aspects of mechanical behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The general fracture mechanics approach and its application to specific cask designs are described elsewhere (Salzbrenner et al. 1990, Sorenson et al. 1992a, Sorenson et al. 1992b). The understanding established by a thorough mapping of the mechanical properties is necessary to apply fracture mechanics to a particular prototype, but it is not sufficient for qualifying serially produced casks. The mechanical behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  9. The application of fracture mechanics to the safety assessment of transport casks for radioactive material

    International Nuclear Information System (INIS)

    Zencker, U.; Mueller, K.; Droste, B.; Roedel, R.; Voelzke, H.

    2004-01-01

    BAM is the responsible authority in Germany for the assessment of the mechanical and thermal design safety of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety 'proof of package' for components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new 'Guidelines for the application of ductile cast iron for transport and storage casks for radioactive materials'. Based on these guidelines, higher stresses than before will be permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof using the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA's advisory material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will conclude the paper. (author)

  10. Evaluation of the KN-12 spent fuel shipping cask

    International Nuclear Information System (INIS)

    Chung, Sung Hwan; Yoon, Jeong Hyoun; Yang, Ke Hyung; Kim, Jung Mook; Lee, Heung Young; Ha, Jong Hyun; Song, Myung Jae; Diersch, Rudolf; Laug, Reiner

    2001-01-01

    The KN-12 shipping cask is a new design of a transport package intended for dry and wet transportation of up to 12 spent nuclear fuel assemblies from pressure water reactors. The cask has been designed basing on KEPCO-NETEC's requirements and evaluated as a transport package that complies with the requirements of IAEA Safety Standards Series No.ST-1, US 10 CFR Part 71 and Korea Atomic Energy Act for Type B(U)F package. The cask will be licensed in accordance with Korea Atomic Energy Act. The cask provides containment, radiation shielding, structural integrity, criticality control and passive heat removal for normal transport conditions and hypothetical accident conditions. The W.H. 14x14, 16x16 and 17x17 fuel assemblies will be loaded and subsequently transported in the cask. The maximum allowable initial enrichment of the fuel is 5.0wt%, the fuel assembly burnup is limited to a maximum average of 50,000MWD/MTU, and the fuel must have a minimum cooling time of 7 years. And, the KN-12 cask will be fabricated in accordance with the requirements of ASME B and PV Code Section III, Division 3

  11. Force reconstruction for the slapdown test of a nuclear transportation cask

    International Nuclear Information System (INIS)

    Bateman, V.I.; Carne, T.G.; Gregory, D.L.; Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Two force reconstruction techniques were used to evaluate the slapdown response of a 1/3 scale model solid steel, spent fuel cask dropped 30 ft onto an unyielding target. The two techniques are: the sum of weighted acceleration technique (SWAT) and the deconvolution technique (DECON). A brief description and the calibration of the techniques as applied to the cask are presented. For the slapdown test, both techniques yielded very similar resultant forces and provided more accurate definition of the force-time history for the cask than is available from conventional data reduction methods. An applied moment, a measurement previously unobtainable from conventional cask accelerometer data reduction techniques, was determined with SWAT. The angular velocity calculated with SWAT was verified with photometric measurements. 9 refs., 22 figs

  12. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  13. Proceedings of a workshop on the use of burnup credit in spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-10-01

    The Department of Energy sponsored a workshop on the use of burnup credit in the criticality design of spent fuel shipping casks on February 21 and 22, 1988. Twenty-five different presentations on many related topics were conducted, including the effects of burnup credit on the design and operation of spent fuel storage pools, casks and modules, and shipping casks; analysis and physics issues related to burnup credit; regulatory issues and criticality safety; economic incentives and risks associated with burnup credit; and methods for verifying spent fuel characteristics. An abbreviated version of the DOE workshop was repeated as a special session at the November 1988 American Nuclear Society Meeting in Washington, DC. Each of the invited speakers prepared detailed papers on his or her respective topic. The individual papers have been cataloged separately

  14. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorensen, K.B.

    1987-01-01

    This paper identifies potential new materials as a function of their use in the cask. To the extent that identified materials are not yet qualified for their intended application, this paper identifies probable technical issues and development efforts that may be required to qualify the materials for use in transportation casks. 1 tab

  15. Shielding test of a model for FBR irradiation fuel transport cask

    International Nuclear Information System (INIS)

    Ohashi, A.; Ueki, K.; Iyori, I.; Uruwashi, S.; Iwanaga, S.; Takahashi, S.

    1993-01-01

    Shielding experiments and their Monte Carlo analyses of the half scale model of the PIE cask were carried out to 1. obtain the dose rate distributions around the model and deduce the characteristics of the actual cask dose distribution from the results, 2. examine the propriety of calculational techniques and the accuracy of Monte Carlo codes to be used in the shielding design or the analysis of the actual cask. The following remarks were obtained through the present study. 1. The C/E values were good for almost all the detector locations except for a few particular points. 2. The calculation geometry with scatterable materials around the cask is necessary to derive the details of dose distribution. 3. The solution in the thermal expansion room must be taken into account and added in the calculation geometry. 4. The magnitude of the dose rates of secondary gamma rays is approximately one-fifth of those of the neutron of the half model. Two peaks must be paid attention at 2.2 MeV and 7.6 MeV due to the (n,γ) reaction of hydrogen and iron, respectively. Hence the calculational techniques that were employed in these analyses can be applied to the design or to the safety analysis of the actual cask, which included the computer codes and the nuclear data. In future for the full scale model of the PIE cask, its shielding effect will be calculated by means of the replacement of the source spectrum from 252 Cf to a FBR fuel assembly of post-irradiation-experiment. (J.P.N.)

  16. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of the document includes the LWT cask with fuel baskets; impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. 75 figs., 48 tabs

  17. Cask development, testing, and licensing

    International Nuclear Information System (INIS)

    Quinn, G.J.; Haelsig, R.T.; Warrant, M.M.

    1986-01-01

    The NuPac 125-B Rail Cask was developed to provide a safe means of transporting the damaged core of Three Mile Island Unit 2 from the TMI site at Middletown, PA, to the Idaho National Engineering laboratory (INEL) at Idaho Falls, ID. The development of the NuPac 125-B Rail Cask posed two engineering and technical management challenges; Licensing Strategy - The NuPac 125-B Rail Cask represented the first irradiated fuel rail cask developed within the United States in the past decade, a decade characterized by changing nuclear regulations, and Accelerated Schedule - The TMI-2 defueling schedule demanded a cask development schedule one-third as long as normally required. These challenges governed the overall development and licensing process for the cask. First, a high degree of conservation was incorporated into the design to allow quick, simplified demonstrations of adequacy to regulatory staff. Second, redundant design techniques were employed in all areas of uncertainty. The testing program eliminated performance uncertainties and validated predictions and predictive models. Drop tests of a quarter-scale model of the cask were conducted, and results were correlated with analytic predictions to verify structural and mechanical performance of the cask. Full-scale tests of the canisters were conducted to verify structural behavior of canister internals which provide criticality control. This paper describes the testing program for the NuPac 125-B Rail Cask, presents results therefrom, and correlates findings with Regulation 10 CFR 71 of the U.S. Nuclear Regulatory Commission

  18. Transportation accident response of a high-capacity truck cask for spent fuel

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Glaser, R.E.; Johnson, G.L.; Perfect, S.A.; McGuinn, E.J.; Lake, W.H.

    1995-11-01

    Two of the primary goals of this study were (i) to check the structural and thermal performance of the GA-4 cask in a broad range of accidents and (ii) to carry out a severe-accidents analysis as had been addressed in the Modal Study but now using a specific recent cask design and using current-generation computer models and capabilities. At the same time, it was desired to compare the accident performance of the Ga-4 cask to that of the generic truck cask analyzed in the Modal Study. The same range of impact and fire accidents developed in the Modal Study was adopted for this study. The accident-description data base of the Modal Study categorizes accidents into types of collisions with mobile or fixed objects, non-collision accidents, and fires. The mechanical modes of damage may be via crushing, impact, or puncture. The fire occurrences in the Modal Study data are based on truck accident statistics. The fire types are taken to be pool fires of petroleum products from fuel tanks and/or cargoes

  19. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    International Nuclear Information System (INIS)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-01-01

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  20. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y. (Decision and Information Sciences); ( EVS); ( NE)

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  1. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  2. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading to a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.

  3. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    International Nuclear Information System (INIS)

    Bauer, Thomas L.; Krause, Michael G.

    1986-01-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including several factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask

  4. Crash test of a nuclear spent fuel cask and truck transport system

    International Nuclear Information System (INIS)

    Huerta, M.; Yoshimura, R.H.

    1978-01-01

    Sandia Laboratories has conducted a 96 kph (60 mph) full scale truck impact test for ERDA's Environmental Control Technology Division. Rockets propelled a 20, 500-kg (22-ton) cask mounted on its shipping trailer, coupled to a conventional cab-over tractor, into a massive, heavily reinforced concrete target. This summary report describes and compares the results of the computer analysis, scale model, and full scale tests

  5. Application of a fracture toughness analysis for ferritic steel components of transport/storage casks using an adapted EUROCODE 3 approach

    International Nuclear Information System (INIS)

    Sedlacek, G.; Dahl, W.; Langenberg, P.; Stranghoner, N.; Dreier, G.; Diersch, R.

    1998-01-01

    The choice of a structural steel material for a component of a transport and storage cask for RAM is strongly determined by the demand that the cask has to withstand a free fall from 9 m height without losing its integrity and leak tightness. In terms of fracture mechanics this means that instable crack growth must not occur even under the conditions of high amplitude dynamic loading at temperatures of -40 deg. C. In the course of harmonization of European design guidelines, the Eurocode 3 has been developed which contains a fracture mechanic based concept for the steel selection to avoid brittle fracture, called Annex C. This method combines fracture mechanics tools like the failure assessment diagram (CEGB-R6-procedure) with fracture mechanics life time assessment procedure for fatigue loaded structures. The required toughness in terms of the stress intensity factor K I is related to the T 27J Charpy transition temperature by means of a master curve and by a correlation between the fracture mechanics transition temperature T K100 and the Charpy transition temperature T 27J . Both relations have been proved to be valid for structural steels in the range of 235 to 960 MPa yield strength. Besides that a semi-probabilistic safety approach that takes account of the model inaccuracies by calibration of large scale tests has been applied to derive a safety element for a risk of failure of p f 10 -5 . The fracture mechanic concept of Eurocode 3 has been adopted to calculate critical failure lengths for lids made from ferritic steels of transport and storage casks. The safety requirements of Appendix VI of the IAEA Advisory Material have been taken into account. It has been shown that the adopted Eurocode 3, Annex C, method allows an economical calculation of critical failure length on a high level of safety. A failure probability of p f = 8 . 10 -7 is reached by applying lower bound estimates of fracture toughness and an additional additive safety factor ΔT a of 20 deg

  6. Designing environment friendly casks

    Energy Technology Data Exchange (ETDEWEB)

    Lallemant, T. [TN International (France)

    2009-06-15

    Environmental protection has become an integral part of the entire cask life cycle: - Design and Fabrication; - Transportation; - Loading, Unloading and Operation; - Maintenance, End of Life Cycle and Dismantling. Three new environmentally-friendly cask concepts were developed: the MX6, the TN112 and the multipurpose Shell. Eco design approach was used to reduce their environmental impacts and address environmental issues such as waste generation and management, greenhouse gases linked to transportation, and scarcity of raw materials, all while improving operating performance. The result is greater responsiveness to the customer and a more comprehensive approach to potential regulatory changes. The cask design optimizes all of the impacting factors, such as raw materials quantity, radiological protection capacity, and the use of more environmentally-friendly materials and fabrication processes. To illustrate, the new MX6 concept may be compared to the standard FS65 concept. In the area of Design and Fabrication, the MX6 requires fewer raw materials and can lower the cask weight/transported assembly weight ratio. An adjustable basket concept was developed. - The new cask is also more effective in terms of radiation protection as a result of improved materials performance. - In the area of fabrication, all waste is transferred to suitable processing systems that promote recycling. In the area of Transportation, shipments are reduced by 33%, thus reducing diesel fuel consumption and greenhouse gas emissions. Also, in the area of Operations, the amount of waste generated per assembly shipped is minimized, as are the number of operations and the time spent on them by the operators. In the area of Maintenance and Dismantling, extensive, time-consuming maintenance operations are minimized, as is the waste generated by them. The TN112 cask reduces exposure by 15%, uses fewer raw materials, and has a faster turnaround time due to optimized tooling. For waste subject to

  7. Development of a new neutron shielding material, TN trademark Resin Vyal for transport/storage casks for radioactive materials

    International Nuclear Information System (INIS)

    Abadie, P.

    2004-01-01

    TN trademark Resin Vyal, a patent pending composite, is a new neutron shielding material developed by COGEMA LOGISTICS for transport/storage casks of radioactive materials (spent fuel, reprocessed fuel,..). This material is composed of a thermosetting resin (vinylester resin in solution of styrene) and two mineral fillers (alumine hydrate and zinc borate). Its shielding ability for neutron radiation is related to a high hydrogen content (for slowing down neutrons) and a high boron content (for absorbing neutrons). Source of hydrogen is organic matrix (resin) and alumine hydrate; source of boron is zinc borate. Atomic concentrations are equal to 5.10 22 at/cm 3 for hydrogen and 9.10 20 at/cm 3 for boron. Due to the flame retardant character of components, the final material has a good fire resistance (it is auto-extinguishable). Its density is equal to 1,8. The manufacturing process of these material is easy: it consists in mixing the fillers and pouring in-situ (in cask); so, the curing of this composite, which leads to a three-dimensional structure, takes place at ambient temperature. Temperature resistance of this material was evaluated by performing exposition tests of samples at different temperatures (150 C to 170 C). According to tests results, its maximal temperature of use was confirmed equal to 160 C

  8. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  9. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations

    International Nuclear Information System (INIS)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 x 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990

  10. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

  11. A preliminary investigation of the applicability of surface complexation modeling to the understanding of transportation cask weeping

    International Nuclear Information System (INIS)

    Granstaff, V.E.; Chambers, W.B.; Doughty, D.H.

    1994-01-01

    A new application for surface complexation modeling is described. These models, which describe chemical equilibria among aqueous and adsorbed species, have typically been used for predicting groundwater transport of contaminants by modeling the natural adsorbents as various metal oxides. Our experiments suggest that this type of modeling can also explain stainless steel surface contamination and decontamination mechanisms. Stainless steel transportation casks, when submerged in a spent fuel storage pool at nuclear power stations, can become contaminated with radionuclides such as 137 Cs, 134 Cs, and 60 Co. Subsequent release or desorption of these contaminants under varying environmental conditions occasionally results in the phenomenon known as open-quotes cask weeping.close quotes We have postulated that contaminants in the storage pool adsorb onto the hydrous metal oxide surface of the passivated stainless steel and are subsequently released (by conversion from a fixed to a removable form) during transportation, due to varying environmental factors, such as humidity, road salt, dirt, and acid rain. It is well known that 304 stainless steel has a chromium enriched passive surface layer; thus its adsorption behavior should be similar to that of a mixed chromium/iron oxide. To help us interpret our studies of reversible binding of dissolved metals on stainless steel surfaces, we have studied the adsorption of Co +2 on Cr 2 O 3 . The data are interpreted using electrostatic surface complexation models. The FITEQL computer program was used to obtain the model binding constants and site densities from the experimental data. The MINTEQA2 computer speciation model was used, with the fitted constants, in an attempt to validate this approach

  12. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    The traditional assumption used in evaluating criticality safety of spent fuel cask is that the spent fuel is as reactive as when it was fresh (new). This is known as the fresh fuel assumption. It avoids a number of calculational and verification difficulties, but could take a heavy toll in decreased efficiency. The alternative to the fresh fuel assumption is called burnup credit. That is, the reduced reactivity of spent fuel that comes about from depletion of fissile radionuclides and net increase in neutron absorbers (poisons) is taken into account. It is recognizable that the use of burnup credit will in fact increase the percentage of unacceptable or non-specification fuel available for misloading. This could reduce individual cask safety margins if current practices with respect to loading procedures are maintained. As such, additional operational, design, analysis, and validation requirements should be established that, as a minimum, compensate for any potential reduction in fuel loading safety margin. This method is based on a probabilistic (PRA) approach and is called a relative risk comparison. The method assumes a linear risk model, and uses a selected probability function to compare the system of interest and an acceptable reference system by varying the features of each to assess effects on system safety. While risk is the product of an event probability and its consequence, the consequences of criticality in a cask are considered to be both unacceptable and the same, regardless of the initiating sequence. Therefore, only the probability of the event is considered in a relative risk evaluation

  13. Development on application of ultrasonic sealing techniques to plutonium transportation cask

    International Nuclear Information System (INIS)

    Hayakawa, Tsuyoshi; Akiba, Mitsunori; D'Agraives, B.C.

    1994-01-01

    In a cooperation research between Power Reactor and Nuclear Fuel Development Corporation and Commission of the European Communities, Joint Research Centre, Ispra establishment, application of ultrasonic sealing techniques to a plutonium container is developed in Ispra. The seal is derived from the sealing-bolt technology currently in use at the BNFL site of sellafield (UK) for the safeguarding of underwater spent fuel storage containers called MEBs. In this technique, one of the normal bolts closing the lid of the container is replaced by a special ultrasonically verifiable sealing-bolt. In the application to the plutonium container, it is proposed to attach a clamping seal which has the same internal configuration as a MEB sealing-bolt but is fastened with a 'one-way' mechanism to one of the protruding pins of the container. Similarly the seal is provided with an identity and integrity features. The uniqueness of the identity, as well as the integrity can be checked on the spot by an inspector carrying a reading equipment. Thus, in a few minutes, one identifies the seal and knows whether its integrity is intact, which tells that the container has not been opened or attempted to open illeagally. By application of the seal to the plutonium container, the containment/surveillance during the transportation will be upgraded. (author)

  14. Shipping and storage cask data for spent nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask

  15. Shipping and storage cask data for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask.

  16. Development of safety-relevant components for the transport and handling of final storage casks for waste from decommissioning

    International Nuclear Information System (INIS)

    Bruening, D.; Geiser, H.; Kloeckner, F.; Rittscher, D.; Schlesinger, H.J.

    1992-10-01

    The aim of the study was the development, construction and testing of a transportation system that is able to transport cylindrical waste containers as well as containers from the deliverer to the 'KONRAD' final repository. A transport palette has been developed that can carry two cylindrical waste containers with type B requirement or classification II. An Open-All-Container for the transport of palettes and 'KONRAD' containers has been developed. A storage of cylindrical waste containers and containers in the final repository is possible with the newly developed transportation system. Safety specifications of the transportation system have been passed successfully. (orig.). 30 refs., 8 tabs., 74 figs [de

  17. Design lead shielded casks for shipment and spent fuel from power reactors to reprocessing plant at Tarapur

    International Nuclear Information System (INIS)

    Seetharamaiah, P.

    1975-01-01

    Spent fuels from the Tarapur and Rajasthan Atomic Power Stations (TAPS and RAPS) are shipped to Fuel Reprocessing Plant at Tarapur in heavily lead shielded casks weighing about 65 tonnes as they are highly radioactive. The design of the casks has to meet stringemt requirements of safety and the integrity should be ensured to contain activity under credible accidents during handling and transportation. The paper presents the design of two casks for TAPS and RAPS spent fuel transportation particularly with reference to stress analysis considerations. The analysis also includes the handling gadgets and tie down attachments on the rail wagon and road trailer. (author)

  18. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  19. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  20. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  1. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    International Nuclear Information System (INIS)

    Il'kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I.; Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K.; Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A.; Haire, Jonathan M.; Forsberg, C.W.

    2004-01-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism

  2. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  3. Reference concept for the direct final disposal of spent HTR-FEs in CASTOR THTR/AVR transport and storage casks

    International Nuclear Information System (INIS)

    Niephaus, D.

    2000-01-01

    For the final disposal of spent HTR-FEs from the two decommissioned THTR 300 and AVR high-temperature reactor plants, which have been packaged in CASTOR THTR/AVR transport and storage casks for long-term storage in the Ahaus interim storage facility and the AVR store at Juelich, an appropriate horizontal drift emplacement concept based on the CASTOR THTR/AVR transport and storage cask is developed and presented in this report. First of all, the essential design and conceptual features of the AVR and THTR fuel elements will be described and the HTR-FE quantity structure for final disposal compiled. Furthermore, the findings and experience gained experimentally and by safety-related studies and calculations as well as, in particular, the results and experience obtained for the borehole storage concept by long-term safety analyses concerning the storage behaviour of spent HTR-FEs will be described in detail and used as a yardstick for the assessment of the long-term safety of the horizontal drift emplacement concept on the basis of the CASTOR THTR/AVR cask. For the accident of brine in leakage into the abandoned underground workings assumed in the long-term safety analyses it will be shown by stress and deformation calculations that the CASTOR THTR/AVR casks on the whole have sufficient safety reserves to sustain the tectonic loads to be expected and that a lifetime is to be expected which is currently also taken as a standard for POLLUX casks. (orig.) [de

  4. Determination of uncertainties in the calculation of dose rates at transport and storage casks; Unsicherheiten bei der Berechnung von Dosisleistungen an Transport- und Lagerbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Schloemer, Luc Laurent Alexander

    2014-12-17

    The compliance with the dose rate limits for transport and storage casks (TLB) for spent nuclear fuel from pressurised water reactors can be proved by calculation. This includes the determination of the radioactive sources and the shielding-capability of the cask. In this thesis the entire computational chain, which extends from the determination of the source terms to the final Monte-Carlo-transport-calculation is analysed and the arising uncertainties are quantified not only by benchmarks but also by variational calculi. The background of these analyses is that the comparison with measured dose rates at different TLBs shows an overestimation by the values calculated. Regarding the studies performed, the overestimation can be mainly explained by the detector characteristics for the measurement of the neutron dose rate and additionally in case of the gamma dose rates by the energy group structure, which the calculation is based on. It turns out that the consideration of the uncertainties occurring along the computational chain can lead to even greater overestimation. Concerning the dose rate calculation at cask loadings with spent uranium fuel assemblies an uncertainty of (({sup +21}{sub -28}) ±2) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are estimated. For mixed-loadings with spent uranium and MOX fuel assemblies an uncertainty of ({sup +24±3}{sub -27±2}) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are quantified. The results show that the computational chain has not to be modified, because the calculations performed lead to conservative dose rate predictions, even if high uncertainties at neutron dose rate measurements arise. Thus at first the uncertainties of the neutron dose rate measurement have to be decreased to enable a reduction of the overestimation of the calculated dose rate afterwards. In the present thesis

  5. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  6. B cell remote-handled waste shipment cask alternatives study

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  7. A preliminary assessment of system cost impacts of using transportable storage casks and other shippable metal casks in the utility/DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1988-01-01

    In view of the foregoing, a study was conducted by E.R. Johnson Associates, Inc. and H and R Technical Associates, Inc. to determine the prospective viability of the use of TSCs and shippable SOCs in the combined utility/DOE system. This study considered costs, ALARA considerations and the logistics of the use and delivery of casks to the DOE system by utilities. It was intended that this study would result in a technical and cost resource base that could be used for evaluating various strategies and scenarios for deploying TSCs or SOCs in the combined utility/DOE spent fuel management system with respect to the prospective economic advantage that could be realized

  8. Force and moment reconstruction for a nuclear transportation cask using sum of weighted accelerations and deconvolution theory

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Bateman, V.; Carne, T.G.; Gregory, D.L.; Attaway, S.W.; Bronowski, D.R.

    1989-01-01

    A 9-m drop test was conducted of a 1/3-scale-model spent fuel cask onto an unyielding target. The structural response of the impact limiters and attachments was evaluated. A mass model of the cask body, with steel-sheathed redwood and balsa impact limiters, was tested in a 10-degree slapdown orientation. One end of the cask impact the target before the other end, with higher deceleration forces resulting from the second impact. The information desired from this test is the deformation of the two impact limiters on either end of the cask as a function of the applied force. The content in this paper will only discuss a summary of the applied force calculations. Additional details about the force and moment reconstruction methods and analysis results and test and hardware are provided elsewhere. Two new force reconstruction techniques were applied to the slapdown test data: the sum of weighted accelerations technique (SWAT) and deconvolution (DECON). The rigid-body acceleration is then multiplied by the cask mass to obtain an estimate of the applied force. The frequency content of this force is restricted to the cut-off frequency of the digital filter, typically about one-half of the lowest elastic mode of the cask. The new force reconstruction techniques demonstrate the potential for a better estimate of forces acting on the cask during the impact than the conventional method. The new force reconstruction techniques use the cask structure as a generalized force transducer. With these techniques, the elastic vibration response of the cask is eliminated from the acceleration data. The main advantages of the force reconstruction techniques are the extension of the frequency bandwidth (due to the elimination of the elastic modal response in that bandwidth) and the preservation of the force rise time

  9. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of this document includes the LWT cask with fuel baskets, impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. The results of the tradeoff studies and evaluations that were performed during the preliminary design are presented in Appendix A to this report. 51 figs., 17 tabs

  10. Numerical study of thermal test of a cask of transportation for radioactive material; Estudo numérico do ensaio térmico de um casco de transporte para material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E., E-mail: tiago.vieira.eng@gmail.com, E-mail: gvidal.ufmg@gmail.com, E-mail: aacs@cdtn.br, E-mail: geraldo.esilva@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations.

  11. Trial evaluation on criticality safety of the fuel assemblies at falling accident as spent fuel transport and storage cask

    International Nuclear Information System (INIS)

    Tadano, Tomoaki

    2016-01-01

    The authors conducted critical safety assessment on the supposed event at the time of a fall accident of cask, and examined the influence on criticality safety. If the spacer of fuel assembly is sound, it is assumed that the pitch of fuel rod interval changes, and if the spacer is broken, it is assumed that the fuel rod is unevenly distributed in the basket. For the critical calculation of fuel assembly basket system, they performed it using a calculation code. For both of the single cell and assembly, calculation results showed an increase in the effective multiplication factor of reactivity of 2-3%. When this reactivity is applied to the criticality analysis result of PWR fuel assembly, the value approaches to the limit 0.95 of the neutron effective multiplication factor keff. However, the keff when new fuel is loaded is sufficiently lower than 0.93. Therefore, it is unlikely that the criticality analysis result approaches to 0.95 at all burnups, and the possibility to become criticality is very low in actual spent fuel transport. When considering the reactivity of this research, it is possible that the design condition for the assumption of novel fuel loading becomes severer. Furthermore, criticality analysis under non-uniform pitch will become necessary, and criticality safety analysis for BWR fuel with heterogeneous enrichment degree and burnup degree will become also necessary. (A.O.)

  12. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR GTRI EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-06-01

    The Global Threat Reduction Initiative (GTRI) has many experiments yet to be irradiated in support of the High Performance Research Reactor fuels development program. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for post irradiation examination. To date, the General Electric (GE)-2000 cask has been used to transport GTRI experiments between these facilities. However, the availability of the GE-2000 cask to support future GTRI experiments is at risk. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger GTRI experiments. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled experiments. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask.

  13. Transport container storage. Pt. 2

    International Nuclear Information System (INIS)

    Guenther, B.; Kuehn, H.D.; Schulz, E.

    1987-01-01

    In connection with mandatory licensing procedures and in the framework of quality control for serially produced containers from spheroidal graphite cast iron of quality grade GGG 40, destined to be used in the transport and storage of radioactive materials, each prototype and each production sample of a design is subjected to comprehensive destructive and non-destructive material tests. The data obtained are needed on the one hand to check whether specified, representative material characteristics are observed; on the other hand they are systematically evaluated to update knowledge and technical standards. The Federal Institute of Materials Research and Testing (BAM) has so far examined 528 individual containers (513 production samples and 15 prototypes) of wall thicknesses from 80 millimetres to 500 millimetres in this connection. It has turned out that the measures for quality assurance and quality control as substantiated by a concept of expertise definitely confirm the validity of component test results for production samples. (orig.) [de

  14. Impact analysis of shipping casks

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    Shipping casks are being used in the United States Department of Energy to transport irradiated experiments, reactor fuel, radioactive waste, etc. One of the critical requirements in shipping cask analysis is the necessity to withstand severe impact environments. It is still conventional to develop the design and to verify the design requirements by hand calculations. Full three dimensional computations of impact scenarios have been performed but they are too expensive and time consuming for design purposes. Typically, on the order of more than an hour of CRAY time is required for a detailed, three dimensional analysis. The paper describes how simpler two- and three-dimensional models can be used to provide an intermediate level of detail between full three dimensional finite element calculations and hand calculations. The regulation that is examined here is: 10 CFR-71.73 hypothetical accident conditions, free drop. Free drop for an accident condition of a Class I package (approximate weight of 22,000 lb) is defined as a 30 foot drop onto a flat, essentially unyielding, horizontal surface, striking the surface in a position for which maximum damage is expected. Three free drop scenarios are analyzed to assess the integrity of the cask when subjected to large bending and axial stresses. These three drop scenarios are: (1) a thirty foot axial drop on either end, (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the top end cask corner, and (3) a thirty foot side drop with simultaneous impact on the strength of the various components that comprise the cask. The predicted levels of deformation and stresses in the cask will be used to assess the potential damage level. 5 refs., 5 figs., 1 tab

  15. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  16. Utility oversight of Cask System Development Program

    International Nuclear Information System (INIS)

    Vincent, J.A.; Jordan, J.M.; Schwartz, M.H.

    1993-01-01

    This paper will present the electric utility industry's perspective on the status and scope of the DOE's Office of Civilian Radioactive Waste Management's (DOE/OCRWM) transportation cask systems development activities, including the Cask Systems Development Program (CSDP) Initiative I transportation cask projects. This presentation is particularly timely because the CSDP Independent Management Review Group (IMRG), os which one of the authors is a member, completed an objective assessment of OCRWM's transportation cask system development activities and issued its first report in late August 1992. The perspective on these cask systems development activities that will be presented reflects conclusions based on (1) the industry's review of CSDP Preliminary and Draft Final Design Reports for the Initiative I cask projects, (2) the activities of one of the authors as a member of the IMRG, and (3) the positions that the industry has consistently taken on what it believes to be the appropriate scope and pace of the CSDP and its integration with other OCRWM activities. Background information on the OCRWM transportation cask systems development activities and the relevant industry activities will also be provided

  17. Development of integrated cask body and base plate

    International Nuclear Information System (INIS)

    Sasaki, T.; Koyama, Y.; Yoshida, T.; Wada, T.

    2015-01-01

    The average of occupancy of stored spent-fuel in the nuclear power plants have reached 70 percent and it is anticipated that the demand of metal casks for the storage and transportation of spent-fuel rise after resuming the operations. The main part of metal cask consists of main body, neutron shield and external cylinder. We have developed the manufacturing technology of Integrated Cask Body and Base Plate by integrating Cask Body and Base Plate as monolithic forging with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Here, we report the manufacturing technology, code compliance and obtained properties of Integrated Cask body and Base Plate. (author)

  18. Cask fleet operations study

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  19. Cask fleet operations study

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system

  20. Cask ownership: Options and strategic factors

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Because of the potential number of casks available through utility modular storage programs, it is imperative that the planning for the provision and operation of casks under the NWPA program include consideration of the utility owned casks. As to the remainder of the cask requirements for implementation of the NWPA, the author believes that the cost factor is an artificial one for determining the benefits to the taxpayers and ratepayers for cask ownership and that the decision should be made on the basis of capability of the industry to perform on a competitive bid basis and assurance that the shipments will be made on a timely, safe and cost effective basis. If the procurement process is structured to rally permit competitive bidding on spent fuel shipping services, the competition in the market place will assure that DOE and the ratepayers, receive safe, high quality, and cost effective transportation proposals from very capable companies

  1. The impact of using reduced capacity baskets on cask fleet size and cask fleet mix

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Andress, D.A.

    1993-01-01

    The Civilian Radioactive Waste Management System transportation system will encounter a wide range of spent fuel characteristics. Since the Initiative I casks are being designed to transport 10-year-old fuel with a burnup of 35,000 MWd/MTU, there is a good likelihood that a number of the cask shipments will need to be derated in order to meet the Nuclear Regulatory Commission radiation guidelines. This report discusses the impact of cask derating by using reduced-capacity baskets. Cask derating, while enhancing the ability to move spent fuel with a wider range of age and burnup characteristics, increases the number of shipments; the amount of equipment (cask bodies, baskets, etc.); and the number of visits to both shipping and receiving sites required to transport a specific amount of spent fuel

  2. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, R.J.

    1998-11-17

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

  3. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    International Nuclear Information System (INIS)

    SMITH, R.J.

    1998-01-01

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE)

  4. The optimization of mechanical properties for nuclear transportation casks in ASTM A350 LF5

    International Nuclear Information System (INIS)

    Price, S.; Honeyman, G.A.

    1997-01-01

    Transport flasks are required for the movement of spent nuclear fuel. Due to their nature of operation, it is necessary that these flasks are produced from forged steels with exceptional toughness properties. The material specification generally cited for flask manufacture is ASTM A350 Grade LF5 Class 1, a carbon-manganese-nickel alloy. The range of chemical analysis permitted by this specification is very broad and it is the responsibility of the material manufacturer to select a composition within this range which will satisfy all the mechanical properties requirements, and to ensure safe and reliable performance. Forgemasters Steel and Engineering Limited have experience in the manufacture of large high integrity fuel element flask forgings which extend over several decades. This experience and involvement in international standards in US, Europe and Japan has facilitated the development of an optimized analysis with a low carbon content, nickel levels towards the top end of the allowed range, a deliberate aluminum addition to control grain size and strictly controlled residual element levels. The resultant steel has excellent low temperature impact properties which greatly exceed the requirements of the specification. This analysis is now being adopted for the manufacture of all current transport flasks

  5. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. [Audin (Lindsay), Ossining, NY (United States)

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  6. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. (Audin (Lindsay), Ossining, NY (United States))

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  7. Nuclear cask testing films misleading and misused

    International Nuclear Information System (INIS)

    Audin, L.

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ''proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests

  8. A cask maintenance facility feasibility study

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations

  9. Safety analysis report for Hot-Cell irradiated specimen cask

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Lee, D. W. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    For the examination of spent fuels and radioactive materials by using scanning electron microscope, a irradiated specimen cask is needed to transport the specimen from the hot-cell to the shielded glove box in which the scanning electron microscope is installed. This cask should be easy to handle and transport, has safe to maintain the shielding safety of operators as well as the thermal and structural integrities under prescribed load conditions by the regulations as requirements. Also the cask should be assured that docked perfectly maintaining shielding integrity with the interfaces of hot-cell and shield glove box. Accordingly, the main features of cask were analyzed with functional capabilities, and the integrities of cask under required load conditions were evaluated. Therefore, it was verified that the cask is suitable to use at the outside transport as well as Post Irradiated Examination Facility in KAERI. 9 refs., 50 figs., 14 tabs. (Author)

  10. Development of metal cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    It is one of the realistic solutions against increasing demand on interim storage of spent fuel assemblies arising from nuclear power plants in Japan to apply dual purpose (transport and storage) metal casks. Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities, etc. in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage casks use various new design concepts and materials to improve thermal performance of the cask, structural integrity of the basket, durability of the neutron shielding material and so on. This paper summarizes an outline of the cask design that can accommodate BWR spent fuel assemblies as well as the new technologies applied to the design and fabrication. (author)

  11. Evaluation method of gas leakage rate from transportation casks of radioactive materials (gas leakage rates from scratches on O-ring surface)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Li Ninghua; Asano, Ryoji; Kawa, Tsunemichi

    2004-01-01

    A sealing function is essential for transportation and/or storage casks of radioactive materials under both normal and accidental operating conditions in order to prevent radioactive materials from being released into the environment. In the safety analysis report, the release rate of radioactive materials into the environment is evaluated using the correlations specified in the ANSI N14.5, 1987. The purposes of the work are to reveal the underlying problems on the correlations specified in the ANSI N14.5 related to gas leakage rates from a scratch on O-ring surface and from multi-leak paths, to offer a data base to study the evaluation method of the leakage rate and to propose the evaluation method. In this paper, the following insights were obtained and clarified: 1. If a characteristic value of a leak path is defined as D 4 /a ('D' is the diameter and 'a' is the length), a scratch on the O-ring surface can be evaluated as a circular tube. 2. It is proper to use the width of O-ring groove on the flange as the leak path length for elastomer O-rings. 3. Gas leakage rates from multi leak paths of the transportation cask can be evaluated in the same manner as a single leak path if an effective D4/a is introduced. (author)

  12. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  13. Decree no. 2001-1199 of the 10 december 2001 publishing the resolution MSC. 88 (71) notifying adoption of the international compilation of safety rules for the spent nuclear fuels, plutonium and high level radioactive wastes transport in casks on ships (compilation INF) (annexes), adopted at London the 27 may 1999

    International Nuclear Information System (INIS)

    2002-01-01

    This legislative text concerns the safety rules of spent nuclear fuels, plutonium and high level radioactive wastes transport, in casks on ships. Rules, fire prevention, temperature control of casks, electric supply, radioprotection, management and emergency plans are detailed. (A.L.B.)

  14. Criticality safety of spent fuel casks considering water inleakage

    International Nuclear Information System (INIS)

    Osgood, N.L.; Withee, C.J.; Easton, E.P.

    2004-01-01

    A fundamental safety design parameter for all fissile material packages is that a single package must be critically safe even if water leaks into the containment system. In addition, criticality safety must be assured for arrays of packages under normal conditions of transport (undamaged packages) and under hypothetical accident conditions (damaged packages). The U.S. Nuclear Regulatory Commission staff has revised the review protocol for demonstrating criticality safety for spent fuel casks. Previous review guidance specified that water inleakage be considered under accident conditions. This practice was based on the fact that the leak tightness of spent fuel casks is typically demonstrated by use of structural analysis and not by physical testing. In addition, since a single package was shown to be safe with water inleakage, it was concluded that this analysis was also applicable to an array of damaged packages, since the heavy shield walls in spent fuel casks neutronically isolate each cask in the array. Inherent in this conclusion is that the fuel assembly geometry does not change significantly, even under drop test conditions. Requests for shipping fuel with burnup exceeding 40 GWd/MTU, including very high burnups exceeding 60 GWD/MTU, caused a reassessment of this assumption. Fuel cladding structural strength and ductility were not clearly predictable for these higher burnups. Therefore the single package analysis for an undamaged package may not be applicable for the damaged package. NRC staff developed a new practice for review of spent fuel casks under accident conditions. The practice presents two methods for approval that would allow an assessment of potential reconfiguration of the fuel assembly under accident conditions, or, alternatively, a demonstration of the water-exclusion boundary through physical testing

  15. Supplement to ORNL/Sub/86-SA094/1 on use of transportable storage casks in the nuclear waste management system

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. This document discusses the use of transportable storage casks. 12 refs., 7 tabs.

  16. ALARA Principle Application for Loading Spent Nuclear Fuel Assemblies from Nuclear Research Reactor WR-S Mergal-Bucharest Romania into Transportation Casks

    International Nuclear Information System (INIS)

    Dragusin, M.

    2009-01-01

    Safety implementation of Spent Nuclear Fuels Assemblies (SNFA) handling procedures at the WR-S reactor site is ensured by technical perfection and reliability of equipment, monitoring of its condition, qualification and discipline of personnel as well as organization and execution of work complied with requirements of regulatory documents, process procedures, guidance and manuals. The personnel training for execution loading of SNF FAs is other important aspect for radiation protection and safely activities. Estimations carried out using Micro Shield software show that maximal dose rate upon working site when loading four FAs into basket of cask will not exceed 1.7 and 956;Sv/h, excluding natural radiation. Radiation Safety Analyses estimates for loading 70 SNFA in 18 transportation casks are: maximal individual dose: 4274.7 and 956;Sv, maximal expected collective dose persons: 17 031.2 man and 956;Sv. By application ALARA principle with technical and administrative measures the loading process developed in the following conditions: maximal individual dose: 68 and 956;Sv, the collective dose persons: 732 man and 956;Sv. The work will presented the technical measures and procedures applied in loading process.

  17. Legal weight truck cask model impact limiter response

    International Nuclear Information System (INIS)

    Meinert, N.M.; Shappert, L.B.

    1989-01-01

    Dynamic and quasi-static quarter-scale model testing was performed to supplement the analytical case presented in the Nuclear Assurance Corporation Legal Weight Truck (NAC LWT) cask transport licensing application. Four successive drop tests from 9.0 meters (30 feet) onto an unyielding surface and one 1.0-meter (40-inch) drop onto a scale mild steel pin 3.8 centimeters (1.5 inches) in diameter, corroborated the impact limiter design and structural analyses presented in the licensing application. Quantitative measurements, made during drop testing, support the impact limiter analyses. High-speed photography of the tests confirm that only a small amount of energy is elastically stored in the aluminum honeycomb and that oblique drop slapdown is not significant. The qualitative conclusion is that the limiter protected LWT cask will not sustain permanent structural damage and containment will be maintained, subsequent to a hypothetical accident, as shown by structural analyses

  18. Modelling global container freight transport demand

    NARCIS (Netherlands)

    Tavasszy, L.A.; Ivanova, O.; Halim, R.A.

    2015-01-01

    The objective of this chapter is to discuss methods and techniques for a quantitative and descriptive analysis of future container transport demand at a global level. Information on future container transport flows is useful for various purposes. It is instrumental for the assessment of returns of

  19. GA-4/GA-9 legal weight truck from reactor spent fuel shipping casks

    International Nuclear Information System (INIS)

    1990-04-01

    The preliminary design report presents the results of General Atomics (GA) preliminary design effort to develop weight truck from reactor spent fuel shipping casks. The thermal evaluation of the Office of Civilian Radioactive Waste Management (OCRWM) cask considered normal and hypothetical accident conditions of transport. We employed analytical modeling as well as fire testing of the neutron shielding material to perform the evaluation. This document addresses the thermal design features of the cask, discusses thermal criteria, and summarizes the results of the thermal evaluation, as well as results of structural containment and nuclear evaluations that support the design. Also included are the results of trade-off studies. 69 refs., 103 figs., 76 tabs

  20. Evaluation of the impact behavior of the contents of reprocessing radioactive waste shipping cask subjected to drop impact

    International Nuclear Information System (INIS)

    Shirai, K.; Ito, C.; Funahashi, M.

    1993-01-01

    In this study, to investigate the impact response characteristics of the contents in the cask precisely, we performed the laboratory-scale drop tests, and on the basis of the test results, we proposed the construction of the spring-mass model and confirmed the accuracy of the proposed drop analysis method by comparison with drop test using a full-scale cask for high level wastes. Following the results of the drop tests and analysis, the outline of the contents and results is summarized below. 1) The drop tests onto the unyielding surface using a scale model containing several contents were performed and the effect of the interaction between the contents and the cask body on the impact response experimentally. 2) The above interaction can be characterized by the gap between the contents and the cask body caused by the release of the gravitational force at the moment the drop started. So, we proposed the analysis method for considering gap using spring-mass model by comparing the laboratory-scale drop test results. 3) We applied the proposed analysis method to a drop test using a full-scale cask for high level wastes, and it was found that this method seems to be good and convenient enough to evaluate the impact behavior of the contents in a transport cask subjected to drop impact. (J.P.N.)

  1. High-impact concrete for fill in US Department of Transportation type shipping containers

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Cash, R.J.

    1990-01-01

    This report describes the use of light-weight, high-impact concrete in U.S. Department of Transportation-type shipments. The formulations described are substantially lighter in weight (20 to 50 percent) than construction concrete, but product test specimens generally yield superior impact characteristics. The use of this specialty concrete for container fill, encapsulations, or liquid-waste solidification can be advantageous. Use of the material for container or cask construction has the advantage of lighter weight for easier handling, and the container consistently exhibits better performance on drop tests. High-impact concrete does have the disadvantage of less gamma radiation shielding per volume, but some formulation changes discussed in this report can be used to prepare better shielding concrete. Test characteristics of high-impact concrete are included. 3 refs., 6 figs., 7 tabs

  2. Studies and research concerning BNFP: cask handling equipment standardization

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1980-10-01

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time

  3. Shielding analysis of a transport and storage cask for spent BWR fuel applicability of the code SAS4 and discussion of results

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, F. [Nuclear Cargo and Service GmbH, Hanau (Germany); Morishima, M.; Tamaki, H. [Mitsubishi Heavy Industries, Kobe (Japan)

    2004-07-01

    For the shielding analysis of transport and storage casks for spent fuel the use of computer codes is state of the art. However, in most applications the computer models used for the analysis are simplified to circular geometries to save modelling effort and calculation time. Furthermore, the active zone of the fuel is modelled as homogeneous zone with a uniform average burn-up. In the first part of the present paper it is shown that an exact model is feasible and the effect of the geometrical shape on the dose rates is illustrated. The second part of the paper shows the comparison of the dose rates calculated with 5 different fuel models. Finally, the accuracy of the calculations is discussed.

  4. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User's manual to Version 1b (including program reference)

    International Nuclear Information System (INIS)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.; Mok, G.C.

    1995-02-01

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user's manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers with a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  6. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  7. Cooling performance evaluation of the concrete cask

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Abe, Ganji; Irino, Mitsuhiro; Arikawa, Hiroshi; Tamaki, Mitsuo

    2002-01-01

    The concrete cask storage system stores spent fuel by first sealing it within canisters and then containing such canisters inside a concrete cask. This report describes the results of a full-size model test performed to examine the heat dissipation characteristics of the concrete cask and to ascertain its ability to deal with elevated temperature. The specification to which a full-size concrete cask model was fabricated assumed an interim storage of 17x17UO 2 fuel that was burned in PWR, estimating the heating value of spent fuel containing canister to be approximately 20 kW apiece. The test, which actually covered canister heating values ranging from 10 kW to 30 kW per unit to allow for temperature variations likely to be experienced in actual operation, verified that the concrete cask member did not exceed temperature limits. Test condition anticipated highest air temperature inside the spent fuel storage facility to be 30degC and, with reference to existing standard, set temperature limits of 65degC or less for the main body of concrete and 90degC or less for the local part as criteria. Preliminary 3-D thermo hydrodynamic analysis done prior to the test indicated that the temperature of the local part of the concrete cask member would be below 90degC. It also confirmed that steel material used as the structural member of the canisters or concrete cask would remain around 200degC even in an area where it was highest, validating that the integrity of such material would pose no problem from the analytical point of view. Heat dissipation performance test conducted in steady state verified that the concrete cask was able to have a sufficient cooling capacity against per-canister heating values in the 10 kW to 30 kW range which had been chosen in anticipation of temperature variation thought to be encountered in actual service. Also, to examine the consequence of the concrete cask having lost its cooling ability, another heat dissipation test was carried out under

  8. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks

    International Nuclear Information System (INIS)

    Neumann, Martin; Wille, Frank

    2011-01-01

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  9. Analysis of radiation measurement data of the BUSS cask

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tang, J.S.

    1995-01-01

    The Beneficial Uses Shipping System (BUSS) is a Type-B packaging developed for shipping nonfissile, special-form radioactive materials to facilities such as sewage, food, and medical-product irradiators. The primary purpose of the BUSS cask is to provide shielding and confinement, as well as impact, puncture, and thermal protection for its certified special-form contents under both normal transport and hypothetical accident conditions. A BUSS cask that contained 16 CsCl capsules (2.723 x 10 4 TBq total activity) was recently subjected to radiation survey measurements at a Westinghouse Hanford facility, which provided data that could be used to validate computer codes. Two shielding analysis codes, MICROSHIELD (User's Manual 1988) and SAS4 (Tan 1993), that are used at Argonne National Laboratory to evaluate the safety of packaging of radioactive materials during transportation, have been selected for analysis of radiation data obtained from the BUSS cask. MICROSHIELD, which performs only gamma radiation shielding calculation, is based on a point-kernel model with idealized geometry, whereas SAS4 is a control module in the SCALE code system (1995) that can perform three-dimensional Monte Carlo shielding calculation for photons and neutrons, with built-in procedures for cross-section data processing and automated variance reduction. The two codes differ in how they model the details of the physics of gamma photon attenuation in materials, and this difference is reflected in the associated engineering cost of the analysis. One purpose of the analysis presented in this paper, therefore, is to examine the effects of the major modeling assumptions in the two codes on calculated dose rates, and to use the measured dose rates for comparison. The focus in this paper is on analysis of radiation dose rates measured on the general body of the cask and away from penetrations

  10. Development of NUPAC 140B 100 ton rail/barge cask

    International Nuclear Information System (INIS)

    1990-04-01

    The 140-B Cask Ancillary Equipment includes all cask-related hardware necessary for a complete transportation package and for handling of the cask at shipping and receiving facilities. The transportation package equipment includes the cask tiedown system, the railcar and the sunshield/personnel barrier. The cask handling systems include both single and dual load path cask lifting fixtures, a cask uprighting system, an intermodal transfer system, and the cask drain and fill system. This document describes the individual systems in terms of their purpose, their function, and their mechanical features. Structural analyses are provided for the cask lifting and tiedown devices. The cask ancillary equipment will also include special tools and equipment such as seal surface protection device, special torque wrenches, leak test equipment, etc., for handling the cask at a reactor site. Although final design work remains to be completed, the ancillary equipment design information presented in this document ensures that the 140-B cask transportation package will meet or exceed all structural, functional, and operational requirements, within the specified gross vehicle weight limit. 18 figs

  11. The single SNR fuel assembly container (ESBB) to transport unirradiated SNR 300 fuel assemblies

    International Nuclear Information System (INIS)

    Hilbert, F.; Hottenrott, G.

    1998-01-01

    In this paper a new type B(U) package design is presented. The Single SNR Fuel Assembly Container (ESBB) is designed for the transport and storage of a single SNR 300 fuel assembly. This package is the main component for the future interim storage of the fuel assemblies in heavy storage casks. Its benefits are that it is compatible with the Category I transport system of Nuclear Cargo + Service NCS) used in Germany and that it can be easily handled at the current storage locations as well as in an interim storage facility. In total 205 fuel assemblies are currently stored in Hanau, Germany and Dounreay, U.K. Former studies have shown, that heavy transport and storage casks can be handled there only with considerable efforts. But the required category I transport to an interim storage is not reasonably feasible. To overcome these problems the ESBB was designed. It consists of a stainless steel tube with welded bottom, a welded plug as closure system and shock absorbers 26 packages at maximum can be transported in one batch with the NCS security vehicle. The safety analysis shows that the package complies with IAEA 1996. Standard calculations methods and computer codes like HEATING 7.2 (Childs 1993) have been used for the analysis. Criticality safety assessment is based on conservative assumptions as required in IAEA 1996. Drop tests carried out by BAM will be used to verify the design. These tests are scheduled for mid 1998. For the validation of the design prototypes have already been manufactured. Handling tests show that the design complies with the requirements. Preliminary drop tests show that the certification drop tests will be passed positively. (authors)

  12. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  13. SCOPE, Shipping Cask Optimization and Parametric Evaluation

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: Given the neutron and gamma-ray shielding requirements as input, SCOPE may be used as a conceptual design tool for the evaluation of various casks designed to carry square fuel assemblies, circular canisters of nuclear waste material, or circular canisters containing 'intact' spent-fuel assemblies. It may be used to evaluate a specific design or to search for the maximum number of full assemblies (or canisters) that might be shipped in a given type of cask. In the 'search' mode, SCOPE will use built-in packing arrangements and the tabulated shielding requirements input by the user to 'design' a cask carrying one fuel assembly (or canister); it will then continue to increment the number of assemblies (or canisters) until one or more of the design limits can no longer be met. In each case (N = 1,2,3...), SCOPE will calculate the steady-state temperature distribution throughout the cask and perform a complete 1-D space/time transient thermal analysis following a postulated half-hour fire; then it will edit the characteristic dimensions of the cask (including fins, if required), the total weight of the loaded case, the steady-state temperature distribution at selected points, and the maximum transient temperature in key components. With SCOPE, the effects of various design changes may be evaluated quickly and inexpensively. 2 - Method of solution: SCOPE assumes that the user has already made an independent determination of the neutron and gamma-ray shielding requirements for the particular type of cask(s) under study. The amount of shielding required obviously depends on the type of spent fuel or nuclear waste material, its burnup and/or exposure, the decay time, and the number of assemblies or canisters in the cask. Source terms (and spectra) for spent PWR and BWR fuel assemblies are provided at each of 17 decay times, along with recommended neutron and gamma-ray shield thicknesses for Pb, Fe, and U-metal casks containing a

  14. Remote cask handling and implications for cask system design

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Thunborg, S.

    1988-08-01

    Robotic handling of nuclear waste shipping casks has the potential to significantly reduce occupational radiation exposure and computer monitoring of operator interactions with the system can improve safety. Furthermore, robot programmability can provide an automated audit trail for quality assurance. This report discussed the impact of cask design on the potential application of robotic systems to repository based nuclear waste shipping cask handling operations. The main conclusions are: (1) incorporation of cask system design features which facilitate robotic cask handling can be achieved with minimal impact on cask functional features, (2) proper cask design allows robotic cask handling operations from unbolting cask tie-down straps to radiation surveys to be performed quickly and reliably without direct human intervention, and (3) design for remote handling also facilitates manual handling operations. 12 refs., 9 figs., 4 tabs

  15. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    2007-03-30

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously

  16. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    International Nuclear Information System (INIS)

    VAIL, T.S.

    2007-01-01

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously un

  17. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  18. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  19. Transport container for radio-active material

    International Nuclear Information System (INIS)

    Winstanley, R.

    1976-01-01

    Energy absorbing means are described for minimising the risk of damage to radioactive material transport containers in the event of violent impact. It is envisaged that the worst condition for damage would arise in the event of end-on impact, and the energy absorbing means described is designed for attachment to the ends of the containers. It comprises a circular array of L-shaped plates or fins the foot portion of which extend axially about the end of the container and are secured between inner and outer stiffening rings, and the leg portions extending radially inwards over a portion of the end face of the container and being secured to an annular plate abutting the end face of the container and cooperating with means for attaching the fins to the container. (U.K.)

  20. Safety evaluation for packaging (onsite) SERF cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1997-01-01

    This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required

  1. Safety evaluation for packaging (onsite) SERF cask

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.S.

    1997-10-24

    This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  2. Topical safety analysis report for the transportation of the NUHOMS reg-sign dry shielded canister

    International Nuclear Information System (INIS)

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS reg-sign) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS reg-sign DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS reg-sign Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport

  3. Developing cask designs in the USSR

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To tackle the problem of transporting spent fuel from its VVER-1000s, the Soviet Union has developed two casks - the TK-10 and the TK-13 which are described here. Future developments of these designs may use a silicon-organics based material for the solid neutron shielding and no neutron absorbers in the fuel assembly basket. (author)

  4. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  5. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  6. Opportunities to increase the productivity of spent fuel shipping casks in the United States

    International Nuclear Information System (INIS)

    Winsor, G.H.; Faletti, D.W.; DeSteese, J.G.

    1980-03-01

    Trends indicate that future transportation requirements for spent fuel will be different from those anticipated when the current generation of casks and vehicles was designed. Increased storage capacity at most reactors will increase the average post irradiation age of the spent fuel to be transported. A scenario is presented which shows the 18 casks currently available should be sufficient until approximately 1983. Beyond this time, it appears that an adequate transportation system can be maintained by acquiring, as needed, casks of current designs and new casks currently under development. Spent fuel transportation requirements in the post-1990 period can be met by a new generation of casks specifically designed to transport long-cooled fuel. In terms of the number of casks needed, productivity may be increased by 19% if rail cask turnaround time is reduced to 4 days from the current range of 6.5 to 8.5 days. Productivity defined as payloads per cask year could be increased 62% if the turnaround time for legal weight truck casks were reduced from 12 hours to 4 hours. On a similar basis, overweight truck casks show a 28% increase in productivity

  7. Development of assessment methods for transport and storage containers with higher content of metallic recycling material

    International Nuclear Information System (INIS)

    Zencker, U.; Qiao Linan; Droste, B.

    2004-01-01

    The mechanical behaviour of transport and storage containers made of ductile cast iron melted with higher content of metallic recycling material from decommissioning and dismantling of nuclear installations is investigated. With drop tests of cubic container-like models, the influence of different real targets on the stresses in the cask body and the fracture behaviour is examined. A test stand foundation is suggested, which can be manufactured simply and improves the reproducibility of the test results strongly. The test objects are partially equipped with artificial cracklike defects. Dynamic fracture mechanics analyses of these defects were performed by means of finite element calculations to uncover safety margins. Numerous test results show depending on the requirements that containers for final disposal can be built by means of a ductile cast iron with fracture toughness more than half under the lower bound value for the licensed material qualities yet. The application limits of the material are determined also by the opportunities of the safety assessment methods. This project supports the application of brittle fracture safe transport and storage packages for radioactive materials as recommended in App. VI of the Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA No. TS-G-1.1)

  8. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  9. Logistics management for storing multiple cask plug and remote handling systems in ITER

    International Nuclear Information System (INIS)

    Ventura, Rodrigo; Ferreira, João; Filip, Iulian; Vale, Alberto

    2013-01-01

    Highlights: ► We model the logistics management problem in ITER, taking into account casks of multiple typologies. ► We propose a method to determine the best position of the casks inside a given storage area. ► Our method obtains the sequence of operations required to retrieve or store an arbitrary cask, given its storage place. ► We illustrate our method with simulation results in an example scenario. -- Abstract: During operation, maintenance inside the reactor building at ITER (International Thermonuclear Experimental Reactor) has to be performed by remote handling, due to the presence of activated materials. Maintenance operations involve the transportation and storage of large, heavyweight casks from and to the tokamak building. The transportation is carried out by autonomous vehicles that lift and move beneath these casks. The storage of these casks face several challenges, since (1) the cask storage area is limited in space, and (2) all casks have to be accessible for transportation by the vehicles. In particular, casks in the storage area may block other casks, so that the former has to be moved to a temporary position to give way to the latter. This paper addresses the challenge of managing the logistics of cask storage, where casks may have different typologies. In particular, we propose an approach to (1) determine the best position of the casks inside the storage area, and to (2) obtain the sequence of operations required to retrieve and store an arbitrary cask from/to a given storage place. A combinatorial optimization approach is used to obtain solutions to both these problems. Simulation results illustrate the application of the proposed method to a simple scenario

  10. Corrosion resistance of candidate transportation container materials

    International Nuclear Information System (INIS)

    Maestas, L.M.; Sorensen, N.R.; McAllaster, M.E.

    1995-01-01

    The Department of Energy is currently remediating several sites that have been contaminated over the years with hazardous, mixed waste and radioactive materials. Regulatory guidelines require strict compliance demonstrating public safety during remediation and the transport of these hazardous, mixed waste and radioactive materials. The compatibility of the metallic transportation containers with the contents they are designed to transport is an ultimate concern that must be satisfied to ensure public safety. The transportation issue is inherently complicated due to the complex, varied, and unknown composition of the hazardous, mixed and radioactive waste that is being, considered for transport by the DOE facilities. Never before have the interactions between the waste being transported and the materials that comprise the transportation packages been more important. Therefore, evaluation of material performance when subjected to a simulated waste will ensure that all regulatory issues and requirements for transportation of hazardous, mixed, and radioactive wastes are satisfied. The tasks encompassed by this study include defining criteria for candidate material selection, defining a test matrix that will provide pertinent information on the material compatibility with the waste stimulant, and evaluation of material performance when subjected to a stimulant waste. Our goal is to provide package design engineers with a choice of materials which exhibit enhanced performance upon exposure to hazardous, mixed, and radioactive waste that is similar in composition to the waste stimulant used in this study. Due to the fact that there are many other possible waste compositions, additional work needs to be done to broaden our materials compatibility/waste stream data base

  11. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  12. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Analysis of a system containing a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Smith, R.I.; Daling, P.M.; Faletti, D.W.

    1992-04-01

    This addendum report extends the original study of the estimated radiation doses to the public and to workers resulting from transporting spent nuclear fuel from commercial nuclear power reactor stations through the federal waste management system (FWMS), to a system that contains a monitored retrievable storage (MRS) facility. The system concepts and designs utilized herein are consistent with those used in the original study (circa 1985--1987). Because the FWMS design is still evolving, the results of these analyses may no longer apply to the design for casks and cask handling systems that are currently being considered. Four system scenarios are examined and compared with the reference No-MRS scenario (all spent fuel transported directly from the reactors to the western repository in standard-capacity truck and rail casks). In Scenarios 1 and 2, an MRS facility is located in eastern United States and ships either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters. In Scenarios 3 and 4, an MRS facility is located in the western United States and ship either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters

  13. Cask handling method and apparatus

    International Nuclear Information System (INIS)

    Yoli, A.H.; Husain, I.

    1977-01-01

    The method of transferring radioactive material into and out of the cask comprises positioning a tank with an open end in a well. Then a cask having a passage for moving radioactive material into and out of the cask is placed in the tank through the opening in the tank. The tank opening is then sealed to the cask relative to the well without sealing the passage relative to the well to prevent water filled into the well from leaking into the tank. Then the well is filled with water above the seal, and radioactive material is then moved through the water in the well through the passage into the cask. The tank may be filled with demineralized water from a separate source to pressurize the space in the tank on the other side of the seal from the well to prevent water in the well from entering the tank. The water level in the well and in the tank is then lowered, the tank opening to the cask seal is removed, and a cover is attached to the cask passage to maintain the radioactive material and contaminated water in the cask. The apparatus which accomplishes the above method comprises a tank in a well for receiving a cask therein. A seal between the tank and the cask prevents water in the well from flowing into the tank about the cask and permits water in the well to flow through the cask opening into the cask. A first water supply means raises and lowers the water level in the well, and a second water supply means supplies clean demineralized water to the tank under pressure to prevent water in the well from leaking into the tank. The seal is annularly shaped and is attached to the top of the tank. The central portion of the annular seal is aligned with the cask opening and it has means to seal the annular seal to the cask

  14. Safety Analysis Report--packages: cobalt-60 shipping cask (packaging of radioactive and fissile materials). Final report

    International Nuclear Information System (INIS)

    Cherney, J.R.; Gates, A.A.

    1976-08-01

    Safety Analysis Report DPSPU 73-124-1 is revised to permit shipment of 8 slugs (max), each slug containing an average of 43,750 curies of 60 Co and contained in a stainless steel can with a double-plug closure in cobalt-60 shipping casks in compliance with 10 CFR 71, Packaging of Radioactive Materials for Transport. This is in addition to the forms already discussed in DPSPU 73-124-1

  15. Evaluation of doses during the handling and transport of radioactive wastes containers

    International Nuclear Information System (INIS)

    Kubik, I.; Kusovska, Z.; Hanusik, V.; Mrskova, A.; Kapisovsky, V.

    2000-01-01

    Radioactive waste products from the nuclear power plants (NPPs) must be isolated from contact with people for very long period of time. Low and intermediate-level waste will be disposed of in Slovakia in specially licensed Regional disposal facility which is located near the NPP Mochovce site. Radioactive waste accumulated in the Jaslovsk. Bohunice site, during the decommissioning process of the NPP A-1 and arising from the NPP V-1 and NPP V-2 operation, will be processed and shipped in standard concrete containers to the Mochovce Regional disposal facility. The treatment centre was build at the NPP Jaslovsk? Bohunice site which is in the trial operation now. It is supposed that radioactive waste containers will be transported by train from the treatment centre Jaslovsk? Bohunice to the site of Radioactive Waste Repository at Mochovce and by truck in the area of repository. To estimate the occupational radiation exposure during the transport the calculations of dose rates from the containers are necessary. The national regulations allow low level of radiation to emanate from the casks and containers. The maximum permissible volume radioactivity of wastes inside the container is limited in such a way that irradiation level should not exceed 2 mGy/h for the contact irradiation level and 0,1 mGy/h at 2-meter distance. MicroShield code was used to analyse shielding and assessing exposure from gamma radiation of containers to people. A radioactive source was conservatively modelled by homogenous mixture of radionuclides with concrete. Standard rectangular volume source and shield geometry is used in model calculations. The activities of the personnel during the transport and storage of containers are analysed and results of the evaluation of external dose rates and effective doses are described. (author)

  16. Decree no. 2001-1199 of the 10 december 2001 publishing the resolution MSC. 88 (71) notifying adoption of the international compilation of safety rules for the spent nuclear fuels, plutonium and high level radioactive wastes transport in casks on ships (compilation INF) (annexes), adopted at London the 27 may 1999; Decret no. 2001-1199 du 10 decembre 2001 portant publication de la resolution MSC.88 (71) portant adoption du recueil international de regles de securite pour le transport de combustible nucleaire irradie, de plutonium et de dechets hautement radioactifs en colis a bord de navires (recueil INF) (ensemble une annexe), adoptee a Londres le 27 mai 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This legislative text concerns the safety rules of spent nuclear fuels, plutonium and high level radioactive wastes transport, in casks on ships. Rules, fire prevention, temperature control of casks, electric supply, radioprotection, management and emergency plans are detailed. (A.L.B.)

  17. Analysis of a hypothetical dropped spent nuclear fuel shipping cask impacting a floor mounted crush pad

    International Nuclear Information System (INIS)

    Hawkes, B.D.; Uldrich, E.D.

    1998-03-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Idaho Chemical Processing Plant. The 110-ton Large Cell Cask was assumed to be accidentally dropped onto the parapet of the unloading pool, causing the cask to tumble through the pool water and impact the floor mounted crush pad with the cask's top corner. The crush pad contains rigid polyurethane foam, which was modeled in a separate computer analysis to simulate the manufacturer's testing of the foam and to determine the foam's stress and strain characteristics. This computer analysis verified that the foam was accurately represented in the analysis to follow. A detailed non-linear, dynamic finite element analysis was then performed on the crush pad and adjacent pool structure to assure that a drop of this massive cask does not result in unacceptable damage to the storage facility. Additionally, verification was made that the crush pad adequately protects the cask from severe impact loading. At impact, the cask has significant vertical, horizontal and rotational velocities. The crush pad absorbs much of the energy of the cask through plastic deformation during primary and secondary impacts. After the primary impact with the crush pad, the cask still has sufficient energy to rebound and rotate until it impacts the pool wall. An assessment is made of the damage to the crush pad and pool wall and of the impact loading on the cask

  18. IMPACT ANALYSIS OF SPENT FUEL DRY CASKS UNDER ACCIDENTAL DROP SCENARIOS

    International Nuclear Information System (INIS)

    BRAVERMAN, J.I.; MORANTE, R.J.; XU, J.; HOFMAYER, C.H.; SHAUKAT, S.K.

    2003-01-01

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister OLIIpC that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel

  19. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    .... Background Section 218(a) of the Nuclear Waste Policy Act (NWPA) of 1982, as amended, requires that ``the... condition, the design of the cask would prevent loss of containment, shielding, and criticality control. If there is no loss of containment, shielding, or criticality control, the environmental impacts would be...

  20. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  1. Fire protection device for LMFBR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Moss, M.; Heckman, R.C.

    1977-08-01

    This report describes the analysis and experimental evaluation of a device to provide fire protection for a shipping cask used to transport liquid metal fast breeder reactor (LMFBR) fuel rods. Thermal analyses of various fire protection schemes were conducted by means of the finite difference code, CINDA. The choice of materials for the cask body was determined to be less important than the dimensions and number of cooling fins attached to the cask. Of several protection methods considered, radiation/convection shields between the cooling fins looked most attractive; these were tested on a quarter-scale cask model. The shields consisted of bimetallic bands which expanded when heated, blocking the fire, and retracted when cooled. This automatic reversibility would allow the fins to dissipate internally generated heat of a full-size cask once the fire was out. Tests showed that, even in an asymmetric fire exposure, the bands expanded to provide protection to the cask. The directly exposed surface of the cask model, protected this way, reached a temperature of only 180 0 C compared with 295 0 C in the unprotected state, when subjected to a butane flame for 0.5 h at a distance of 15 cm. Greater relative effectiveness could be expected in an engulfing fire in which the bands would expand more symmetrically

  2. FACSIM/MRS-1: Cask receiving and consolidation performance assessment

    International Nuclear Information System (INIS)

    Lotz, T.L.; Shay, M.R.

    1987-06-01

    A simulation analysis was completed to assess the performance of the shipping cask receiving and spent-fuel handling, consolidation and canistering operations of the Monitored Retrievable Storage (MRS) facility. One purpose of this evaluation was to estimate the limits of MRS operational capabilities and factors leading to those limitations. The model used to obtain the performance assessment, FACSIM/MRS-1, is one of two components of the FACSIM model developed by PNL's simulation effort for the nuclear waste-handling facility. FACSIM/MRS-1 provides the user with information about lag-storage requirements, machine use, cask queues, welder queues, and cask process and cask turnaround times. The model can help determine the effect that the following activities have on operating efficiency: (1) receiving multiple cask shipments, when rail-cask or truck-cask shipments arrive at the facility in groups of two or more, and (2) operating the facility five days per week, three shifts per day or seven days per week, three shifts per day for any conditions. In addition, sensitivity to equipment failure frequency and the time needed for equipment repair can be studied. Information on the above operating characteristics may be obtained for any spent-fuel rate, any split of shipments between truck and rail transport, or any split of boiling water reactor/pressurized water reactor fuel

  3. Corrosion assessment of dry fuel storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  4. Numerical assessment of spent fuel casks impacting real targets

    Energy Technology Data Exchange (ETDEWEB)

    Ballheimer, V.; Probst, A.; Droste, B

    2000-07-01

    A reference container of high capacity was analysed for loads beyond those it has to withstand during a 9 m IAEA drop test onto an unyielding target. In doing this a lid-end drop with shock absorber onto a real target was simulated. This is a possible accident for the rail transport of such casks. In this case the most critical components of the containment system are the primary lid bolts. The behaviour of the lid system and its sealing function were investigated with finite element (FE) analysis. To correlate the findings with a corresponding impact velocity onto real targets an analytical method was used. Despite the conservative assumptions made in this study a two-fold safety factor compared to the 9 m drop tests onto the unyielding target could be shown. The quantification of the additional safety the cask might provide requires further basic investigations on the behaviour of the real targets considered as well as the reduction of the conservatism included in the assumptions made up to now. (author)

  5. Evaluation of impact limiter performance during end-on and slapdown drop tests of a one-third scale model storage/transport cask system

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Bronowski, D.R.; Uncapher, W.L.; Attaway, S.W.; Bateman, V.I.; Carne, T.G.; Gregory, D.L.; Huerta, M.

    1990-12-01

    This report describes drop testing of a one-third scale model shipping cask system. Two casks were designed and fabricated by Transnuclear, Inc., to ship spent fuel from the former Nuclear Fuel Services West Valley reprocessing facility in New York to the Idaho National Engineering Laboratory for a long-term spent fuel dry storage demonstration project. As part of the NRC's regulatory certification process, one-third scale model tests were performed to obtain experimental data on impact limiter performance during impact testing. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. Two 30-ft (9-m) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood-filled impact limiters. This report describes the results of both tests in terms of measured decelerations, posttest deformation measurements, and the general structural response of the system. 3 refs., 32 figs

  6. Evaluation of Cask Drop Criticality Issues at K Basin

    Energy Technology Data Exchange (ETDEWEB)

    GOLDMANN, L.H.

    2000-01-24

    An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuum Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.

  7. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    Parks, C.V.

    1989-01-01

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  8. Impact response analysis of cask for spent fuel by dimensional analysis and mode superposition method

    International Nuclear Information System (INIS)

    Kim, Y. J.; Kim, W. T.; Lee, Y. S.

    2006-01-01

    Full text: Full text: Due to the potentiality of accidents, the transportation safety of radioactive material has become extremely important in these days. The most important means of accomplishing the safety in transportation for radioactive material is the integrity of cask. The cask for spent fuel consists of a cask body and two impact limiters generally. The impact limiters are attached at the upper and the lower of the cask body. The cask comprises general requirements and test requirements for normal transport conditions and hypothetical accident conditions in accordance with IAEA regulations. Among the test requirements for hypothetical accident conditions, the 9 m drop test of dropping the cask from 9 m height to unyielding surface to get maximum damage becomes very important requirement because it can affect the structural soundness of the cask. So far the impact response analysis for 9 m drop test has been obtained by finite element method with complex computational procedure. In this study, the empirical equations of the impact forces for 9 m drop test are formulated by dimensional analysis. And then using the empirical equations the characteristics of material used for impact limiters are analysed. Also the dynamic impact response of the cask body is analysed using the mode superposition method and the analysis method is proposed. The results are also validated by comparing with previous experimental results and finite element analysis results. The present method is simpler than finite element method and can be used to predict the impact response of the cask

  9. 49 CFR 173.9 - Transport vehicles or freight containers containing lading which has been fumigated.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles or freight containers... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.9 Transport... hazardous material. (b) No person may offer for transportation or transport a rail car, freight container...

  10. Trunnions for spent fuel element shipping casks

    International Nuclear Information System (INIS)

    Cooke, B.

    1989-01-01

    Trunnions are used on spent fuel element shipping casks for one or more of a combination of lifting, tilting or securing to a transport vehicle. Within the nuclear transportation industry there are many different philosophies on trunnions, concerning the shape, manufacture, attachment, inspection, maintenance and repair. With the volume of international transport of spent fuel now taking place, it is recognized that problems are occurring with casks in international traffic due to the variance of the philosophies, national standards, and the lack of an international standard. It was agreed through the ISO that an international standard was required to harmonize. It was not possible to evolve an international standard. It was only possible to evolve an international guide. To evolve a standard would mean superseding any existing national standards which already cover particular aspects of trunnions i.e. deceleration forces imposed on trunnions used as tie down features. Therefore the document is a guide only and allows existing national standards to take precedence where they exist. The guide covers design, manufacture, maintenance, repair and quality assurance. The guide covers trunnions used on spent fuel casks transported by road, rail and sea. The guide details the considerations which should be taken account of by cask designers, i.e. stress intensity, design features, inspection and test methods etc. Manufacture, attachment and pre-service testing is also covered. The guide details user requirements which should also be taken account of, i.e. servicing frequency, content, maintenance and repair. The application of quality assurance is described separately although the principles are used throughout the guide

  11. Literature review of cask exterior surface contamination with application to a nuclear repository

    International Nuclear Information System (INIS)

    Adams, K.G.

    1990-04-01

    The characteristics of transportation cask surface contamination and the ''weeping'' phenomenon are reviewed. In addition, literature that pertains to the possible impact of surface contamination on repository operations is reviewed. This report consists of commentary on and rather extensive excerpts from the published literature on cask surface contamination that may have a bearing on repository risk assessment. In addition, estimates are made of the quantity of contamination that might be present on a cask. These estimates are used to calculate the direct exposure rates to personnel located at several distances from the cask. 15 refs., 15 tabs

  12. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and hypothetical

  13. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, Shalina Sheik [Prototype and Plant Development Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia); Hamzah, Mohd Arif Arif B. [Prototype and Plant Development Center, Technical Support Division Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP)

  14. Thermal test and analysis of a spent fuel storage cask

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kosaki, A.

    1993-01-01

    A thermal test simulated with full-scale cask model for the normal storage was performed to verify the storage skill of the spent fuels of the cask. The maximum temperature at each point in the test was lower than the allowable temperature. The integrity of the cask was maintained. It was observed that the safety of containment system was also kept according to the check of the seal before and after the thermal test. Therefore it was shown that using the present skill, it is possible to store spent fuels in the dry-type cask safely. Moreover, because of the good agreement between analysis and experimental results, it was shown that the analysis model was successfully established to estimate the temperature distribution of the fuel cladding and the seal portion. (J.P.N.)

  15. QA in the design and fabrication of the TMI-2 rail cask

    International Nuclear Information System (INIS)

    Hayes, G.R.

    1988-01-01

    EGandG Idaho, Inc., acting on behalf of the US Department of Energy, is responsible for transporting core debris from Three Mile Island-Unit 2 to the Idaho National Engineering Laboratory. Transportation of the debris is being accomplished using an NRC licensed container, called the NuPac 125-B. This paper describes the NuPac 125-B Rail Cask and the quality assurance (QA) requirements for that system. Also discussed are the QA roles of the various organizations involved in designing, building, inspecting and testing the NuPac 125-B. The paper presents QA/QC systems implemented during the design, procurement, and fabrication of the cask to assure compliance with all applicable technical codes, standards and regulations. It also goes beyond the requirements aspect and describes unique QA/QC measures employed to assure that the cask was built with minimum QA problems. Finally, the lessons learned from the NuPac 125-B project is discussed. 4 refs., 4 figs

  16. Application of linear-elastic fracture mechanics concepts to ferritic spent fuel shipping casks

    International Nuclear Information System (INIS)

    McConnell, P.; Wullaert, R.A.; Trujillo, A.

    1983-01-01

    A linear-elastic fracture mechanics analysis is an appropriate methodology for the fail-safe design of spent fuel shipping containers. It provides a quantitative basis by which to assess the margin of safety inherent to a particular cask. Required inputs are the maximum stresses to be expected from a nine-meter drop, the largest flaw size that may be expected to exist in the cask (based upon capabilities of NDE), and the fracture toughness of the cask material. It was analytically, and conservatively, demonstrated using linear-elastic fracture mechanics procedures that two typical shipping cask designs, constructed of candidate ferritic steel and nodular cast iron materials, can withstand a nine-meter drop. No crack initiation would occur even should a flaw of a size well above the detectability limit of conventional NDE exist in the cask. The fracture toughness of even relatively low toughness ferritic materials is sufficient to ensure the structural integrity of these casks

  17. Thermal analysis for spent fuel casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1986-01-01

    Thermal analyses for spent fuel storage or transportation must demonstrate that the heat produced in the fuel will be removed without causing excessive fuel cladding temperatures or cask surface temperatures. The time required to ship fuel from a reactor to another site is a matter of days so temperature control during shipment is a short term concern and temperatures of 1100-1200 degrees F are acceptable in a hypothetical fire scenario, but storage is envisioned for twenty years or more and temperatures are limited to 380 degrees C (716 F). Elevated temperatures do more that weaken fuel cladding: the materials of the fuel basket also weaken with higher temperature, thermal stresses may cause cracks to form in welds, and impact limiter materials may soften or degrade. The high temperatures of a fire cause loss of liquid neutron shields and may cause solid materials to char and insulate a cask after the fire

  18. Investigation of the behaviour of impact limiting devices of transport casks for radioactive materials in the package approval and risk analysis; Untersuchung des Verhaltens stossdaempfender Bauteile von Transportbehaeltern fuer radioaktive Stoffe in Bauartpruefung und Risikoanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Martin

    2009-08-20

    Transport casks for radioactive materials with a Type-B package certificate have to ensure that even under severe accident scenarios the radioactive content remains safely enclosed, in an undercritical arrangement and that ionising radiation is sufficiently shielded. The impact limiter absorbs in an accident scenario the major part of the impact energy and reduces the maximum force applied on the cask body. Therefore the simulation of the behaviour of impact limiting devices of transport casks for nuclear material is of great interest for the design assessment in the package approval as well as for risk analysis in the field of transport of radioactive materials. The behaviour of the impact limiter is influenced by a number of parameters like impact limiter construction, material properties and loading conditions. Uncertainties exist for the application of simplified numerical tools for calculations of impact limiting devices. Uncertainities exist when applying simplified numerical tools. A model describing the compression of wood in axial direction of wood under large deformations for simulation with complex numerical procedures like dynamic Finite Element Methods has not been developed yet. Therefore this thesis concentrates on deriving a physical model for the behaviour of wood and analysing the applicability of different modeling techniques. A model describing the compression of wood in axial direction under large deformations was developed on the basis of an analysis of impact limiter of prototypes of casks for radioactive materials after a 9-m-drop-test and impact tests with wooden specimens. The model describes the softening, which wood under large deformation exhibits, as a function of the lateral strain constraint. The larger the lateral strain restriction, the more energy wood can absorb. The energy absorption capacity of impact limiter depends therefore on the ability of the outer steel sheet structure to prevent wood from evading from the main

  19. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles, freight containers, and... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General Handling and Stowage § 176.76 Transport... paragraphs (b) through (f) of this section, hazardous materials authorized to be transported by vessel may be...

  20. 21 CFR 864.3250 - Specimen transport and storage container.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Specimen transport and storage container. 864.3250 Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....3250 Specimen transport and storage container. (a) Identification. A specimen transport and storage...

  1. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  2. The external dose of lack fuel cask for analyses with MCNP

    International Nuclear Information System (INIS)

    Liu Liu; Qiu Xiaoping; Liao Lingyuan

    2009-01-01

    The transport vessel of lack fuel cask is a special facilities which is for reactor lack fuel transportation. MCNP4C is used to count the external dose rate of Westinghouse MC-10 lack fuel cask, it is based on mesh definition, to get the whole external dose rate of the cask, and in connection with the result from previous researcher Georgeta Radulescu, the outcome in consistency is good, using mesh causes long-playing machine hours and comes to some error, but it can get many data about external dose rate of the lack fuel cask roundly and at any rate. So it makes sense to the definition on the external dose rate of the lack fuel cask for missionary. (authors)

  3. Oak Ridge National Laboratory shipping containers for radioactive materials

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1980-05-01

    The types of containers used at ORNL for the transport of radioactive materials are described. Both returnable and non-returnable types are included. Containers for solids, liquids and gases are discussed. Casks for the shipment of uranium, irradiated fuel elements, and non-irradiated fuel elements are also described. Specifications are provided

  4. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  5. Bilateral arrangement on cooperation and technical exchange between the USA and the FRG on research related to radioactive material transportation

    International Nuclear Information System (INIS)

    1991-01-01

    This publication presents six final reports of the Bundesanstalt fuer Materialforschung und -pruefung, BAM, on the subject area of transport and storage casks made of ductile cast iron for radioactive material. The individual topics of the final reports are: 1. Ductile cast iron with nodular graphite as a material for spent fuel transport and storage casks. 2. Status of ductile cast iron cask technology in the Federal Republic of Germany. 3. Materials testing of transport and storage casks made of GGG 40, in 1981-1987. 4. Behavior of unsound container bodies made of ductile cast iron under impact loads during drop tests. 5. Computer codes for the determination of stress conditions in relevant components of packagings containing radioactive material. 6. Computer-aided recording and evaluation of instrumented impact tests. (orig./MM) [de

  6. The transportation operations system: A description

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Dixon, L.D.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    This paper presents a description of the system for transporting radioactive waste that may be deployed to accomplish the assigned system mission, which includes accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from waste generator sites and transporting them to the FWMS destination facilities. The system description presented here contains, in part, irradiated fuel and waste casks, ancillary equipments, truck, rail, and barge transporters, cask and vehicle traffic management organizations, maintenance facilities, and other operations elements. The description is for a fully implemented system, which is not expected to be achieved, however, until several years after initial operations. 6 figs

  7. Logistic Conditions of Container Transportation on the Oder Waterway

    Directory of Open Access Journals (Sweden)

    Jan Kulczyk

    2018-03-01

    Full Text Available The paper contains the analysis of the possibility of container transportation on the Oder Waterway (the Gliwice Canal, the canalized stretch of the Oder River, and the regulated stretch of the Oder River, on the assumption that the waterway complies with conditions of class III European waterway. The analysis is based on the concept of modern motor cargo vessel, adjusted to hydraulic parameters of waterway. The vessel is designed for ballasting when passing under bridges. The amount of ballast water that enables transportation of two tiers of containers is given. The costs of waterborne transportation are compared to the costs of rail transportation of containers on selected shipping routes.

  8. Incentives for use of inelastic analysis in RAM transport container design

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Heinstein, M.W.

    1992-01-01

    The use of inelastic analysis methods instead of the traditional elastic analysis methods in the design of radioactive material (RAM) transport packagings leads to a better understanding of the response ofthe package to mechanical loadings. Thus, better assessment of the containment, thermal protection, and shielding integrity of the package after a structural accident event can be made. A more accurate prediction of the package response can lead to enhanced safety and also allow for a more efficient use of materials, possibly leading to a package with higher capacity and/or lower weight. This paper discusses the incentives for using inelastic analysis in the design of RAM shipping packages. Inelastic analysis provides an improved knowledge of the package behavior. It must be demonstrated that the use of inelastic analysis provides a better design to overcome the difficulties associated with this type of analysis. In this paper, comparisons between elastic and inelastic analyses are made to illustrate the differences in the two analysis techniques for two different types of packages. One is a package to transport a large quantity of RAM by rail with lead gamma shielding,and the other is a package to transport RAM by truck with depleteduranium gamma shielding. Analyses of the center-of-gravity-over-corner impacts will be compared for each package. The comparisons indicate thata package designed to just meet the elastic design criteria will actually undergo some yielding in the locations of highest stress. This results in two consequences in the predicted behavior of the cask. First,the overprediction of the stiffness of these yielded regions by theelastic analysis technique results in an underestimation of the stresses in other portions of the structure. Secondly, in an inelastic analysis, the yielding of a portion of a structure causes the force in thatregion to rise less rapidly than forces in adjacent regions

  9. Nuclear safety analysis for transport cask TK-6 (for WWER-440) and cover for fresh assemblies (for WWER-1000) in implementation of new fuel types at Ukrainian NPP

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kovbasenko, Iu; Dudka, Olena

    2006-01-01

    According to the fresh fuel management procedure, fuel assemblies - after nuclear fuel delivery to the NPP fresh fuel unit - are vertically loaded into a cover intended for the delivery of fuel assemblies into the containment of the NPP reactor compartment. The cover is placed into an universal jack in the cooling and refueling pond, and then the fresh fuel assemblies are loaded into the reactor core. Based on the nuclear safety analysis carried out by the Russian Research Center 'Kurchatov Institute' for contemporary WWER-1000 fuel, it has become necessary to limit the number of fuel assemblies loaded into a cover below its designed capacity (12 FA instead of 18 FA as originally designed). Such a decision leads to worse economic performances in fuel transportation. The paper considers potential ways to overcome this restriction. Transport container TK-6 for spent fuel assemblies was designed quite a long time ago and, as shown in this paper, the requirement on the maximally permissible neutron multiplication factor of the loaded container for individual states to be analyzed in compliance with Ukrainian regulations is not met. First of all, this concerns the container criticality analysis in optimal neutron slow-down (container filling with water-air mixture with optimal density). The paper shows potential ways for TK-6 burnup-credit loading with the maximum number of fuel assemblies and partial container loading (Authors)

  10. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2016-04-01

    Full Text Available The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load–time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  11. Safety assessment of a metal cask under aircraft engine crash

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Choi, Woo Seok; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is free standing on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  12. A revision of the cask designers guide for the '90s

    International Nuclear Information System (INIS)

    Shappert, L.B.; Green, V.M.

    1993-01-01

    DOE has requested that ORNL initiate a revision to NSIC-68, A Guide for the Design, Fabrication, and Operation of Shipping Casks for Nuclear Applications, commonly called the Cask Designers Guide. This revision, called the Cask Handbook, has two goals: (1) to improve the quality of SARPs that are submitted to DOE, and (2) to provide up-to-date information on the design of spent fuel shipping casks, including information on fabrication, quality assurance, SARP preparation, certification, use, maintenance, and other general topics. The revision provides guidance that will help engineers through the cask licensing process, in part, by providing as much regulator-approved data and 'lessons-learned' information as possible. The effort is sponsored by DOE-Environmental, Safety and Health (EH), guided by Transportation Technology staff members at ORNL, and the information is being generated by experts in the various technical fields. (J.P.N.)

  13. Development of on-site accident criteria for waste transfer casks

    International Nuclear Information System (INIS)

    Uldrich, E.D.

    1989-01-01

    Removal of radioactive waste must withstand the scrutiny of the public and various regulatory offices. Currently, there is no standard accident criteria or methodology for intra-site shipments at the Idaho National Engineering Laboratory (INEL). Since the radioactive waste transfer casks only carry material within the INEL site boundaries and are not used for normal over-the-road transport, the requirements of 10 CFR 71 Packaging and Transportation of Radioactive Material, do not provide suitable requirements for cask design or safety analyses. The objective is to develop realistically conservative accident scenarios consistent with the limited uses at the INEL for which the cask is approved

  14. Cask size and weight reduction through the use of depleted uranium dioxide-concrete material

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Haire, J.M.

    2007-01-01

    Newly developed depleted uranium (DU) composite materials enable fabrication of spent nuclear fuel (SNF) transport and storage casks that are smaller and lighter in weight than casks made with conventional materials. One such material is DU dioxide (DUO2)-concrete, so-called DUCRETE TM . This paper examines the radiation shielding efficiency of DUCRETE as compared with that of a conventional concrete cask that holds 32 pressurized-water-reactor SNF assemblies. In this analysis, conventional concrete shielding material is replaced with DUCRETE. The thickness of the DUCRETE shielding is adjusted to give the same radiation surface dose, 200 mrem/h (2 mSv/hr), as the conventional concrete cask. It was found that the concrete shielding thickness decreased from 71 to 20 cm and that the cask radial cross-section shielding area was reduced approx 50 %. The weight was reduced approx 21 %, from 154 to approx 127 tons. Should one choose to add an extra outer ring of SNF assemblies, the number of such assemblies would increase from 32 to 52. In this case, the outside cask diameter would still decrease, from 169 to 137 cm. However, the weight would increase somewhat from 156 to 177 tons. Neutron cask surface dose is only approx 10 % of the gamma dose. These reduced sizes and weights will significantly influence the design of next-generation SNF casks

  15. Development of NUPAC 140B 100 ton rail/barge cask

    International Nuclear Information System (INIS)

    1990-04-01

    The NuPac 140-B 100 Ton Rail/Barge Shipping Cask Preliminary Design Report (PDR) presents a general introduction to, and description of, the NuPac 140-B Cask and its fuel payload. The NuPac 140-B Cask, Model: NuPac 140-B, is being designed by Nuclear Packaging, Inc., to meet or exceed all NRC and Department of Transportation regulations governing the shipment of radioactive material. Specifically the Cask is being developed as a safe means of transporting spent light-water-reactor (LWR) fuels from existing and proposed reactor facilities to a repository and/or a monitored retrievable storage (MRS) facility. The primary transportation mode is by railroad, although the shipping package is designed to be transported by barge and by truck shipment on a special overweight basis for short distances. This feature allows the servicing of reactor sites and other facilities which lack direct railroad access

  16. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il' kaev, R.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    2004-07-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks.

  17. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    International Nuclear Information System (INIS)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il'kaev, R.I.; Shapovalov, V.I.

    2004-01-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks

  18. Structural challenges in the development of a truck shipping cask for the OCRWM cask systems development program

    International Nuclear Information System (INIS)

    Mello, R.M.; Severson, W.J.; Nair, B.R.

    1990-01-01

    The development of a spent fuel transportation cask design based on a structural material without licensing precedent presents many challenges. The U.S. Nuclear Regulatory Commission (NRC) requires that any new material be qualified to meet the design and fabrication requirements of the ASME Boiler and Pressure Vessel Code, Section III, Class 1. This paper discusses the strategy that is being implemented towards obtaining Code Acceptance of a titanium alloy (3A1-2.5V). This alloy has been chosen as the principal structural material for a Legal Weight Truck cask being developed by Westinghouse for the U.S. Department of Energy. The analysis approach used on some of the principal cask components is also presented

  19. Containers for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Bochard, C.

    1975-01-01

    The container for heat evolving radioactive materials has a metallic outer casing formed with outwardly projecting heat dissipating or cooling members, such as pins or fins, while each of its ends is formed with a flat flange which extends radially beyond the outer ends of the cooling members. A perforated wall extends between the flanges to define with same and with the periphery of the outer casing an annular space within which the cooling members are enclosed. This perforated wall is adapted to support a flexible covering sleeve the ends of which are clamped by inflatable seals between the periphery of the flanges and outer rings removably secured to the latter. Spraying means are provided within the aforesaid space to permit of projecting an uncontaminated liquid on the cooling members to cool the container before and/or while the latter is immersed in a loading and unloading pond with the sleeve mounted in position. The lower flange is provided with liquid collecting and evacuating means and compressed air may be injected into the said space to force the collected liquid outwardly. (auth)

  20. PATRAM '83: 7th international symposium on packaging and transportation of radioactive materials. Proceedings. Volume 1

    International Nuclear Information System (INIS)

    1983-12-01

    Volume 1 contains the papers from the following sessions: Plenary session; international regulations; fracture toughness of ferritic steels; monolithic cast iron casks; risk analysis techniques; storage in packagings; packaging design considerations; risk analysis; facility/transportation system interface; research and development programs; UF 6 packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; and radiation risk experiences

  1. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  2. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  3. Russian Containers for Transportation of Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-01-01

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified

  4. Russian Containers for Transportation of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-02-28

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified.

  5. Investigation on aerosol transport in containment cracks

    International Nuclear Information System (INIS)

    Parozzi, F.; Chatzidakis, S.; Housiadas, C.; Gelain, T.; Nahas, G.; Plumecocq, W.; Vendel, J.; Herranz, L.E.; Hinis, E.; Journeau, C.; Piluso, P.; Malgarida, E.

    2005-01-01

    Under severe accident conditions, the containment leak-tightness could be threatened by energetic phenomena that could yield a release to the environment of nuclear aerosols through penetrating concrete cracks. As few data are presently available to quantify this aerosol leakage, a specific action was launched in the framework of the Santar Project of the European 6 th Framework Programme. In this context, both theoretical and experimental investigations have been managed to develop a model that can readily be applied within a code like Aster (Accident Source Term Evaluation Code). Particle diffusion, settling, turbulent deposition, diffusiophoresis and thermophoresis have been considered as deposition mechanisms inside the crack path. They have been encapsulated in numerical models set up to reproduce experiments with small tubes and capillaries and simulate the plug formation. Then, an original lagrangian approach has been used to evaluate the crack retention under typical PWR accident conditions, comparing its predictions with those given by the eulerian approach implemented in the ECART code. On the experimental side, the paper illustrates an aerosol production and measurement system developed to validate aerosol deposition models into cracks and the results that can be obtained: a series of tests were performed with monodispersed fluorescein aerosols injected into a cracked concrete sample. A key result that should be further explored refers to the high enhancement of aerosol retention that could be due to steam condensation. Recommendations concerning future experimentation are also given in the paper. (author)

  6. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    International Nuclear Information System (INIS)

    Gerhard, M.A.; Sommer, S.C.

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  7. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, M.A.; Sommer, S.C. [Lawrence Livermore National Lab., CA (United States)

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.

  8. Accident-resistant container: safety for warhead transport. Executive summary

    International Nuclear Information System (INIS)

    Berry, R.E.

    1975-11-01

    Development testing of model and full-scale hardware to the abnormal environments created during a cargo aircraft crash has demonstrated that the accident-resistant container (ARC) can protect an enclosed warhead from these abnormal environments. This protection reduces the probability of initiation of the warhead HE. Transfer of the plutonium limit to the ARC may permit transporting increased numbers of warheads on a single transport vehicle. Testing of one warhead configuration has been completed. Production can be initiated for transporting that system in the ARC. Other systems need test evaluation and certification before being transported in the ARC

  9. PATRAM '83: 7th international symposium on packaging and transportation of radioactive materials. Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-12-01

    Volume 1 contains the papers from the following sessions: Plenary session; international regulations; fracture toughness of ferritic steels; monolithic cast iron casks; risk analysis techniques; storage in packagings; packaging design considerations; risk analysis; facility/transportation system interface; research and development programs; UF/sub 6/ packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; and radiation risk experiences.

  10. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    International Nuclear Information System (INIS)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung

    2016-01-01

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask

  11. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  12. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed.

  13. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed

  14. Moving the largest capacity PWR dual-purpose cask in the world from Goesgen NPP to the Zwilag interim storage site

    International Nuclear Information System (INIS)

    Delannay, M.; Dudragne, S.

    2002-01-01

    The Swiss Goesgen nuclear power plant (NPP) has decided to use two different methods for the disposal of its spent fuel. (1) To reprocess some of its spent fuel in dedicated facilities. Some of the vitrified waste from the reprocessing will be shipped back to Switzerland using the new COGEMA Logistics, TN81 cask. (2) To ship the other part of its spent fuel to the central interim storage facility of Zwilag (Switzerland) using a COGEMA Logistics dual-purpose TN24G cask. The TN24G is the heaviest and largest dual-purpose cask manufactured so far by COGEMA Logistics in Europe. It is intended for the transport and storage of 37 pressurised water-reactor (PWR) spent fuel assemblies. Four casks were delivered by COGEMA Logistics to Goesgen NPP. Three transports of loaded TN24G casks between Goesgen and Zwilag were successfully performed at the beginning of 2002 with the new COGEMA Logistics Q76 wagon specifically designed to transport heavy casks. This article describes the procedure of operations and shipments for the first TN24G casks up to storage at Zwilag. The fourth transport of loaded TN24G was due to happen in October 2002. The TN24G cask, as part of the TN24 casks family, proved to be a very efficient solution for the KKG spent fuel management. (author)

  15. Fire resistant nuclear fuel cask

    Science.gov (United States)

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  16. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao

    2015-11-01

    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  17. Documentation for initial testing and inspections of Beneficial Uses Shipping System (BUSS) Cask

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this report is to compile data generated during the initial tests and inspections of the Beneficial Uses Shipping System (BUSS) Cask. In addition, this report will verify that the testing criteria identified in section 8.1 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The BUSS Cask body and lid are each one-piece forgings fabricated from ASTM A473, Type 304 stainless steel. The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Chapter 8 of the BUSS Cask SARP requires several acceptance tests and inspections, each intended to evaluate the performance of different components of the BUSS Cask system, to be performed before its first use. The results of the tests and inspections required are included in this document

  18. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    Energy Technology Data Exchange (ETDEWEB)

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  19. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million

  20. Potential exposures and health effects from spent fuel transportation

    International Nuclear Information System (INIS)

    Rogers, V.C.; Sandquist, G.M.; Sutherland, A.A.

    1987-01-01

    The radiation exposures and consequent health effects associated with normal operations and postulated accidents during transportation of spent fuel have been analyzed and evaluated and the results have been summarized in the Final Environmental Assessments issued by DOE. For normal, accident-free transport of spent fuel, radiation exposures arise from both gamma and neutron sources within the spent fuel cask. The neutrons result from the spontaneous fission of transuranic nuclides in the spent fuel. The neutron dose flux component was modeled using DISNEL, a generalized, one-dimensional, multi-energy group neutronics code. Computer program PATHRAE-T was then developed from the EPA code PATHRAE and was employed to determine the total, combined dose field, including both ground and sky scatter of neutrons and gamma photons for any position around a truck or rail spent fuel cask. Four activity classes, viz., caravan, traffic obstruction, resident and pedestrian proximity, and servicing of the cask transport vehicle were reviewed for maximum individual exposure assessments. Projected doses for typical activities under maximum exposure conditions were 6 mrem or less per event. A spent fuel rail cask containing up to 14 PWR spent fuel assemblies could conceivably be involved in a variety of rail related transportation accidents. PATHRAE-T was used to estimate doses from rail cask accidents involving the release of radioactive nuclides although a release from such accidents is highly unlikely. The maximum individual exposure, primarily due to inhalation, is about 10 rem and occurs about 70 meters downwind

  1. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  2. Layered packaging: A synergistic method of transporting radioactive material

    International Nuclear Information System (INIS)

    Hohmann, G.L.

    1989-01-01

    The DOE certification for a transportation cask used to ship radioactive Krypton 85 from the Idaho Chemical Processing Plant (ICPP) to Oak Ridge National Laboratory (ORNL), was allowed to expire in 1987. The Westinghouse Idaho Nuclear Company (WINCO) was charged by DOE with modifying this cask to meet all current NRC requirements and preparing an updated Safety Analysis Report for Packaging, which would be submitted by DOE to the NRC for certification. However, an urgent need arose for ORNL to receive Krypton 85 which was in storage at the ICPP, which would not allow time to obtain certification of the modified shipping cask. WINCO elected to use a layered shipping configuration in which the gaseous Krypton 85 was placed in the uncertified, modified shipping cask to make use of its shielding and thermal insulation properties. This cask was then inserted into the Model No. 6400 (Super Tiger) packaging using a specially constructed plywood box and polyurethane foam dunnage. Structural evaluations were completed to assure the Super Tiger would provide the necessary impact, puncture, and thermal protection during maximum credible accidents. Analyses were also completed to determine the uncertified Krypton shipping cask would provide the necessary containment and shielding for up to 3.7 E+14 Bq of Krypton 85 when packaged inside the Super Tiger. The resulting reports, based upon this layered packaging concept, were adequate to first obtain DOE certification for several restricted shipments of Krypton 85 and then NRC certification for unrestricted shipments

  3. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-04-13

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube.

  4. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2000-01-01

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube

  5. A cask maintenance facility feasibility study

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01

    The Oak Ridge National Laboratory (ORNL) is supporting the USDOE Office of Civilian Radioactive Waste Management (OCRWM) in developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, green field facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrieveable Storage (MRS) facility. The data, design, and estimated cost resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. The feasibility study was based on an assumed stand-alone green field configuration because of the flexibility this design approach provides. A stand-alone facility requires the inclusion with support functions as well as the primary process facilities thus yielding a comprehensive design evaluation and cost estimate. For example, items such as roads, security and waste processing which might be shared with an integrated or collocated facility have been fully costed in the feasibility study. Thus, while the details of the facility design might change, the overall concept used in the study can be applied to other facility configurations as planning for the total FWMS develops

  6. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  7. Burnup credit in the design of spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Wilmot, E.L.

    1987-01-01

    The spent-fuel carrying capacities of previous generation shipping casks have been primarily thermal and/or shielding limited. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus, a considerable weight margin is available to the designer for increasing the payload capacity. One method of achieving an increase in capacity is by reducing fuel assembly spacing. The amount of reduction in assembly spacing available is limited by criticality and fuel support structural concerns. The optimum fuel assembly achievable is then limited by requirements to control neutron multiplication and to ensure the structural integrity of fuel support components. An investigation of the feasibility of accounting for fuel burnup in the design of spent-fuel shipping casks was recently completed for the US Dept. of Energy's Office of Civilian Radioactive Waste Management. Criticality analyses have been performed, and potential impacts in terms of increased cask capacities with associated costs and safety benefits have been determined. The scope of the analysis is limited to typical burnups of full-cycle, discharged pressurized water reactor (PWR) fuel and generic shipping cask designs. A sensitivity analysis was performed to estimate the impact of cask capacity on total transportation system life cycle costs

  8. Safety Analysis Report: Packages, Pu oxide and Am oxide shipping cask: Packaging of fissile and other radioactive materials: Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-12-01

    The PuO 2 cask or 5320-3 cask is designed for shipment of americium or plutonium by surface transportation modes. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, dated 12/21/76, which invokes Title 10 Code of Federal Regulations, Part 71 (10 CFR 71) ''Packaging of Radioactive Materials for Transport,'' and Title 49 CFR Parts 171.179 ''Hazardous Materials Regulations.'' (US DOE Order 4580.1A, Chapter III, superseded manual chapter 0529 effective May 1981, but it retained the same 10 CFR 71 and 49 CFR 171-179 references

  9. The experiences from interim spent fuel storage operation with CASTOR 440/84 CASKS in NPP Dukovany

    International Nuclear Information System (INIS)

    Kuba, S.

    1999-01-01

    In this lecture are presented: principles of the CASTOR 440/84 design; design development works; commissioning of interim spent fuel storage facility; international transports of spent fuel utilising CASTOR 440/84 casks

  10. Feasibility and incentives for the consideration of spent fuel operating histories in the criticality analysis of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-08-01

    Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced. Reducing the number of shipments would increase safety benefits by reducing public and occupational exposure to both radiological and nonradiological risks associated with the transport of spent fuel. Economic benefits would include lower in-transit shipping, reduced transportation fleet capital costs, and reduced numbers of cask handling operations at both shipping and receiving facilities. 44 refs., 66 figs., 28 tabs

  11. Test Plan for Cask Identification Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.

  12. Spent fuel shipping cask accident evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel.

  13. Radioactive fuel cask railcar humping study

    International Nuclear Information System (INIS)

    Wilson, L.T.

    1978-01-01

    The response of two radioactive shipping casks due to railroad humping shocks was calculated using a spring-mass model. The two railcars for these casks had different coupling mechanisms and different tiedown arrangements. Humping tests had been performed on one of the railcars (ATMX-600) and the resulting shock spectra was used to adjust the spring-mass model to get matching results. One car (designed for cask shipment) was equipped with Freightmaster E-15 end of car coupler and had about 1 / 8 in. free travel of the cask skid relative to the car. The other car (ATMX-600), equipped with Miner RF-333 draft gear, was designed for nuclear weapon shipment and adapted to nuclear waste shipment by fastening the casks to the floor. Both car frames were built by the same manufacturer and are very similar. The response of the casks was put in shock spectra format and a parametric study was performed with various cask weights. Additional studies were done on the effects of fastening the loose cask, and using the Freightmaster end of car coupler on the ATMX car. Half-sine response spectra were overlaid to include the natural frequency of the cask tiedown. The resulting shock amplitude was plotted against the cask weight for each car. The results show a constant acceleration level for all the weights on the car with hydraulic end-of-car coupler which results from constant force at that impact velocity. The cask acceleration can be reduced by fastening it to the car, rather than allowing it to move freely through some small space. This study also shows that the cask response can be optimized on railcars without hydraulic draft gear by adjusting the tiedown stiffness to keep the tiedown frequency different than car frequencies

  14. Numerical optimization schemes for the design of transportation packages

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Harding, D.C.

    1992-02-01

    Numerical optimization has been successfully used to obtain optimal designs in a more efficient and structured manner in many industries. Optimization of sizing variables is already a widely used design tool and even though shape optimization is still an active research topic, significant successes have been achieved for many structural analysis problems. The transportation cask design problem seems to have the formulation and requirements to benefit from numerical optimization. Complex structural, thermal and radiation shielding analyses associated with cask design constraints can be integrated and automated through numerical optimization to help meet the growing needs for safe and reliable shipping containers. Improved overall package safety and efficiency with cost savings in the design and fabrication can also be realized. Sandia National Laboratories (SNL) has the opportunity to be a significant contributor in the development of new sophisticated transportation cask design tools. Current state-of-the-art technology at SNL in the areas of structural mechanics, thermal mechanics, numerical analysis, adaptive finite element analysis, automatic mesh generation, and transportation cask design can be combined to enhance current industry-standard cask design and analysis techniques through numerical optimization

  15. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  16. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  17. Software requirements definition Shipping Cask Analysis System (SCANS)

    International Nuclear Information System (INIS)

    Johnson, G.L.; Serbin, R.

    1985-01-01

    The US Nuclear Regulatory Commission (NRC) staff reviews the technical adequacy of applications for certification of designs of shipping casks for spent nuclear fuel. In order to confirm an acceptable design, the NRC staff may perform independent calculations. The current NRC procedure for confirming cask design analyses is laborious and tedious. Most of the work is currently done by hand or through the use of a remote computer network. The time required to certify a cask can be long. The review process may vary somewhat with the engineer doing the reviewing. Similarly, the documentation on the results of the review can also vary with the reviewer. To increase the efficiency of this certification process, LLNL was requested to design and write an integrated set of user-oriented, interactive computer programs for a personal microcomputer. The system is known as the NRC Shipping Cask Analysis System (SCANS). The computer codes and the software system supporting these codes are being developed and maintained for the NRC by LLNL. The objective of this system is generally to lessen the time and effort needed to review an application. Additionally, an objective of the system is to assure standardized methods and documentation of the confirmatory analyses used in the review of these cask designs. A software system should be designed based on NRC-defined requirements contained in a requirements document. The requirements document is a statement of a project's wants and needs as the users and implementers jointly understand them. The requirements document states the desired end products (i.e. WHAT's) of the project, not HOW the project provides them. This document describes the wants and needs for the SCANS system. 1 fig., 3 tabs

  18. Mathematical structure of ocean container transport systems; Kaiyo container yuso system no suriteki kozo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, A. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Chikushi, Y. [Nippon Telegraph and Telephone Corp., Tokyo (Japan)

    1997-10-01

    Mathematical structure of a vessel arrangement program was discussed in order to learn roles of container ships in ocean transport systems among China, NIES/ASEAN countries and Japan. Formulation is possible on a mathematical handling method for sailing route connection diagrams between ports, a transport network to indicate container movements, a service network to indicate sailing routes, and a network generalizing them. This paper describes an analysis made on the container transport system between Japan and China, taken as an example. Four ports were selected each from Japan and China, and the statistical database for fiscals 1996 and 1994 was utilized to set models for: (a) the liner network system with transshipment at the port of Shanghai and (b) the cruising route system going through the ports of Yokohama, Nagoya and Kobe. A hypothesis was set that a consortium (coordinated ship allocation) can be implemented ideally and completely. The transport network (a) is lower by 10% in total cost than the transport network (b), resulting in 1.6 times greater productivity. Actual service network is closer to the network (b), but the system can be utilized for discussing guidelines on vessel arrangement programs with which shipping companies pursue better management efficiency under a condition that the consortium can be formed. 10 refs., 6 figs., 2 tabs.

  19. Storage and transport containers for radioactive medical materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1989-01-01

    This patent describes a storage and transport container for small-diameter ribbon-like lengths of material including radioactive substances for use in medical treatments, comprising: an exterior shell for radiation shielding metal having top and bottom members of radiation shielding metal integral therewith; radiation shielding metal extending downward from the top of the container and forming a central cavity, the central cavity being separate from the exterior shell material of the container and extending downwardly a distance less than the height of the container; a plurality of small diameter carrier tubes located within the interior of the container and having one end of each tube opening through one side of the container and the other end of such tube opening through the opposite lateral side of the container with the central portion of each tube passing under the central cavity; and a plug of radiation shielding metal removably located in the top the central cavity for shielding the radiation from radiation sources located within the container

  20. Chemistry and mass transport of iodine in containment

    International Nuclear Information System (INIS)

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Shockley, W.E.; Daish, S.R.

    1988-01-01

    TRENDS is a computer code for modeling behavior of iodine in containment. It tracks both chemical and physical changes and features such as calculation of radiation dose rates in water pools , radiolysis effects, hydrolysis, and deposition/revaporization on aerosols and structural surfaces. Every attempt has been made to account for all significant processes. Reaction rate constants for iodine hydrolysis and radiolysis were obtained by a variable algorithm that gives values closely modeling experimental data. TRENDS output provides the distribution of iodine in containment and release from containment as a function of time during a severe accident sequence. Initial calculations with TRENDS have shown that the amount of volatile iodine released from containment is sensitive to the value of the liquid-gas (evaporation) mass transport coefficient for I 2 . 7 refs., 4 figs., 3 tabs

  1. Rectified transport of a ring containing self-propelled particles

    Science.gov (United States)

    Huang, Xiao-Qun; Liao, Jing-Jing; Ai, Bao-Quan

    2018-02-01

    Rectified transport of a ring containing self-propelled particles is numerically investigated in a two-dimensional herringbone potential. It is found that the ring powered by active particles can be rectified in the asymmetric potential and the direction of the transport is determined by the asymmetry of the potential. The ring radius can strongly affect the transport and the role of the radius on the average velocity depends on the profile of the potential and the self-propulsion speed. There exist optimal values of the parameters (the self-propulsion and the modulation parameter of the potential) at which the average velocity takes its maximal value. The average velocity decreases monotonously with increase of the parameters (the translational diffusion, the rotational diffusion and the particle number).

  2. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  3. 49 CFR 174.61 - Transport vehicles and freight containers on flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles and freight containers on flat... CARRIAGE BY RAIL General Handling and Loading Requirements § 174.61 Transport vehicles and freight containers on flat cars. (a) A transport vehicle, freight container, or package containing a hazardous...

  4. Experimental and analytical study for demonstration program on shielding of casks for high-level wastes

    International Nuclear Information System (INIS)

    Ueki, K.; Nakazawa, M.; Hattorl, S.; Ozaki, S.; Tamaki, H.; Kadotani, H.; Ishizuka, T.; Ishikawa, S.

    1993-01-01

    The following remarks were obtained from the experiment and the DOT 3.5 and the MCNP analyses on the gamma ray and the neutron dose equivalent rates in the cask of interest. 1. The cask has thinner neutron shielding parts around the trunnions. Significant neutrons streaming around the trunnion parts was observed which was also cleared by the MCNP analysis for the 252 Cf source experiment. Accordingly, detailed neutron streaming calculations are required to evaluate the dose levels around the trunnions when loading the vitrified high-level wastes. 2. The room-scattered obstructive neutrons, mainly originating from the neutrons penetrating around the trunnions, at the top and the bottom of the cask are reduced significantly by preparing the water tank at the top and the water layer at the bottom. Therefore, a more accurate experiment is to be carried out in the future shielding experiment especially for neutrons. However, because the water tank and the layer do not exist in the actual high-level wastes transport cask, the experiment without the water tank and layer are not dispensable to demonstrate the transport conditions of the actual cask, too. 3. The gamma-ray and the neutron dose equivalent rate distributions obtained from the DOT 3.5 and the MCNP calculations, respectively, agreed closely with the measured values in the cask areas of interest. Accordingly, the DOT 3.5 code and the MCNP code with the NESX estimator can be employed not only for the shielding analysis of the future experiments, but also for making a safety analysis report of high-level wastes transport casks. (J.P.N.)

  5. Incentives for the allowance of ''burnup credit'' in the design of spent nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-01-01

    An analysis has been completed which indicates that the consideration of spent fuel histories ('burnup credit') in the criticality design of spent fuel shipping casks could result in significant public risk benefits and cost savings in the transport of spent nuclear fuel. Capacities of casks could be increased considerably in some cases. These capacity increases result in lower public and occupational exposures to ionizing radiation due to the reduced number of shipments necessary to transport a given amount of fuel. Additional safety benefits result from reduced non-radiological risks to both public and occupational sectors. In addition, economic benefits result from lower in-transit shipping costs, reduced transportation fleet capital costs, and fewer cask handling requirements at both shipping and receiving facilities

  6. Incentives for the allowance of burnup credit in the design of spent nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-01-01

    An analysis has been completed which indicates that the consideration of spent fuel histories ('burnup credit') in the criticality design of spent fuel shipping casks could result in considerable public risk benefits and cost savings in the transport of spent nuclear fuel. Capacities of casks could be increased considerably in some cases. These capacity increases result in lower public and occupational exposures to ionizing radiation due to the reduced number of shipments necessary to transport a given amount of fuel. Additional safety benefits result from reduced non-radiological risks to both public and occupational sectors. In addition, economic benefits result from lower in-transit shipping costs, reduced transportation fleet capital costs, and fewer cask handling requirements at both shipping and receiving facilities

  7. Spent fuel transportation accident: a state's involvement

    International Nuclear Information System (INIS)

    Neuweg, M.

    1978-01-01

    On February 9, 1978 at 8:20 p.m., the duty officer for the Illinois Radiological Assistance Team was notified that a shipment containing uranium and plutonium was involved in an accident near Gibson City, Illinois on Route 54. It was reported that a pig containing an unknown amount of uranium and plutonium was involved. The Illinois District 6A State Police were called to the scene and secured the area. The duty officer in the meantime learned after numerous telephone calls, approximately 1 hour after the first notice was received, that the pig actually was a 48,000 pound cask containing 6 spent fuel rods and the tractor-trailer had split apart and was blocking one lane of the highway. The shipment had departed from Dresden Nuclear Power Station, Morris, Illinois, enroute to Babcox and Wilcox in Lynchburg, Virginia. Initial reports indicated the vehicle had split apart. Actually, the semi-trailer bed had buckled beneath the cask due to apparent excess stress. The cask remained entirely intact and was not damaged, but the state highway was closed to traffic. The State Radiological Assistance Team was dispatched and arrived on the scene at 12:45 a.m. Immediate radiation monitoring revealed a reading of 4 milliroentgen per hour at 10 feet from the cask. No contamination existed nor was anyone exposed to radiation unnecessarily. The cask was transferred to a Tri-State semi-trailer vehicle the following morning at approximately 6:30 a.m. At 9:30 a.m., February 10, the new vehicle was again enroute to its destination. This incident demonstrated typical occurrences involving transportation radiation accident: misinformation and/or lack of information on the initial response notification, inaccuracies of radiation monitorings at the scene of the accident, inconsistencies concerning the occurrences of the accident and unfamiliar terminology utilized by personnel first on the scene, i.e., pig, cask, vehicle split apart, etc

  8. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  9. Nondestructive Evaluation of the VSC-17 Cask

    Energy Technology Data Exchange (ETDEWEB)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.

  10. [Health risks of residual fumigants in international transport containers].

    Science.gov (United States)

    Baur, X; Budnik, L T; Preisser, A M

    2010-03-01

    The increasing transport of goods worldwide is mainly carried in standard containers. These containers are frequently fumigated in order to protect freight from pests and to follow regulations of importing countries. Fumigants as well as toxic industrial chemicals can adsorb to goods and be emitted from them over various periods of time. This review is based on a literature search, analyses of air samples from a randomized selection of import containers at the port of Hamburg and clinical investigations of intoxicated subject. These data indicate that about 70% of imported containers exceed national or international threshold levels, about one sixth exceeding occupational exposure limits of fumigants and/or toxic industrial chemical, 0.5% had concentrations immediately dangerous to life or health. Intoxications by inhalation mainly occur in workers in the logistics area. No information exists on possible fumigation in small and medium-sized companies where the container units are unloaded. Neurological and respiratory ailments dominated in patients from our outpatient clinic and those reported in the literature: symptoms were often misdiagnosed. Our results confirm findings of other investigators that subjects who unload containers or have otherwise intensive contact with imported goods are frequently exposed to toxic or very toxic volatile chemicals. It can be assumed that there are many unrecognized cases and also health risks to the ultimate consumers of transported goods. History taking targeted on potential exposure is of great diagnostic importance in elucidating typical temporal relationship between exposure by inhalation and symptoms such as headache, skin irritation, cough, dyspnea, diarrhoea and neurological deficits. Detailed investigations by medical specialists is necessary to confirm suspected diagnoses. This should be combined with immediate special analyses of air samples and laboratory tests (biological monitoring). Georg Thieme Verlag KG Stuttgart

  11. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  12. Decommissioning and dismantling of nuclear facilities: Establishing methods for testing the safe design of ductile cast iron casks with higher content of metallic recycling material (EBER)

    International Nuclear Information System (INIS)

    Zenker, U.; Voelzke, H.; Droste, B.

    2001-01-01

    The safe design of ductile cast iron (DCI) casks with higher content of metallic recycling material is investigated. Based upon the requirements of transport and storage containers for radioactive waste appropriate test scenarios are defined. A representative accident scenario (5 m drop of a cubic DCI container with given material properties onto a hard repository ground simulating concrete target) is analysed numerically by means of the finite element method using three-dimensional models. Dynamic flow curves of ductile cast iron with different scrap metal additions which are necessary for precise elastic-plastic calculations are given. The accuracy and numerical stability of the resulting dynamic stresses and strains are investigated. A comparison between calculation results and measurements from drop tests with DCI containers shows, that known mechanical effects like bending vibrations of the container walls are reflected by the finite element models. The detailed stress analysis and knowledge of the material properties are prerequisites for the safety assessment concept developed for DCI casks with higher content of metallic recycling material. Equations for semi-elliptical surface cracks in the walls of a cubically shaped container which are used in the safety assessment concept are verified under dynamic conditions. This allows the specification of the maximum permissible size of crack-like flaws depending on the material quality. Mainly the fracture mechanical properties of ductile cast iron with higher content of metallic recycling material determine the suitability of such materials for transport and storage containers. (orig.) [de

  13. Standard review plan for dry cask storage systems. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 open-quotes Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Caskclose quotes contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed

  14. Stress analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.; Hsu, S.T.

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints

  15. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  16. XSDRNPM-S biasing of MORSE-SGC/S shipping-cask calculations

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Tang, J.S.

    1982-06-01

    This report describes implementation of a systematic approach for biasing a Monte Carlo radiation transport calculation. In particular, the adjoint fluxes from a one-dimensional discrete ordinates calculation with the XSDRNPM-S code are used to generate biasing parameters for the multigroup Monte Carlo code, MORSE-SGC/S. Application of this biasing procedure to several deep penetration spent fuel shipping cask problems is also reported. The results obtained for neutron and gamma-ray transport indicate that relatively inexpensive Monte Carlo calculations are possible for dry and water filled shipping cask problems using these procedures. 5 tables

  17. Comparison of elastic and inelastic analysis and test results for the defense high level waste shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.A.; Madsen, M.M.

    1991-01-01

    In the early 1980s, the US DOE/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as fully complies with all applicable DOE, Nuclear Regulatory Commission, and DOT regulations. General Atomics designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Labs. (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This paper will compare the results of the two analytical approaches and with model testing results. The purpose of this work is to provide data to support licensing of the DHLW cask and to support the acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  18. Implementation of ANSI/ASME NQA-1 for development of GA-4 and GA-o spent fuel casks

    International Nuclear Information System (INIS)

    Dunlap, M.G.

    1989-01-01

    Early in 1988, the US Department of Energy - Idaho Operations Office (DOE-ID) awarded General Atomics (GA) a contract for the Legal Weight Truck (LWT) Cask Development Project. This project is part of a national program for transportation and permanent disposal of spent nuclear fuel and other nuclear wastes, as mandated by the Nuclear Waste Policy Act of 1982 and administered by the Office of Civilian Radioactive Waste Management (OCRWM). The scope of work covers the prototype development of a Legal Weight Transportation System for highway shipment of spent Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) fuel from existing and proposed reactor facilities to a repository or a monitored retrievable storage facility. The system consists of a cask, a semi-trailer, and the associated ancillary equipment. The PWR configuration carriers four elements and is designated the GA-4 cask. The BWR configuration carriers nine elements and is designated the GA-9 cask

  19. Nickel plating of spent fuel element transportation and storage containers

    International Nuclear Information System (INIS)

    Bedenig, D.O.; Holly, F.

    1987-01-01

    For economic reasons, the stainless steel used for nuclear transport and storage containers has been replaced by a significantly less expensive, but almost equally suitable material - spheroidal graphite cast iron. Because of the impossibility of sufficiently decontaminating raw cast iron surfaces, a suitable coating had to be developed. Steel lining, epoxy painting and soft nickel plating are known possibilities. If both the requirements made on such a coating and the economics are considered, soft nickel seems to be the most attractive solution. The paper describes the process of soft nickel plating which was developed by Von Roll, Switzerland, based on its proprietary ''Toraxier-Process'' - in co-operation with GNS (Gesellschaft fuer Nuklear-Service mbH, Essen). Soft nickel plating has been successfully applied to more than 30 Castor containers. (author)

  20. Safety analysis report for packaging (onsite) Castor GSF cask

    International Nuclear Information System (INIS)

    Clements, E.P.

    1997-01-01

    The CASTOR GSF packaging was designed and fabricated to be a certified Type B(U) packaging and comply with the requirements of the International Atomic Energy Agency (IAEA) for transport of up to five sealed canisters of vitrified radioactive materials. This onsite Safety Analysis Report for Packaging (SARP) provides the analysis and evaluations necessary to demonstrate that the casks, with the canister payload, meet the intent of the Type B packaging regulations set forth in 10 CFR 71 and therefore meet the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping

  1. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Andress, D. (Andress (David) and Associates, Inc., Kensington, MD (USA)); Joy, D.S. (Oak Ridge National Lab., TN (USA)); McLeod, N.B. (Johnson (E.R.) Associates, Inc., Oakton, VA (USA)); Peterson, R.W. (Bentz (E.J.) and Associates, Inc., Alexandria, VA (USA)); Rahimi, M. (Jacobs Engineering Group, Inc., Washington, DC (USA))

    1991-01-01

    The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs.

  2. Criticality safety assessment of WWER-1000 spent fuel cask

    International Nuclear Information System (INIS)

    Apostolov, T.; Manolova, M.; Prodanova, R.

    2001-01-01

    A methodology that allows taking credit for burnup in the criticality safety analysis of WWER spent fuel casks is presented. It is based on the two world well known and used code systems:NESSEL-NUKO for depletion and SCALE-4.4 for criticality calculations. The results of criticality calculations of WWER-1000 spent fuel storage and transportation cask, applying burnup credit is shown. The depletion calculations have been carried out for three types of WWER-1000 fuel assemblies (with enrichment of 3.0%, 3.3% and 3.3% profiled) by modelling the real operational history of the first three fuel cycles at unit 6, Kozloduy NPP. The criticality calculational model has been developed on the basis of real fuel cask, designed by the Izorskie zavody. The results obtained show that the criticality safety criterion K eff < 0.95 is satisfied for both fresh and spent fuel. Besides, the implementation of burnup credit accounts for the reduced reactivity of spent fuel and allows evaluating the conservatism of the fresh fuel assumption. (author)

  3. Dynamic fracture toughness data for CASTOR {sup registered} casks

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, H.P. [GNS Gesellschaft fuer Nuklear-Service mbH/GNB, Essen (Germany); Trubitz, P.; Pusch, G. [Technische Univ. Bergakademie Freiberg, Freiberg (Germany); Warnke, E.P. [Siempelkamp GmbH and Co. KG, Krefeld (Germany); Beute, K. [Gontermann-Peipers GmbH, Siegen (Germany); Novotny, V. [SKODA, HUTE, Plzen (Czech Republic)

    2004-07-01

    For the use of cast iron spherical graphite for heavy-sectioned casks for transportation and storage of radiactive materials a complete failure assessment including fracture mechanical analysis is necessary. The casks require an elaborate fracture mechanics design based on fracture mechanics evaluation. The extension of the existing code with respect to dynamic loading takes account new developments to extend the field of applications. It also includes new criteria to design these casks against operating and accident loadings. A fundamental requirement for the realisation of this standard and the calculation of admissible crack lengths of stresses under dynamic loads is the availability of fracture mechanical data. The paper presents-as a part of a large test-program-first results of dynamic fracture-toughness-investigations depending on structure and temperature. The test-program will incorporate investigations on more then 2500 specimens. The investigations that will be done include static and dynamic fracture mechanics tests, dynamic tensile and pressure-tests on different formed specimens. The temperatures and other test conditions follows the IAEA-regulations and the real service conditions. The test-program will be realised in partnership with different institutes.

  4. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    International Nuclear Information System (INIS)

    Dawson, D.M.; Guerra, G.; Neider, T.; Shih, P.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity or other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose

  5. SCANS (Shipping Cask ANalysis System) a microcomputer-based analysis system for shipping cask design review: User's manual to Version 3a. Volume 1, Revision 2

    International Nuclear Information System (INIS)

    Mok, G.C.; Thomas, G.R.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.

    1998-03-01

    SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees. SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations 10 CFR 71 and Regulatory Guides published by the US Nuclear Regulatory Commission in 1977 and 1978

  6. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  7. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... of this issue of the Federal Register. II. Background Section 218(a) of the Nuclear Waste Policy Act... requirements for each accident condition, the design of the cask would prevent loss of containment, shielding, and criticality control. If there is no loss of containment, shielding, or criticality control, the...

  8. Safety analysis report: packages. Pu oxide and Am oxide shipping cask (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1980-05-01

    The PuO 2 cask or SP 5320-2 and 3 cask is designed for surface shipment of americium or plutonium. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, and Chapter I, Interstate Commerce Commission. The package has been assessed for transport of up to 357 grams of plutonium (403 grams PuO 2 powder) and up to 176 grams of americium (200 grams AmO 2 powder), having a maximum decay heat of 203 watts. Criticality evaluation alone would allow the shipment as Fissile Class II but the radiation level of the cask, measured at the time of shipment, may exceed 50 mrem/h at the surface and require shipment as Fissile Class III. Sample calculations address only the more restrictive of the two materials, which in most cases is 238 PuO 2

  9. T-3 cask users' manual. Revision 1

    International Nuclear Information System (INIS)

    1986-06-01

    This user's manual for the T-C spent fuel cask provides information on: operating procedures; inspection and maintenance procedures; criticality evaluation; shielding evaluation; thermal evaluation; structural evaluation; and limitations

  10. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  11. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    Energy Technology Data Exchange (ETDEWEB)

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  12. Management plan for the procurement of shipping casks required to service proposed federal waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Renken, J.H.; Dupree, S.A.; Allen, G.C. Jr.; Freedman, J.M.

    1978-08-01

    Development of transportation systems to move radioactive waste and unreprocessed spent fuel to proposed federal waste repositories is an integral part of the National Waste Terminal Storage Program. To meet this requirement, shipping casks must be designed, licensed, and fabricated. To assist the manager charged with this responsibility, a Cask Procurement Plan has been formulated. This plan is presented as a logic diagram that is suitable for computer analysis. In addition to the diagram, narrative material that describes various activities in the plan is also included. A preliminary computer analysis of the logic diagram indicates that, depending on the result of several decisions which must be made during the course of the work, the latest start dates which will allow prototype delivery of all types of casks by December 1985, range from November 1977 to March 1982.

  13. 49 CFR 174.83 - Switching placarded rail cars, transport vehicles, freight containers, and bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Switching placarded rail cars, transport vehicles... Vehicles and Freight Containers § 174.83 Switching placarded rail cars, transport vehicles, freight... is necessary to complete the coupling. (f) When transporting a rail car, transport vehicle, or...

  14. Advanced handling technology project and implications for cask design

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Bennett, P.C.; Sanders, T.L.

    1989-01-01

    This paper describes the results of the ongoing Advanced Handling Technologies Project (AHTP) at Sandia. AHTP was initiated in 1986 to explore the use of advanced robotic systems to perform cask handling operations at radioactive waste handling facilities and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof of concept systems developed in AHTP are intended to extrapolate from currently available commercial systems to those that would be available by the time than an actual repository would be open for operation. These systems provide test facilities for the investigation of the robotic handling of alternate cask design features. The following sections describe (1) the approach used in AHTP to select operations for proof of concept robotic systems and to identify the cask design implications, (2) the separate proof of concept robotic systems developed in AHTP, and (3) preliminary insights into the impact of cask system design features on the feasibility of robotic performance of cask handling operations. The main conclusions from AHTP to date regarding design for remote handling are: (1) incorporation of cask system design features which facilitate robotic cask handling can be achieved with minimal impact on cask functional features, (2) proper cask design allows robotic cask handling operations from manipulation of cask tie-down mechanisms to radiation surveys to be performed quickly and reliably without direct human intervention, and (3) design for remote handling also facilitates manual handling operations

  15. Documentation for fiscal year 1995 annual BUSS cask SARP testing and inspections

    International Nuclear Information System (INIS)

    Saueressig, P.T.

    1994-01-01

    The purpose of this report is to compile the data generated during the Fiscal Year (FY) 1995 annual tests and inspections performed on the Beneficial Uses Shipping System (BUSS) cask. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Section 8.2 ''Maintenance and Periodic Inspection Program'' of the BUSS Cask SARP requires that the following tests and inspections be performed on an annual basis: hydrostatic pressure test; helium leak test; dye penetrant test on the trunnions and life lugs; torque test on all permanent bolts; and impact limiter inspection and weight test. In addition to compiling the generated data, this report will verify that the testing criteria identified in section 8.2 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met

  16. Documentation for fiscal year 1995 annual BUSS cask SARP testing and inspections

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, P.T.

    1994-11-08

    The purpose of this report is to compile the data generated during the Fiscal Year (FY) 1995 annual tests and inspections performed on the Beneficial Uses Shipping System (BUSS) cask. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Section 8.2 ``Maintenance and Periodic Inspection Program`` of the BUSS Cask SARP requires that the following tests and inspections be performed on an annual basis: hydrostatic pressure test; helium leak test; dye penetrant test on the trunnions and life lugs; torque test on all permanent bolts; and impact limiter inspection and weight test. In addition to compiling the generated data, this report will verify that the testing criteria identified in section 8.2 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met.

  17. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    International Nuclear Information System (INIS)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-01-01

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit no. 2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24'' diameter. This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18'' in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit no. 2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24'' in diameter and ∼11 feet long from a dry transfer cask to the basin. The 18'' and 24'' applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit no. 2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with

  18. Inelastic analysis acceptance criteria for radioactive material transportation containers

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Ludwigsen, J.S.

    1993-01-01

    The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria

  19. Full scale torch tests on spent fuel cask shipping system

    International Nuclear Information System (INIS)

    Vigil, M.G.; Trujillo, A.A.; Yoshimura, H.R.; Joseph, B.J.; Eggers, P.E.; Crawford, H.L.

    1982-01-01

    Full scale experimental measurements, including the instrumentation designed to obtain the data, are presented on the thermal effects of torch fires on a large, spent nuclear fuel shipping cask. The measured temperature data in the various materials of the multilayered cask are unique, since no torch tests have been previously performed on a cask: These data were obtained during a series of four torch tests which simulate a situation in which the relief valve of a liquefied gas tank railcar has been opened and and the contents are vented and ignited so that the resultant torch impinges on the cask. The modified cask instrumentation geometry and materials are discussed. Temperature data throughout the cask are compared for two cask on the corrugated outer jacket surface, within the neutron shield, on the carbon steel shell, on the inner stainless steel shell and near the cask head closure seals are presented for the four torch tests

  20. Multiple-Angle Muon Radiography of a Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guardincerri, Elena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poulson, Daniel Cris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bacon, Jeffrey Darnell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Deborah Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plaud-Ramos, Kenie Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-23

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  1. Transport of oxide spent fuel. Industrial experience of COGEMA

    International Nuclear Information System (INIS)

    Lenail, B.

    1983-01-01

    COGEMA is ruling all transports of spent fuel to La Hague reprocessing plant. The paper summarizes some aspects of the experience gained in this field (road, rail and sea transports) and describes the standards defined by COGEMA as regards transport casks. These standards are as follows: - casks of dry type, - casks of the maximum size compatible with rail transports, - capability to be unloaded with standardized equipment and following standard procedures

  2. The Value of Information in Container Transport: Leveraging the Triple Bottom Line

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob); A.W. Veenstra (Albert)

    2010-01-01

    textabstractPlanning the transport of maritime containers from the sea port to final destinations while using multiple transport modes is challenged by uncertainties regarding the time the container is released for further transport or the transit time from the port to its final destination. This

  3. Strategic Modeling of Global Container Transport Networks : Exploring the future of port-hinterland and maritime container transport networks

    NARCIS (Netherlands)

    Halim, R.A.

    2017-01-01

    Uncertainties in future global trade flows due to changes in trade agreements, transport technologies or sustainability policies, will affect the patterns of global freight transport and, as a consequence, also affect the demand for major freight transport infrastructures such as ports and

  4. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  5. Thermal test and analysis for transporting vitrified high-level radioactive wastes

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kato, O.; Tamaki, H.

    1993-01-01

    As a part of the safety demonstration tests for transport casks of high level radioactive vitrified wastes, the thermal tests of the cask (left unattended at an ambient temperature of 38degC for a period of one week) were executed before and after the side free drop test (from height of 30 cm). This condition was set according to the prospect of the damage of contents (baskets, etc.) by the impact force at the drop test. It was shown that the cask temperatures at the representative parts, such as the vitrified wastes, the containment system, and the protection wire net, were lower than allowable values. From the result of measured temperatures it was considered that no damages and no large deformations could happen to the contents in this drop test. Thermal analysis was also done to establish the analysis model. (J.P.N.)

  6. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  7. 75 FR 1070 - Cargo Securing Methods for Packages in Transport Vehicles or Freight Containers

    Science.gov (United States)

    2010-01-08

    ... Economic Commission for Europe (UN ECE) Working Party on Combined Transport, the International Labor... transport operations by all surface and water modes of transportation and the whole international... Packages in Transport Vehicles or Freight Containers AGENCY: Coast Guard, DHS. ACTION: Notice of request...

  8. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  9. Model for Environmental Assessment of Container Ship Transport

    DEFF Research Database (Denmark)

    Kristensen, Hans Otto Holmegaard

    2012-01-01

    A generic computer model for systematic investigations of container ship designs is described in this paper. The primary statistical data on container ships used for the model development are also presented. The model can be used to calculate exhaust gas emissions from container ships, including...

  10. Capability of environmental sampling to detect undeclared cask openings

    International Nuclear Information System (INIS)

    Beckstead, L.W.; Efurd, D.W.; Hemberger, P.H.; Abhold, M.E.; Eccleston, G.W.

    1997-01-01

    The goal of this study is to determine the signatures that would allow monitors to detect diversion of nuclear fuel (by a diverter) from a storage area such as a geological repository. Due to the complexity of operations surrounding disposal of spent nuclear fuel in a geologic repository, there are several places that a diversion of fuel could take place. After the canister that contains the fuel rods is breached, the diverter would require a hot cell to process or repackage the fuel. A reference repository and possible diversion scenarios are discussed. When a canister is breached, or during reprocessing to extract nuclear weapons material (primarily Pu), several important isotopes or signatures including tritium, 85 Kr, and 129 I are released to the surrounding environment and have the potential for analysis. Estimates of release concentrations of the key signatures from the repository under a hypothetical diversion scenario are presented and discussed. Gas analysis data collected from above-ground storage casks at Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) are included and discussed in the report. In addition, LANL participated in gas sampling of one TAN cask, the Castor V/21, in July 1997. Results of xenon analysis from the cask gas sample are presented and discussed. The importance of global fallout and recent commercial reprocessing activities and their effects on repository monitoring are discussed. Monitoring and instrumental equipment for analysis of the key signature isotopes are discussed along with limits of detection. A key factor in determining if diversion activities are in progress at a repository is the timeliness of detection and analysis of the signatures. Once a clandestine operation is suspected, analytical data should be collected as quickly as possible to support any evidence of diversion

  11. Capability of environmental sampling to detect undeclared cask openings

    Energy Technology Data Exchange (ETDEWEB)

    Beckstead, L.W.; Efurd, D.W.; Hemberger, P.H.; Abhold, M.E.; Eccleston, G.W.

    1997-12-01

    The goal of this study is to determine the signatures that would allow monitors to detect diversion of nuclear fuel (by a diverter) from a storage area such as a geological repository. Due to the complexity of operations surrounding disposal of spent nuclear fuel in a geologic repository, there are several places that a diversion of fuel could take place. After the canister that contains the fuel rods is breached, the diverter would require a hot cell to process or repackage the fuel. A reference repository and possible diversion scenarios are discussed. When a canister is breached, or during reprocessing to extract nuclear weapons material (primarily Pu), several important isotopes or signatures including tritium, {sup 85}Kr, and {sup 129}I are released to the surrounding environment and have the potential for analysis. Estimates of release concentrations of the key signatures from the repository under a hypothetical diversion scenario are presented and discussed. Gas analysis data collected from above-ground storage casks at Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) are included and discussed in the report. In addition, LANL participated in gas sampling of one TAN cask, the Castor V/21, in July 1997. Results of xenon analysis from the cask gas sample are presented and discussed. The importance of global fallout and recent commercial reprocessing activities and their effects on repository monitoring are discussed. Monitoring and instrumental equipment for analysis of the key signature isotopes are discussed along with limits of detection. A key factor in determining if diversion activities are in progress at a repository is the timeliness of detection and analysis of the signatures. Once a clandestine operation is suspected, analytical data should be collected as quickly as possible to support any evidence of diversion.

  12. Report on the joint USA-Germany drop test program for a vitrified high level waste cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Witt, C.R.; Wieser, K.E.

    1993-01-01

    A series of full-scale drop tests was performed on a ductile iron transport cask in a cooperative program between the US Department of Energy (DOE) and Bundesantalt fuer Materialpruefung (BAM) in Germany. The tests, which were performed at BAM's test facility located near Lehre, Germany, were performed on a prototype cask designed for transport of Vitrified High Level Waste (VHLW) canisters. The VHLW cask is a right circular cylinder with a diameter of 1156 mm and a height of 3454 cm, and weighs approximately 24.6 kg including its payload of a single VHLW canister. The drop tests were performed with a non-radioactive, prototype VHLW canister in the cavity. (J.P.N.)

  13. COMBINED TRANSPORT OF CONTAINERS ON THE LOWER VISTULA

    Directory of Open Access Journals (Sweden)

    Ryszard Rolbiecki

    2017-06-01

    Full Text Available One of the methods of achieving sustainable transport development and implementing the climate policy is to increase the importance of inland waterway transport in combined transport. European trends in the use of inland waterways for transport purposes should form a model for problem-solving efforts undertaken in the hinterlands of the Vistula estuary’s sea ports. The sea ports of Gdańsk and Gdynia have a very large growth potential but their development may be impeded in the near future by transport in the hinterland. A possible solution to this problem is envisioned by a document adopted by the Council of Ministers in June 2016, entitled “Assumptions for the plans for the development of inland waterways in Poland in the years 2016-2020 from the perspective of the year 2030”. This document is the first to identify the need to improve the navigating conditions on this waterway. But there are fears that this objective will not be achieved due to a very large number of priorities and extensive investment works.

  14. Developments in shielding and criticality assessment for cask design

    International Nuclear Information System (INIS)

    Watmough, M.H.; Cooper, A.J.; Croxford, R.W.

    1993-01-01

    This paper presents recent highlights from the shielding and criticality methods development programme that are of relevance to cask design. Specifically, the following points emerge: 1) the preparation of a licence application based upon UK methods and data used in a standardized fissile depletion and plutonium production model has been completed; 2) the assumptions used in the modelling of granules of broken fuel within the transport package following a postulated impact accident have been revised thereby allowing less pessimistic assessments to be performed; 3) enhancements are being made to the software used for shielding and criticality analysis enabling a more cost effective design service to be provided. These ongoing developments clearly show the activity to extend the scope of assessments while increasing the physical realism of the models. Through these developments BNFL continues to offer a comprehensive and cost effective shielding and criticality analysis service as part of its worldwide fuel transport business. (J.P.N.)

  15. Marginal overweight operating scenario for DOE's initiative I highway casks

    International Nuclear Information System (INIS)

    Hill, C.V.; Loud, G.C.; Heitzman, A.C.

    1993-01-01

    This paper assesses the potential transport of high-capacity Initiative I highway casks under development by the Office of Civilian Radioactive Waste Management (OCRWM) as permitted marginal overweight shipments that: exceed a gross vehicle weight (gvw) limit of 80,000, but weight less than 96,000 pounds; follow axle and axle group weight limits adopted by the Surface Transportation Assistance Act (STAA) of 1982; conform to dimensional restrictions to operate on most major highways; and comply with the Federal Bridge Formula. The marginal overweight tractor-trailer would operate in normal open-quotes over-the-roadclose quotes mode and comply with all laws and regulations. The vehicle would have a sleeper berth and two drivers - one to drive while the other provides escort and communications services and accumulates required off-duty time

  16. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  17. Study on the key technologies of the Transfer Equipment Cask for Tokamak Equator Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Buyun, E-mail: ayun@iim.ac.cn [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Gao, Lifu [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Cao, Huibin; Sun, Jian [Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Sun, Yuxiang; Song, Quanjun; Ma, Chengxue; Chang, Li; Shuang, Feng [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • Design on Intelligent Air Transfer System (IATS) for Transfer Equipment Cask (TECA). • A rhombic-like parallel robot for docking with minimum misalignment. • Design on electro-hydraulic servo system of the TECA for Tokamak Equator Port Plug (TEPP) manipulation. • A control architecture with several algorithms and information acquired from sensors could be used by the TECA for Remote Handling (RH). - Abstract: The Transfer Equipment Cask (TECA) is a key solution for Remote Handling (RH) in Tokamak Equator Port Plug (TEPP) operations. From the perspectives of both engineering and technical designs of effective experiments on the TEPP, key technologies on these topics covering the TECA are required. According to conditions in ITER (International Thermonuclear Experimental Reactor) and features of the TEPP, this paper introduces the design of an Intelligent Air Transfer System (IATS) with an adaptive attitude and high precision positioning that transports a cask system of more than 30 tons from the Tokamak Building (TB) to the Hot Cell Building (HCB). Additionally, different actuators are discussed, and the hydraulic power drive is eventually selected and designed. A rhombic-like parallel robot is capable of being used for docking with minimum misalignment. Practical mechanisms of the cask system are presented for hostile environments. A control architecture with several algorithms and information acquired from sensors could be used by the TECA. These designs yield realistic and extended applications for the RH of ITER.

  18. A revision of the Cask Designers Guide for the '90s

    International Nuclear Information System (INIS)

    Shappert, L.B.; Green, V.M.

    1992-01-01

    The report A Guide for the Design Fabrication, and Operation of Shipping Casks for Nuclear Applications, ORNL-NSIC-68, commonly called the Cask Designers Guide, is being revised at the request of the Transportation and Packaging Safety Division of the Department of Energy (DOE). The new document will be called the Packaging Handbook. The Cask Designers Guide was published in 1970 during the period when many radioactive materials packagings were being developed and many technical studies applicable to these packagings were being performed. Since that period, many improvements in packaging design have appeared, designers have improved their calculational techniques, and much effort has gone into applying Quality Assurance (QA) principles to cask development Materials, and their limitations, have surfaced as a very important consideration in the licensing process. While the Packaging Handbook considers all Type B packages, most of the authors' experience lies in the technical areas found in the licensing of spent nuclear fuel (SNF) packagings and this is reflected in the document

  19. Thermal and shielding layout of the transport and storage container Asse TB1

    International Nuclear Information System (INIS)

    Kessels, W.; Muth, M.; Gross, S.; Pfeifer, S.; Kolditz, H.

    1985-01-01

    A large spectrum has been devoted to the general questions of the thermal and radiological calculations, the nuclide content of the different types of waste and to the layout of an optimum transport container. This also concerns the considerations in case of fire, since upon inserting a transport container into a mine particular importance is attached to the possible liberation of toxic materials under these circumstances. It was possible to construct a transport container with a weight less than 10 t in such a way that it is suitable to transport and store the planned vitrified HLW according to DWK-specifications in a final repository borehole. (orig./HP) [de

  20. Container Swap Trailer Transportation Routing Problem Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hua-wei Ma

    2018-01-01

    Full Text Available In swap trailer transportation routing problems, trucks and trailers conduct swap operations at special positions called trailer points. The parallelization of stevedoring and transportation can be achieved by means of these trailer points. This logistics organization mode can be more effective than the others. In this paper, an integer programming model with capacity and time-window constraints was established. A repairing strategy is embedded in the genetic algorithm (GA to solve the model. The repairing strategy is executed after the crossover and mutation operation to eliminate the illegal routes. Furthermore, a parameter self-adaptive adjustment policy is designed to improve the convergence. Then numerical experiments are implemented based on the generated datasets; the performance and robustness of the algorithm parameter self-adaptive adjustment policy are discussed. Finally, the results show that the improved algorithm performs better than elementary GA.

  1. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to assess the means of transportation of decommissioning wastes, costs of transport, radiological detriment attributable to transport and develops conceptual designs of large transport containers. The document ends with Conclusions and Recommendations

  2. Safety improvement of start-up neutron source handling work by preparing new transport containers

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

    2016-01-01

    The conventional transport containers that have been used in HTTR start-up neutron source replacement work are not specialized type for HTTR start-up neutron source. As the risks associated with the safe handling of neutron source holders due to the above fact, the following three risks have been confirmed: (1) exposure risk due to leakage of neutron source or gamma rays, (2) risk of erroneous fall of neutron source holders, and (3) accident due to incorrect handling of transport containers. This paper reports the risks confirmed in the handling of neutron source holders associated with transport containers and the risk reduction measures, as well as the fabrication of new transport containers. By employing the size-reduction and simple structure, new transport containers have been completed at the same level of costs compared with the continuous use of the conventional transport containers, while satisfying the criteria of Type A transport materials and serving as risk preventive measures. Thus, new transport containers aimed at the risk prevention measures for the handling work of neutron source holders have been completed, and the safety of operation has been improved. (A.O.)

  3. Analysis Of Inland Waterway Transport For Container Shipping: Cikarang To Port Of TanjungPriok

    Science.gov (United States)

    Achmadi, T.; Nur, H. I.; Rahmadhon, L. R.

    2018-03-01

    Industry's development which is in the center of Cikarang's industrial estate causes a considerable increase from 7% to 13% of container's flow from and to Port of Tanjung Priok per year. Therefore, those obstacles rise the number of traffic congestion and transport cost. This research aims to analyze the potential alternative of transportation in order to transport containers at the route of Tanjung Priok to Cikarang utilizing Inland Waterways Transport through Cikarang Bekasi Laut (CBL) river. This research will be conducted by comparing component of total logistic cost that emerging caused by container trucks and vessels. Self Propelled Container Barge (SPCB) is a pointed alternative transportation in which it is used to transport containers through the waterways. The result of analysis obtained that the capacity of Cikarang Bekasi Laut river is 18,558 roundtrip per year. Furthermore, the collaboration of 3 SPCB operations, as well payload 32 TEUS can decrease the amount of road traffic congestion/density of Cikarang-Port of Tanjung Priok as much as 18.6%. The cost of containers shipping per unit transported by truck is IDR 2.2 Million per TEUs, whereas containers shipping transported by Inland Waterways cost only IDR 1.8 Million per TEUs.

  4. Second Annual Maintenance, Inspection, and Test Report for PAS-1 Cask Certification for Shipping Payload B

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, D.J.

    2000-10-09

    The Nuclear Packaging, Inc. (NuPac), PAS-1 cask is required to undergo annual maintenance and inspections to retain certification in accordance with U.S. Department of Energy (DOE) Certificate of Compliance USA/9184B(U) (Appendix A). The packaging configuration being tested and maintained is the NuPac PAS-1 cask for Payload B. The intent of the maintenance and inspections is to ensure the packaging remains in unimpaired physical condition. Two casks, serial numbers 2162-026 and 2162-027, were maintained, inspected, and tested at the 306E Development, Fabrication, and Test Laboratory, located at the Hanford Site's 300 Area. Waste Management Federal Services, Inc. (WMFS), a subsidiary of GTS Duratek, was in charge of the maintenance and testing. Cogema Engineering Corporation (Cogema) directed the operations in the test facility. The maintenance, testing, and inspections were conducted successfully with both PAS-1 casks. The work conducted on the overpacks included weighing, gasket replacement, and plastic pipe plug and foam inspections. The work conducted on the secondary containment vessel (SCV) consisted of visual inspection of the vessel and threaded parts (i.e., fasteners), visual inspection of sealing surfaces, replacement of O-ring seals, and a helium leak test. The work conducted on the primary containment vessel (PCV) consisted of visual inspection of the vessel and threaded parts (i.e., fasteners), visual inspection of sealing surfaces, replacement of O-ring seals, dimensional inspection of the vessel bottom, a helium leak test, and dye penetrant inspection of the welds. The vermiculite material used in the cask rack assembly was replaced.

  5. Second Annual Maintenance, Inspection, and Test Report for PAS-1 Cask Certification for Shipping Payload B

    International Nuclear Information System (INIS)

    KELLY, D.J.

    2000-01-01

    The Nuclear Packaging, Inc. (NuPac), PAS-1 cask is required to undergo annual maintenance and inspections to retain certification in accordance with U.S. Department of Energy (DOE) Certificate of Compliance USA/9184B(U) (Appendix A). The packaging configuration being tested and maintained is the NuPac PAS-1 cask for Payload B. The intent of the maintenance and inspections is to ensure the packaging remains in unimpaired physical condition. Two casks, serial numbers 2162-026 and 2162-027, were maintained, inspected, and tested at the 306E Development, Fabrication, and Test Laboratory, located at the Hanford Site's 300 Area. Waste Management Federal Services, Inc. (WMFS), a subsidiary of GTS Duratek, was in charge of the maintenance and testing. Cogema Engineering Corporation (Cogema) directed the operations in the test facility. The maintenance, testing, and inspections were conducted successfully with both PAS-1 casks. The work conducted on the overpacks included weighing, gasket replacement, and plastic pipe plug and foam inspections. The work conducted on the secondary containment vessel (SCV) consisted of visual inspection of the vessel and threaded parts (i.e., fasteners), visual inspection of sealing surfaces, replacement of O-ring seals, and a helium leak test. The work conducted on the primary containment vessel (PCV) consisted of visual inspection of the vessel and threaded parts (i.e., fasteners), visual inspection of sealing surfaces, replacement of O-ring seals, dimensional inspection of the vessel bottom, a helium leak test, and dye penetrant inspection of the welds. The vermiculite material used in the cask rack assembly was replaced

  6. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  7. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  8. Technique of stowing packages containing radioactive materials during maritime transportation

    International Nuclear Information System (INIS)

    Ringot, G.; Chevalier, G.; Tomachevsky, E.; Draulans, J.; Lafontaine, I.

    1989-01-01

    The Mont Louis accident (August 25, 1984 - North Sea), in which uraniumhexafluoride packages were involved, alarmed a large number of European competent authorities, including the Commission of European Communities. The latter sponsored in 1986-1987 a bibliographic data collection to obtain a first view on the problem. (C.E.C contracts n degree 86-B-7015-11-004-17 and 86-B-7015-11-005-17). The collected data supply the necessary basis for further work, aiming to increase the safety of transporting radioactive material by ship. The study collected the different deceleration values, used by the transport companies and defined the accident conditions to be considered. This work can serve as a basis for later research to end with the proposal of a code of good practice for stowing. The research-work has been carried out jointly by C.E.A.-France, I.P.S.N. at Fontenay-aux-Roses and by Transnubel S.A. Brussels Belgium. The preliminary research included two main tasks: a statistical analysis, a bibliographic study of ship accidents

  9. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  10. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  11. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    Science.gov (United States)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  12. Thermo-mechanical finite element analysis of bolted cask lid structures

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao, L.; Eberle, A.; Voelzke, H.

    2004-01-01

    Analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak tightness in package design assessment according to the transport regulations or in aircraft crash scenarios. In this context BAM is developing methods based on finite elements (FE) to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. In the case of fire it might not be enough to perform only a thermal heat transfer analysis. A complex cask design together with a severe hypothetical time-temperature curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and their counterparts that can be analysed by a so-called thermomechanical calculation. Although it is currently not possible to directly correlate leakage rates with results from deformation analyses, an appropriate finite element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field, respectively. Except for the lid bolts, the geometry of the cask and the mechanical loading is axisymmetric which simplifies the analysis considerably, and a two-dimensional finite-element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modellings on the relative displacements at the seating of the seals. The influence of bolt modelling, thermal properties and the detailed geometry of the two-dimensional finite-element models on the

  13. Thermo-mechanical finite element analyses of bolted cask lid structures

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.

    2004-01-01

    The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on

  14. A study on hydrogen mixing and transport in the containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Dong; Hong, Seong Wan; Yoo, Kun Joong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report deals with the regulation and research status for hydrogen burn that can be occurred in severe accidents and the possibility of the local detonation through the analysis of the local hydrogen concentration in the containment. In this study, CONTAIN version 1.12 which can model integrated ex-vessel phenomena during the severe accidents is used. To predict the local hydrogen concentration, containment is divided into sixteen sub-compartments taking into account geometric characteristics of Ulchin 3,4 NPP. Because the local hydrogen concentration depends upon accident sequences, the accident sequence for TMLB` and medium LOCA which are predicted to generate more hydrogen among accident sequences are considered. The thermal hydraulic primary system source data and the corium composition data were adopted from the MAAP calculation results. The sensitivity study is also performed to examine the effect of the equivalent fraction of zirconium oxidation in the reactor vessel and flow loss coefficient between flow path. The result of this study can be used as base data to install the igniters that is considered to prevent a detonation. (Author) 15 refs., 35 figs., 12 tabs.

  15. The shielding properties of the newly developed container for transport of samples contaminated with CBRN substances

    International Nuclear Information System (INIS)

    Fisera, O.; Kares, J.

    2014-01-01

    A container for transport of environmental samples to the analytical laboratory is being developed as part of the development of system for collection and transport of samples contaminated with chemical, biological, radioactive and nuclear (CBRN) substances after CBRN incidents. The proposed system corresponds with current requirements of NATO publication AEP-66. The proposed container will meet the requirements of mechanical stability and tightness for the packaging of the chemical, biological and radioactive substances. Verification of shielding properties and satisfaction of requirements of radiation protection during transport of potentially relatively high active samples was the aim of this part of research. The results, together with a wall thickness of the inner steel container, the inner lining and the outer transport package, give excellent assumption that the radiation protection requirements for the proposed container and transport package will be satisfied. (authors)

  16. Alternative Cask Maintenance Facility concepts, an update and reassessment

    International Nuclear Information System (INIS)

    Attaway, C.R.; Medley, L.B.; Williamson, A.; Pope, R.B.; Shappert, L.B.

    1992-01-01

    The results of three trade-off studies of alternative concepts for performing cask maintenance for Civilian Radioactive Waste Management System casks are presented. An earlier study resulted in a recommendation that a submerged pool concept for cask internal component removal be used in the design of a Cask Maintenance Facility. The first trade-off study resulted in confirming the previous recommendation that a submerged pool concept be used rather than an isolation cell; the basis for this continued recommendation is discussed. The second study provides an evaluation of the previously proposed facility for the capability of handling an increased quantity of OCRWM casks. This third study provides a preliminary concept for adding the capability to repaint the exterior cylindrical portions of casks

  17. Thermal analyses of the IF-300 shipping cask

    International Nuclear Information System (INIS)

    Meier, J.K.

    1978-07-01

    In order to supply temperature data for structural testing and analysis of shipping casks, a series of thermal analyses using the TRUMP thermal analyzer program were performed on the GE IF-300 spent fuel shipping cask. Major conclusions of the analyses are: (1) Under normal cooling conditions and a cask heat load of 262,000 BTU/h, the seal area of the cask will be roughly 100 0 C (180 0 F) above the ambient surroundings. (2) Under these same conditions the uranium shield at the midpoint of the cask will be between 69 0 C (125 0 F) and 92 0 C (166 0 F) above the ambient surroundings. (3) Significant thermal gradients are not likely to develop between the head studs and the surrounding metal. (4) A representative time constant for the cask as a whole is on the order of one day

  18. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

  19. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1995-01-01

    The possible allowance of reactivity credit for the exposure history, of power reactor fuel has spurred interest because of the potential of greatly reduced risk and cost when applied to the design and certification of spent-fuel casks used for transportation and storage. Previous pressurized water reactor feasibility assessments are extended to boiling water reactor fuel

  20. A process and container for transport and storage of irradiated internal equipment from a nuclear reactor

    International Nuclear Information System (INIS)

    Dubourg, M.

    1996-01-01

    A transfer container is assembled (from at least two components) around the highly irradiated internal equipment, in the reactor pool; the entire internal equipment is then transported, as a whole, in the container to a storage zone. The storage container walls are fitted with biological protection and cooling means

  1. Considerations on the construction testing of the CASTOR registered HAW 28M cask with respect to the traffic law in the view of the responsible authority BAM

    International Nuclear Information System (INIS)

    Wille, Frank; Droste, Bernhard; Zencker, Uwe; Komann, Steffen

    2010-01-01

    The authors reflect the construction testing of the CASTOR registered HAW 28M cask with respect to the traffic law in the view of the responsible authority BAM. The test procedures are based on the recommendations of the IAEA and the respective national and international legal regulations for the transport of radioactive materials. BAM is performing mechanical and thermal tests to investigate the safety of the containers in case of a severe accident. The radionuclide release has to be restricted to a defined limiting value, the radiation shielding and the nuclear safety have to be ensured. The component test is performed using prototypes of model containers combined with calculations or transferability considerations. The safety evaluation is usually based on experimental tests and numerical analyses.

  2. Combined evaluation. Plutonium transports in France. Problems of safety and reliability of transport container FS47; Evaluation Conjointe. Transports de plutonium en France. Problemes de surete et de securite du container de transport FS47

    Energy Technology Data Exchange (ETDEWEB)

    Marignac, Y.; Coeytaux, X. [Wise-Paris, 75 (France); Large, J.H. [Nuclear Engineer, Large and Associates, Londres (United Kingdom)

    2004-09-15

    This report concerns the safety and the protection of plutonium dioxide transported from Cogema La Hague to the mixed oxide fuel plant of Marcoule and Cadarache. The French approach of the transport safety is based on the combining of two essential principles: the first one affirms that the performances of the FS47 container in regard of containment (norms TS-R-1 from IAEA for the accidental conditions) is conceived to resist in any situation even terrorism or sabotage. In fact, the IAEA norm follows a probabilistic study without a voluntary attack such a terrorist one. The second principle rests on the ability to prevent the treat of terrorism acts, because of a secrecy policy on the plutonium transport. It appeared that the Green peace association has succeeded several times to know exactly the hours, the trips of the plutonium transport and this simple thing raises more questions than it solves. (N.C.)

  3. Basic tests on integrity evaluation for natural hexafluoride transporting container

    International Nuclear Information System (INIS)

    Gomi, Yoshio; Yamakawa, Hidetsugu; Kato, Osamu; Kobayashi, Seiichi

    1990-01-01

    In this study, the affected factors that needed to integrity evaluation for UF 6 transporting 48Y cylinder, were confirmed by basic tests and preliminary analysis. The factors were the sealing parts and external surface emissivity that ruled both the behavior under fire accident condition and the fire resistance capability of the cylinder, and the external pressure resistance capability at the sunk accident. The results obtained as follows. (1) Confirming tests for fire resistance of cylinder valve and plug, seat leakage of the valve caused at 150 degrees C. by unequal thermal expansion between the valve body and the stem. The tin-lead solder coating the tapered thread of valve and plug, melted at 200 degrees C., then the sealing boundary broke. (2) An external emissivity influence to radiation heat transfer measured with test pieces heated by electric oven. The covered paints of the specimen burned and separated, the emissivity changed 0.4 to 0.6, dependent on the surrounding temperature. Type 48Y cylinder filled with 12.5 tons of UF 6 and the measured emissivity was used the computer code analysis. The hydraulic breaking did not happen under the fire accident condition at 800 degrees C., for 30 minutes. (3) The external pressure test of the valve endured the hydrostatic pressure at 3000 meters, which corresponded to about five times the cylinder body buckling strength. (author)

  4. Interfacing the existing cask fleet with the MRS

    International Nuclear Information System (INIS)

    Doman, J.W.; Hahn, R.E.

    1992-01-01

    This paper reports that the Department of Energy (DOE) is considering the possibility of using the existing fleet of casks to achieve spent fuel receipt at the Monitored Retrievable Storage (MRS) facility. The existing cask fleet includes the NLI-1/2, the NAC-LWT, the TN-8 (and TN-8L), the TN-9, and the IF-300 casks. Other casks may be available, but their status is not certain. Use of the existing cask fleet at the MRS places additional design requirements on the system, and specifically affects the cask-to-MRS interface. The decision to use the existing cask fleet also places additional demands on training needs and operator certification, and the configuration management system. Some existing cask designs may not be able to mate with a bottom opening hot cell MRS. Use of the existing cask fleet also greatly increases the number of shipments that must be received, to the point that a facility larger than originally envisioned may be required

  5. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  6. Inspection of Used Fuel Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  7. MCO loading and cask loadout technical manual

    International Nuclear Information System (INIS)

    PRAGA, A.N.

    1998-01-01

    A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description

  8. Radionuclide transport through perforations in nuclear waste containers

    International Nuclear Information System (INIS)

    Aidun, C.K.; Bloom, S.G.; Raines, G.E.

    1987-11-01

    Previous analytical models for the steady-state radionuclide release rate through perforations in nuclear waste containers into the surrounding medium are based on a zero wall thickness assumption. In this paper we investigate the effect of the wall thickness on the mass transfer rate through isolated cylindrical holes. We solve the steady-state diffusion equation for the concentration field and derive a model based on the analytical solution. By direct comparison, we show that the zero wall thickness model overpredicts the mass transfer rate by about 1300 percent for a circular hole with 1-cm radius and a wall thickness of 10 cm. As expected, the zero-thickness model becomes even less accurate as the hole radius decreases; it predicts a greater release rate from a large number of small holes than the mass transfer rate from an uncontained waste form cylinder. In contrast, the results predicted by our model remain bounded for isolated holes and never exceed the mass transfer from an uncontained waste form. 6 refs., 9 figs., 3 tabs

  9. PATRAM '83: 7th international symposium on packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1983-01-01

    Papers were presented at the following sessions: international regulations; materials, fracture toughness of ferritic steels; risk analysis techniques; storage in packagings; packaging design considerations; monolithic cast iron casks; risk analysis; facility/transportation system interface; research and development programs; UF 6 packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; radiation risk experience; emergency response; structural modeling and testing; transportation system planning; institutional issues and public response; packaging systems; thermal analysis and testing; systems analysis; structural analyses; quality assurance; packaging and transportation systems; physical protection; criticality and shielding; transportation operations and experience; standards; shock absorber technology; and information and training for regulatory compliance. Individual summaries are title listed

  10. PATRAM '83: 7th International Symposium on Packaging and Transportation of Radioactive Materials, summaries

    Science.gov (United States)

    Papers were presented at the following sessions: international regulations; materials, fracture toughness of ferritic steels; risk analysis techniques; storage in packagings; packaging design considerations; monolithic cast iron casks; risk analysis; facility/transportation system interface; research and development programs; UF6 packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; radiation risk experience; emergency response; structural modeling and testing; transportation system planning; institutional issues and public response; packaging systems; thermal analysis and testing; systems analysis; structural analyses; quality assurance; packaging and transportation systems; physical protection; criticality and shielding; transportation operations and experience; standards; shock absorber technology; and information and training for regulatory compliance. Individual summaries are title listed.

  11. Modeling the Effects of a Transportation Security Incident on the Commercial Container Transportation System

    Science.gov (United States)

    2009-09-01

    handling system. Transport Reviews: A Transnational Transdisciplinary Journal , 25 (2), 181–199. Danskin, J. W. (1967). The Theory of Max-Min. New York...review of the state of the art . Analytical Studies in Transport Economics, MIT Press, 161–206. Infrastructure. (n.d.). In The American Heritage

  12. Transport operations in container terminals : Literature overview, trends, research directions and classification scheme

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.; Roodbergen, Kees Jan

    2014-01-01

    Internal transport operations connect the seaside, yard side, and landside processes at container terminals. This paper presents an in-depth overview of transport operations and the material handling equipment used, highlights current industry trends and developments, and proposes a new

  13. A decision support system tool for the transportation by barge of import containers : A case study

    NARCIS (Netherlands)

    Fazi, Stefano; Fransoo, Jan C.; Van Woensel, Tom

    2015-01-01

    In this paper, we present a DSS that generates schedules for the transportation of containers by barge in the hinterland, in particular from sea terminals to an inland terminal. As a case study, we propose the transportation from the ports of Rotterdam and Antwerp to a terminal in the south of the

  14. The TN-RAM - a new cask for shipping high activity irradiated hardware

    International Nuclear Information System (INIS)

    Neider, T.; Hanson, A.S.

    1993-01-01

    Transnuclear, Inc. has developed a Type B(U) radioactive material transport packaging designed specifically for the transport of dry, irradiated, non-fuel bearing components (NFBC). The TN-RAM is a transport cask in the configuration of a right circular cylinder, fabricated from lead and stainless steel, with wood-filled impact limiters attached at both ends. The lead and stainless steel construction of the lid, walls, and bottom provides a shielding effectiveness of approximately 7.1 inches (18 cm) lead equivalent. (J.P.N.)

  15. Multipurpose containers for the transport of nuclear material: The example of transport flask CF6

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Borgia, M.G.

    1989-03-01

    The present paper summarizes the design and licensing activity carried out in the frame work of an ENEA working group which was set up with the aim of developing transport flasks for radioactive and non radioactive dangerous materials. In particular the nuclear design of the multipurpose transport flask CF6 is described. The paper was presented at the seminar on 'Nuclear wastes and transport of radioactive materials' held in Bologna on June 4th and 5th 1987 under the aegis of the Department of Physics of the University of Bologna. (author)

  16. DETERMINATION OF THE LOADING OF CONTAINERS IN MIXED TRAINS WHEN TRANSPORTING BY TRAIN FERRIES

    Directory of Open Access Journals (Sweden)

    A. O. Lovska

    2017-12-01

    Full Text Available Purpose. The study is aimed at determination of the loading of containers in mixed trains when transporting by train ferries. Methodology. In order to achieve the objective the author studied accelerations (as components of the dynamic load influencing the bearing structure of a 1CC standard container located on a flat car during transportation by train ferry. In order to determine accelerations influencing the bearing structure of a container, a mathematical model of the container’s movements under train ferry oscillations was made. The model considered angular displacements of a train ferry relative to the longitudinal axis (bank as being the maximum load on the bearing structure, as well as changes in the container stability relative to the flat car frame. While working out the motion equations three diagrams of interrelation between the container and the flat car located on the train ferry deck were considered: 1 absence of displacements of the flat car and containers relative to the initial place under the train ferry oscillations; 2 with displacements of the flat car under the train ferry oscillations when containers are immovable relative to the flat car frame; 3 with displacements of the flat car relative to the deck and relative to the flat car frame. The differential equations of motion were solved in Mathсad taking into account their reduction to a normal Cauchy problemwith a subsequent integration by the Runge–Kutta method. Findings. Refined values of accelerations influencing the bearing structure of containers located on the flat car while transporting by train ferry were obtained. Originality. The mathematical models of displacements of container bearing structures located on a flat car while transporting by train ferry were proposed. Practical value. The results of investigations can be applied for designing bearing structures of new generation containers, besides they may improve the efficiency of mixed transportation along

  17. Finite element analysis for the impact behaviour of a cask interacting with a rigid pin

    International Nuclear Information System (INIS)

    Altes, J.; Geiser, H.; Voelzer, W.; Frenk, A.; Deeken, G.

    1993-01-01

    Full scale drop tests of casks to be licensed as type B packages according to the IAEA regulations for the safe transport of radioactive materials are expensive. Therefore efforts are being made to use computer codes for calculating the impact behaviour. But these codes have to be verified by experiments. Codes available for these calculations are for example DYNA3D and ABAQUS. In the paper results of both codes are compared. A 11 t ductile cast iron cask (type MOSAIK) without impact limiters was analysed dropping from a height of 1 m with its top onto a cylindrical steel pin. The results of the finite element calculations with both codes show good agreement. The ABAQUS results using the implicit method are in accordance with the explicit method, for which considerably shorter CPU times are noted. (author)

  18. Safety analysis report: packages 238Pu oxide shipping cask (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Evans, J.E.; Gates, A.A.

    1975-06-01

    Plutonium-238 (as PuO 2 powder) is shipped in triple-container stainless steel shipping casks in compliance with ERDA Manual Chapter 0529 (ERDAM 0529), Safety Standards for the Packaging of Fissile and Other Radioactive Materials. (U.S.)

  19. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

  20. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    International Nuclear Information System (INIS)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided

  1. Application of burnup credit concept to transport

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Nakagome, Yoshihiro.

    1994-01-01

    For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)

  2. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  3. Automatic checking of heavy element content in polymetallic ores directly in transportation containers

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Mamikon'yan, S.V.; Nagornyj, V.Ya.

    1981-01-01

    An automatic measuring instrument has been developed and used to check rapidly the content of lead in ores transported by trolley cars, dump trucks, dump cars or other open containers. The measuring technique is based on gamma backscattering and X-ray fluorescence. Influences of container movements, volumetric density changes and matrix effects on the achievable accuracy are briefly discussed

  4. Long-term sealability of spent fuel casks

    International Nuclear Information System (INIS)

    Kato, O.; Kosaki, A.; Ito, C.; Ozaki, S.; Iitsuka, S.

    1993-01-01

    This report presents the results of long-term sealability test of full-scale model casks which have been in progress since 1990. (O.Kato and C.Ito 1992) The purpose is to confirm the long-term sealability of the casks. (J.P.N.)

  5. The role of ORIGEN-S in the design of burnup credit spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.

    1991-01-01

    Current licensing practices for spent fuel pools, storage facilities, and transportation casks require a conservative ''fresh fuel assumption'' be used in the criticality analysis. Burnup credit refers to a new approach in criticality analyses for spent fuel handling systems in which reactivity credit is allowed for the depleted state of the fuel. Studies have shown that the increased cask capacities that can be achieved with burnup credit offer both economic and risk incentives. The US Department of Energy is currently sponsoring a program to develop analysis methodologies and establish a new generation of spent fuel casks using the principle of burnup credit. The key difference in this new approach is the necessity to accurately predict the isotopic composition of the spent fuel. ORIGEN-S was selected to satisfy this requirement because of the flexibility and user-friendly input offered via its usage in the Standardized Computer Analyses for Licensing and Evaluation (SCALE) code system. Specifically, through the Shielding Analysis Sequence 2H (SAS2H), ORIGEN-S is linked with cross-section processing codes and one-dimensional transport analyses to produce problem-specific cross-section data for the point-depletion calculation. The utility code COUPLE facilitates updating basic cross-section and fission-yield data for the calculations. This paper describes the fundamental role fulfilled by ORIGEN-S in the development of the analysis methodology, validation of the methods, definition of criticality safety margins and other licensing considerations in the design of a new generation of spent fuel casks. Particular emphasis is given to the performance of ORIGEN-S in comparisons with measurements of irradiated fuel compositions and in predicting isotopics for use in the calculation of reactor restart critical configurations that are performed as a part of the validation process

  6. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Wang, Z.

    1992-01-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material

  7. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  8. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  9. Cask crush pad analysis using detailed and simplified analysis methods

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Hawkes, B.D.

    1997-01-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Fluorinel and Storage Facility (FAST). This facility, located at the Idaho Chemical Processing Plant (ICPP) at the Idaho national Engineering and Environmental Laboratory (INEEL), is a US Department of Energy site. The basis for this study is an analysis by Uldrich and Hawkes. The purpose of this analysis was to evaluate various hypothetical cask drop orientations to ensure that the crush pad design was adequate and the cask deceleration at impact was less than 100 g. It is demonstrated herein that a large spent fuel shipping cask, when dropped onto a foam crush pad, can be analyzed by either hand methods or by sophisticated dynamic finite element analysis using computer codes such as ABAQUS. Results from the two methods are compared to evaluate accuracy of the simplified hand analysis approach

  10. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  11. Transportation of high-level waste and spent fuel

    International Nuclear Information System (INIS)

    Carlson, J.H.; Lake, W.H.; Thompson, J.H.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) transportation program is a multifaceted undertaking to transport spent nuclear fuel from commercial reactors to temporary and permanent storage facilities commencing in 1998. One of the significant ingredients necessary to achieving this goal is the development and acquisition of shipping casks. Efforts to design and acquire high capacity casks is ongoing, as are efforts to purchase casks that can be made available using current technology. By designing casks that are optimized to the specifications of the older cooler spent fuel that will be shipped, and by designing to current NRC requirements, OCRWM's new generation of spent fuel casks will be more efficient and at least as safe as current cask designs. (J.P.N.)

  12. Analysis CFD for the hydrogen transport in the primary containment of a BWR

    International Nuclear Information System (INIS)

    Jimenez P, D. A.; Del Valle G, E.; Gomez T, A. M.

    2014-10-01

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  13. Method for decreasing radiation hazard in transporting radioactive material

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1975-01-01

    At the end of their useful life, fuel rods are removed from a nuclear reactor and transferred underwater into a shipping cask. The water in the pool of the nuclear reactor system (or fuels reprocessing plant) may contain troublesome amounts of radioactive isotopes, creating biological hazards for any shipping cask unless adequately cleaned after contacting pool water. Potential contamination of substantially all of the entire exterior of the shipping cask is avoided because such shipping cask is at least predominantly immersed in fresh water within a vertically shiftable container which can be, for example, shifted between the bottom and the surface of the pool. Fresh water is supplied to the interior of the shiftable container whereby substantially all of the exterior of the shipping cask is immersed in fresh water, maintained at a pressure and/or flow velocity preventing the pool water from contacting the exterior of the shipping cask

  14. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  15. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  16. The Costs of Container Transport Flow Between Far East and Serbia Using Different Liner Shipping Services

    Directory of Open Access Journals (Sweden)

    Rajkovic Radoslav

    2015-11-01

    Full Text Available Liner shipping is the most efficient mode of transport for goods. International liner shipping is a sophisticated network of regularly scheduled services that transports goods from anywhere in the world to anywhere in the world at low cost and with greater energy efficiency than any other form of international transportation. Liner shipping connects countries, markets, businesses and people, allowing them to buy and sell goods on a scale not previously possible. Today, the liner shipping industry transports goods representing approximately one-third of the total value of global trade. Ocean shipping contributes significantly to international stability and security. Considering the large and constant struggle in the market in terms of competitive pricing of products, a very important and indispensable role represents the container transport with a clear task to define the final price of the product. This paper analyzes the costs of container transport flow between Far East and Serbia, using different liner shipping services, observing the six world’s largest container operators (Maersk Line, Mediterranean Shipping Company, CMA CGM, Evergreen Line, China Ocean Shipping Company and Hapag-Lloyd and inland (truck-rail-river transport corridors. These corridors include distance between selected Mediterranean ports (Koper, Rijeka, Bar, Thessaloniki, Constanta and Serbia. As a result, in this paper is considered a mathematical model that provides a comparative analysis of transportation costs on the different routes. It is observed already existing transport routes and it is also given hypothetical review to the development of new transport routes. The main goal of this research is to provide an optimal route with lowest transportation cost during container transport. Selection of the best route in the intermodal network is a very difficult and complex task. The costs in all modes of transport and the quality of their services are not constant

  17. Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory

    2010-01-01

    The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence

  18. Use of inelastic analysis in cask design

    International Nuclear Information System (INIS)

    Ammerman, Douglas J.; Breivik, Nicole L.

    2000-01-01

    In this paper, the advantages and disadvantages of inelastic analysis are discussed. Example calculations and designs showing the implications and significance of factors affecting inelastic analysis are given. From the results described in this paper it can be seen that inelastic analysis provides an improved method for the design of casks. It can also be seen that additional code and standards work is needed to give designers guidance in the use of inelastic analysis. Development of these codes and standards is an area where there is a definite need for additional work. The authors hope that this paper will help to define the areas where that need is most acute

  19. Regulatory and performance tests of packages for transporting radioactive materials

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2003-01-01

    This is a summary of nuclear tests conducted in our institute, including (1) fireproof and pressure tests of an enriched UF 6 transport package, (2) drop, thermal, and pressure tests of a natural UF 6 transport package, (3) drop, thermal, submerge tests of a spent fuel transport cask, and (4) drop, thermal, and submerge tests of a returned high level vitrified waste transport cask. These tests proved that the transport packages meet IAEA's transport requirements with sufficient margins for the safety. (author)

  20. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    International Nuclear Information System (INIS)

    Pope, R.B.; Diggs, J.M.

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented

  1. 19 CFR 18.4a - Containers or road vehicles accepted for transport under customs seal; requirements.

    Science.gov (United States)

    2010-04-01

    ... the container or road vehicle without obvious damage to it or without breaking the seal. A container... 19 Customs Duties 1 2010-04-01 2010-04-01 false Containers or road vehicles accepted for transport... General Provisions § 18.4a Containers or road vehicles accepted for transport under customs seal...

  2. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  3. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  4. High-capacity, high-strength trailer designs for the GA-4/GA-9 casks

    International Nuclear Information System (INIS)

    Rickard, N.D.; Kissinger, J.A.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. The authors are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight will to be very close to this target weight

  5. Development of a container for the transportation and storage of plutonium bearing materials

    International Nuclear Information System (INIS)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations

  6. Transport of europium(III) through supported liquid membrane containing diisodecylphosphoric acid

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Nakamura, Shigeto

    1987-01-01

    The transport of europium has been investigated through a supported liquid membrane containing diisodecylphosphoric acid (DIDPA). By the addition of 1-octanol to the membrane phase, europium was quantitatively transported from the feed solution of 0.1 M HNO 3 into the product solution of 5 M HNO 3 . The apparent rate constant (k obs ) increased with increasing carrier concentration and became nearly constant above 0.05 M DIDPA. (author)

  7. Safety analysis report for packaging (onsite) for limited type Bmaterial in the CNS 14-215H cask

    International Nuclear Information System (INIS)

    Flanagan, B.D.

    1997-01-01

    The purpose of this Safety Analysis Report for Packaging is to provide the analyses and evaluations necessary to demonstrate that the CNS 14-215H cask provided by Chem-Nuclear Systems Inc. can safety transport greater than Type A quantities of radioactive material on the Hanford Site. The CNS 14-215H cask was chosen for its loading abilities, availability, and because it has a Certificate of Compliance (CoC) issued by the U.S. Nuclear Regulatory Commission (NRC) for transporting low specific activity in quantities greater than Type A material in commerce. Although the CDC does not cover greater than Type A material not meeting LSA requirements, it does allow for an established level of protection in determining the safety of transporting Type B material on the Hanford Site

  8. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  9. Robotic radiation survey and analysis system for radiation waste casks

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    Sandia National Laboratories (SNL) and the Hanford Engineering Development Laboratories have been involved in the development of remote systems technology concepts for handling defense high-level waste (DHLW) shipping casks at the waste repository. This effort was demonstrated the feasibility of using this technology for handling DHLW casks. These investigations have also shown that cask design can have a major effect on the feasibility of remote cask handling. Consequently, SNL has initiated a program to determine cask features necessary for robotic remote handling at the waste repository. The initial cask handling task selected for detailed investigation was the robotic radiation survey and analysis (RRSAS) task. In addition to determining the design features required for robotic cask handling, the RRSAS project contributes to the definition of techniques for random selection of swipe locations, the definition of robotic swipe parameters, force control techniques for robotic swipes, machine vision techniques for the location of objects in 3-D, repository robotic systems requirements, and repository data management system needs

  10. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  11. Maximum overpressure in gastight containers of the storage and transport of dangerous liquids

    International Nuclear Information System (INIS)

    Steen, H.

    1977-11-01

    For a design of containers suitable under safety aspects for the transport and storage of dangerous liquids the maximum overpressure to be expected is an important value. The fundamentals for the determination of the internal pressure are pointed out for the simplified model of a rigid (i.e. not elastically or plastically deforming) and gastight container. By assuming of extreme storage and transport conditions (e.g. for the maximum liquid temperatures due to sun radiation) the figures of the maximum overpressure are calculated for about hundred liquids being of practical interest. The results show a significant influence of the compression of air in the ullage space caused by liquid expansion due to temperature rise (compression effect), particularly for liquids with a higher boiling point. The influence of the solubility of air in the liquid on the internal pressure can be neglected under the assumed transport conditions. The estimation of the volume increase of the container due to the effect of the internal pressure leads to the limitation, that the assumption of a rigid container is only justified for cylindrical and spherical steel tanks. The enlargement of the container volume due to a heating of the container shell does play no significant roll for all metal containers under the assumed conditions of storage and transport. The results obtained bear out essentially the stipulations for the test pressure and the filling limits laid down in the older German regulations for the transport of dangerous liquids in rail tank waggons and road tank vehicles without pressure relief valves. For the recently fixed and internationally harmonized regulations for tankcontainers the considerations and the results pointed out in this paper give rise to a review. (orig.) [de

  12. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    International Nuclear Information System (INIS)

    Bang, Kyoung-Sik; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-01-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  13. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  14. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  15. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  16. What drives Greek consumer preferences for cask wine?

    DEFF Research Database (Denmark)

    Chrysochou, Polymeros; Corsi, A. M.; Krystallis Krontalis, Athanasios

    2012-01-01

    Purpose – Cask wine (bag-in-box, soft pack) has not received considerable attention in wine marketing research, but interest among winemakers and consumers has been increasing steadily. However, little is known about what drives consumer preferences for cask wine and, furthermore, what the profile...... a sustainable eco-friendly positioning. Originality/value – This study contributes to the understanding of what drives consumers’ preferences for cask wine, something that few studies have done until now. Moreover, this is the first study to use the BWS method for this type of product....

  17. Onsite Transfer of Plutonium Solutions with the Upgraded LR-56S Cask

    International Nuclear Information System (INIS)

    Gromada, R.J.

    1998-07-01

    With the end of the cold war, quantities of plutonium (Pu) solutions remained in the nuclear material production complex at the Savannah River Site (SRS) These solutions, now surplus to the nuclear weapons program, have resulted in significant health, safety, and environmental vulnerabilities at the Site and require stabilization. The site plan for stabilizing the solutions is to transfer the material from H canyon storage to F canyon for processing and disposition. The proposed onsite transfer at SRS raised both regulatory and safety concerns since the material is prohibited for offsite shipment by the U. S. Hazardous Materials, Regulations (HMR). However, an onsite transfer may be approved if it can be demonstrated that proper safety, health, and environmental protection are maintained. The difficulty of performing such a task is the awareness that an onsite transfer of Pu solutions had never been approved in the U. S. To understand the difficulties associated with the planning the transfer, this paper will describe the methodology and compliance process that SRS used to demonstrate that the transfer is safe and that the public is adequately protected. The cask selected for the transfer will be described as well as the process used to confirm that the plutonium solutions are safely contained by the cask design. Additionally, the administrative controls and cask modifications mandated by the content form are also presented

  18. A comparison of recent results from HONDO III with the JSME nuclear shipping cask benchmark calculations

    International Nuclear Information System (INIS)

    Key, S.W.

    1985-01-01

    The results of two calculations related to the impact response of spent nuclear fuel shipping casks are compared to the benchmark results reported in a recent study by the Japan Society of Mechanical Engineers Subcommittee on Structural Analysis of Nuclear Shipping Casks. Two idealized impacts are considered. The first calculation utilizes a right circular cylinder of lead subjected to a 9.0 m free fall onto a rigid target, while the second calculation utilizes a stainless steel clad cylinder of lead subjected to the same impact conditions. For the first problem, four calculations from graphical results presented in the original study have been singled out for comparison with HONDO III. The results from DYNA3D, STEALTH, PISCES, and ABAQUS are reproduced. In the second problem, the results from four separate computer programs in the original study, ABAQUS, ANSYS, MARC, and PISCES, are used and compared with HONDO III. The current version of HONDO III contains a fully automated implementation of the explicit-explicit partitioning procedure for the central difference method time integration which results in a reduction of computational effort by a factor in excess of 5. The results reported here further support the conclusion of the original study that the explicit time integration schemes with automated time incrementation are effective and efficient techniques for computing the transient dynamic response of nuclear fuel shipping casks subject to impact loading. (orig.)

  19. 49 CFR 174.84 - Position in train of loaded placarded rail cars, transport vehicles, freight containers or bulk...

    Science.gov (United States)

    2010-10-01

    ... CARRIAGE BY RAIL Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.84 Position in train of loaded placarded rail cars, transport vehicles, freight containers or bulk packagings... 49 Transportation 2 2010-10-01 2010-10-01 false Position in train of loaded placarded rail cars...

  20. Optimal Transportation Plans and Portfolios for Synchromodal Container Networks : Optimale transportplanning en portfolio’s voor synchromodale containernetwerken

    NARCIS (Netherlands)

    B. van Riessen (Bart)

    2018-01-01

    textabstractThis dissertation proposes an integrated approach for optimising synchromodal container transportation, motivated by two separate trends in the container transportation practice in North-West Europe. On the one hand, competition in hinterland transportation and the societal need for a

  1. Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks

    Energy Technology Data Exchange (ETDEWEB)

    Frost, R.L.

    1999-02-26

    A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks.

  2. The concept of the development of cargo container transport system within airport

    Directory of Open Access Journals (Sweden)

    Bernd Hentschel

    2012-09-01

    Full Text Available Background: The transport of luggage units between the check-in terminal and airplanes is realized by the use of very simple transport solutions and manual reloading of the luggage. The luggage trolleys are used for the transport purposes, which are hitched to the mover and moved directly to the surroundings of the airplane. The loading and unloading of luggage is performed manually. Regarding actual safety requirements there was a need to create a new transport system, working in a closed cycle and based on the device for automatic loading and unloading of luggage units. Methods: Various potential variants of the device were generated based on results of analytical researches by the use of the morphological schema. The detail evaluation and the optimization of individual variants allow to prepare the concept of the complex method to solve problems of the reliable transport of luggage units within an airport. Results: The closed transport system was created as a result of the innovative project. The main element of this system is a container trolley, which is equipped in five storage layers. By the use of the special mover and gravitational forces, luggage units can be transported and placed inside this trolley as well as being loaded and unloaded. This solution enables to move 200 pieces of luggage in one transport cycle from the check-in terminal to the hatchway of the airplane.

  3. Health risks in international container and bulk cargo transport due to volatile toxic compounds

    DEFF Research Database (Denmark)

    Baur, Xaver; Budnik, Lygia T; Zhao, Zhiwei

    2015-01-01

    To ensure the preservation and quality of the goods, physical (i.e. radiation) or chemical pest control is needed. The dark side of such consents may bear health risks in international transport and production sharing. In fact, between 10% and 20% of all containers arriving European harbors were...

  4. Intralog Towards an autonomous system for handling inter-terminal container transport

    NARCIS (Netherlands)

    Spruijt, Adrie; van Duin, Ron; Rieck, Frank

    2017-01-01

    As part of the National Transition Board Practice Research Raak/SIA program, the INTRALOG (intelligent Truck Application in Logistics) project investigated the practical application of zero emission Automatic Guided Trucks (AGTs) for the transport of containers in the Harbour Industrial Cluster

  5. Towards an autonomous system for handling inter-terminal container transport

    NARCIS (Netherlands)

    dr. J.H.R. van Duin; ir. Frank Rieck; A. Spruit

    2017-01-01

    As part of the National Transition Board Practice Research Raak/SIA program, the INTRALOG (intelligent Truck Application in Logistics) project investigated the practical application of zero emission Automatic Guided Trucks (AGTs) for the transport of containers in the Harbour Industrial Cluster

  6. Joint slot allocation and dynamic pricing of container sea–rail multimodal transportation

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-06-01

    Full Text Available The container sea–rail multimodal transport system faces complex challenges with demand uncertainties for joint slot allocation and dynamic pricing. The challenge is formulated as a two-stage optimal model based on revenue management (RM as actual slots sale of multi-node container sea–rail multimodal transport usually includes contract sale to large shippers and free sale to scattered shippers. First stage in the model utilizes an origin-destination control approach, formulated as a stochastic integer programming equation, to settle long-term slot allocation in the contract market and empty container allocation. Second stage in the model is formulated as a stochastic nonlinear programming equation to solve a multiproduct joint dynamic pricing and inventory control problem for price settling and slot allocation in each period of free market. Considering the random nature of demand, the methods of chance constrained programming and robust optimization are utilized to transform stochastic models into deterministic models. A numerical experiment is presented to verify the availability of models and solving methods. Results of considering uncertain/certain demand are compared, which show that the two-stage optimal strategy integrating slot allocation with dynamic pricing considering random demand is revealed to increase the revenue for multimodal transport operators (MTO while concurrently satisfying shippers' demand. Research resulting from this paper will contribute to the theory and practice of container sea–rail multimodal transport revenue management and provide a scientific decision-making tool for MTO.

  7. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  8. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  9. Method of reducing contamination by radioactivity on a cask for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiromitsu.

    1976-01-01

    Object: To reduce a radioactivity level of an outer surface of a cask. Structure: After a cask body with a contamination preventive cover mounted thereon has been immersed into a water tank by means of a hanging member, a cask with the contamination preventive cover mounted thereon is suspended upwardly of the cask body. A spent fuel is stored within the cask body by the hanging member, and thereafter the cask lid is attached to the body and closed, and the hanging member is driven to move the cask to a decontamination station. Next, the contamination preventive cover is removed and the cask body and cask lid are closed and connected, and in this condition, decomtamination water is sprinkled on the outer surface to effect decontamination until the radioactivity reaches a level below rated value. (Yoshino, Y.)

  10. Nuclear waste shipping container response to severe accident conditions, A brief critique of the modal study

    International Nuclear Information System (INIS)

    Audin, L.

    1990-12-01

    The Modal Study (NUREG/CR-4829) attempts to upgrade the analysis of spent nuclear fuel transportation accidents, and to verify the validity of the present regulatory scheme of cask performance standards as a means to minimize risk. While an improvement over many prior efforts in this area (such as NUREG-0170), it unfortunately fails to create a realistic simulation either of a shipping cask, the severe conditions to which it could be subjected, or the potential damage to the spent fuel cargo during an accident. There are too many deficiencies in its analysis to allow acceptance of its results for the presumed cask design, and many pending changes in new containers, cargoes and shipping patterns will limit applicability of the Modal Study to future shipments. In essence, the Modal Study is a good start, but is too simplistic, incomplete, outdated and open to serious question to be used as the basis for any present-day environmental or risk assessment of spent fuel transportation. It needs to be redone, with peer review during its production and experimental verification of its assumptions, before it has any relevance to the shipments planned to Yucca Mountain. Finally, it must be expanded into a full risk assessment by inputing its radiological release fractions and probabilities into a valid dispersal simulation to properly determine the impact of its results. 51 refs

  11. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-09-01

    General Atomics (GA) has designed two legal weight truck (LWT) casks, the GA-4 and GA-9, to carry four pressurized-water-reactor (PWR) and nine boiling-water-reactor (BWR) fuel assemblies, respectively. GA plans to submit applications for certification to the US Nuclear Regulatory Commission (NRC) for the two casks in mid-1993. GA will include burnup credit analysis in the Safety Analysis Report for Packaging (SARP) for the GA-4 Cask. By including burnup credit in the criticality safety analysis for PWR fuels with initial enrichments above 3% U-235, public and occupation risks are reduced and cost savings are realized. The GA approach to burnup credit analysis incorporates the information produced in the US Department of Energy Burnup Credit Program. This paper describes the application of burnup credit to the criticality control design of the GA-4 Cask

  12. Alternative connection between territory of Poland and Far / Middle East countries for containers transport

    Directory of Open Access Journals (Sweden)

    Wiktor Żuchowski

    2014-06-01

    Full Text Available Background: The new cyclical service, available on the Polish market, related to the railway connection between Port of Koper and the terminal in Silesia, enables delivery of containers, skipping the Polish and German ports. To "the opening" of a direct connection with the Adriatic Sea arises dilemma that requires the identification of sustainability of the containers' transport to the Polish territories in economical and ecological terms. The key to this problem is a solution of the equation with several unknowns, which include the cost and time of transport, sea freight operator procedures, infrastructure constraints and the interests of local and regional communities. The analysis of the impact area of rail connection Koper - Slawkow was carried within Empiric project. The assumptions and results are described below. Material and methods: Based on the experience of the Slawkow-Koper link's operator and analysis of distances, cost, duration of containers transport, the research has been conducted, intended to estimate the area of influence of ports, located on the shores of the four seas surrounding area of Central Europe: Adriatic, Baltic, Black and North, with particular reference to the Port of Koper. The research used publicly available information, calculators, and disseminated investment plans. Results: Analysis of factors possible to calculate, especially the cost of containers' transport, by adopted assumptions, the study allowed to estimate the theoretical impact area of the Port of Koper. The area covers a large part of Poland, south from the line Szczecin-Brest. Besides aspect of cost impact area has been expanded due to different rail-gauge along the eastern Polish border. Also the environmental aspects indicate south direction of transport containers, as beneficial to the natural environment. As the factors reducing the development of the connections financial policies of the sea freight operators and infrastructure limitations of

  13. Maximizing allowable cask payloads using zone-loading and cooling table specifications

    International Nuclear Information System (INIS)

    Hopf, J.E.; Lloyd, T.

    2004-01-01

    The newer dual-purpose canister designs generally have a higher fuel assembly capacity than earlier designs. Due to the resulting increases in thermal and radiological source terms from the assembly payload, this will generally result in higher cask system temperatures and cask external dose rates, making it more difficult to meet 10CFR71 and 10CFR72 thermal and radiological requirements. One approach to addressing this issue would be to employ advanced, and potentially expensive, engineering features to enhance cask shielding and heat removal capabilities. Another approach involves the strategic loading of fuel assemblies in specific locations within the dual-purpose canister, along with a more rigorous analysis of the specific assembly payload configuration inside the canister. This second approach, which does not involve difficult engineering design and fabrication, and which does not add to the cost of the canister or cask, is the subject of this paper. Traditional cask licensing analyses simply model a uniform assembly payload over the entire canister interior. One, or perhaps a few ''design-basis'' combinations of burnup, enrichment, and cooling time are analyzed and qualified. All loaded assemblies must be completely bounded by one or more of the analyzed sets of design basis assembly parameters. Effectively, the ''hottest'' possible assembly is modeled in all loading slots. This paper discusses two techniques that could greatly increase the number of spent fuel pool assemblies that qualify for storage or transportation, especially when taken together. The first technique, referred to as ''zone loading'' involves loading relatively ''cold'' assemblies in the locations around the edge of the canister. The outer assemblies will almost entirely shield the neutron and gamma fluxes from the interior assemblies, reducing their contribution to cask external dose rate to very low levels. This allows much ''hotter'' possible assembly is modeled in all loading slots

  14. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    OpenAIRE

    Sanghoon Lee; Woo-Seok Choi; Ki-Seog Seo

    2016-01-01

    The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a...

  15. IMPROVEMENT OF THE SUPPORTING STRUCTURE OF PLATFORM CAR FOR HIGHER EFFICIENCY OF CONTAINER TRANSPORTATIONS

    Directory of Open Access Journals (Sweden)

    A. O. Lovska

    2017-02-01

    Full Text Available Purpose. The article is aimed to improve supporting structures of the platform car to increase the efficiency of container transportations. Methodology. In order to achieve the objective, the strength investigations of the universal platform car of the model 13-401 were conducted, strength reserves of the supporting elements were defined, and more optimal profiles of basic longitudinal beams of the frame in terms of the minimum material capacity were proposed. Decision correctness was confirmed by the strength calculation of the platform car supporting structure at basic loading operational modes and fatigue taking into account the research database of 107 cycles. It has been proposed to equip a platform car with swing fitting stops for fastening containers on the frame, which allows transportation of 20ft and 40ft containers. In order to improve container transportation efficiency along international transport corridors running through Ukraine, a platform car of articulated type has been designed on the base of the improved platform car structure. The mathematical simulation of dynamic loads of the platform car with containers (two 1CC containers at operational loading modes has been carried out, the maximum accelerations influencing the support structure have been defined, and their multiple values have been considered in computer simulation of the strength of the platform car of articulated type. Findings. The support structure of the platform car of articulated type on the basis of the standard platform car has been developed. Refined values of dynamic loads influencing supporting structure the platform car of articulated type with containers at operational loading modes have been obtained; the maximum equivalent stresses in the platform car support structure have been defined. Originality and practical value. A mathematical model of displacements for a platform car of articulated type with containers at operational loading modes of

  16. Interplay of Transport and Morphology in Nanostructured Ion-Containing Polymers

    Science.gov (United States)

    Park, Moon Jeong

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community to develop innovative ways to improve energy storage and find more efficient methods of transporting the energy. Polymers containing charged species that show high ionic conductivity and good mechanical integrity are the essential components of these energy storage and transport systems. In this talk, first, I will present a fundamental understanding of the thermodynamics and transport in ion-containing block copolymers with a focus on the structure-property relationships. Tailoring the intermolecular interactions between the polymer matrix and the embedded charges appeared to be vital for controlling the transport properties. Particularly, the achievement of well-defined self-assembled morphologies with three-dimensional symmetries has proven to facilitate fast ion transport by constructing less tortuous ion-conducting pathways. Examples of attained morphologies include disorder, lamellae, gyroid, Fddd, hexagonal cylinder, body-centered cubic, face-centered cubic, and A15 phases. Second, various strategies for accessing high cation transference number as well as improved ionic conductivity from ionic-containing polymers are enclosed; (1) the inclusion of terminal ionic units as a new means to control the nanoscale morphologies and the transport efficiency of block copolymer electrolytes and (2) the addition of zwitterions that offered a polar medium close to water, and accordingly increased the charge density and ionic conductivity. The obtained knowledge on polymer electrolytes could be used in a wide range of emerging nanotechnologies such as fuel cells, lithium batteries, and electro-active actuators.

  17. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  18. Packaging design criteria for the MCO cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1996-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are presently stored in the K Basins (including possibly 700 additional elements from PUREX, N Reactor, and 327 Laboratory). The basin water, particularly in the K East Basin, contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. To permit cleanup of the K Basins and fuel conditioning, the fuel will be transported from the 100 K Area to a Canister Storage Building (CSB) in the 200 East area. In order to initiate K Basin cleanup on schedule, the two-year fuel-shipping campaign must begin by December 1997. The purpose of this packaging design criteria is to provide criteria for the design, fabrication, and use of a packaging system to transport the large quantities of irradiated nuclear fuel elements positioned within Multiple Canister Overpacks

  19. T-3, a packaging and transportation system for irradiated US breeder reactor experiments

    International Nuclear Information System (INIS)

    Hansen, L.J.; Berg, J.D.; Berger, J.D.; Weber, E.T.; Krupar, J.J.

    1980-01-01

    Irradiation testing of fast reactor fuels and materials in EBR-II, TREAT, and other US facilities required a packaging and transportation system that would ensure that changes in the specimens were irradiation induced and not the result of transport. The T-2 cask and the development of the T-3 cask are discussed

  20. The TN-GEMINI: experience on a versatile alpha waste transport container

    International Nuclear Information System (INIS)

    Roland, V.; Chanzy, Y.

    2001-01-01

    The present paper discusses experience gained in moving alpha wastes and its teachings regarding transport aspects of D and D. Alpha wastes are generated in fuel cycle facilities such as those involved in reprocessing, in manufacture of mixed oxide fuel, and by research laboratories. If a significant amount of wastes has to be transported, then a Type B packaging is required. Developed by Transnucleaire and COGEMA, the TN GEMINI container enables nuclear facilities operators to optimise their alpha waste transport management, and more generally contribute to their D and D projects. After describing succinctly the design of the TN GEMINI, the paper will explain how the packaging is being operated. Teachings from experience will be shared. (orig.)

  1. Adapting Dry Cask Storage for Aging at a Geologic Repository

    International Nuclear Information System (INIS)

    Sanders, C.; Kimball, D.

    2005-01-01

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS

  2. Needs of anticipation for transport operations

    International Nuclear Information System (INIS)

    Galtier, J.

    2005-01-01

    COGEMA LOGISTICS (formerly Transnucleaire) has designed and manufactured several thousands of casks, and owns fleet of more than 4000 casks. Benefiting from more than 40 years of experience in cask shipment COGEMA LOGISTICS has demonstrated an outstanding performance in transportation and has integrated all feed back from past successful operations in current ones. Early anticipation of needs, i.e. at preliminary design step, is of major importance from a technical point of view (capacity, interface, handling means, licensing), and also in terms of political and public acceptance issues from the design step. This paper will highlight for each step required for the implementation of an optimal transport and storage system: Decision to proceed (including political aspects)-Design of casks to be used (including operational interface)-Licensing process-Manufacturing process-Transport plan, Public Acceptance-Loading Operations-Transport-Maintenance operations. (authors)

  3. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  4. Identification of retrograde transport vesicles containing nerve growth factor in vivo

    International Nuclear Information System (INIS)

    Weible, M.W.; Sandow, S.L.; Ozsarac, N.; Hendry, I.A.; Grimes, M.L.

    2002-01-01

    Full text: Survival, differentiation, and development of responsive neurons are regulated by neurotrophins secreted from the target cells that they innervate. These responsive neurons must meet the challenge of transporting the neurotrophins chemical message from the target tissue to the soma; the distance of which may be a few millimetres to many meters. One hypothesis involves the formation of a signalling organelle at the neurite tip and subsequent retrograde axonal transport to the soma. This signalling vesicle is derived from the endocytosis of the neurotrophin-receptor complex. By modifying a method developed to isolate signalling endosomes from PC12 cells, we are able to isolate signalling vesicles from rat and mouse sciatic tissue. Approximately, 4 mole of I 125 -labelled neurotrophin was injected into the rodent foot pad and the sciatic nerve ligated under 88 μ/g ketamine and 16 μ/g rompun (i.p.) anaesthetic. All experiments had the approval of the ANU animal ethics committee. We achieved a recovery of 23% and 34% in the mouse and rat respectively of total transported iodinated neurotrophin accumulating on the distal side of the ligation. The homogenized tissue was characterized via differential centrifugation, blotted, and probed using antibodies to the neurotrophin receptors. Electron microscopy confirmed that the membrane pellet containing the transported neurotrophin from this in vivo preparation contained vesicular structures. Copyright (2002) Australian Neuroscience Society

  5. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    Directory of Open Access Journals (Sweden)

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  6. A conceptual redesign of an inter-building fuel transfer cask

    International Nuclear Information System (INIS)

    Klann, R.T.; Picker, B.A. Jr.

    1993-01-01

    The Inter-Building Fuel Transfer Cask, referred to as the IBC, is a lead shielded cask for transporting subassemblies between buildings on the Argonne National Laboratory-West site near Idaho Falls, Idaho. The cask transports both newly fabricated and spent reactor subassemblies between the Experimental Breeder Reactor-2 (EBR-2), the Fuel Cycle Facility (FCF) and the Hot Fuel Examination Facility (HFEF). The IBC will play a key role in the Integral Fast Reactor (IFR) fuel recycling demonstration project. The existing IBC technology, designed and fabricated in the late fifties, is outdated and is a source of personnel exposure at ANL-W. The current IBC system requires forced argon cooling and has extremely limited passive cooling capabilities due to existing design features. A conceptual redesign of the IBC has been performed. The objective of the conceptual design was to increase the passive heat removal capabilities, reduce the personnel radiation exposure and incorporate enhanced safety features into the design. The heat transfer, radiation and thermal-hydraulic properties of the IBC were analytically modeled to determine the principal factors controlling the design. The scoping studies that were performed determined the vital physical characteristics (i.e., size, shielding, pumps, etc.) of the IBC conceptual design. The conceptual design for the IBC allows subassemblies with up to 800 Watts of decay heat to be passively cooled, a significant increase over the existing system. The new design which incorporates better passive cooling mechanisms will prevent inadvertent damage to the subassembly during postulated loss-of-power and loss-of-flow accident scenarios. The new design also decreases the radiation hazard to personnel by having fewer external systems, a better shield plug design, and surfaces that are easier to decontaminate. The control and monitoring system will also be state-of-the-art technology

  7. Detector placement optimization for cargo containers using deterministic adjoint transport examination for SNM detection

    International Nuclear Information System (INIS)

    McLaughlin, Trevor D.; Sjoden, Glenn E.; Manalo, Kevin L.

    2011-01-01

    With growing concerns over port security and the potential for illicit trafficking of SNM through portable cargo shipping containers, efforts are ongoing to reduce the threat via container monitoring. This paper focuses on answering an important question of how many detectors are necessary for adequate coverage of a cargo container considering the detection of neutrons and gamma rays. Deterministic adjoint transport calculations are performed with compressed helium- 3 polyethylene moderated neutron detectors and sodium activated cesium-iodide gamma-ray scintillation detectors on partial and full container models. Results indicate that the detector capability is dependent on source strength and potential shielding. Using a surrogate weapons grade plutonium leakage source, it was determined that for a 20 foot ISO container, five neutron detectors and three gamma detectors are necessary for adequate coverage. While a large CsI(Na) gamma detector has the potential to monitor the entire height of the container for SNM, the He-3 neutron detector is limited to roughly 1.25 m in depth. Detector blind spots are unavoidable inside the container volume unless additional measures are taken for adequate coverage. (author)

  8. Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport

    International Nuclear Information System (INIS)

    Tao, Xuezong; Wu, Qin; Zhu, Lichao

    2017-01-01

    A comprehensive analytical framework is presented to assess the potential modal shift (MS) from road transport to rail/water transport and resulting carbon dioxide (CO 2 ) emission mitigation induced by a subsidy policy in port-hinterland transport. In this framework, a modal share model based on a random coefficient logit model and an activity-based method are used to analyze the contribution of an incentive policy to the potential MS and corresponding CO 2 emission mitigation. Stated preference survey, face-to-face interviews, and group discussions are employed to obtain the essential data. Case study result shows that a CO 2 emission mitigation of 2,586.88 t may be achieved with a subsidy of 200 RMB/TEU (Renminbi/20-feet equivalent unit) to the shippers who choose the road-rail combined transport chain in Yiwu City. Compared with the business-as-usual scenario without subsidy, the subsidy policy scenario can achieve a 3.2% MS from a road-only transport chain to a road-rail combined transport chain, as well as a 2.07% CO 2 emission mitigation in the Yiwu-Ningbo container transport corridor. This finding reveals that the subsidies can serve as short-term solutions, but a policy package, including financial, technological, operational, and managerial measures, is required as a long-term strategy. - Highlights: • A comprehensive analytical framework for CO 2 mitigation potential was presented. • Questionnaires, interviews, and discussions were used to collect essential data. • A 2.07% of CO 2 mitigation potential may be resulted from 3.2% modal shift under subsidy scenario. • Subsidies can serve as short-term solutions to reduce CO 2 emissions.

  9. Containment

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The primary mission of the Containment Group is to ensure that underground nuclear tests are satisfactorily contained. The main goal is the development of sound technical bases for containment-related methodology. Major areas of activity include siting, geologic description, emplacement hole stemming, and phenomenological predictions. Performance results of sanded gypsum concrete plugs on the Jefferson, Panamint, Cornucopia, Labquark, and Bodie events are given. Activities are also described in the following areas: computational capabilities site description, predictive modeling, and cavity-pressure measurement. Containment publications are listed. 8 references

  10. 49 CFR 174.85 - Position in train of placarded cars, transport vehicles, freight containers, and bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... Vehicles and Freight Containers § 174.85 Position in train of placarded cars, transport vehicles, freight... position in a train of each loaded placarded car, transport vehicle, freight container, and bulk packaging..., and other specially equipped cars with tie-down devices for securing vehicles. Permanent bulk head...

  11. Seismic tipping analysis of a spent nuclear fuel shipping cask sitting on a crush pad

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Hawkes, B.D.

    1998-04-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of an accidentally dropped spent nuclear fuel shipping cask into a 44 ft. deep cask unloading pool. Conventional analysis techniques available for evaluating a cask for tipping due to lateral seismic forces assume that the cask rests on a rigid surface. In this analysis, the cask (110 tons) sits on a stainless steel encased (0.25 in. top plate), polyurethane foam (4 ft. thick) crush pad. As the cask tends to rock due to horizontal seismic forces, the contact area between the cask and the crush pad is reduced, increasing the bearing stress, and causing the pivoting corner of the cask to depress into the crush pad. As the crush pad depresses under the cask corner, the pivot point shifts from the corner toward the cask center, which facilitates rocking and potential tipping of the cask. Subsequent rocking of the cask may deepen the depression, further contributing to the likelihood of cask tip over. However, as the depression is created, the crush pad is absorbing energy from the rocking cask. Potential tip over of the cask was evaluated by performing a non-linear, dynamic, finite element analysis with acceleration time history input. This time history analysis captured the effect of a deforming crush pad, and also eliminated conservatisms of the conventional approaches. For comparison purposes, this analysis was also performed with the cask sitting on a solid stainless steel crush pad. Results indicate that the conventional methods are quite conservative relative to the more exacting time history analysis. They also indicate that the rocking motion is less on the foam crush pad than on the solid stainless steel pad

  12. Model of Optimal Cargo Transport Structure by Full Container Ship on Predefined Sailing Route

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2004-01-01

    Full Text Available This paper presents the mathematical model for solving theproblem of defining optimal cargo transport structure, occurringwhen, on a predefined sailing route, adequate number ofcontainers of various types, masses and sizes, possibly includingRO!RO cargo, is to be selected, i.e., a "container lot" is to beestablished in loading ports with the aim of gaining maximumship profit and, at the same time, of exploiting useful load andtransport capacity of container ship as much as possible. Theimplementation of the proposed model enables considerableincrease in the efficiency of container ship operations. Themodel was tested using a numerical example with real data.The applied post-optimal analysis examines the influence ofchange in some values of the mathematical model on the resultingoptimal program.

  13. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

    Science.gov (United States)

    Howell, Stephen B; Safaei, Roohangiz; Larson, Christopher A; Sailor, Michael J

    2010-06-01

    Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.

  14. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1986-09-01

    This report deals with the operational, radiological and economic aspects of transport as well as conceptual designs of large containers for the transport of radioactive decommissioning wastes from nuclear power plants within the member states of the European Economic Community. The means of transport, the costs and radiological detriment are considered, and conceptual designs of containers are described. Recommendations are made for further studies. (U.K.)

  15. Potential Multi-Canister Overpack (MCO) Cask Drop in the K West Basin South Loadout Pit

    International Nuclear Information System (INIS)

    POWERS, T.B.

    1999-01-01

    This calculation note documents the probabilistic calculation of a potential drop of a multi-canister overpack (MCO) cask or MCO cask and immersion pail at the K West Basin south loadout pit. The calculations are in support of the cask loading system (CLS) subproject alignment of CLS equipment in the K West Basin south loadout pit

  16. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  17. High energy neutron transmission analysis of dry cask storage

    Science.gov (United States)

    Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James

    2017-12-01

    Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.

  18. Transport package maintenance requirements and operations

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Ball, L.J.; Ayers, A.L. Jr.; Hayes, G.R.; Anselmo, A.A.

    1988-01-01

    The NuPac 125-B rail cask, which transports the damaged core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL), is the only new spent-fuel rail shipping cask to be licensed in the United States within the last decade. EG ampersand G Idaho, Inc. (EG ampersand G), acting on behalf of the US Department of Energy, is responsible for ensuring that those new casks and rail cars are properly maintained per regulatory requirements. Both the casks and rail cars have comprehensive in-service inspection and preventive maintenance programs, which are more involved than implied by the requirements. The TMI-2 shipping campaign is the most ambitious spent-fuel transport activity being conducted in the nuclear industry. The experience gained in this campaign, as it relates to maintenance of a transport system, should be of interest and have direct applicability to similar shipping activities planned in the years ahead

  19. Effect on localized waste-container failure on radionuclide transport from an underground nuclear waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-07-01

    In the geological disposal of nuclear fuel waste, one option is to emplace the waste container in a borehole drilled into the floor of the underground vault. In the borehole, the waste container is surrounded by a compacted soil material known as the buffer. A finite-element simulation has been performed to study the effect of localized partial failure of the waste container on the steady-state radionuclide transport by diffusion from the container through the buffer to the surrounding rock and/or backfill. In this study, the radionuclide concentration at the buffer-backfill interface is assumed to be zero. Two cases are considered at the interface between the buffer and the rock. In case 1, a no-flux boundary condition is used to simulate intact rock. In case 2, a constant radionuclide concentration condition is used to simulate fractured rock with groundwater flow. The results show that the effect of localized partial failure of the waste container on the total flux is dependent on the boundary condition at the buffer-rock interface. For the intact rock condition, the total flux is mainly dependent on the location of the failure. The total flux increases as the location changes from the bottom to the top of the emplaced waste container. For a given localized failure of the waste container, the total flux remains unaffected by the area of failed surface below the top of the failure. For fractured rock, the total flux is directly proportional to the failed surface area of the waste container regardless of the failure location

  20. Safety and Licensing of Spent Fuel Storage and Transport — Safety Issues Within Spent Fuel Transport

    International Nuclear Information System (INIS)

    Brut, S.; Derlot, F.; Milet, L.

    2015-01-01

    We can consider the different safety issues within French fuel transport as follows: (a) the proof as regards the leaking fuel assembly transport with hydrogen generation coming from potential in leakage water inside fuel rods; ( b) the measures taken to enforce the new design as well as the new manufacturing which have been decided since January 1 st 2007 in the frame of the 96 IAEA Regulation as regards the full water penetration as compared to the 85 IAEA Regulation, the latter allowing partial water penetration on certain conditions; and (c) the obligation of implementing various risk controls on exploitation site in order to take into account the possible human failure which are intrinsically increasing the permissible doses rates for workers. Even quite recently the leaking fuel assembly transport has been considered with no specific measure as regards the radiolysis phenomenon or the quality of drying cask holds. All these measures were sufficiently in accordance to rule out this issue. Lately, the leaking fuel assembly transport needs the implementation of equipment controls involved in nuclear power plants as regards the hydrogen rate before loading departure in order to determine on the evolution law, the maximum duration authorized for the transportation to not exceed the lower limit of inflammable status. As regards the proof of the criticality-safety casks, the main justification to be held on the irradiated fuel assembly on drop accident conditions could find a key in the hypothesis of the important damage of the fuel but should be in this matter, compensated by a limit of containment penetration for safety reason. For this case, the appl